JP5776522B2 - Shock absorber for vehicle - Google Patents
Shock absorber for vehicle Download PDFInfo
- Publication number
- JP5776522B2 JP5776522B2 JP2011264360A JP2011264360A JP5776522B2 JP 5776522 B2 JP5776522 B2 JP 5776522B2 JP 2011264360 A JP2011264360 A JP 2011264360A JP 2011264360 A JP2011264360 A JP 2011264360A JP 5776522 B2 JP5776522 B2 JP 5776522B2
- Authority
- JP
- Japan
- Prior art keywords
- absorbing member
- wood
- frame
- rib
- ribs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000035939 shock Effects 0.000 title claims description 40
- 239000006096 absorbing agent Substances 0.000 title 1
- 239000002023 wood Substances 0.000 claims description 67
- 239000000835 fiber Substances 0.000 claims description 13
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 230000006835 compression Effects 0.000 description 18
- 238000007906 compression Methods 0.000 description 18
- 238000006073 displacement reaction Methods 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000005484 gravity Effects 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 241000218645 Cedrus Species 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 2
- 235000011613 Pinus brutia Nutrition 0.000 description 2
- 241000018646 Pinus brutia Species 0.000 description 2
- 241000220317 Rosa Species 0.000 description 2
- 230000004323 axial length Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241000218631 Coniferophyta Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000218691 Cupressaceae Species 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 241000190021 Zelkova Species 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R19/00—Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
- B60R19/02—Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
- B60R19/24—Arrangements for mounting bumpers on vehicles
- B60R19/26—Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
- B60R19/34—Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vibration Dampers (AREA)
Description
本発明は、車両の衝撃吸収部材に関し、詳しくは、四角柱状の木材と、該木材の外周面を囲う中空筒状の金属製の枠体とを備え、衝突時の衝撃を軸方向の圧縮荷重として受ける車両の衝撃吸収部材に関する。 The present invention relates to a shock absorbing member for a vehicle, and more specifically, includes a quadrangular columnar timber and a hollow cylindrical metal frame that surrounds the outer peripheral surface of the timber, and the impact at the time of collision is compressed in the axial direction. The present invention relates to a shock absorbing member of a vehicle received as
この種の車両の衝撃吸収部材は、例えば、特許文献1に開示されている。特許文献1の衝撃吸収部材では、枠体としてのアルミニウム製中空材に木材が略ぴったりとあるいは若干きつく嵌め込まれることで、衝撃を受けて衝撃吸収部材が変位するのに伴い反力としての圧縮荷重が変動するのを抑制して衝撃エネルギーの吸収性能を向上させることができるとされている。更に、木材の繊維方向を枠体の軸方向に一致させることで、衝撃エネルギーの吸収量の増加が図られている。 An impact absorbing member of this type of vehicle is disclosed in Patent Document 1, for example. In the shock absorbing member of Patent Document 1, the compression load as a reaction force is generated when the shock absorbing member is displaced by receiving a shock by inserting the wood into the aluminum hollow material as a frame body substantially tightly or slightly tightly. It is said that the shock energy absorption performance can be improved by suppressing the fluctuation. Furthermore, the amount of impact energy absorbed is increased by making the fiber direction of the wood coincide with the axial direction of the frame.
たしかに、木材は、元来多孔質であるとともに繊維が一方向に揃っているので、繊維方向を圧縮方向に一致させ、真っ直ぐに圧縮することができれば、圧縮荷重の変動を効果的に抑制しながら衝撃エネルギーの吸収量を向上させることができる。しかしながら、従来の衝撃吸収部材では、枠体が圧縮荷重により蛇腹状に座屈変形する。この場合、蛇腹の振幅が大きいと枠体が木片に食い込み、局所的に木材の繊維の変形方向が傾斜するため、木材の元来の特徴を最大限には活かせない。これでは、局所的に繊維が傾斜することで圧縮荷重が変動してしまう。特許文献1では枠体と木材とが密着しているため、枠体が木材に深く食い込みやすく、木材の繊維が傾斜しやすかった。 Certainly, wood is originally porous and the fibers are aligned in one direction. Therefore, if the fiber direction matches the compression direction and can be compressed straight, it will effectively suppress fluctuations in the compression load. The amount of impact energy absorbed can be improved. However, in the conventional shock absorbing member, the frame body buckles and deforms in a bellows shape due to a compressive load. In this case, if the amplitude of the bellows is large, the frame body bites into the piece of wood, and the deformation direction of the fibers of the wood is locally inclined, so that the original characteristics of the wood cannot be fully utilized. In this case, the compressive load varies due to the local inclination of the fibers. In Patent Document 1, since the frame body and the wood are in close contact, the frame body is easy to bite deeply into the wood, and the fibers of the wood are easy to tilt.
そこで、本発明は、圧縮変形時に枠体が木材に食い込むのを抑制し、木材本来の機能を的確に発揮させて、圧縮荷重の安定した車両の衝撃吸収部材を提供することを目的とする。 Therefore, an object of the present invention is to provide an impact absorbing member for a vehicle with a stable compression load by suppressing the frame body from biting into the wood at the time of compressive deformation and properly exhibiting the original function of the wood.
本発明は、繊維方向を軸方向とする四角柱状の木材と、該木材の外周面を囲う中空筒状の金属製の枠体とを備え、衝突時の衝撃を軸方向の圧縮荷重として受ける車両の衝撃吸収部材であって、前記枠体は、少なくとも対向する一対の面から直角に張り出すリブが、前記軸方向に沿って該枠体の端から端まで全長に亘って形成されていることを特徴とする車両の衝撃吸収部材である。
The present invention includes a rectangular columnar wood having a fiber direction as an axial direction and a hollow cylindrical metal frame surrounding the outer peripheral surface of the wood, and receives a shock at the time of a collision as a compressive load in the axial direction. In the shock absorbing member, at least a pair of ribs projecting at right angles from a pair of opposing surfaces are formed over the entire length of the frame body from end to end along the axial direction. A shock absorbing member for a vehicle characterized by the above.
かかる衝撃吸収部材によれば、軸方向の圧縮荷重を受けて枠体が蛇腹状に変形するにあたり、リブが設定されていることにより蛇腹の振幅が小さくなる。それにより、枠体が木材に食い込むのを抑制することができる。 According to such an impact absorbing member, when the frame body is deformed into a bellows shape under the axial compressive load, the amplitude of the bellows is reduced by setting the rib. Thereby, it can suppress that a frame cuts into wood.
リブは、(張り出し高さ寸法/厚み)比が5〜20であることが望ましい。この場合、枠体が蛇腹状に変形する際の蛇腹の振幅をより有効に小さくし、枠体が木材に食い込むのをより効果的に抑制することができる。また、木材と枠体とに間隙を有することも好ましい。この場合、枠体の蛇腹の波を間隙で許容することでも木材に枠体が食い込むのを抑制することができる。リブは、枠体の外側に張り出すことができる。また、内側に張り出すこともできる。 It is desirable that the rib has a (projected height dimension / thickness) ratio of 5 to 20. In this case, it is possible to more effectively reduce the amplitude of the bellows when the frame body is deformed into a bellows shape, and to more effectively suppress the frame body from biting into the wood. It is also preferable to have a gap between the wood and the frame. In this case, the frame body can be prevented from biting into the wood by allowing the bellows wave of the frame body to be allowed in the gap. The rib can project to the outside of the frame. Moreover, it can also project inside.
本発明の衝撃吸収部材によれば、軸方向の圧縮荷重を受けると枠体が細かく波を打ちながら蛇腹変形するため木材に食い込みにくい。そのため、木材の元来の特徴を最大限に活かすことができ、圧縮荷重の安定した車両の衝撃吸収部材を提供することができる。 According to the shock absorbing member of the present invention, when the axial compressive load is received, the frame body is deformed in a bellows while being finely waved, so that it is difficult to bite into the wood. Therefore, the original characteristics of wood can be utilized to the maximum, and a vehicle impact absorbing member with a stable compression load can be provided.
<実施形態1>
図1〜3を参照しながら本発明の一実施形態について説明する。本実施形態の衝撃吸収部材11は、自動車等の車両に設置されて衝突時の衝撃エネルギーを吸収するための部材である。図1に示されるように、衝撃吸収部材11は、軸方向に直交する平断面が正方形の四角柱状の木材21と、木材21の外周面を囲う金属製の枠体31とからなり、衝突時の衝撃を軸方向の圧縮荷重として受けるものである。
<Embodiment 1>
An embodiment of the present invention will be described with reference to FIGS. The impact absorbing member 11 of the present embodiment is a member that is installed in a vehicle such as an automobile and absorbs impact energy at the time of collision. As shown in FIG. 1, the shock absorbing member 11 includes a square columnar wood 21 having a square cross section orthogonal to the axial direction and a metal frame 31 surrounding the outer peripheral surface of the wood 21. Is received as an axial compressive load.
木材21は、その繊維方向が圧縮荷重(軸方向)と平行になるように四角柱状に製材されている。木材21の種類は特に限定されず、例えば、スギ、ヒノキ、マツ等の針葉樹や、ケヤキやブナ等の広葉樹を用いることができる。比重が高い木材は強度に優れ、比重が低い木材は気孔率が高いため、クラッシュストローク(圧縮による変位量)が長くなる特徴がある。この点を考慮し、車両の設置位置に合わせて適宜の比重の木材を選択するのが望ましい。比重が0.2〜0.4の木材を用いると、クラッシュストロークを十分に確保しつつ、ある程度の強度を有することで、衝撃エネルギーの吸収量をより高めることができ好ましい。比重が0.2〜0.4の木材としては、例えば、スギ、ヒノキ、マツ等が挙げられる。 The wood 21 is made into a square column shape so that the fiber direction is parallel to the compression load (axial direction). The kind of wood 21 is not specifically limited, For example, conifers, such as a cedar, a cypress, and a pine, and broad-leaved trees, such as a zelkova and a beech, can be used. Wood with a high specific gravity is excellent in strength, and wood with a low specific gravity has a high porosity, so that the crash stroke (displacement due to compression) is long. Considering this point, it is desirable to select wood having an appropriate specific gravity according to the installation position of the vehicle. Use of wood having a specific gravity of 0.2 to 0.4 is preferable because it can increase the amount of impact energy absorbed by having a certain degree of strength while sufficiently securing the crash stroke. Examples of the wood having a specific gravity of 0.2 to 0.4 include cedar, hinoki and pine.
枠体31は、木材21の側面に対面する4つの壁面41〜44で形成された中空四角筒状の枠部33を備えている。枠体31は、木材21を支持することができるとともに、軸方向の圧縮荷重を受けて木材21とともに変形することのできるものであり、例えば、アルミニウムや銅、鉄などの金属からなる。枠部33には、木材21の側面との間にわずかな間隙Sを形成して木材21が収容されており、枠部33により木材21の外周面全体が過不足無く覆われている。 The frame body 31 includes a hollow rectangular tube-shaped frame portion 33 formed by four wall surfaces 41 to 44 facing the side surface of the wood 21. The frame 31 can support the wood 21 and can be deformed together with the wood 21 by receiving an axial compressive load. For example, the frame 31 is made of a metal such as aluminum, copper, or iron. The frame portion 33 accommodates the wood 21 with a slight gap S formed between the side surface of the wood 21 and the entire outer peripheral surface of the wood 21 is covered by the frame portion 33 without excess or deficiency.
枠部33を形成する4つの壁面41〜44のそれぞれには、リブ41r〜44rが設けられている。リブ41r〜44rは板状であり、壁面41〜44から外側に直角に張り出している。リブ41r〜44rは、壁面41〜44の幅方向の中央において軸方向に沿って軸方向の全長に亘って形成されており、その張り出し高さ寸法(突出量)は、全長を通じて等しい。このリブ41r〜44rは、軸方向の圧縮荷重を受けると、それ自体が座屈変形しながら枠部33の壁面41〜44が波打つように座屈変形するのを許容することのできるものである。その作用機能について、衝突に伴う圧縮荷重が作用したときの衝撃吸収部材11の作用機能を説明しながら、更に詳しく説明する。 Each of the four wall surfaces 41 to 44 forming the frame portion 33 is provided with ribs 41r to 44r. The ribs 41r to 44r are plate-like and project outward from the wall surfaces 41 to 44 at a right angle. The ribs 41r to 44r are formed over the entire length in the axial direction along the axial direction at the center in the width direction of the wall surfaces 41 to 44, and the protruding height dimension (projection amount) is equal throughout the entire length. When the ribs 41r to 44r are subjected to an axial compressive load, the ribs 41r to 44r can allow the wall surfaces 41 to 44 of the frame portion 33 to buckle and deform so as to be undulated while themselves buckling and deforming. . The action function will be described in more detail while explaining the action function of the shock absorbing member 11 when a compressive load due to a collision is applied.
衝撃吸収部材11は、木材21の軸方向(繊維方向)と車両の衝突方向とが平行になるように設置される。衝突に伴って衝撃吸収部材11に軸方向の圧縮荷重が作用すると、図2に模式的に示されるように、木材21を囲う枠体31の枠部33は蛇腹状に座屈しながら軸方向に押し潰され、木材21は枠体31により転倒が抑制されて軸方向にそのまま圧縮変形する。 The impact absorbing member 11 is installed so that the axial direction (fiber direction) of the wood 21 and the collision direction of the vehicle are parallel to each other. When an axial compressive load is applied to the shock absorbing member 11 in accordance with the collision, the frame portion 33 of the frame body 31 surrounding the wood 21 is axially bent in a bellows shape as schematically shown in FIG. After being crushed, the wood 21 is prevented from being overturned by the frame 31 and is directly compressed and deformed in the axial direction.
このとき、リブ41r〜44rは、各壁面41〜44の蛇腹の湾曲方向とは直交する方向に湾曲しながら波を打つように座屈変形する。すなわち、リブ41r〜44rの変形態様を図3を参照しながら壁面41を取り上げて説明すると、壁面41が矢印Aで示されるように枠部33の内外方向に波を打つように座屈するのに対し、リブ41rは矢印Bで示されるように、壁面41の座屈方向とは直交する方向に波を打つように座屈しながら軸方向に潰れる。ここで、枠部33は、基本的には、比較的強度の高い角部45〜48が座屈し、それに追従して間の平らな面(壁面41〜44)が波打つように変形しようとする。しかし、壁面41〜44にはリブ41r〜44rが設けられており、リブ41r〜44rが軸方向に潰れることで、壁面41〜44は幅方向の中間で大きく屈曲するのが抑制されながら蛇腹変形が許容される。そのため、リブ41r〜44rも壁面41〜44における蛇腹変形の基点となり、壁面41〜44に形成される蛇腹の波形状はリブ41r〜44rを境に分割される。すなわち、各壁面41〜44においてリブ41r〜44rで分割された小幅な面形状単位で波形が形成される。小幅な面形状単位が隣り合う面形状単位と相互に引き合いながら座屈しようとするため、大きく屈曲するのが規制され、各面形状単位が振幅の小さな波形状を形成しながら変形する。 At this time, the ribs 41r to 44r are buckled and deformed so as to hit a wave while being curved in a direction perpendicular to the direction of the bellows of each of the wall surfaces 41 to 44. That is, the deformation mode of the ribs 41r to 44r will be described by taking up the wall surface 41 with reference to FIG. 3, and the wall surface 41 is buckled so as to wave inward and outward of the frame 33 as indicated by an arrow A. On the other hand, as indicated by an arrow B, the rib 41r is crushed in the axial direction while buckling so as to strike a wave in a direction perpendicular to the buckling direction of the wall surface 41. Here, basically, the frame portion 33 tends to be deformed so that the corner portions 45 to 48 having relatively high strength are buckled, and the flat surfaces (wall surfaces 41 to 44) between them are undulated. . However, the wall surfaces 41 to 44 are provided with ribs 41r to 44r, and the ribs 41r to 44r are crushed in the axial direction, so that the wall surfaces 41 to 44 are deformed bellows while being largely bent in the middle in the width direction. Is acceptable. For this reason, the ribs 41r to 44r also serve as base points for bellows deformation on the wall surfaces 41 to 44, and the corrugated wave shapes formed on the wall surfaces 41 to 44 are divided at the ribs 41r to 44r. In other words, the corrugations are formed in small surface shape units divided by the ribs 41r to 44r in the respective wall surfaces 41 to 44. Since the narrow surface shape unit tries to buckle while attracting each other with the adjacent surface shape unit, the large shape is restricted, and each surface shape unit is deformed while forming a wave shape with a small amplitude.
各壁面41〜44において波形状を有効に分割するために、リブ41r〜44rは、圧縮荷重を受けて当該リブ41r〜44rが座屈変形しながら軸方向に潰れるように、張り出し高さ寸法と厚みが適宜調整される。ここで、リブ41r〜44rは、壁面41〜44をある程度は補強するものの、壁面41〜44全体を補強して壁面41〜44の蛇腹変形を妨げるものは好ましくない。また、壁面41〜44が内外方向に波打つのに屈して内外方向にうねるほど脆弱なものも好ましくない。リブ41r〜44rは、(張り出し高さ寸法/厚み)比が5〜20であると、リブ41r〜44rが圧縮荷重を受けて当該リブ41r〜44rの板状形状の表裏面方向に波打つように座屈変形して各壁面41〜44の蛇腹の波形状を有効に分割し、より細かい波形とすることができる点で好ましい。かかる(張り出し高さ寸法/厚み)比とするにあたり、リブ41r〜44rの厚みは、例えば、5mm以下を目安とすることができる。この場合、張り出し高さ寸法とのバランスをとって壁面41〜44の波形状を有効に分割して細かい波形を形成しやすい。 In order to effectively divide the wave shape in each of the wall surfaces 41 to 44, the ribs 41r to 44r are subjected to a compressive load so that the ribs 41r to 44r are crushed in the axial direction while being buckled and deformed. The thickness is adjusted as appropriate. Here, although the ribs 41r to 44r reinforce the wall surfaces 41 to 44 to some extent, it is not preferable to reinforce the entire wall surfaces 41 to 44 and prevent the bellows deformation of the wall surfaces 41 to 44. In addition, it is not preferable that the wall surfaces 41 to 44 are so brittle that the wall surfaces 41 to 44 wave in the inner and outer directions and undulate in the inner and outer directions. When the ribs 41r to 44r have a (projection height dimension / thickness) ratio of 5 to 20, the ribs 41r to 44r receive a compressive load so that the ribs 41r to 44r wave in the front and back surfaces of the plate-like shape. This is preferable in that it can be buckled and effectively divide the corrugated corrugations of the wall surfaces 41 to 44 into finer waveforms. In setting such a ratio (overhang height dimension / thickness), the thickness of the ribs 41r to 44r can be set to 5 mm or less, for example. In this case, it is easy to form a fine waveform by effectively dividing the wave shapes of the wall surfaces 41 to 44 in balance with the overhang height dimension.
かかる衝撃吸収部材11によれば、軸方向の圧縮荷重が作用すると、木材21を囲う枠体31の枠部33が蛇腹変形して軸方向に潰れるため、木材21を転倒することなく繊維方向に沿って真っ直ぐ圧縮変形する。そのため、応力としての圧縮荷重の変動が少ない。ここで、枠体31の枠部33は波形の振幅が小さい蛇腹状に変形するため内側に大きく湾曲することがなく、木材21に食い込みにくく、食い込みにより木材21の繊維を部分的に傾倒することによる圧縮荷重の変動を引き起こしにくい。枠体31と木材21との間に間隙Sが設けられていることも食い込み抑制に寄与している。ただし、枠体31の枠部33が内側に大きく湾曲することはないので、間隙Sをごくわずかに設定するだけで食い込み抑制効果を高めることができ、枠部33の木材21を真っ直ぐに保持する機能を担保することができる。間隙Sは、好ましくは1mm以下であり、より好ましくは0.5mm以下である。なお、この衝撃吸収部材11では、基本的には枠体が細かく蛇腹状に変形することで枠体の木材への食い込みが抑制されているため、間隙Sはなくてもよく、間隙Sの寸法の下限は特に限定されない。 According to the shock absorbing member 11, when an axial compressive load is applied, the frame portion 33 of the frame body 31 surrounding the wood 21 is bellows deformed and crushed in the axial direction, so that the wood 21 does not fall down in the fiber direction. Along the line, it compresses straight. Therefore, there is little fluctuation of the compressive load as stress. Here, since the frame portion 33 of the frame body 31 is deformed into a bellows shape with a small waveform amplitude, the frame portion 33 is not greatly bent inward, is difficult to bite into the wood 21, and the fibers of the wood 21 are partially tilted by the bite. It is difficult to cause the fluctuation of the compression load due to. The provision of the gap S between the frame 31 and the wood 21 also contributes to suppression of biting. However, since the frame portion 33 of the frame body 31 is not greatly curved inward, the biting suppression effect can be enhanced by setting the gap S very slightly, and the wood 21 of the frame portion 33 is held straight. Function can be secured. The gap S is preferably 1 mm or less, and more preferably 0.5 mm or less. In this shock absorbing member 11, since the frame body is finely deformed into a bellows shape and the biting of the frame body into the wood is suppressed, there is no need for the gap S, and the dimension of the gap S The lower limit of is not particularly limited.
衝撃吸収部材11の設置場所は、乗員や歩行者等を保護するために衝突エネルギーを吸収すべき場所であれば特に限定されない。例えば、フェンダパネルとボディパネルとの間、バンパリインホースとサイドメンバとの間、ドアパネルとドアトリムとの間、ピラーとピラートリムとの間、天井パネルとルーフライナとの間、フロアパネルとカーペットとの間などに設置することができる。衝撃吸収部材11の車両への固定方法は特に限定されず、例えば、枠体31を溶接や接着等によって車両へ固定したり、あるいはブラケットを介して車両へ固定してもよい。 The installation location of the impact absorbing member 11 is not particularly limited as long as it is a location where collision energy should be absorbed in order to protect passengers, pedestrians, and the like. For example, between fender panels and body panels, between bumper in hoses and side members, between door panels and door trims, between pillars and pillar trims, between ceiling panels and roof liners, between floor panels and carpets. It can be installed in between. The method for fixing the shock absorbing member 11 to the vehicle is not particularly limited. For example, the frame body 31 may be fixed to the vehicle by welding or adhesion, or may be fixed to the vehicle via a bracket.
<実施形態2>
図4を参照しながら、本発明の別の実施形態について説明する。本実施形態の衝撃吸収部材51は、四角柱状の木材61と、木材61の外周面を囲う金属製の枠体71とからなり、自動車等の車両に設置されて衝突時の衝撃を軸方向の圧縮荷重として受けるための部材である。この衝撃吸収部材51は、作用機能は上記実施形態1と同様であるが、構成上、枠体71に形成されたリブ81r〜84rが内側に張り出している点が上記実施形態1とは異なる特徴である。
<Embodiment 2>
With reference to FIG. 4, another embodiment of the present invention will be described. The shock absorbing member 51 of the present embodiment is composed of a quadrangular prism-shaped wood 61 and a metal frame 71 surrounding the outer peripheral surface of the wood 61, and is installed in a vehicle such as an automobile so that an impact at the time of collision can be reduced in the axial direction. It is a member for receiving as a compressive load. The shock absorbing member 51 has the same function as that of the first embodiment, but is different from the first embodiment in that the ribs 81r to 84r formed on the frame 71 project inward from the structure. It is.
木材61は、その繊維方向が圧縮荷重(軸方向)と平行になるように四角柱状に製材されており、各側面には枠体71のリブ81r〜84rが差し込まれる切れ込み63a〜63dが形成されている。 The wood 61 is made into a square pillar shape so that its fiber direction is parallel to the compression load (axial direction), and notches 63a to 63d into which the ribs 81r to 84r of the frame 71 are inserted are formed on each side surface. ing.
枠体71は、中空四角筒状の枠部73を備えており、枠部73を形成する4つの壁面81〜84のそれぞれには、内側に直角に張り出す板状のリブ81r〜84rが設けられている。リブ81r〜84rは、壁面81〜84の幅方向の中央において軸方向に沿って軸方向の全長に亘って形成されており、その張り出し高さ寸法(突出量)は、全長を通じて等しい。枠体71は、木材61の切れ込み63a〜63dにリブ81r〜84rが差し込まれた状態で木材61を枠部73に収容し、木材61の外周面全体を過不足無く覆っている。 The frame 71 includes a hollow rectangular tube-shaped frame portion 73, and plate-like ribs 81 r to 84 r projecting at right angles to the inside are provided on each of the four wall surfaces 81 to 84 forming the frame portion 73. It has been. The ribs 81r to 84r are formed over the entire length in the axial direction along the axial direction at the center in the width direction of the wall surfaces 81 to 84, and the protruding height dimension (projection amount) is equal throughout the entire length. The frame 71 accommodates the wood 61 in the frame portion 73 with the ribs 81r to 84r inserted into the cuts 63a to 63d of the wood 61, and covers the entire outer peripheral surface of the wood 61 without excess or deficiency.
リブ81r〜84rは、軸方向の圧縮荷重を受けると、それ自体が座屈変形しながら軸方向に潰れるとともに、枠部73の壁面81〜84が波打つように座屈変形するのを許容することのできるものである。リブ81r〜84rの張り出し高さ寸法は、リブ81r〜84rが木材61を分断しない寸法範囲で適宜調整される。リブ81r〜84rにより木材61が分断されると、軸方向の圧縮荷重を受けた際に木材61が転倒しやすくなるためである。リブ81r〜84rは、(張り出し高さ寸法/厚み)比が5〜20であるのが好ましい。この場合、各壁面81〜84において蛇腹の波形状を有効に分割し、より細かい波形とすることができる。かかる(張り出し高さ寸法/厚み)比とするにあたり、リブ81r〜84rの厚みは限定されないが、例えば、5mm以下を目安とすることができる。この場合、張り出し高さ寸法とのバランスをとって壁面81〜84の波形状を有効に分割して細かい波形を形成しやすい。 When the ribs 81r to 84r receive an axial compressive load, the ribs 81r to 84r themselves collapse in the axial direction while buckling and deforming, and allow the wall surfaces 81 to 84 of the frame portion 73 to buckle and deform so as to wave. It can be done. The overhang height dimension of the ribs 81r to 84r is appropriately adjusted within a dimension range in which the ribs 81r to 84r do not divide the wood 61. This is because, when the wood 61 is divided by the ribs 81r to 84r, the wood 61 is likely to fall down when receiving an axial compressive load. The ribs 81r to 84r preferably have a (projected height dimension / thickness) ratio of 5 to 20. In this case, the corrugated wave shape can be effectively divided on each of the wall surfaces 81 to 84 to obtain a finer waveform. The thickness of the ribs 81r to 84r is not limited in setting the ratio (overhang height dimension / thickness), but for example, 5 mm or less can be used as a guide. In this case, it is easy to form a fine waveform by effectively dividing the wave shapes of the wall surfaces 81 to 84 in balance with the overhang height dimension.
本発明は、上記実施形態に限定されるものではなく、種々の変更が考えられるものである。例えば、枠体のリブは、少なくとも対向する2つの壁面に設けられていればよい。図1に示される衝撃吸収部材11を例に挙げると、対面する壁面41,43ないし壁面42,44のうち少なくとも一組の壁面にリブが設けられていればよい。また、衝撃吸収部材の軸方向に直交する平断面は長方形でもよい。その場合には、面積の大きい方の二壁面にリブを設けるのが好ましい。また、一つ衝撃吸収部材において、実施形態1のように外側に張り出すリブと、実施形態2のように外側に張り出すリブとが混在していてもよい。 The present invention is not limited to the above embodiment, and various modifications can be considered. For example, the ribs of the frame body may be provided on at least two opposing wall surfaces. Taking the shock absorbing member 11 shown in FIG. 1 as an example, ribs may be provided on at least one set of wall surfaces 41, 43 or 42, 44 facing each other. Further, the plane cross section orthogonal to the axial direction of the shock absorbing member may be rectangular. In that case, it is preferable to provide ribs on the two wall surfaces having the larger area. Further, in one shock absorbing member, a rib projecting outward as in the first embodiment and a rib projecting outward as in the second embodiment may be mixed.
[試験例1]
試験例1では、リブの構成の異なるNo.1〜3の衝撃吸収部材を用いた。No.1は、上記実施形態1と同じ構成でリブが外側に張り出すものであり、No.2は、上記実施形態2と同じ構成でリブが内側に張り出すものである。No.3は、リブがなく枠部のみで構成された比較対照の衝撃吸収部材である。No.1〜3の衝撃吸収部材において、木材には、外寸39.3mm角×軸方向長さ70mmのスギの角材を用いた。また、枠体にはアルミニウム(A5052)を用い、枠部は、内寸40mm角×軸方向長さ70mm、厚み0.5mmであり、木材との間に片側0.35mmの隙間を形成した状態で木材を収容した。各衝撃吸収部材のリブの構成については表1に示す。
[Test Example 1]
In Test Example 1, No. 1 with a different rib configuration was used. 1 to 3 impact absorbing members were used. No. No. 1 has the same configuration as that of the first embodiment, and the rib projects outward. 2 has the same configuration as that of the second embodiment, and the ribs project inward. No. Reference numeral 3 denotes a comparative shock absorbing member which is composed of only a frame portion without ribs. No. In the impact absorbing members 1 to 3, a cedar square member having an outer size of 39.3 mm square and an axial length of 70 mm was used for the wood. In addition, aluminum (A5052) is used for the frame body, the frame portion has an inner size of 40 mm square x an axial length of 70 mm and a thickness of 0.5 mm, and a gap of 0.35 mm on one side is formed between the frame and the wood. Housed wood. Table 1 shows the structure of the rib of each impact absorbing member.
上記構成のNo.1〜3の衝撃吸収部材を、株式会社島津製作所製の圧縮試験機(オートグラフAG−100KNE型)へ設置し、2mm/minの条件で軸方向に圧縮した場合の、変位と圧縮荷重(反力)との関係を測定した。その結果を図5〜7に示す。また、各衝撃吸収部材について、図8〜12に圧縮後の状態を写真で示す。図8はNo.1の衝撃吸収部材について一壁面を正面から見た状態を示す写真であり、図9はNo.1の衝撃吸収部材を軸方向に切断し、その切断面の一部を示す写真である。図10は、No.2の衝撃吸収部材を斜め方向から見た状態を示す写真である。図11はNo.3の衝撃吸収部材を斜め方向から見た状態を示す写真であり、図12は、No.3の衝撃吸収部材を軸方向に切断し、その切断面の一部を示す写真である。 No. of the said structure. Displacement and compressive load (reverse force) when the impact absorbing members 1 to 3 are installed in a compression tester (Autograph AG-100KNE type) manufactured by Shimadzu Corporation and compressed in the axial direction at 2 mm / min. Force). The results are shown in FIGS. Moreover, about each impact-absorbing member, the state after compression is shown with a photograph to FIGS. FIG. No. 1 is a photograph showing a state of one wall surface as viewed from the front, and FIG. It is a photograph which cut | disconnects the impact-absorbing member of 1 in an axial direction, and shows a part of cut surface. FIG. It is a photograph which shows the state which looked at the impact-absorbing member of 2 from the diagonal direction. FIG. 3 is a photograph showing a state in which the shock absorbing member 3 is viewed from an oblique direction. 3 is a photograph showing a part of the cut surface of the shock absorbing member 3 cut in the axial direction.
衝撃吸収部材の変位と圧縮荷重(反力)との関係を示す図5〜7のグラフを参照すると、圧縮荷重が初期変位での立ち上がった後には、リブを有しないNo.3に比べて、リブを有するNo.1、2の方が直線的に推移し、より安定していることが明らかとなった。ここで、衝撃吸収部材の変形に注目したところ、No.1〜3のいずれも、枠体の枠部は蛇腹変形ながら軸方向に潰れ、中の木材は倒れることなく真っ直ぐに圧縮変形していた。しかし、枠部に形成された蛇腹の波の数は、リブの無いNo.3が3つであったのに対し、リブを有するNo.1、2は5つであって、蛇腹の振幅がより小さく、細かく変形していた。リブの無いNo.3では、枠部の蛇腹の山(谷)が壁面の幅方向の端から端まで一続きになっていた(図11参照)のに対し、リブが有るNo.1、2ではリブの位置で分割されていた(図8、10参照)。ここで、リブに注目すると、枠部の蛇腹変形に追従することなく潰れていた。すなわち、図8のNo.1の写真によく示されるように、リブは枠部の蛇腹変形のとは直交する方向に波を打つように潰れていた。このことから、リブを有する場合、枠部の壁面は中間が大きく屈曲することが抑制され、リブと壁面とが相互作用で互いに直交する方向に座屈変形することで、壁面は細かく振幅する蛇腹状に変形したものと考えられる。リブを有するNo.1、2では枠部が細かく蛇腹変形した結果、木材への枠体の食い込みがなかった(図9参照)。それにより圧縮荷重が安定したものと考えられる。一方、リブの無いNo.3では、図12に示されるように、枠部の壁面が大きく振幅して蛇腹状に変形して木材に食い込んでいた。 Referring to the graphs of FIGS. 5 to 7 showing the relationship between the displacement of the shock absorbing member and the compressive load (reaction force), after the compressive load rises at the initial displacement, No. 1 having no rib. Compared to No. 3, No. 3 having ribs. It became clear that 1 and 2 were more linear and more stable. Here, when attention was paid to the deformation of the shock absorbing member, no. In any of 1 to 3, the frame portion of the frame body was crushed in the axial direction while being bellows deformed, and the wood inside was compressed and deformed straight without falling down. However, the number of bellows waves formed in the frame portion is No. with no ribs. No. 3 having 3 ribs, whereas No. 3 having ribs. 1 and 2 were five, the amplitude of the bellows was smaller, and it was deformed finely. No. In No. 3, the bellows peaks (valleys) of the frame portion were continuous from end to end in the width direction of the wall surface (see FIG. 11), whereas No. 3 having ribs. In 1 and 2, it was divided at the position of the rib (see FIGS. 8 and 10). Here, when attention was paid to the ribs, the ribs were crushed without following the bellows deformation of the frame portion. That is, in FIG. As well shown in the photograph of 1, the ribs were crushed so as to wave in a direction perpendicular to the bellows deformation of the frame portion. Therefore, when the rib is provided, the middle wall of the frame portion is suppressed from being bent greatly, and the rib and the wall surface are buckled and deformed in directions orthogonal to each other. It is thought that it was transformed into a shape. No. with ribs In 1 and 2, the frame portion was finely bellows deformed, and as a result, the frame did not bite into the wood (see FIG. 9). As a result, the compressive load is considered to be stable. On the other hand, no. 3, as shown in FIG. 12, the wall surface of the frame portion greatly oscillates and deforms into a bellows shape and bites into the wood.
[試験例2]
試験例2では、構成が上記実施形態1と同じであり、木材及び枠体の枠部の材質及び寸法が上記試験例1と同じであって、リブの厚みを0.5mmで一定とし、張り出し高さ寸法を変更してリブの(張り出し高さ寸法/厚み)比を4、5、10、20、22とした衝撃吸収部材を用い、上記試験例1と同様に圧縮し、衝撃吸収部材を目視で観察して枠体の枠部に形成された波の数をカウントした。その結果を、リブの(張り出し高さ寸法/厚み)比と波の数の関係をグラフとして図13に示す。
[Test Example 2]
In Test Example 2, the configuration is the same as in Embodiment 1 above, the material and dimensions of the wood and the frame portion are the same as in Test Example 1, the rib thickness is constant at 0.5 mm, and the overhang Using a shock absorbing member in which the height dimension was changed and the ratio of rib height (overhang height dimension / thickness) was 4, 5, 10, 20, 22 was compressed in the same manner as in Test Example 1, and the shock absorbing member was The number of waves formed on the frame part of the frame body was counted by visual observation. The results are shown in FIG. 13 as a graph showing the relationship between the ratio of rib height (overhang height dimension / thickness) and the number of waves.
図13の結果から明らかなように、リブの(張り出し高さ寸法/厚み)比が5〜20であると、波の数が多くなり、より細かい波形を形成しながら枠部が蛇腹変形することが明らかとなった。圧縮された枠体を観察すると、リブの(張り出し高さ寸法/厚み)比が5、10、20のいずれの場合においても、リブは枠部の蛇腹変形とは直交する方向に波を打つように潰れていた。一方、リブの(張り出し高さ寸法/厚み)比が4のときには、波の数が少なくなることも明らかとなった。圧縮された枠体を観察すると、リブが枠部の壁面が波形に変形するのに追従して変形していた。また、リブの(張り出し高さ寸法/厚み)比が22のときにも波の数が少なくなることも明らかとなった。圧縮された枠体を観察すると、リブが倒れて壁面に巻き込まれるように変形していた。以上のことから、リブの(張り出し高さ寸法/厚み)比が5〜20であると、枠部がより細かく蛇腹変形することで木材に食い込むことを効果的に抑制することができて好ましいことが明らかとなった。 As is clear from the results of FIG. 13, when the (overhang height dimension / thickness) ratio of the ribs is 5 to 20, the number of waves increases, and the frame portion deforms bellows while forming a finer waveform. Became clear. When the compressed frame is observed, the rib appears to wave in a direction orthogonal to the bellows deformation of the frame portion in any case where the ratio of the ribs (projected height dimension / thickness) is 5, 10, or 20. It was crushed. On the other hand, when the (overhang height dimension / thickness) ratio of the rib was 4, it was also found that the number of waves was reduced. When the compressed frame body was observed, the rib was deformed following the deformation of the wall surface of the frame portion into a waveform. It has also been found that the number of waves is reduced when the (overhang height dimension / thickness) ratio of the ribs is 22. When the compressed frame was observed, it was deformed so that the rib collapsed and was caught in the wall surface. From the above, it is preferable that the (overhang height dimension / thickness) ratio of the ribs is 5 to 20 because the frame portion can be effectively suppressed from biting into the wood due to finer bellows deformation. Became clear.
また、試験例2の追加試験として、リブの厚みを1mmで一定にして張り出し高さ寸法を変更してリブの(張り出し高さ寸法/厚み)比を調整して、試験例2と同様の方法にてリブの(張り出し高さ寸法/厚み)比と枠部に形成される波の数の関係を調べた。その結果、リブの厚みが0.5mmの場合と同様の挙動を示すことが確認された。 Further, as an additional test of Test Example 2, the rib thickness is kept constant at 1 mm, the overhang height dimension is changed, and the (overhang height dimension / thickness) ratio of the rib is adjusted, and the same method as in Test Example 2 The relationship between the ratio of rib height (overhang height dimension / thickness) and the number of waves formed in the frame was examined. As a result, it was confirmed that the same behavior as when the rib thickness was 0.5 mm was exhibited.
[試験例3]
試験例3では、試験例1でのNo.2の衝撃吸収部材において、リブの張り出し高さ寸法のみを変更してリブの(張り出し高さ寸法/厚み)比を4、5、20とした衝撃吸収部材を用い、上記試験例1と同様に圧縮した。
[Test Example 3]
In Test Example 3, No. 1 in Test Example 1 was obtained. In the shock absorbing member of No. 2, the shock absorbing member in which only the protruding height dimension of the rib was changed and the rib protruding (height height dimension / thickness) ratio was 4, 5, and 20 was used in the same manner as in Test Example 1 above. Compressed.
その結果、リブの(張り出し高さ寸法/厚み)比が4の場合、リブが枠部の蛇腹変形に巻き込まれるようにうねった。そして、図14に示す変位と圧縮荷重(反力)との関係を示すグラフから明らかなように、圧縮荷重が初期変位での立ち上がった後の圧縮荷重の変動が大きかった。しかし、リブの(張り出し高さ寸法/厚み)比が5の場合には、リブの(張り出し高さ寸法/厚み)が10のNo.2と同様に、枠部の蛇腹の山(谷)がリブの位置で分割されて細かく蛇腹変形し、図15に示す変位と圧縮荷重(反力)との関係を示すグラフから明らかなように、圧縮荷重が初期変位での立ち上がった後には、直線的に推移した。また、リブの(張り出し高さ寸法/厚み)比が20の場合にも、枠部の蛇腹の山(谷)がリブの位置で分割されて細かく蛇腹変形し、圧縮荷重が初期変位での立ち上がった後には、直線的に推移することが確認された。以上の結果より、リブが内側に張り出している場合でも、リブの(張り出し高さ寸法/厚み)比を5〜20とすることで枠部がより細かく蛇腹変形し、木材への食い込みを効果的に抑制することができることが明らかとなった。ひいて、圧縮荷重が初期変位での立ち上がった後の推移をより安定化させられることが明らかとなった。 As a result, when the (overhang height dimension / thickness) ratio of the rib was 4, the rib was wound so as to be involved in the bellows deformation of the frame portion. As is clear from the graph showing the relationship between the displacement and the compressive load (reaction force) shown in FIG. 14, the change in the compressive load after the compressive load rose at the initial displacement was large. However, when the (overhang height dimension / thickness) ratio of the rib is 5, the No. No. of the rib (overhang height dimension / thickness) is 10. As is clear from the graph showing the relationship between the displacement and the compressive load (reaction force) shown in FIG. After the compression load rose at the initial displacement, it changed linearly. In addition, even when the (overhang height dimension / thickness) ratio of the rib is 20, the bellows peak (valley) of the frame portion is divided at the position of the rib and finely bellows deformed, and the compression load rises at the initial displacement. After that, it was confirmed that the transition was linear. From the above results, even when the ribs are projecting inward, the ratio of the ribs (projection height dimension / thickness) is set to 5 to 20, so that the frame portion is deformed more finely and effectively bites into the wood. It has become clear that it can be suppressed. As a result, it became clear that the transition after the rising of the compressive load at the initial displacement can be further stabilized.
11 衝撃吸収部材
21 木材
31 枠体
33 枠部
41r〜44r リブ
51 衝撃吸収部材
61 木材
71 枠体
73 枠部
81r〜84r リブ
S 間隙
11 Shock Absorbing Member 21 Wood 31 Frame 33 Frame 41r to 44r Rib 51 Shock Absorbing Member 61 Wood 71 Frame 73 Frame 81r to 84r Rib S Gap
Claims (5)
前記枠体は、少なくとも対向する一対の面から直角に張り出すリブが、前記軸方向に沿って該枠体の端から端まで全長に亘って形成されていることを特徴とする車両の衝撃吸収部材。 A shock-absorbing member for a vehicle, comprising: a rectangular columnar wood having an axial direction in the fiber direction; and a hollow cylindrical metal frame surrounding the outer peripheral surface of the wood, and receiving an impact at the time of collision as a compressive load in the axial direction Because
The frame has a rib that protrudes at a right angle from at least a pair of opposing surfaces, and is formed over the entire length from end to end of the frame along the axial direction. Element.
前記リブの(張り出し高さ寸法/厚み)比が5〜20であることを特徴とする車両の衝撃吸収部材。 The vehicle impact absorbing member according to claim 1,
A shock absorbing member for a vehicle, wherein the rib has a (projected height dimension / thickness) ratio of 5 to 20.
前記木材と前記枠体とに間隙を有することを特徴とする車両の衝撃吸収部材。 The impact absorbing member for a vehicle according to claim 1 or 2,
A vehicle impact absorbing member having a gap between the wood and the frame.
前記リブが前記枠体の外側に張り出していることを特徴とする車両の衝撃吸収部材。 The impact absorbing member for a vehicle according to any one of claims 1 to 3,
The impact-absorbing member for a vehicle, wherein the rib projects to the outside of the frame.
前記リブが前記枠体の内側に張り出していることを特徴とする車両の衝撃吸収部材。 The impact absorbing member for a vehicle according to any one of claims 1 to 3,
A shock absorbing member for a vehicle, wherein the rib protrudes inside the frame.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011264360A JP5776522B2 (en) | 2011-12-02 | 2011-12-02 | Shock absorber for vehicle |
PCT/JP2012/080216 WO2013080863A1 (en) | 2011-11-29 | 2012-11-21 | Shock-absorbing member for vehicle |
EP12853030.0A EP2786903B1 (en) | 2011-11-29 | 2012-11-21 | Shock-absorbing member for vehicle |
US14/356,363 US9243678B2 (en) | 2011-11-29 | 2012-11-21 | Impact absorbing unit for a vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011264360A JP5776522B2 (en) | 2011-12-02 | 2011-12-02 | Shock absorber for vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013117247A JP2013117247A (en) | 2013-06-13 |
JP5776522B2 true JP5776522B2 (en) | 2015-09-09 |
Family
ID=48711953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011264360A Active JP5776522B2 (en) | 2011-11-29 | 2011-12-02 | Shock absorber for vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5776522B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016074269A (en) * | 2014-10-03 | 2016-05-12 | トヨタ自動車株式会社 | Vehicle shock absorption structure |
JP6560568B2 (en) * | 2015-09-07 | 2019-08-14 | 株式会社Subaru | Energy absorbing structure |
JP6970487B2 (en) * | 2018-04-25 | 2021-11-24 | トヨタ車体株式会社 | Impact absorbing member and its manufacturing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08216916A (en) * | 1995-02-15 | 1996-08-27 | Nippon Light Metal Co Ltd | Shock absorbing frame made of extrusion-molded aluminum material excellent in shock absorbing property |
JP2001182769A (en) * | 1999-12-27 | 2001-07-06 | Showa Alum Corp | Shock-absorbing member |
JP2005170082A (en) * | 2003-12-08 | 2005-06-30 | Nissan Motor Co Ltd | Energy absorber |
JP5053762B2 (en) * | 2007-08-31 | 2012-10-17 | アイシン精機株式会社 | Bumper device for vehicle |
-
2011
- 2011-12-02 JP JP2011264360A patent/JP5776522B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013117247A (en) | 2013-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013080863A1 (en) | Shock-absorbing member for vehicle | |
JP5776537B2 (en) | Shock absorber for vehicle | |
KR101013901B1 (en) | Bumper Apparatus With Multi-Energy Absorbing Structure | |
US7651155B2 (en) | Progressive energy absorber | |
JP4970790B2 (en) | Bumper core material and bumper structure | |
JP5472223B2 (en) | Fender panel mounting structure | |
JP2008526590A (en) | Bumper system with energy absorber | |
JP5776522B2 (en) | Shock absorber for vehicle | |
JP2009501100A (en) | Bumper assembly with energy absorbing member | |
KR101864809B1 (en) | Improved energy absorbing system | |
JP4425771B2 (en) | Impact energy absorbing material and impact energy absorbing structure | |
US20080217936A1 (en) | Bumper absorber | |
JP2006205806A (en) | Impact-absorbing structure for fender section | |
JP2009515772A (en) | Energy absorbing vehicle fender | |
JP5729275B2 (en) | Shock absorber for vehicle | |
JP6191521B2 (en) | Vehicle shock absorption structure | |
JP2011042314A (en) | Vehicular shock-absorbing body structure | |
JP5729274B2 (en) | Vehicle shock absorption structure | |
JP2009173205A (en) | Energy absorbing member and automobile bumper structure | |
JP3322702B2 (en) | Metal bumper | |
EP1348884A1 (en) | Formable energy absorber utilizing a foam stabilized corrugated ribbon | |
JP2001124128A (en) | Polygonal hollow member for absorbing impact | |
JP5572122B2 (en) | Car cabin side wall structure | |
KR101087982B1 (en) | Bumper beam for automotive | |
KR101202426B1 (en) | Bump for Vehicles comprising an absorber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150609 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150622 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5776522 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |