JP5729274B2 - Vehicle shock absorption structure - Google Patents

Vehicle shock absorption structure Download PDF

Info

Publication number
JP5729274B2
JP5729274B2 JP2011259871A JP2011259871A JP5729274B2 JP 5729274 B2 JP5729274 B2 JP 5729274B2 JP 2011259871 A JP2011259871 A JP 2011259871A JP 2011259871 A JP2011259871 A JP 2011259871A JP 5729274 B2 JP5729274 B2 JP 5729274B2
Authority
JP
Japan
Prior art keywords
shock absorbing
members
shock
load fluctuation
compression load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011259871A
Other languages
Japanese (ja)
Other versions
JP2013112152A (en
Inventor
修久 奥田
修久 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Original Assignee
Toyota Auto Body Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd filed Critical Toyota Auto Body Co Ltd
Priority to JP2011259871A priority Critical patent/JP5729274B2/en
Priority to PCT/JP2012/080223 priority patent/WO2013080864A1/en
Publication of JP2013112152A publication Critical patent/JP2013112152A/en
Application granted granted Critical
Publication of JP5729274B2 publication Critical patent/JP5729274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Description

本発明は、車両ボディを構成する二部材間に衝撃吸収部材を配して、車両衝突時の衝撃を吸収するための車両用の衝撃吸収構造に関する。   The present invention relates to an impact absorbing structure for a vehicle for disposing an impact absorbing member between two members constituting a vehicle body and absorbing an impact at the time of a vehicle collision.

自動車等の車両には、衝突時の衝撃から乗員や歩行者を保護するため、フロントフェンダパネルの内側やラダーフレームなどの各所に、衝撃エネルギーを吸収する衝撃吸収部材が設置されている。このような衝撃吸収構造として、例えば下記特許文献1が提案されている。特許文献1では、自動車などの構造体において、車両ボディを構成する外側構造部材と内側構造部材との二部材間に、柱状の木材からなる衝撃吸収部材が複数本配されている。各衝撃吸収部材は、車両衝突時にそれぞれ軸方向に圧縮変形するよう互いに平行に配されている。このような衝撃吸収部材が圧縮変形する際には、衝撃に対する反力としての圧縮荷重が波状に強弱を繰り返しながら衝撃を吸収する特性を有する。   In vehicles such as automobiles, in order to protect occupants and pedestrians from impacts at the time of a collision, impact absorbing members that absorb impact energy are installed inside the front fender panel and a ladder frame. As such a shock absorbing structure, for example, the following Patent Document 1 is proposed. In Patent Document 1, in a structure such as an automobile, a plurality of impact absorbing members made of columnar wood are arranged between two members, an outer structure member and an inner structure member, which form a vehicle body. The shock absorbing members are arranged in parallel to each other so as to compress and deform in the axial direction at the time of a vehicle collision. When such an impact absorbing member is compressively deformed, the compressive load as a reaction force against the impact has a characteristic of absorbing the impact while repeating the strength in a wave shape.

この場合、圧縮荷重変動波において圧縮荷重が弱まっている時点(圧縮荷重変動波の谷の部分)では衝撃吸収性能も低下していることになるので、できるだけ圧縮荷重変動波の振幅を小さくして安定させることが望まれる。そこで特許文献1では、複数本の衝撃吸収部材の長さをそれぞれ異ならせることで、車両が衝突した際に各衝撃吸収部材が段階的に破壊されるよう破壊開始タイミングをずらした構成としている。   In this case, when the compression load is weakened in the compression load fluctuation wave (the valley portion of the compression load fluctuation wave), the shock absorption performance is also lowered. Therefore, the amplitude of the compression load fluctuation wave should be made as small as possible. It is desirable to stabilize. Therefore, in Patent Document 1, the lengths of the plurality of shock absorbing members are different from each other, so that the break start timing is shifted so that each shock absorbing member is broken stepwise when the vehicle collides.

特開2011−162141号公報JP 2011-162141 A

しかしながら、複数本の衝撃吸収部材を併用した場合、各衝撃吸収部材はそれぞれ独自の圧縮荷重変動波を有するが、全体的な衝撃吸収性能は、当該各衝撃吸収部材の圧縮荷重変動波が干渉し合った干渉波(合成波)によって発揮されることになる。この場合、各衝撃吸収部材の圧縮荷重変動波の位相関係によっては、干渉波の振幅が大きくなる増加的干渉(建設的干渉)となる場合がある。   However, when a plurality of shock absorbing members are used in combination, each shock absorbing member has its own compression load fluctuation wave, but the overall shock absorption performance is affected by the compression load fluctuation wave of each shock absorption member. It is exhibited by the combined interference wave (synthetic wave). In this case, depending on the phase relationship of the compression load fluctuation wave of each shock absorbing member, there may be an increase interference (constructive interference) in which the amplitude of the interference wave increases.

最も単純な例として、例えば二本の衝撃吸収部材を併用した場合を例に挙げると、各衝撃吸収部材の圧縮荷重変動波の位相が全く同一であれば、理論的には干渉波の振幅は1+1=2となるように倍増する。また、各衝撃吸収部材の圧縮荷重変動波の位相が異なっているとしても、その差が僅かであれば、図9に示すように、一方の圧縮荷重変動波A1と他方の圧縮荷重変動波A2とが干渉し合った干渉波A3の振幅は、やはり増大することになる。これでは、衝撃吸収性能を安定させようとして複数本の衝撃吸収部材を併用することが、反って干渉波の谷を大きくすることになり、本末転倒となってしまう。   As the simplest example, for example, when two shock absorbing members are used in combination, if the phase of the compression load fluctuation wave of each shock absorbing member is exactly the same, the amplitude of the interference wave is theoretically It is doubled so that 1 + 1 = 2. Further, even if the phases of the compression load fluctuation waves of the respective shock absorbing members are different, if the difference is small, as shown in FIG. 9, one compression load fluctuation wave A1 and the other compression load fluctuation wave A2 The amplitude of the interference wave A3 that interferes with each other also increases. In this case, using a plurality of shock absorbing members together to stabilize the shock absorbing performance warps the interference wave trough, resulting in a tipping over.

これを前提として、特許文献1では複数本の衝撃吸収部材を併用しているが、各衝撃吸収部材の圧縮荷重変動波同士の位相関係については特に着目していない。したがって、特許文献1では各衝撃吸収部材の破壊開始タイミングをずらしているが、各衝撃吸収部材の圧縮荷重変動波同士の位相関係は同一ないし近似している可能性もある。すなわち、各衝撃吸収部材の破壊開始タイミングがずれているとしても、これに伴う位相差が1波長分であれば、結局同一波長となる。このように、特許文献1では各衝撃吸収部材の圧縮荷重変動波の位相関係については特に着目していないので、増加的干渉(建設的干渉)となって干渉波の振幅が大きくなる可能性が高い。   On the premise of this, in Patent Document 1, a plurality of shock absorbing members are used in combination, but no particular attention is paid to the phase relationship between the compression load fluctuation waves of each shock absorbing member. Therefore, in Patent Document 1, the break start timing of each shock absorbing member is shifted, but the phase relationship between the compression load fluctuation waves of each shock absorbing member may be the same or approximate. That is, even if the break start timing of each shock absorbing member is shifted, if the accompanying phase difference is one wavelength, the same wavelength is eventually obtained. As described above, Patent Document 1 does not pay particular attention to the phase relationship of the compression load fluctuation wave of each shock absorbing member, and therefore there is a possibility that the amplitude of the interference wave increases due to incremental interference (constructive interference). high.

そこで、本発明は上記課題を解決するものであって、複数本の衝撃吸収部材を使用しながら衝撃吸収性能を安定化させることができる、車両の衝撃吸収構造を提供することを目的とする。   Therefore, the present invention solves the above-described problems, and an object of the present invention is to provide a shock absorbing structure for a vehicle that can stabilize shock absorbing performance while using a plurality of shock absorbing members.

そのための手段として、本発明は、車両ボディを構成する二部材間に、柱状の木材からなる衝撃吸収部材が複数本配された、車両の衝撃吸収構造である。このとき、前記各衝撃吸収部材は、車両衝突時にそれぞれ軸方向に圧縮変形するよう互いに平行に配されている。そして、前記各衝撃吸収部材が圧縮変形する際には、衝撃に対する反力としての圧縮荷重が、波状に強弱を繰り返しながら衝撃を吸収する。そのうえで、前記各衝撃吸収部材は、それぞれの前記圧縮荷重変動波が互いに相殺的干渉(減殺的干渉)となるように位相がずらされていることを特徴とする。   As a means for that purpose, the present invention is a shock absorbing structure for a vehicle in which a plurality of shock absorbing members made of columnar wood are arranged between two members constituting the vehicle body. At this time, the impact absorbing members are arranged in parallel to each other so as to compress and deform in the axial direction at the time of a vehicle collision. And when each said impact-absorbing member compresses and deforms, the compressive load as a reaction force with respect to an impact absorbs an impact, repeating strong and weak in the shape of a wave. In addition, the respective shock absorbing members are characterized in that the phases are shifted so that the respective compressive load fluctuation waves become destructive interference (destructive interference).

例えば、車両ボディを構成する二部材間に前記衝撃吸収部材が二本配されている場合は、一方の衝撃吸収部材の前記圧縮荷重変動波に対して、他方の衝撃吸収部材の前記圧縮荷重変動波が、0.3〜0.7波長分位相をずらしてある。これによれば、一方の圧縮荷重変動波A1と他方の圧縮荷重変動波A2とが相殺的干渉となることで、図10に示すように、得られる干渉波A3の振幅が小さくなり、衝撃吸収性能を安定させることができる。   For example, when two shock absorbing members are arranged between two members constituting the vehicle body, the compressive load fluctuation of the other shock absorbing member with respect to the compressive load fluctuation wave of one shock absorbing member The wave is out of phase by 0.3 to 0.7 wavelengths. According to this, as one compression load fluctuation wave A1 and the other compression load fluctuation wave A2 become destructive interference, the amplitude of the obtained interference wave A3 is reduced as shown in FIG. The performance can be stabilized.

また、車両ボディを構成する二部材間に前記衝撃吸収部材が三本以上配されている場合は、一の衝撃吸収部材の前記圧縮荷重変動波に対して、その他の衝撃吸収部材のうちいずれか一本は前記圧縮荷重変動波を0.3〜0.7波長分位相をずらし、且つ全ての衝撃吸収部材の前記圧縮荷重変動波同士を、それぞれ0.2波長分以上位相をずらしておく。この場合、各圧縮荷重変動波の干渉機構は複雑となるが、その位相差が上記条件であれば、全体として相殺的干渉となって干渉波A3の振幅は小さくなり、衝撃吸収性能を安定させることができる。   Further, when three or more shock absorbing members are arranged between two members constituting the vehicle body, any one of the other shock absorbing members with respect to the compression load fluctuation wave of one shock absorbing member One shifts the phase of the compression load fluctuation wave by 0.3 to 0.7 wavelength, and shifts the phases of the compression load fluctuation waves of all the shock absorbing members by 0.2 wavelength or more. In this case, the interference mechanism of each compression load fluctuation wave becomes complicated. However, if the phase difference is the above condition, the interference wave A3 becomes small as a whole and the amplitude of the interference wave A3 becomes small, and the shock absorbing performance is stabilized. be able to.

なお、本発明において位相のずれを示す数値は、基準となる圧縮荷重変動波に対して他の圧縮荷重変動波が遅れて発生する方向で規定している。しかし、連続する波における位相のずれは、基準となる圧縮荷重変動波よりも先行して他の圧縮荷重変動波が発生していると見ることもできる。したがって、例えば位相差が0.3波長である場合、換言すれば位相差が−0.7波長と見ることもできる。   In the present invention, the numerical value indicating the phase shift is defined in a direction in which another compression load fluctuation wave is generated with a delay relative to the reference compression load fluctuation wave. However, the phase shift in the continuous wave can be regarded as another compression load fluctuation wave occurring before the reference compression load fluctuation wave. Therefore, for example, when the phase difference is 0.3 wavelength, in other words, the phase difference can be regarded as -0.7 wavelength.

実際に圧縮荷重変動波長の位相をずらすには、前記各衝撃吸収部材の破壊開始タイミングをそれぞれ異ならせればよい。破壊開始タイミングをそれぞれ異ならせる態様としては、大きく分けて次の3態様が挙げられる。   In order to actually shift the phase of the compression load fluctuation wavelength, the break start timings of the respective shock absorbing members may be made different from each other. The modes for varying the destruction start timing are roughly divided into the following three modes.

第1の態様としては、前記各衝撃吸収部材の長さをそれぞれ異ならせる。これによれば、車両衝突時に車両ボディが押し潰されると、二部材の間において最も長寸の衝撃吸収部材から段階的に順次圧縮変形が始まることで、破壊開始タイミングを異ならせることができる。なお、各衝撃吸収部材の長さをそれぞれ異ならせる場合は、短寸の衝撃吸収部材と車両ボディの構成部材との間に軟質部材を介在させて、高さを揃えておくこともできる。   As a 1st aspect, the length of each said impact-absorbing member is varied, respectively. According to this, when the vehicle body is crushed at the time of a vehicle collision, the deformation start timing can be varied by sequentially starting the compression deformation step by step from the longest impact absorbing member between the two members. When the lengths of the respective impact absorbing members are made different from each other, the height can be made uniform by interposing a soft member between the short impact absorbing member and the constituent member of the vehicle body.

第2の態様としては、前記車両ボディを構成する二部材のうちいずれか一方に段差を有し、当該各段差毎に前記各衝撃吸収部材を設置することもできる。これによっても、各衝撃吸収部材の破壊開始タイミングを異ならせることができる。   As a 2nd aspect, it has a level | step difference in any one of the two members which comprise the said vehicle body, and each said impact-absorbing member can also be installed for every said each level | step difference. This also makes it possible to vary the break start timing of each impact absorbing member.

第3の態様としては、同じ高さ位置において長さも同一の衝撃吸収部材を使用しながら、当該各衝撃吸収部材の外周面に、それぞれ異なる深さの凹みを軸方向と直交する方向に形成することもできる。この場合、衝撃吸収部材に衝撃が伝わると、凹みが形成された部位が他の部位に優先して圧縮変形する。これにより、衝撃吸収部材が圧縮変形し始めても、その初期には衝撃に対する反力としての圧縮荷重は生じていないに等しい。そして、衝撃吸収部材の圧縮変形が始まってから、衝撃に対する反力としての圧縮荷重が生じるまでのタイムラグは、凹みの深さに依存する。そこで、各衝撃吸収部材にそれぞれ異なる深さの凹みを形成することで、破壊開始タイミングを実質的に異ならせることができる。   As a third aspect, while using the impact absorbing member having the same length at the same height position, a recess having a different depth is formed on the outer peripheral surface of each impact absorbing member in a direction perpendicular to the axial direction. You can also. In this case, when an impact is transmitted to the shock absorbing member, the portion where the recess is formed is compressed and deformed in preference to the other portion. As a result, even if the impact absorbing member starts to compressively deform, it is equivalent to that no compressive load is generated as a reaction force against the impact at the initial stage. And the time lag until the compressive load as a reaction force with respect to an impact arises after the compressive deformation of an impact-absorbing member starts depends on the depth of a dent. Therefore, by forming dents having different depths in the respective shock absorbing members, the fracture start timing can be made substantially different.

本発明の衝撃吸収構造によれば、複数本の衝撃吸収部材を使用しながら衝撃吸収性能を安定化させることができる。   According to the shock absorbing structure of the present invention, it is possible to stabilize the shock absorbing performance while using a plurality of shock absorbing members.

衝撃吸収部材の一例を示す斜視図である。It is a perspective view which shows an example of an impact-absorbing member. 実施形態1の衝撃吸収構造の模式図である。1 is a schematic diagram of an impact absorbing structure of Embodiment 1. FIG. 実施形態1の衝撃吸収機構を示す模式図である。3 is a schematic diagram illustrating an impact absorbing mechanism of Embodiment 1. FIG. 実施形態2の衝撃吸収構造の模式図である。6 is a schematic diagram of an impact absorbing structure of Embodiment 2. FIG. 実施形態2の衝撃吸収機構を示す模式図である。6 is a schematic diagram illustrating an impact absorbing mechanism of Embodiment 2. FIG. 実施形態3の衝撃吸収構造の模式図である。It is a schematic diagram of the impact absorption structure of Embodiment 3. 実施形態4の衝撃吸収構造の模式図である。It is a schematic diagram of the impact absorption structure of Embodiment 4. 実施形態5の衝撃吸収構造の模式図である。FIG. 10 is a schematic diagram of a shock absorbing structure according to a fifth embodiment. 衝撃吸収構造の変形例を示す模式図である。It is a schematic diagram which shows the modification of an impact absorption structure. 複数の圧縮荷重変動波による増加的干渉を示す模式グラフある。It is a schematic graph which shows the incremental interference by several compression load fluctuation waves. 複数の圧縮荷重変動波による相殺的干渉を示す模式グラフである。It is a schematic graph which shows the destructive interference by a several compression load fluctuation wave. 衝撃吸収部材の長さと圧縮荷重変動波の波長との相関関係図である。It is a correlation diagram of the length of an impact-absorbing member and the wavelength of a compression load fluctuation wave. 基準圧縮荷重変動波を示すグラフである。It is a graph which shows a standard compression load fluctuation wave. 位相差0.1波長の場合の衝撃吸収性能を示すグラフである。It is a graph which shows the shock absorption performance in case of 0.1 phase retardation. 位相差0.2波長の場合の衝撃吸収性能を示すグラフである。It is a graph which shows the impact absorption performance in case of phase difference 0.2 wavelength. 位相差0.3波長の場合の衝撃吸収性能を示すグラフである。It is a graph which shows the impact absorption performance in case of phase difference 0.3 wavelength. 位相差0.4波長の場合の衝撃吸収性能を示すグラフである。It is a graph which shows the impact absorption performance in case of phase difference 0.4 wavelength. 位相差0.5波長の場合の衝撃吸収性能を示すグラフである。It is a graph which shows the impact absorption performance in case of phase difference 0.5 wavelength. 位相差0.6波長の場合の衝撃吸収性能を示すグラフである。It is a graph which shows the impact absorption performance in case of phase difference 0.6 wavelength. 位相差0.7波長の場合の衝撃吸収性能を示すグラフである。It is a graph which shows the impact absorption performance in case of phase difference 0.7 wavelength. 位相差0.8波長の場合の衝撃吸収性能を示すグラフである。It is a graph which shows the impact absorption performance in case of phase difference 0.8 wavelength. 位相差0.9波長の場合の衝撃吸収性能を示すグラフである。It is a graph which shows the impact absorption performance in case of phase difference 0.9 wavelength. 位相差0の場合の衝撃吸収性能を示すグラフである。It is a graph which shows the shock absorption performance in case of phase difference 0. 位相差0.1波長と位相差0.2波長を併用した場合の衝撃吸収性能を示すグラフである。It is a graph which shows the impact-absorbing performance at the time of using together phase difference 0.1 wavelength and phase difference 0.2 wavelength. 位相差0.1波長と位相差0.8波長を併用した場合の衝撃吸収性能を示すグラフである。It is a graph which shows the impact-absorbing performance at the time of using together phase difference 0.1 wavelength and phase difference 0.8 wavelength. 位相差0.3波長と位相差0.6波長を併用した場合の衝撃吸収性能を示すグラフである。It is a graph which shows the impact absorption performance at the time of using together phase difference 0.3 wavelength and phase difference 0.6 wavelength. 位相差0.2波長と位相差0.4波長を併用した場合の衝撃吸収性能を示すグラフである。It is a graph which shows the impact absorption performance at the time of using together phase difference 0.2 wavelength and phase difference 0.4 wavelength. 位相差0.4波長と位相差0.8波長を併用した場合の衝撃吸収性能を示すグラフである。It is a graph which shows the impact-absorbing performance at the time of using together phase difference 0.4 wavelength and phase difference 0.8 wavelength. 位相差0.4波長と位相差0.6波長を併用した場合の衝撃吸収性能を示すグラフである。It is a graph which shows the impact-absorbing performance at the time of using together phase difference 0.4 wavelength and phase difference 0.6 wavelength. 位相差0.5波長と位相差0.6波長を併用した場合の衝撃吸収性能を示すグラフである。It is a graph which shows the impact-absorbing performance at the time of using together 0.5 phase difference and phase difference 0.6 wavelength.

本発明の具体的な実施形態について説明する前に、各実施形態に共通の基本的構成について説明する。本発明の衝撃吸収構造は、自動車等の車両に適用されて衝突時の衝撃エネルギーを吸収するための構造であり、車両ボディを構成する外側構成部材と内側構成部材の二部材間に、複数本(二本ないし三本以上)の衝撃吸収部材が配される。その設置箇所としては、乗員や歩行者等を保護するために衝突エネルギーを吸収すべき場所であれば特に限定されない。例えば、フェンダパネルとボディパネルとの間、バンパリインホースとサイドメンバとの間、ドアパネルとドアトリムとの間、ピラーとピラートリムとの間、天井パネルとルーフライナとの間、フロアパネルとカーペットとの間などの外側構成部材と内側構成部材の間に設置することができる。   Before describing specific embodiments of the present invention, a basic configuration common to the embodiments will be described. The shock absorbing structure of the present invention is applied to a vehicle such as an automobile and absorbs shock energy at the time of a collision. A plurality of shock absorbing structures are provided between two members of an outer constituent member and an inner constituent member constituting the vehicle body. (Two or more) shock absorbing members are arranged. The installation location is not particularly limited as long as it is a location where collision energy should be absorbed in order to protect passengers, pedestrians, and the like. For example, between fender panels and body panels, between bumper in hoses and side members, between door panels and door trims, between pillars and pillar trims, between ceiling panels and roof liners, between floor panels and carpets. It can be installed between the outer component member and the inner component member.

各衝撃吸収部材は柱状の木材からなり、車両衝突時にそれぞれ軸方向(長手方向)に圧縮変形するよう互いに平行に配されている。すなわち、各衝撃吸収部材は、その軸心が車両衝突時の衝撃方向に対して平行となっている。このとき、木材の繊維方向も衝撃方向と平行にしておくことが好ましい。これにより、衝撃に対する反力としての圧縮応力が高くなって、衝撃吸収性能が高まるからである。木材としては特に限定されず、スギやヒノキなどを使用することができる。衝撃吸収部材は、円柱形でもよいし角柱形でもよい。   Each impact absorbing member is made of columnar wood, and is arranged in parallel to each other so as to compressively deform in the axial direction (longitudinal direction) at the time of a vehicle collision. That is, the axis of each impact absorbing member is parallel to the direction of impact at the time of vehicle collision. At this time, the fiber direction of the wood is also preferably parallel to the impact direction. This is because the compressive stress as a reaction force against the impact is increased, and the impact absorption performance is enhanced. The wood is not particularly limited, and cedar and cypress can be used. The shock absorbing member may be cylindrical or prismatic.

各衝撃吸収部材は、軸方向の少なくとも一端面が、外側構成部材と内側構成部材のうちのいずれか一方へ当接した状態で設置固定されている。後述の実施形態も含めて、以下の説明では、構成部材へ固定された軸方向端面側を基端とし、構成部材へ固定されていない自由端側を先端として説明する。各衝撃吸収部材の固定方法としては、基端を構成部材へ接着したり、構成部材を挟んで衝撃吸収部材の基端へ直接釘打ちやネジ留めしたりすることができる。また、金属製、樹脂製、又は木製のブラケットを介してビス留めや溶接固定することもできる。   Each impact absorbing member is installed and fixed in a state in which at least one end surface in the axial direction is in contact with one of the outer component member and the inner component member. In the following description, including later-described embodiments, the axial end surface side fixed to the component member is used as the base end, and the free end side not fixed to the component member is described as the front end. As a method for fixing each shock absorbing member, the base end can be bonded to the constituent member, or the base end of the shock absorbing member can be directly nailed or screwed across the constituent member. It can also be screwed or fixed by welding via a metal, resin, or wooden bracket.

ブラケットによって固定する場合、1つの衝撃吸収部材に対して1つのブラケットを使用し、各衝撃吸収部材を別個独立して固定することもできるし、全ての衝撃吸収部材を束にして1つのブラケットで一括して固定することもできる。ブラケットの形態としては、少なくとも衝撃吸収部材の基端部を囲んだ形態であればよいが、図1に示すように、衝撃吸収部材10の基端から先端に亘って外周面全体を囲む枠体15とすることが好ましい。この場合も、枠体15には構成部材へ設置固定するための固定部15aを有する。このような枠体15を使用する場合は、木材+枠体15を衝撃吸収部材として見ることもできる。これによれば、車両衝突時に衝撃吸収部材10が中間部で座屈することを防止して、軸方向に真っ直ぐ圧縮変形させるに有利である。この場合、枠体15は、衝撃吸収部材10の圧縮変形を阻害しないように、アルミニウムや銅などの軟質金属製とする。   When fixing with brackets, one bracket can be used for one shock absorbing member, and each shock absorbing member can be fixed independently, or all shock absorbing members can be bundled together with one bracket. It can be fixed together. As a form of the bracket, any form that surrounds at least the base end portion of the shock absorbing member may be used, but as shown in FIG. 1, a frame that surrounds the entire outer peripheral surface from the base end to the tip of the shock absorbing member 10. 15 is preferable. Also in this case, the frame 15 has a fixing portion 15a for installation and fixing to the constituent members. When such a frame 15 is used, the wood + frame 15 can be seen as an impact absorbing member. According to this, it is advantageous to prevent the shock absorbing member 10 from buckling at the intermediate portion at the time of a vehicle collision and to compress and deform straightly in the axial direction. In this case, the frame 15 is made of a soft metal such as aluminum or copper so as not to hinder the compressive deformation of the shock absorbing member 10.

これを前提として、以下には内側構成部材と外側構成部材との間に三本の衝撃吸収部材を配した場合を代表例に挙げて、本発明の具体的な実施形態について説明する。   Based on this premise, a specific embodiment of the present invention will be described below with a case where three shock absorbing members are arranged between the inner component member and the outer component member as a representative example.

(実施形態1)
本実施形態1では、図2に示すように、内側構成部材1と外側構成部材2との間に、それぞれ長さ(軸方向寸法)の異なる三本の衝撃吸収部材10a・10b・10cが配されている。各衝撃吸収部材10a・10b・10cの基端は、平坦な内側構成部材1に固定されており、設置される高さ位置は同じである。最も長寸の衝撃吸収部材10aの先端は、外側構成部材2に当接している。中間寸法の衝撃吸収部材10b及び最も短寸の衝撃吸収部材10cと、外側構成部材2との間には空間が空いている。
(Embodiment 1)
In the first embodiment, as shown in FIG. 2, three impact absorbing members 10a, 10b, and 10c having different lengths (axial dimensions) are arranged between the inner component member 1 and the outer component member 2, respectively. Has been. The base ends of the impact absorbing members 10a, 10b, and 10c are fixed to the flat inner component 1, and the height positions to be installed are the same. The tip of the longest impact absorbing member 10 a is in contact with the outer component member 2. There is a space between the shock absorbing member 10b having the middle dimension and the shock absorbing member 10c having the shortest dimension and the outer component member 2.

車両衝突時に外側構成部材2側から衝撃が加わると、各衝撃吸収部材10a・10b・10cの長さ、すなわち先端から外側構成部材2までの距離がそれぞれ異なることで、長寸の衝撃吸収部材10aから段階的に順次圧縮変形が開始されることになる。具体的には、車両衝突時に外側構成部材2側から衝撃が加わると、先ず、図3(a)に示すように、長寸の衝撃吸収部材10aが圧縮変形して破壊が開始される。続いて、図3(b)に示すように、中間寸法の衝撃吸収部材10bも外側構成部材2に押圧されて圧縮変形し、破壊が開始される。最後に、図3(c)に示すように、短寸の衝撃吸収部材10cも外側構成部材2に押圧されて圧縮変形し、破壊が開始される。   When an impact is applied from the outer component member 2 side at the time of a vehicle collision, the length of each of the shock absorbing members 10a, 10b, 10c, that is, the distance from the tip to the outer component member 2, is different. Thus, the compression deformation is sequentially started in stages. Specifically, when an impact is applied from the side of the outer constituent member 2 at the time of a vehicle collision, first, as shown in FIG. 3A, the long impact absorbing member 10a is compressed and deformed to start breaking. Subsequently, as shown in FIG. 3B, the impact absorbing member 10b having an intermediate size is also pressed by the outer constituent member 2 to be compressed and deformed, and the destruction is started. Finally, as shown in FIG. 3 (c), the short impact absorbing member 10c is also pressed by the outer constituent member 2 to be compressed and deformed, and the destruction is started.

このように、各衝撃吸収部材10a・10b・10cが圧縮変形することで、衝撃エネルギーを吸収することができる。このとき、各衝撃吸収部材10a・10b・10cにおける衝撃に対する反力としての圧縮荷重は、波状に強弱を繰り返しながら衝撃を吸収する特性を有する。そのうえで、各衝撃吸収部材10a・10b・10cの破壊開始タイミングが異なることで、各衝撃吸収部材10a・10b・10cの圧縮荷重変動波の位相が所定量ずれている。   Thus, the impact energy can be absorbed by compressing and deforming each of the impact absorbing members 10a, 10b, and 10c. At this time, the compressive load as a reaction force against the impact in each of the impact absorbing members 10a, 10b, and 10c has a characteristic of absorbing the impact while repeating strong and weak waves. Moreover, the phase of the compressive load fluctuation wave of each of the shock absorbing members 10a, 10b, and 10c is shifted by a predetermined amount due to the different break start timings of the shock absorbing members 10a, 10b, and 10c.

このとき、各衝撃吸収部材10a・10b・10cの圧縮荷重変動波は、互いに相殺的干渉(減殺的干渉)となるように位相がずれている必要がある。増加的干渉であると、各圧縮荷重変動波の干渉波の振幅が大きくなり、反って衝撃吸収性能が不安定となるからである。具体的な位相差は、衝撃吸収部材10a・10b・10cのうちいずれか一本を基準に設定したうえで、その基準となる衝撃吸収部材の圧縮荷重変動波に対して、他の二本の衝撃吸収部材のうちいずれか一本の圧縮荷重変動波の位相差を0.3〜0.7波長とし、且つ、全ての衝撃吸収部材の圧縮荷重変動波同士の位相差を0.2波長以上とする。例えば、最初に破壊が開始される長寸の衝撃吸収部材10aの圧縮荷重変動波を基準とすると、二番目に破壊が開始される中間寸法の衝撃吸収部材10bの圧縮荷重変動波は、0.3〜0.7波長分位相がずれるようにする。さらに、最後に破壊が開始される短寸の衝撃吸収部材10cは、長寸の衝撃吸収部材10aの圧縮荷重変動波及び中間寸法の衝撃吸収部材10bの圧縮荷重変動波の双方に対して、0.2波長以上分位相をずらしておく。なお、内側構成部材1と外側構成部材2との間に二本の衝撃吸収部材10a・10bを配した場合は、互いの圧縮荷重変動波の位相差が0.3〜0.7波長となるよう設定すれば足りる。   At this time, the compression load fluctuation waves of the shock absorbing members 10a, 10b, and 10c need to be out of phase so as to be destructive interference (destructive interference). If the interference is increased, the amplitude of the interference wave of each compression load fluctuation wave becomes large and the shock absorption performance becomes unstable. The specific phase difference is set based on any one of the shock absorbing members 10a, 10b, and 10c, and then the other two are applied to the compression load fluctuation wave of the shock absorbing member serving as the reference. The phase difference of the compression load fluctuation wave of any one of the shock absorbing members is 0.3 to 0.7 wavelength, and the phase difference of the compression load fluctuation waves of all the shock absorption members is 0.2 wavelength or more. And For example, on the basis of the compression load fluctuation wave of the long shock absorbing member 10a where the breakage is first started, the compression load fluctuation wave of the middle dimension shock absorption member 10b where the breakage starts second is 0. The phase is shifted by 3 to 0.7 wavelengths. Further, the short shock absorbing member 10c that is finally started to break is 0 with respect to both the compressive load fluctuation wave of the long shock absorbing member 10a and the compressive load fluctuation wave of the intermediate shock absorbing member 10b. Shift the phase by two wavelengths or more. In addition, when the two impact-absorbing members 10a and 10b are arranged between the inner component member 1 and the outer component member 2, the phase difference between the compression load fluctuation waves becomes 0.3 to 0.7 wavelength. It is sufficient to set this.

各圧縮荷重変動波同士の位相差は、各衝撃吸収部材10a・10b・10cの長さによって調節することができる。各圧縮荷重変動波同士の位相差は、破壊開始タイミングのタイムラグと相関関係があるが、当該破壊開始タイミングのタイムラグは、各衝撃吸収部材10a・10b・10cの長さに依存するからである。ここで、圧縮荷重変動波の波長λと衝撃吸収部材の長さhとの間には、λ=0.6h+2.3で表される相関関係があることが判明している(後記の実施例参照)。したがって、例えば位相差を0.3〜0.7波長にするには、衝撃吸収部材を(0.3+n)λ〜(0.7+n)λ(nは0以上の整数)の式から求められる長さ範囲に調節すればよい。   The phase difference between the respective compressive load fluctuation waves can be adjusted by the length of each of the shock absorbing members 10a, 10b, and 10c. This is because the phase difference between the respective compressive load fluctuation waves correlates with the time lag of the break start timing, but the time lag of the break start timing depends on the length of each impact absorbing member 10a, 10b, 10c. Here, it has been found that there is a correlation represented by λ = 0.6h + 2.3 between the wavelength λ of the compression load fluctuation wave and the length h of the shock absorbing member (Examples described later) reference). Therefore, for example, in order to set the phase difference to 0.3 to 0.7 wavelength, the length obtained from the equation of (0.3 + n) λ to (0.7 + n) λ (where n is an integer of 0 or more) is used. The range should be adjusted.

(実施形態2)
実施形態2は実施形態1の変形例であって、本発明の第1の態様に属する。具体的には、図4に示すように、それぞれ長さの異なる衝撃吸収部材10a・10b・10cを使用している点は実施形態1と同じであるが、先端高さを揃えている点が実施形態1と異なる。そのために、中間寸法の衝撃吸収部材10b及び短寸の衝撃吸収部材10cの基端と内側構成部材1との間に、それぞれ高さ調節用の介在物11b・11cを配している。
(Embodiment 2)
The second embodiment is a modification of the first embodiment and belongs to the first aspect of the present invention. Specifically, as shown in FIG. 4, the point of using impact absorbing members 10a, 10b, and 10c having different lengths is the same as in the first embodiment, but the tip heights are aligned. Different from the first embodiment. For this purpose, height-adjusting inclusions 11b and 11c are arranged between the base end of the middle-sized shock absorbing member 10b and the short-sized shock absorbing member 10c and the inner constituent member 1, respectively.

介在物11b・11cは、中間寸法の衝撃吸収部材10b及び短寸の衝撃吸収部材10cの先端高さを長寸の衝撃吸収部材10aと揃えるための部材であり、一定の支持強度を有するが、衝撃吸収部材10b・10cよりも容易に圧縮変形可能な発泡樹脂などの軟質部材としている。介在物11は、衝撃吸収部材10b・10cの基端と内側構成部材1との間で接着等によって介在させることもできるが、図1に示すような枠体15を使用し、その内部において衝撃吸収部材10b・10cと重ねることが好ましい。   Inclusions 11b and 11c are members for aligning the tip heights of the impact absorbing member 10b having the intermediate dimension and the impact absorbing member 10c having the short dimension with the impact absorbing member 10a having the long dimension, and have a certain supporting strength. It is a soft member such as foamed resin that can be more easily compressed and deformed than the shock absorbing members 10b and 10c. The inclusion 11 can be interposed between the base ends of the shock absorbing members 10b and 10c and the inner constituent member 1 by adhesion or the like. However, a frame 15 as shown in FIG. It is preferable to overlap the absorbing members 10b and 10c.

本実施形態2では、車両衝突時に外側構成部材2側から衝撃が加わると、各衝撃吸収部材10a・10b・10cの先端高さは同じなので、図5(a)に示すように、長寸の衝撃吸収部材10aが圧縮変形して破壊が開始されると同時に、衝撃吸収部材10b・10cも外側構成部材2によって押圧される。しかし、衝撃吸収部材10b・10cでは、軟質な介在物11が優先的に圧縮変形することで、衝突初期は衝撃吸収部材10b・10cそのものは圧縮変形しない。そして、中間寸法の衝撃吸収部材10bに介在させた介在物11bが限界まで圧縮されると、図5(b)に示すように、長寸の衝撃吸収部材10aに続いて中間寸法の衝撃吸収部材10bも外側構成部材2に押圧されて圧縮変形し、破壊が開始される。なお、この時点でも短寸の衝撃吸収部材10cは圧縮変形していない。最後に、短寸の衝撃吸収部材10cに介在させた介在物11cも限界まで圧縮されると、図5(c)に示すように、中間寸法の衝撃吸収部材10bに続いて短寸の衝撃吸収部材10cも外側構成部材2に押圧されて圧縮変形し、破壊が開始される。   In the second embodiment, when an impact is applied from the outer component member 2 side at the time of a vehicle collision, the tip heights of the impact absorbing members 10a, 10b, and 10c are the same. Therefore, as shown in FIG. At the same time as the shock absorbing member 10a is compressed and deformed to start breaking, the shock absorbing members 10b and 10c are also pressed by the outer component member 2. However, in the shock absorbing members 10b and 10c, the soft inclusions 11 are preferentially compressed and deformed, so that the shock absorbing members 10b and 10c themselves are not compressed and deformed at the initial stage of the collision. When the inclusion 11b interposed in the shock absorbing member 10b having an intermediate dimension is compressed to the limit, as shown in FIG. 5B, the shock absorbing member having an intermediate dimension is followed by the long shock absorbing member 10a. 10b is also compressed and deformed by being pressed by the outer constituent member 2, and the destruction is started. At this time, the short impact absorbing member 10c is not compressed and deformed. Finally, when the inclusion 11c interposed in the short impact absorbing member 10c is also compressed to the limit, as shown in FIG. 5C, the short impact absorbing member 10b is followed by the short impact absorbing member 10b. The member 10c is also compressed and deformed by being pressed by the outer constituent member 2, and the destruction is started.

このように、各衝撃吸収部材10a・10b・10cの先端高さは揃っているが、衝撃吸収部材10b・10cでは軟質な介在物11を介在させていることで、それぞれの破壊開始タイミングが異なっている。これにより、各衝撃吸収部材10a・10b・10cにおける圧縮荷重変動波の位相も異なるため、衝撃吸収性能を安定させることができる。なお、各衝撃吸収部材10a・10b・10cにおける圧縮荷重変動波同士の位相差条件は実施形態1と同じであり、その範囲も各衝撃吸収部材10a・10b・10cの長さによって調節すればよい。   As described above, the shock absorbers 10a, 10b, and 10c have the same tip height, but the shock absorbers 10b and 10c have different inclusion start timings due to the inclusion of the soft inclusions 11. ing. Thereby, since the phase of the compression load fluctuation wave in each impact-absorbing member 10a * 10b * 10c also differs, shock-absorbing performance can be stabilized. In addition, the phase difference conditions between the compression load fluctuation waves in each of the shock absorbing members 10a, 10b, and 10c are the same as those in the first embodiment, and the range may be adjusted according to the length of each of the shock absorbing members 10a, 10b, and 10c. .

(実施形態3)
実施形態3は本発明の第2の態様に属するものであって、図6に示すように、内側構成部材1に複数段(本実施形態3では三段)の段差を有する場合において、当該各段差毎にそれぞれ衝撃吸収部材10d・10e・10fを配している。これにより、各衝撃吸収部材10d・10e・10fの先端高さ位置、すなわち外側構成部材2までの距離が異なることで、破壊開始タイミングを異ならせることができる。車両衝突時の衝撃吸収機構は、図3に示す実施形態1と同じであり、最も高い位置にある衝撃吸収部材10dから圧縮変形に伴う破壊が始まり、続いて中間高さ位置の衝撃吸収部材10e、最後に最も低い位置にある衝撃吸収部材10fへと、段階的に順次圧縮変形が始まることになる。内側構成部材1の段差は、車両ボディの設計上本来的に設けられた段差でも構わないが、本来的には平坦な内側構成部材1に対して、積極的に段差を設けることもできる。
(Embodiment 3)
The third embodiment belongs to the second aspect of the present invention. As shown in FIG. 6, when the inner constituent member 1 has a plurality of steps (three steps in the third embodiment), Shock absorbing members 10d, 10e, and 10f are provided for each step. Thereby, the break start timing can be made different because the tip height positions of the impact absorbing members 10d, 10e, and 10f, that is, the distances to the outer constituent members 2 are different. The shock absorbing mechanism at the time of a vehicle collision is the same as that of the first embodiment shown in FIG. Finally, compression deformation starts sequentially step by step toward the shock absorbing member 10f at the lowest position. The step of the inner component 1 may be a step inherently provided in the design of the vehicle body, but the step can be positively provided for the essentially flat inner component 1.

衝撃吸収部材10d・10e・10fの破壊開始タイミング、すなわち圧縮荷重変動波の位相差は、各衝撃吸収部材10d・10e・10fの先端高さを基準に調節する。具体的には、上記λ=0.6h+2.3の関係式において、hを段差寸法h0と衝撃吸収部材の長さh1の和とする。したがって、各段差寸法h0の程度によっては、各衝撃吸収部材10d・10e・10fの長さh1が異なる場合もある。または、各衝撃吸収部材10d・10e・10fの長さh1を同一にして、位相差は段差寸法h0で調節することもできる。 The break start timing of the shock absorbing members 10d, 10e, and 10f, that is, the phase difference of the compression load fluctuation wave is adjusted based on the tip heights of the shock absorbing members 10d, 10e, and 10f. Specifically, in the relational expression of λ = 0.6h + 2.3, h is the sum of the step size h 0 and the length h 1 of the shock absorbing member. Therefore, depending on the level of each step size h 0 , the length h 1 of each impact absorbing member 10d, 10e, 10f may be different. Alternatively, the length h 1 of each of the shock absorbing members 10d, 10e, and 10f can be made the same, and the phase difference can be adjusted by the step size h 0 .

(実施形態4)
実施形態4は実施形態3の変形例であり、本発明の第2の態様に属する。具体的には、図7に示すように、それぞれ長さが同一の衝撃吸収部材10d・10e・10fを、平坦な内側構成部材1に設置して、これらの先端高さ位置を揃えている。その一方で、外側構成部材2に、各衝撃吸収部材10d・10e・10fに対応する段差を設けている。これによっても、車両衝突時に衝撃吸収部材10d・10e・10fを段階的に圧縮変形させて、破壊開始タイミングを異ならせることができる。
(Embodiment 4)
The fourth embodiment is a modification of the third embodiment and belongs to the second aspect of the present invention. Specifically, as shown in FIG. 7, shock absorbing members 10d, 10e, and 10f having the same length are installed on the flat inner component 1, and their tip height positions are aligned. On the other hand, the outer constituent member 2 is provided with steps corresponding to the shock absorbing members 10d, 10e, and 10f. This also allows the shock absorbing members 10d, 10e, and 10f to be compressed and deformed stepwise in the event of a vehicle collision, thereby making the break start timing different.

この場合、各衝撃吸収部材10d・10e・10fの圧縮荷重変動波同士の位相差は、各衝撃吸収部材10d・10e・10fの先端から外側構成部材2までの距離によって調節する。すなわち、上記λ=0.6h+2.3の関係式において、hを衝撃吸収部材10d・10e・10fの先端から外側構成部材2までの距離とすればよい。   In this case, the phase difference between the compression load fluctuation waves of the shock absorbing members 10d, 10e, and 10f is adjusted by the distance from the tip of each shock absorbing member 10d, 10e, and 10f to the outer component member 2. That is, in the relational expression of λ = 0.6h + 2.3, h may be a distance from the tip of the impact absorbing member 10d, 10e, or 10f to the outer component member 2.

(実施形態5)
本実施形態5は、本発明の第3の態様に属する。具体的には、図8に示すように、それぞれ長さが同一の衝撃吸収部材20a・20b・20cを、平坦な内側構成部材1に設置して、これらの先端高さ位置を揃えている。その一方で、破壊開始タイミングを異ならせるために、各衝撃吸収部材20a・20b・20cに、それぞれ異なる深さの凹み21a・21b・21cを形成している。なお、図8では各衝撃吸収部材20a・20b・20cの構成を分かりやすく示すために、外側構成部材2は図示していない。
(Embodiment 5)
The fifth embodiment belongs to the third aspect of the present invention. Specifically, as shown in FIG. 8, shock absorbing members 20a, 20b, and 20c having the same length are installed on the flat inner component 1, and their tip height positions are aligned. On the other hand, in order to make the break start timing different, recesses 21a, 21b, and 21c having different depths are formed in the respective shock absorbing members 20a, 20b, and 20c. In FIG. 8, the outer component member 2 is not shown in order to show the configuration of each of the shock absorbing members 20a, 20b, and 20c in an easy-to-understand manner.

凹み21a・21b・21cは、各衝撃吸収部材20a・20b・20cの外周面から、軸方向と直交する方向へ内方に向けて形成されている。その形成箇所は特に限定されず、軸方向中間部でもよいし、基端寄り位置や先端寄り位置でもよい。また、凹み21a・21b・21cの形成個数も特に限定されず、1つのみでもよいし、二箇所以上でもよい。但し、凹み21a・21b・21cを二箇所以上形成する場合は、同じ高さ位置に形成する。好ましくは、同じ高さ位置において対向状に形成する。凹み21a・21b・21cの最大深さ(奥行き)は、貫通した状態、すなわち衝撃吸収部材20の幅寸法である。凹み21a・21b・21cの高さ寸法は、1〜5mm程度とすればよい。   The recesses 21a, 21b, and 21c are formed from the outer peripheral surfaces of the shock absorbing members 20a, 20b, and 20c inwardly in a direction orthogonal to the axial direction. The formation location is not particularly limited, and may be an axially intermediate portion, a proximal end position, or a distal end position. Further, the number of the depressions 21a, 21b, and 21c formed is not particularly limited, and may be one or two or more. However, when two or more dents 21a, 21b, and 21c are formed, they are formed at the same height position. Preferably, they are formed so as to face each other at the same height position. The maximum depth (depth) of the recesses 21 a, 21 b, and 21 c is a penetrated state, that is, the width dimension of the shock absorbing member 20. The height of the recesses 21a, 21b, and 21c may be about 1 to 5 mm.

本実施形態5では、実質的な破壊開始タイミングは、凹み21a・21b・21cの深さ(奥行き)に依存する。したがって、各衝撃吸収部材20a・20b・20cの圧縮荷重変動波同士の位相差は、凹み21a・21b・21cの深さ(奥行き)の深さによって調節する。すなわち、上記λ=0.6h+2.3の関係式において、hを凹み21a・21b・21cの深さとすればよい。なお、凹み21a・21b・21cを二箇所以上形成する場合は、これらの合計深さを基準とする。   In the fifth embodiment, the substantial destruction start timing depends on the depths (depths) of the recesses 21a, 21b, and 21c. Therefore, the phase difference between the compression load fluctuation waves of the respective shock absorbing members 20a, 20b, and 20c is adjusted by the depth of the recesses 21a, 21b, and 21c. That is, in the relational expression of λ = 0.6h + 2.3, h may be the depth of the recesses 21a, 21b, and 21c. In addition, when forming two or more dents 21a * 21b * 21c, these total depth is made into a reference | standard.

車両衝突時に外側構成部材2側から衝撃が加わると、各衝撃吸収部材20a・20b・20cの長さは同じなので、全ての衝撃吸収部材20a・20b・20cが同時に外側構成部材2によって押圧されて圧縮変形し始める。しかし、外側構成部材2によって押圧されて始めても、各衝撃吸収部材20a・20b・20cでは凹み21a・21b・21cが他の部位に優先して圧縮され、その間は衝撃に対する反力としての圧縮荷重は実質的に生じていない。各衝撃吸収部材20a・20b・20cにおいて圧縮荷重が生じるタイミング、すなわち実質的に破壊が開始されるタイミングは、凹み21a・21b・21cが完全に押し潰された後である。そして、その破壊開始タイミングは、凹み21a・21b・21cの深さによって異なる。これにより、最も浅い凹み21aを有する衝撃吸収部材20aが最初に破壊が開始され、次いで中間深さの凹み21bを有する衝撃吸収部材20bの破壊が開始され、最後に最も深い凹み21cを有する衝撃吸収部材20cの破壊が開始されることになる。   When an impact is applied from the outer component member 2 side at the time of a vehicle collision, the lengths of the respective shock absorbing members 20a, 20b, and 20c are the same, so that all the shock absorbing members 20a, 20b, and 20c are simultaneously pressed by the outer component member 2. It begins to compress and deform. However, even if it starts to be pressed by the outer component member 2, the respective recesses 21a, 21b, and 21c are compressed with priority over the other parts in each of the shock absorbing members 20a, 20b, and 20c, and the compression load as a reaction force against the impact is provided between them. Does not occur substantially. The timing at which a compressive load is generated in each of the shock absorbing members 20a, 20b, and 20c, that is, the timing at which the fracture is substantially started is after the recesses 21a, 21b, and 21c are completely crushed. The destruction start timing varies depending on the depth of the recesses 21a, 21b, and 21c. As a result, the shock absorbing member 20a having the shallowest recess 21a starts to be broken first, then the shock absorbing member 20b having the intermediate depth recess 21b starts to break, and finally the shock absorbing member having the deepest recess 21c. The destruction of the member 20c is started.

(変形例)
以上、本発明の代表的な実施形態について説明したが、これに限られず、本発明の要旨を逸脱しない範囲で、種々の変形が可能である。例えば、各衝撃吸収部材は、各図面に示したように横並びでもよいし、図9に示すように、1箇所に群生したように纏めて配置することもできる。なお、図9では各衝撃吸収部材の配置を分かりやすく示すために、外側構成部材2は図示していない。
(Modification)
As mentioned above, although typical embodiment of this invention was described, it is not restricted to this, A various deformation | transformation is possible in the range which does not deviate from the summary of this invention. For example, the shock absorbing members may be arranged side by side as shown in each drawing, or can be arranged together as if they are clustered at one place as shown in FIG. In addition, in FIG. 9, in order to show arrangement | positioning of each impact-absorbing member clearly, the outer side structural member 2 is not illustrated.

<試験1>
先ず、衝撃吸収部材の長さと圧縮荷重変動波の波長との相関関係を特定した。それぞれ長さが異なる一辺15mmの平断面正方形のスギ製角材を、角材と同じ長さのアルミ(A5052)製の枠体で覆った状態で、株式会社島津製作所製の圧縮試験機(オートグラフAG−100KNE型)へ一本設置し、2mm/minの条件で軸方向に圧縮したときの、圧縮荷重変動波の波長を測定した。その結果を図12に示す。図12の結果から、圧縮荷重変動波の波長λと衝撃吸収部材の長さhとの間には、λ=0.6h+2.3で表される相関関係があることが判明した。
<Test 1>
First, the correlation between the length of the shock absorbing member and the wavelength of the compressive load fluctuation wave was specified. A compression tester manufactured by Shimadzu Corporation (Autograph AG) in a state in which a square cedar with a square cross section of 15 mm on each side with a different length is covered with an aluminum (A5052) frame of the same length as the square The wavelength of the compressive load fluctuation wave was measured when one was installed in the (-100 KNE type) and compressed in the axial direction under the condition of 2 mm / min. The result is shown in FIG. From the result of FIG. 12, it was found that there is a correlation represented by λ = 0.6h + 2.3 between the wavelength λ of the compression load fluctuation wave and the length h of the shock absorbing member.

<試験2>
これを前提として、二本の木材(衝撃吸収部材)を使用して位相差を種々変更した場合の圧縮荷重変動波(干渉波)の振幅について測定した。以下の試験でも、長さが異なる以外は、上記試験1と同じ角材を使用し、圧縮試験も同じ装置を用いて同じ条件で行った。
<Test 2>
Based on this assumption, the amplitude of the compression load fluctuation wave (interference wave) was measured when the phase difference was changed variously using two pieces of wood (impact absorbing member). Also in the following tests, the same square material as the above-mentioned test 1 was used except that the length was different, and the compression test was also performed under the same conditions using the same apparatus.

先ず、基準となる圧縮荷重変動波(衝撃吸収性能)を測定するため、長さ70mmの基準木材1本による圧縮荷重変動波を測定した。その結果を図13に示す。図13の結果から、基準圧縮荷重変動波の振幅は約1200Nであった。   First, in order to measure a standard compression load fluctuation wave (impact absorption performance), a compression load fluctuation wave by one reference wood having a length of 70 mm was measured. The result is shown in FIG. From the result of FIG. 13, the amplitude of the reference compression load fluctuation wave was about 1200N.

これに対して、上記基準木材と共に、位相差0.1波長となる長さ68.6mmの木材も設置した場合の圧縮荷重変動波を図14に示し、位相差0.2波長となる長さ67.6mmの木材も設置した場合の圧縮荷重変動波を図15に示し、位相差0.3波長となる長さ66.4mmの木材も設置した場合の圧縮荷重変動波を図16に示し、位相差0.4波長となる長さ65.2mmの木材も設置した場合の圧縮荷重変動波を図17に示し、位相差0.5波長となる長さ64.0mmの木材も設置した場合の圧縮荷重変動波を図18に示し、位相差0.6波長となる長さ62.8mmの木材も設置した場合の圧縮荷重変動波を図19に示し、位相差0.7波長となる長さ61.6mmの木材も設置した場合の圧縮荷重変動波を図20に示し、位相差0.8波長となる長さ60.4mmの木材も設置した場合の圧縮荷重変動波を図21に示し、位相差0.9波長となる長さ59.2mmの木材も設置した場合の圧縮荷重変動波を図22に示し、位相差0となる同じ長さの木材をもう一本設置した場合の圧縮荷重変動波を図23に示す。   On the other hand, FIG. 14 shows a compression load fluctuation wave when a wood having a length of 68.6 mm having a phase difference of 0.1 wavelength is installed together with the reference wood, and the length having a phase difference of 0.2 wavelength. FIG. 15 shows a compression load fluctuation wave when a 67.6 mm wood is also installed, and FIG. 16 shows a compression load fluctuation wave when a 66.4 mm length wood having a phase difference of 0.3 wavelength is also installed. FIG. 17 shows a compression load fluctuation wave when wood having a length of 65.2 mm having a phase difference of 0.4 wavelength is also installed, and when wood having a length of 64.0 mm having a phase difference of 0.5 wavelength is also installed. The compression load fluctuation wave is shown in FIG. 18, and the compression load fluctuation wave when a 62.8 mm long wood having a phase difference of 0.6 wavelength is also installed is shown in FIG. 19, and the phase difference has a length of 0.7 wavelength. The compression load fluctuation wave when 61.6 mm wood is also installed is shown in FIG. FIG. 21 shows a compression load fluctuation wave when wood having a length of 60.4 mm with a difference of 0.8 wavelength is also installed, and compression when wood with a length of 59.2 mm having a phase difference of 0.9 wavelength is also installed. FIG. 22 shows a load fluctuation wave, and FIG. 23 shows a compression load fluctuation wave when another piece of wood having the same length with a phase difference of 0 is installed.

図14及び図22の結果における振幅は約2000Nであり、一本の木材で測定した基準圧縮荷重変動波よりも振幅が増幅していた。また、図15及び図21の結果における振幅は約1500Nであり、一本の木材で測定した基準圧縮荷重変動波よりも振幅が増幅していた。さらに、図23の結果における振幅は約2400Nであり、位相差が0であれば振幅がほぼ倍増していた。一方、図16〜図22の結果では、振幅が1200Nを下回っていた。これにより、二本の衝撃吸収部材を使用する場合は、その圧縮荷重変動波の位相差は、0.3〜0.7波長とすべきことが確認された。   The amplitude in the results of FIGS. 14 and 22 was about 2000 N, and the amplitude was amplified from the reference compression load fluctuation wave measured with one piece of wood. Moreover, the amplitude in the result of FIG.15 and FIG.21 is about 1500 N, and the amplitude was amplified rather than the reference | standard compression load fluctuation wave measured with one wood. Further, the amplitude in the result of FIG. 23 is about 2400 N, and when the phase difference is 0, the amplitude is almost doubled. On the other hand, in the results of FIGS. 16 to 22, the amplitude was less than 1200N. Thereby, when using two shock absorption members, it was confirmed that the phase difference of the compression load fluctuation wave should be 0.3-0.7 wavelength.

<試験3>
次に、三本の木材(衝撃吸収部材)を使用して位相差を種々変更した場合の干渉波となる圧縮荷重変動波(衝撃吸収性能)の振幅について測定した。以下の試験でも、長さが異なる以外は、上記試験1と同じ角材を使用し、圧縮試験も同じ装置を用いて同じ条件で行った。また、位相差の波長に応じた木材長さも、上記試験2と同じ長さに設定した。
<Test 3>
Next, the amplitude of the compressive load fluctuation wave (shock absorbing performance), which becomes an interference wave when the phase difference is variously changed using three woods (shock absorbing member), was measured. Also in the following tests, the same square material as the above-mentioned test 1 was used except that the length was different, and the compression test was also performed under the same conditions using the same apparatus. Moreover, the wood length according to the wavelength of phase difference was also set to the same length as the above-mentioned test 2.

上記基準木材と共に、位相差0.1波長の木材と位相差0.2波長の木材も設置した場合の圧縮荷重変動波を図24に示し、位相差0.1波長の木材と位相差0.8波長の木材も設置した場合の圧縮荷重変動波を図25に示し、位相差0.3波長の木材と位相差0.6波長の木材も設置した場合の圧縮荷重変動波を図26に示し、位相差0.2波長の木材と位相差0.4波長の木材も設置した場合の圧縮荷重変動波を図27に示し、位相差0.4波長の木材と位相差0.8波長の木材も設置した場合の圧縮荷重変動波を図28に示し、位相差0.4波長の木材と位相差0.6波長の木材も設置した場合の圧縮荷重変動波を図29に示し、位相差0.5波長の木材と位相差0.6波長の木材も設置した場合の圧縮荷重変動波を図30に示す。   FIG. 24 shows a compression load fluctuation wave when a wood having a phase difference of 0.1 wavelength and a wood having a phase difference of 0.2 wavelength are installed together with the reference wood. FIG. 25 shows a compression load fluctuation wave when an 8-wavelength wood is also installed, and FIG. 26 shows a compression load fluctuation wave when a phase difference of 0.3 wavelength wood and a phase difference of 0.6 wavelength wood are also installed. FIG. 27 shows a compression load fluctuation wave when a wood having a phase difference of 0.2 wavelength and a wood having a phase difference of 0.4 wavelength are also installed, and a wood having a phase difference of 0.4 wavelength and a wood having a phase difference of 0.8 wavelength. FIG. 28 shows the compressive load fluctuation wave when installing also, and FIG. 29 shows the compressive load fluctuation wave when wood with phase difference of 0.4 wavelength and wood with phase difference of 0.6 wavelength are also installed. FIG. 30 shows a compression load fluctuation wave when a wood having a wavelength of .5 and a wood having a phase difference of 0.6 are also installed.

図24、図25の結果における振幅は約2000Nを超えており、一本の木材で測定した基準圧縮荷重変動波よりも振幅が増幅していた。また、図30の結果における振幅は1500Nを超えており、一本の木材で測定した基準圧縮荷重変動波よりも振幅が増幅していた。一方、図26〜図29の結果における振幅は1200Nを下回っていた。これにより、三本以上の衝撃吸収部材を使用する場合は、ある一本の衝撃吸収部材とその他の衝撃吸収部材のうちいずれか一本との位相差を0.3〜0.7波長とし、且つ全ての衝撃吸収部材同士の位相差をそれぞれ0.2波長以上とすべきことが確認された。   The amplitude in the results of FIGS. 24 and 25 exceeded about 2000 N, and the amplitude was amplified from the reference compression load fluctuation wave measured with one piece of wood. Moreover, the amplitude in the result of FIG. 30 exceeded 1500 N, and the amplitude was amplified from the reference compression load fluctuation wave measured with one piece of wood. On the other hand, the amplitude in the results of FIGS. 26 to 29 was less than 1200N. Thereby, when using three or more shock absorbing members, the phase difference between any one of the shock absorbing member and the other shock absorbing member is 0.3 to 0.7 wavelength, Moreover, it was confirmed that the phase difference between all the impact absorbing members should be 0.2 wavelength or more.

1 内側構成部材
2 外側構成部材
10・20 衝撃吸収部材
11 介在物
15 枠体


DESCRIPTION OF SYMBOLS 1 Inner component 2 Outer component 10 * 20 Shock absorption member 11 Inclusion 15 Frame


Claims (5)

車両ボディを構成する二部材間に柱状の木材からなる衝撃吸収部材が複数本配され、前記各衝撃吸収部材は、車両衝突時にそれぞれ軸方向に圧縮変形するよう互いに平行に配されて、前記各衝撃吸収部材が圧縮変形する際には、衝撃に対する反力としての圧縮荷重が波状に強弱を繰り返しながら衝撃を吸収する、車両の衝撃吸収構造であって、
前記各衝撃吸収部材の長さをそれぞれ異ならせて破壊開始タイミングをそれぞれ異ならせることで、前記圧縮荷重変動波が互いに相殺的干渉となるように位相がずらされていることを特徴とする、車両の衝撃吸収構造。
A plurality of shock absorbing members made of columnar wood are arranged between two members constituting the vehicle body, and each of the shock absorbing members is arranged in parallel to each other so as to be compressed and deformed in the axial direction at the time of a vehicle collision. When the shock absorbing member compresses and deforms, the compression load as a reaction force against the shock absorbs the shock while repeating the strength in a wave shape,
The vehicle is characterized in that the lengths of the respective shock absorbing members are made different so that the break start timings are made different so that the phases of the compression load fluctuation waves are shifted so as to be destructive interference with each other. Shock absorption structure.
車両ボディを構成する二部材間に柱状の木材からなる衝撃吸収部材が複数本配され、前記各衝撃吸収部材は、車両衝突時にそれぞれ軸方向に圧縮変形するよう互いに平行に配されて、前記各衝撃吸収部材が圧縮変形する際には、衝撃に対する反力としての圧縮荷重が波状に強弱を繰り返しながら衝撃を吸収する、車両の衝撃吸収構造であって、
前記車両ボディを構成する二部材のうちいずれか一方が段差を有し、該各段差毎に前記衝撃吸収部材を配して前記各衝撃吸収部材の破壊開始タイミングをそれぞれ異ならせることで、前記圧縮荷重変動波が互いに相殺的干渉となるように位相がずらされていることを特徴とする、車両の衝撃吸収構造。
A plurality of shock absorbing members made of columnar wood are arranged between two members constituting the vehicle body, and each of the shock absorbing members is arranged in parallel to each other so as to be compressed and deformed in the axial direction at the time of a vehicle collision. When the shock absorbing member compresses and deforms, the compression load as a reaction force against the shock absorbs the shock while repeating the strength in a wave shape,
Either one of the two members constituting the vehicle body has a step, and the shock absorbing member is arranged for each step so that the breakage start timing of each of the shock absorbing members is different. A shock absorbing structure for a vehicle, wherein phases of the load fluctuation waves are shifted so as to cause destructive interference with each other.
車両ボディを構成する二部材間に柱状の木材からなる衝撃吸収部材が複数本配され、前記各衝撃吸収部材は、車両衝突時にそれぞれ軸方向に圧縮変形するよう互いに平行に配されて、前記各衝撃吸収部材が圧縮変形する際には、衝撃に対する反力としての圧縮荷重が波状に強弱を繰り返しながら衝撃を吸収する、車両の衝撃吸収構造であって、
長さがそれぞれ同一の前記各衝撃吸収部材の外周面に、それぞれ異なる深さの凹みを軸方向と直交する方向に形成して前記各衝撃吸収部材の破壊開始タイミングをそれぞれ異ならすことで、前記圧縮荷重変動波が互いに相殺的干渉となるように位相がずらされていることを特徴とする、車両の衝撃吸収構造。
A plurality of shock absorbing members made of columnar wood are arranged between two members constituting the vehicle body, and each of the shock absorbing members is arranged in parallel to each other so as to be compressed and deformed in the axial direction at the time of a vehicle collision. When the shock absorbing member compresses and deforms, the compression load as a reaction force against the shock absorbs the shock while repeating the strength in a wave shape,
By forming dents of different depths in the direction perpendicular to the axial direction on the outer peripheral surface of each of the shock absorbing members having the same length, the break start timing of each of the shock absorbing members is different, A shock absorbing structure for a vehicle, wherein phases are shifted so that compressive load fluctuation waves are destructive interference with each other.
前記車両ボディを構成する二部材間には、前記衝撃吸収部材が二本配されており、
一方の衝撃吸収部材の前記圧縮荷重変動波に対して、他方の衝撃吸収部材の前記圧縮荷重変動波が、0.3〜0.7波長分位相がずれている、請求項1ないし請求項3のいずれかに記載の車両の衝撃吸収構造。
Two shock absorbing members are arranged between two members constituting the vehicle body,
The phase of the compression load fluctuation wave of the other shock absorption member is shifted by 0.3 to 0.7 wavelength with respect to the compression load fluctuation wave of one shock absorption member. The shock absorbing structure for a vehicle according to any one of the above.
前記車両ボディを構成する二部材間には、前記衝撃吸収部材が三本以上配されており、
一の衝撃吸収部材の前記圧縮荷重変動波に対して、その他の衝撃吸収部材のうちいずれか一本は前記圧縮荷重変動波が0.3〜0.7波長分位相がずれており、
且つ全ての衝撃吸収部材の前記圧縮荷重変動波同士が、それぞれ0.2波長分以上位相がずれている、請求項1ないし請求項3のいずれかに記載の車両の衝撃吸収構造。

Between the two members constituting the vehicle body, three or more shock absorbing members are arranged,
With respect to the compression load fluctuation wave of one shock absorbing member, any one of the other shock absorption members is out of phase by 0.3 to 0.7 wavelengths of the compression load fluctuation wave,
4. The vehicle shock absorbing structure according to claim 1, wherein the compression load fluctuation waves of all the shock absorbing members are out of phase by 0.2 wavelengths or more. 5.

JP2011259871A 2011-11-29 2011-11-29 Vehicle shock absorption structure Active JP5729274B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011259871A JP5729274B2 (en) 2011-11-29 2011-11-29 Vehicle shock absorption structure
PCT/JP2012/080223 WO2013080864A1 (en) 2011-11-29 2012-11-21 Shock-absorbing structure for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011259871A JP5729274B2 (en) 2011-11-29 2011-11-29 Vehicle shock absorption structure

Publications (2)

Publication Number Publication Date
JP2013112152A JP2013112152A (en) 2013-06-10
JP5729274B2 true JP5729274B2 (en) 2015-06-03

Family

ID=48708125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011259871A Active JP5729274B2 (en) 2011-11-29 2011-11-29 Vehicle shock absorption structure

Country Status (1)

Country Link
JP (1) JP5729274B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6487722B2 (en) * 2015-03-05 2019-03-20 三菱重工業株式会社 Shock absorber
JP7143244B2 (en) * 2019-04-23 2022-09-28 近畿車輌株式会社 Impact energy absorption structure for railway vehicles
CN114454911B (en) * 2022-03-25 2023-06-02 中南大学 Multi-pipe combined energy absorbing device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246024Y2 (en) * 1980-01-30 1987-12-10
JPS5886940U (en) * 1981-12-08 1983-06-13 三菱自動車工業株式会社 shock absorber
JP2001182769A (en) * 1999-12-27 2001-07-06 Showa Alum Corp Shock-absorbing member
JP2003054442A (en) * 2001-08-16 2003-02-26 Nippon Light Metal Co Ltd Shock absorbing body
JP5121677B2 (en) * 2008-11-25 2013-01-16 日本車輌製造株式会社 Shock absorbing member
JP4852624B2 (en) * 2009-03-31 2012-01-11 株式会社日立製作所 Rail vehicle with collision mitigation device
JP5129827B2 (en) * 2010-02-12 2013-01-30 三菱重工業株式会社 Shock absorbing structure, shock absorbing structure manufacturing method, and moving body

Also Published As

Publication number Publication date
JP2013112152A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
US7651155B2 (en) Progressive energy absorber
US7354030B2 (en) Impact-absorbing member for vehicles
EP1892159B1 (en) Corrugated tubular energy absorbing structure.
US8950794B2 (en) Vehicle bumper assembly
US7967118B2 (en) Impact absorber device
JP5097396B2 (en) Vehicle structural elements that act to absorb specific impacts by plastic deformation
US8104804B2 (en) Automobile safety bumper assembly
US9221413B2 (en) Vehicle impact-absorbing member
US7377540B2 (en) Airbag unit and case of airbag unit
WO2007075659A2 (en) Mechanical energy absorption system
JP5729274B2 (en) Vehicle shock absorption structure
WO2013080863A1 (en) Shock-absorbing member for vehicle
WO2013027559A1 (en) Housing for impact absorption member, and impact absorption device adapted for use in vehicle and using housing
KR20130131374A (en) Device for fastening door or flap hinges or other elements to the doors or flaps or to the bodywork of motor vehicles
JP6191521B2 (en) Vehicle shock absorption structure
JP5729275B2 (en) Shock absorber for vehicle
WO2013080864A1 (en) Shock-absorbing structure for vehicle
KR101251300B1 (en) Stay unit for vehicles
JP4457302B2 (en) Shock absorber for automobile
JP5522191B2 (en) Vehicle shock absorption structure
JP2013141936A (en) Impact absorbing structure for vehicle
JP2006176093A (en) Bumper and impact absorption structure for vehicle
JP5053938B2 (en) Shock absorber
WO2008150036A1 (en) Reinforced impact beam
KR20070071377A (en) Reinforced impact beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R150 Certificate of patent or registration of utility model

Ref document number: 5729274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250