JP5776389B2 - Flame retardant composition having peelability and heat resistance, method for producing flame retardant resin, and insulated wire - Google Patents

Flame retardant composition having peelability and heat resistance, method for producing flame retardant resin, and insulated wire Download PDF

Info

Publication number
JP5776389B2
JP5776389B2 JP2011154405A JP2011154405A JP5776389B2 JP 5776389 B2 JP5776389 B2 JP 5776389B2 JP 2011154405 A JP2011154405 A JP 2011154405A JP 2011154405 A JP2011154405 A JP 2011154405A JP 5776389 B2 JP5776389 B2 JP 5776389B2
Authority
JP
Japan
Prior art keywords
mass
flame retardant
parts
resin
silane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011154405A
Other languages
Japanese (ja)
Other versions
JP2013018896A (en
Inventor
高輔 白木
高輔 白木
佐藤 正史
正史 佐藤
近藤 守
守 近藤
雅史 木村
雅史 木村
克祥 大元
克祥 大元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2011154405A priority Critical patent/JP5776389B2/en
Priority to PCT/JP2012/065326 priority patent/WO2013008582A1/en
Publication of JP2013018896A publication Critical patent/JP2013018896A/en
Application granted granted Critical
Publication of JP5776389B2 publication Critical patent/JP5776389B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/26Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Insulated Conductors (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

本発明は、剥離性と耐熱性を有する難燃性組成物、難燃性樹脂の製造方法及び絶縁電線に関し、さらに詳しくは、例えば自動車のエンジンルーム等の高い耐熱性が要求される場所で使用される絶縁電線の被覆材として好適な難燃性組成物、難燃性樹脂の製造方法及び絶縁電線に関するものである。   The present invention relates to a flame retardant composition having peelability and heat resistance, a method for producing a flame retardant resin, and an insulated wire, and more specifically, used in places where high heat resistance is required, such as an engine room of an automobile. The present invention relates to a flame retardant composition suitable as a covering material for an insulated wire, a method for producing a flame retardant resin, and an insulated wire.

従来、自動車のエンジンルーム等の高温環境下で使用される絶縁電線には、高い耐熱性が要求されている。そのため、このような場所で使用される絶縁電線の被覆材には、電子線照射等の手段により架橋した架橋ポリ塩化ビニル(PVC)や架橋ポリエチレン等が用いられてきた。   Conventionally, high heat resistance is required for an insulated wire used in a high-temperature environment such as an automobile engine room. For this reason, crosslinked polyvinyl chloride (PVC) or crosslinked polyethylene that has been crosslinked by means such as electron beam irradiation has been used as a covering material for insulated wires used in such places.

例えば特許文献1には、高い耐熱性と難燃性を有する、シラン架橋ポリオレフィンと、ポリオレフィンと、金属水和物と、フェノール系酸化防止剤と、硫黄系酸化防止剤と、金属酸化物と、銅害防止剤とを含有する難燃性組成物が開示されている。   For example, Patent Document 1 discloses a silane-crosslinked polyolefin, a polyolefin, a metal hydrate, a phenol-based antioxidant, a sulfur-based antioxidant, a metal oxide having high heat resistance and flame retardancy, A flame retardant composition containing a copper damage inhibitor is disclosed.

特開2010−174157号公報JP 2010-174157 A

しかしながら、従来知られているシラン架橋ポリエチレンを用いた難燃性組成物は、ISO6722規格の150℃−3000時間長期耐熱評価試験に合格する高い耐熱性を有するものの、絶縁電線の被覆材として使用した場合には以下のような間題が生じることが判明した。   However, the conventionally known flame retardant composition using silane-crosslinked polyethylene has high heat resistance that passes the ISO 6722 standard 150 ° C.-3000 hours long-term heat resistance evaluation test, but was used as a covering material for insulated wires. In some cases, the following problems were found.

すなわち、自動車等の車両において絶縁電線を使用する場合、一般に複数の絶縁電線をひとまとまりに束ねて電線束とし、この電線束の外周に保護材を巻くことによりワイヤーハーネスとして使用することが多い。   That is, when an insulated wire is used in a vehicle such as an automobile, generally, a plurality of insulated wires are bundled together to form a wire bundle, and a protective material is wound around the outer periphery of the wire bundle, so that the wire harness is often used.

この際、電線束では電線同士が表面で接触し、エンジンルームのような高温環境下で長期間使用される。このような高温環境下で長期間電線同士を束ね放置すると、電線表面同士が接着する。原因としては、詳細なメカニズムまでは解明されていないが、べ一ス樹脂のポリエチレン系樹脂のうち未架橋の部分同士が高温下で溶融し接着するのではないかと考えられる。   At this time, in the wire bundle, the wires come into contact with each other on the surface and are used for a long time in a high temperature environment such as an engine room. If the electric wires are bundled and left for a long time under such a high temperature environment, the electric wire surfaces adhere to each other. Although the detailed mechanism has not been elucidated as a cause, it is thought that uncrosslinked portions of the base resin polyethylene-based resin melt and adhere at high temperatures.

本発明が解決しようとする課題は、上記従来技術の問題点を解決しようとするものであり、シラン変性ポリエチレン系樹脂をベ一ス樹脂とする難燃性組成物から形成される樹脂が、例えば絶縁電線の被覆材として使用される場合のように、樹脂皮膜の表面同士が高温で接触した状態で放置された後に、容易に表面同士を剥離することが可能である、剥離性と耐熱性を有する難燃性組成物、難燃性樹脂の製造方法及び絶縁電線を提供することにある。   The problem to be solved by the present invention is to solve the above-mentioned problems of the prior art, and a resin formed from a flame retardant composition having a silane-modified polyethylene resin as a base resin is, for example, As it is used as a covering material for insulated wires, the surfaces of the resin films can be easily separated after being left in contact with each other at a high temperature. It is in providing the flame-retardant composition which has, the manufacturing method of a flame-retardant resin, and an insulated wire.

上記課題を解決するために本発明に係る難燃性組成物は、
シラン変性ポリエチレン系樹脂40〜80質量部と、ポリエチレン系樹脂20〜60質量部を含有するポリマー成分100質量部に対し、
水酸化マグネシウム又は/及び水酸化アルミニウム30〜200質量部、融点150℃以上のトリアジン系化合物0.5〜5質量部、ベンズイミダゾール系化合物1〜10質量部、酸化亜鉛1〜10質量部、銅害防止剤0.1〜5質量部含有することを要旨とするものである。
In order to solve the above problems, the flame retardant composition according to the present invention is:
For 100 parts by mass of the polymer component containing 40-80 parts by mass of the silane-modified polyethylene resin and 20-60 parts by mass of the polyethylene resin,
Magnesium hydroxide and / or aluminum hydroxide 30-200 parts by mass, melting point 150 ° C. or higher triazine compound 0.5-5 parts by mass, benzimidazole compound 1-10 parts by mass, zinc oxide 1-10 parts by mass, copper The gist is to contain 0.1 to 5 parts by mass of a harmful agent.

上記難燃性組成物は、上記ポリマー成分100質量部に対し、更にフェノール系酸化防止剤1〜10質量部含有することができる。   The flame retardant composition may further contain 1 to 10 parts by mass of a phenolic antioxidant with respect to 100 parts by mass of the polymer component.

また本発明に係る難燃性樹脂の製造方法は、
ポリエチレン系樹脂にシランカップリング剤をグラフト重合させたシラン変性ポリエチレン系樹脂を含有するA成分と、
ポリエチレン系樹脂に、水酸化マグネシウム又は/及び水酸化アルミニウムと、融点150℃以上のトリアジン系化合物と、ベンズイミダゾール系化合物と、酸化亜鉛と、銅害防止剤を配合してなるB成分と、
ポリエチレン系樹脂に、シラン架橋触媒を配合してなるC成分と、
を混練し成形した後、水架橋を行うことを要旨とするものである。
In addition, the method for producing a flame retardant resin according to the present invention includes:
A component containing a silane-modified polyethylene resin obtained by graft polymerization of a silane coupling agent to a polyethylene resin;
B component formed by blending magnesium hydroxide or / and aluminum hydroxide, a triazine compound having a melting point of 150 ° C. or higher, a benzimidazole compound, zinc oxide, and a copper damage inhibitor in a polyethylene resin,
A C component obtained by blending a polyethylene-based resin with a silane crosslinking catalyst;
The gist is to carry out water crosslinking after kneading and molding.

上記難燃性樹脂の製造方法において、上記B成分が、更にフェノール系酸化防止剤を配合してなるものとすることができる。   In the method for producing a flame retardant resin, the component B may further contain a phenolic antioxidant.

本発明に係る絶縁電線は、上記の難燃性組成物から形成された絶縁体により、導体の外周が被覆されていることを要旨とするものである。   The gist of the insulated wire according to the present invention is that the outer periphery of the conductor is covered with an insulator formed from the flame retardant composition.

本発明に係る難燃性組成物は、シラン変性ポリエチレン系樹脂40〜80質量部と、ポリエチレン系樹脂20〜60質量部を含有するポリマー成分100質量部に対し、水酸化マグネシウム又は/及び水酸化アルミニウム30〜200質量部、融点150℃以上のトリアジン系化合物0.5〜5質量部、ベンズイミダゾール系化合物1〜10質量部、酸化亜鉛1〜10質量部、銅害防止剤0.1〜5質量部含有することにより、硬化して架橋した後の樹脂皮膜は、剥離性、耐熱性、難燃性に優れたものが得られる。   The flame retardant composition according to the present invention is magnesium hydroxide and / or hydroxylated with respect to 100 parts by mass of a polymer component containing 40-80 parts by mass of a silane-modified polyethylene resin and 20-60 parts by mass of a polyethylene resin. 30 to 200 parts by mass of aluminum, 0.5 to 5 parts by mass of a triazine compound having a melting point of 150 ° C. or higher, 1 to 10 parts by mass of a benzimidazole compound, 1 to 10 parts by mass of zinc oxide, and 0.1 to 5 of a copper damage inhibitor By containing a part by mass, a resin film that has been cured and cross-linked can be obtained having excellent peelability, heat resistance, and flame retardancy.

特に、融点150℃以上のトリアジン系化合物を0.5〜5質量部添加したことにより、従来の融点150℃以上のトリアジン系化合物を含まない難燃性組成物を硬化して架橋した後の樹脂皮膜と比較して、樹脂皮膜の表面同士が接触した状態で150℃以上の高温下に長期間放置された後でも、樹脂皮膜同士を容易に剥離することが可能である。   In particular, a resin after curing and crosslinking a conventional flame retardant composition not containing a triazine compound having a melting point of 150 ° C. or more by adding 0.5 to 5 parts by mass of a triazine compound having a melting point of 150 ° C. or more. Compared with the film, the resin films can be easily separated even after being left for a long time at a high temperature of 150 ° C. or higher with the surfaces of the resin films in contact with each other.

本発明に係る難燃性樹脂の製造方法は、ポリエチレン系樹脂にシランカップリング剤をグラフト重合させたシラン変性ポリエチレン系樹脂を含有するA成分と、ポリエチレン系樹脂に、水酸化マグネシウム又は/及び水酸化アルミニウムと、融点150℃以上のトリアジン系化合物と、ベンズイミダゾール系化合物と、酸化亜鉛と、銅害防止剤を配合してなるB成分と、ポリエチレン系樹脂に、シラン架橋触媒を配合してなるC成分と、を混練し成形した後、水架橋を行う方法を採用したことにより、ポリエチレン系樹脂にシランカップリング剤をグラフト重合させたシラン変性ポリエチレン系樹脂を含有するA成分と、難燃剤を含むB成分とが別々に混練された後に、混合添加される方法を用いたことにより、難燃剤や安定剤中の水分が、シラン変性ポリエチレン系樹脂を製造する際にシランカップリング剤が反応しないので、ポリエチレン系樹脂とシランカップリング剤のグラフト反応を阻害する虞がない。また、シラン変性ポリエチレン系樹脂を製造する際にゲル状物質が発生する虞がない。   The method for producing a flame retardant resin according to the present invention includes a component A containing a silane-modified polyethylene resin obtained by graft polymerization of a silane coupling agent to a polyethylene resin, and a polyethylene resin containing magnesium hydroxide and / or water. An aluminum oxide, a triazine compound having a melting point of 150 ° C. or higher, a benzimidazole compound, zinc oxide, a B component obtained by compounding a copper damage inhibitor, and a polyethylene resin and a silane crosslinking catalyst. A component A containing a silane-modified polyethylene resin obtained by graft-polymerizing a silane coupling agent to a polyethylene resin, and a flame retardant, by adopting a method in which the component C is kneaded and molded, followed by water crosslinking. By using the method of mixing and adding after the component B containing is separately kneaded, the moisture in the flame retardant and stabilizer, Since the silane coupling agent when manufacturing the run-modified polyethylene resin does not react, there is no possibility of inhibiting the graft reaction of polyethylene resin and a silane coupling agent. Moreover, there is no possibility that a gel-like substance is generated when producing a silane-modified polyethylene resin.

そのため上記の本発明難燃性組成物から形成される難燃樹脂成形品の外観が悪化したり、架橋不足が発生して、耐熱性が低下したりすることがなく、剥離性、耐熱性に優れた難燃性樹脂を確実に製造することができる。   Therefore, the external appearance of the flame-retardant resin molded product formed from the above-mentioned flame-retardant composition of the present invention is not deteriorated, the lack of cross-linking occurs, the heat resistance does not decrease, and the peelability and heat resistance are improved. An excellent flame retardant resin can be reliably produced.

本発明に係る絶縁電線は、上記の難燃性組成物から形成された絶縁体により、導体の外周が被覆されていることにより、優れた耐熱性と剥離性を有する難燃性電線が得られる。特に絶縁電線を束ねた電線束を、150℃以上の高温環境下で長期間放置した場合であっても、電線表面同士が接着することがなく電線表面の剥離性に優れた絶縁電線が得られる。   The insulated wire according to the present invention provides a flame-retardant wire having excellent heat resistance and releasability by covering the outer periphery of the conductor with an insulator formed from the above-mentioned flame-retardant composition. . In particular, even when a bundle of insulated wires is left in a high temperature environment of 150 ° C. or higher for a long period of time, an insulated wire excellent in peelability of the wire surfaces can be obtained without bonding the surfaces of the wires. .

以下、本発明の実施形態について詳細に説明する。本実施形態に係る難燃性組成物は、少なくともシラン変性ポリエチレン系樹脂とポリエチレン系樹脂を含有するポリマー成分と、水酸化マグネシウム又は水酸化アルミニウム、或いは水酸化マグネシウムと水酸化アルミニウムの混合物のいずれかである無機系難燃剤、融点150℃以上のトリアジン系化合物、フェノール系酸化防止剤、ベンズイミダゾール系化合物、酸化亜鉛、銅害防止剤を含有する。   Hereinafter, embodiments of the present invention will be described in detail. The flame retardant composition according to the present embodiment is any one of a polymer component containing at least a silane-modified polyethylene resin and a polyethylene resin, magnesium hydroxide or aluminum hydroxide, or a mixture of magnesium hydroxide and aluminum hydroxide. An inorganic flame retardant, a triazine compound having a melting point of 150 ° C. or higher, a phenol antioxidant, a benzimidazole compound, zinc oxide, and a copper damage inhibitor.

本発明の難燃性組成物は、融点が150℃以上のトリアジン系化合物を用いることにより、難燃性組成物を成形し架橋して得られる難燃性樹脂が、樹脂同士が接触した状態で150℃以上の高温で長期間放置された後でも、樹脂同士を良好に剥離することができ、剥離性を有するものであれる。これは融点が150℃以上のトリアジン系化合物が、ポリマー成分のポリエチレン系樹脂の未架橋の部分同士が高温下で溶融し接着するのを抑制していると考えられる。   In the flame retardant composition of the present invention, the flame retardant resin obtained by molding and crosslinking the flame retardant composition by using a triazine compound having a melting point of 150 ° C. or higher is in a state where the resins are in contact with each other. Even after being left at a high temperature of 150 ° C. or higher for a long period of time, the resins can be peeled off satisfactorily and have releasability. It is considered that this is because the triazine compound having a melting point of 150 ° C. or higher suppresses melting and bonding of uncrosslinked portions of the polyethylene resin as a polymer component at a high temperature.

尚、本発明において剥離性を有するとは、樹脂同士を接触した状態で150℃×24時間の条件下に放置した後で、樹脂同士が容易に剥がれる程度の剥離性を備えることを意味する。また本発明において耐熱性を有するとは、ISO6722規格の150℃−3000時間長期耐熱評価試験に合格する程度の耐熱性を備えることを意味する。   In the present invention, having releasability means having releasability to such an extent that the resins can be easily separated after being left under the condition of 150 ° C. × 24 hours in a state where the resins are in contact with each other. Moreover, having heat resistance in the present invention means having heat resistance enough to pass a long-term heat resistance evaluation test of 150 ° C.-3000 hours of ISO 6722 standard.

また難燃性組成物は、フェノール系酸化防止剤、ベンズイミダゾール系化合物、酸化亜鉛、銅害防止剤により高い耐熱性が得られる。フェノール系酸化防止剤は、難燃性組成物内の熱劣化とともに発生するラジカルを捕捉する。ベンズイミダゾール化合物は、硫黄原子が酸化亜鉛の働きを受け、熱劣化の進行中にシラン架橋ポリエチレン間に補足的な架橋結合を作ることにより、シラン架橋ポリエチレンの熱劣化を抑制しているものと推察される。さらに、銅害防止剤が、絶縁電線の導体(銅線)から発生する銅イオンを捕捉し、銅が触媒となって絶縁体が熱劣化するのを抑制する。   In addition, the flame retardant composition has high heat resistance due to the phenolic antioxidant, benzimidazole compound, zinc oxide, and copper damage inhibitor. The phenolic antioxidant captures radicals generated with thermal degradation in the flame retardant composition. The benzimidazole compound is presumed to suppress thermal degradation of the silane-crosslinked polyethylene by forming a supplementary cross-linking bond between the silane-crosslinked polyethylene while the sulfur atoms are affected by the action of zinc oxide and thermal degradation is in progress. Is done. Furthermore, the copper damage preventing agent captures copper ions generated from the conductor (copper wire) of the insulated wire, and suppresses thermal degradation of the insulator due to copper as a catalyst.

シラン変性ポリエチレン系樹脂は、シラン変性ポリエチレン系樹脂とポリエチレン系樹脂を含むポリマー成分(以下、単にポリマー成分ということもある)の合計量100質量部中の、40〜80質量部の範囲で使用される。シラン変性ポリエチレン系樹脂は、ポリエチレン系樹脂がシランカップリング剤等により変性されたものである。シラン変性ポリエチレン系樹脂に用いられるポリエチレン系樹脂としては、例えばエチレンの重合体が挙げられる。また上記ポリエチレン系樹脂としては、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸エステル共重合体等のエチレン系共重合体を用いても良い。これらは単独で使用しても良いし、併用しても良い。   The silane-modified polyethylene resin is used in the range of 40 to 80 parts by mass in 100 parts by mass of the total amount of polymer components including the silane-modified polyethylene resin and the polyethylene resin (hereinafter sometimes simply referred to as polymer component). The The silane-modified polyethylene resin is obtained by modifying a polyethylene resin with a silane coupling agent or the like. Examples of the polyethylene resin used for the silane-modified polyethylene resin include an ethylene polymer. Moreover, as said polyethylene-type resin, you may use ethylene-type copolymers, such as an ethylene-vinyl acetate copolymer and an ethylene-acrylic acid ester copolymer. These may be used alone or in combination.

上記エチレンの重合体としては、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超低密度ポリエチレン等を例示することができる。これらは、単独で用いても良いし、併用しても良い。シラン変性ポリエチレン系樹脂のポリエチレン系樹脂は、好ましくは柔軟性に優れる等の観点から超低密度ポリエチレンである。   Examples of the ethylene polymer include high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and ultra low density polyethylene. These may be used alone or in combination. The polyethylene resin of the silane-modified polyethylene resin is preferably ultra-low density polyethylene from the viewpoint of excellent flexibility.

シラン変性ポリエチレン系樹脂は、柔軟性に優れる等の観点から、密度が0.910g/cm以下であることが好ましい。もっとも、密度が小さくなるにつれて樹脂の結晶化度が低くなるため、シラングラフト化された樹脂が、ガソリン(オイル)等に対して膨潤するのを抑え、耐ガソリン性が向上する観点から、密度が0.880g/cm以上であることが好ましい。したがって、シラン変性ポリエチレン系樹脂の形成に用いられるポリエチレン系樹脂としては、密度が0.880〜0.910g/cmの範囲内にあることが好ましい。 The silane-modified polyethylene resin preferably has a density of 0.910 g / cm 3 or less from the viewpoint of excellent flexibility. However, since the degree of crystallinity of the resin decreases as the density decreases, the density of the resin from which silane-grafted resin is suppressed from swelling with respect to gasoline (oil) and the like and gasoline resistance is improved. It is preferably 0.880 g / cm 3 or more. Therefore, the polyethylene resin used for forming the silane-modified polyethylene resin preferably has a density in the range of 0.880 to 0.910 g / cm 3 .

上記シラン変性ポリエチレン系樹脂とともに含有されるポリエチレン系樹脂は、非シラン変性ポリエチレン系樹脂が用いられる。ポリエチレン系樹脂としては、例えばシラン変性ポリエチレン系樹脂のポリエチレン系樹脂として例示したもの等が挙げられる。これらは1種又は2種以上併用することができる。上記ポリエチレン系樹脂は、相溶性の観点からシラン変性ポリエチレン系樹脂と同種のものを用いると良い。   As the polyethylene resin contained together with the silane-modified polyethylene resin, a non-silane-modified polyethylene resin is used. Examples of the polyethylene resin include those exemplified as the polyethylene resin of the silane-modified polyethylene resin. These can be used alone or in combination of two or more. The polyethylene resin is preferably the same type as the silane-modified polyethylene resin from the viewpoint of compatibility.

上記ポリエチレン系樹脂は、ポリマー成分の合計量100質量部中の20〜60質量部の範囲で使用される。ポリエチレン系樹脂がポリマー成分の合計量100質量部中の20質量部未満では、混練時に取り込める難燃剤等の量が少なくなり、難燃性が不足しやすい。またポリエチレン系樹脂が60質量部を超えると、ポリマー成分中のシラン変性ポリエチレン系樹脂が相対的に少なくなるため、架橋成分が少なくなりゲル分率が不足し易い。   The said polyethylene-type resin is used in the range of 20-60 mass parts in 100 mass parts of total amounts of a polymer component. When the polyethylene resin is less than 20 parts by mass in 100 parts by mass of the total amount of polymer components, the amount of flame retardant that can be taken in during kneading decreases, and the flame retardancy tends to be insufficient. On the other hand, when the polyethylene resin exceeds 60 parts by mass, the silane-modified polyethylene resin in the polymer component is relatively reduced, so that the crosslinking component is reduced and the gel fraction tends to be insufficient.

無機系難燃剤として用いられる水酸化マグネシウム又は水酸化アルミニウムの含有量は、上記ポリマー成分100質量部に対して30〜200質量部の範囲内で、難燃性樹脂や絶縁電線の種類、電線のサイズ、導体、絶縁体の構成等により、適宜、含有量を決定することができる。   The content of magnesium hydroxide or aluminum hydroxide used as the inorganic flame retardant is in the range of 30 to 200 parts by mass with respect to 100 parts by mass of the polymer component, and the type of flame retardant resin or insulated wire, The content can be appropriately determined depending on the size, the conductor, the structure of the insulator, and the like.

無機系難燃剤は、上記ポリマー成分100質量部に対して30〜200質量部の範囲内であれば、例えば自動車用電線に要求されるのに十分な難燃性が得られやすい。無機系難燃剤は上記ポリマー成分100質量部に対し30質量部未満では十分な難燃性が得られない。また200質量部を超えると十分な機械的特性が得られない。   If the inorganic flame retardant is in the range of 30 to 200 parts by mass with respect to 100 parts by mass of the polymer component, for example, sufficient flame retardancy to be required for an electric wire for automobiles is easily obtained. When the inorganic flame retardant is less than 30 parts by mass with respect to 100 parts by mass of the polymer component, sufficient flame retardancy cannot be obtained. Moreover, when it exceeds 200 mass parts, sufficient mechanical characteristics cannot be obtained.

難燃性組成物に配合される融点が150℃以上のトリアジン系化合物は、剥離性を向上させるために用いられる。融点が150℃未満のトリアジン系化合物では、十分な剥離性を得ることができない。   A triazine-based compound having a melting point of 150 ° C. or higher blended in the flame retardant composition is used for improving the peelability. With a triazine compound having a melting point of less than 150 ° C., sufficient peelability cannot be obtained.

融点が150℃以上のトリアジン系化合物としては、例えば、1,3,5−トリス(3,5−ジ−tert−ブチル−4ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)トリオン(融点226℃)、1,3,5−トリス[(4−tert−ブチル−3−ヒドロキシ−2,6−キシリル)メチル]−1,3,5−トリアジン−2,4,6(1H,3H,5H)トリオン(融点162℃)等が挙げられる。   Examples of triazine compounds having a melting point of 150 ° C. or higher include 1,3,5-tris (3,5-di-tert-butyl-4hydroxybenzyl) -1,3,5-triazine-2,4,6. (1H, 3H, 5H) trione (melting point 226 ° C.), 1,3,5-tris [(4-tert-butyl-3-hydroxy-2,6-xylyl) methyl] -1,3,5-triazine- 2, 4, 6 (1H, 3H, 5H) trione (melting point: 162 ° C).

本発明の難燃性組成物において、融点が150℃以上のトリアジン系化合物の含有量は、上記ポリマー成分100質量部に対して0.5〜5質量部の範囲内である。上記含有量が0.5質量部未満では十分な剥離性が得られず、5質量部を超えるとコスト高となってしまう。   In the flame retardant composition of the present invention, the content of the triazine compound having a melting point of 150 ° C. or higher is in the range of 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer component. If the content is less than 0.5 parts by mass, sufficient peelability cannot be obtained, and if it exceeds 5 parts by mass, the cost becomes high.

本発明の難燃性組成物には、フェノール系酸化防止剤を含有させることが好ましい。フェノール系酸化防止剤としては、例えばペンタエリスリトールテトラキス[3−(3、5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、チオジエチレンビス[3−(3、5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3、5−ジ−tert−ブチル4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサン−1,6−ジイルビス[3−(3、5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオンアミド]等を例示することができる。   The flame retardant composition of the present invention preferably contains a phenolic antioxidant. Examples of phenolic antioxidants include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], thiodiethylenebis [3- (3,5-di-tert-butyl). -4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl 4-hydroxyphenyl) propionate, N, N′-hexane-1,6-diylbis [3- (3,5- Di-tert-butyl-4-hydroxyphenyl) propionamide] and the like.

難燃性組成物におけるフェノール系酸化防止剤の含有量としては、上記ポリマー成分100質量部に対し、1〜10質量部の範囲内であることが好ましい。難燃性組成物にフェノール系酸化防止剤を含有せしめることにより、耐熱性を更に向上させることができる。フェノール系酸化防止剤の含有量が上記ポリマー成分100質量部に対し1質量部未満では、耐熱性向上効果が不十分となる虞があり、10質量部を超えると、特に高温高湿雰囲気下において、ブルームし易くなる虞がある。   As content of the phenolic antioxidant in a flame retardant composition, it is preferable to exist in the range of 1-10 mass parts with respect to 100 mass parts of said polymer components. Heat resistance can be further improved by incorporating a phenolic antioxidant into the flame retardant composition. If the content of the phenolic antioxidant is less than 1 part by mass with respect to 100 parts by mass of the polymer component, the heat resistance improving effect may be insufficient, and if it exceeds 10 parts by mass, particularly in a high-temperature and high-humidity atmosphere. There is a possibility that it will be easy to bloom.

ベンズイミダゾール系化合物としては、例えば、2−メルカプトベンズイミダゾール、2−メルカプトメチルベンズイミダゾール、4−メルカプトメチルベンズイミダゾール、5−メルカプトメチルベンズイミダゾール等や、これらの亜鉛塩等が挙げられる。特に好ましいものは、2−メルカプトベンズイミダゾール及びその亜鉛塩である。ベンズイミダゾール系化合物においては、ベンズイミダゾールの骨格の他の位置にアルキル基等の置換基を有していても良い。   Examples of the benzimidazole compound include 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, 4-mercaptomethylbenzimidazole, 5-mercaptomethylbenzimidazole, and zinc salts thereof. Particularly preferred are 2-mercaptobenzimidazole and its zinc salt. The benzimidazole-based compound may have a substituent such as an alkyl group at another position of the benzimidazole skeleton.

難燃性組成物におけるベンズイミダゾール系化合物の含有量は、上記ポリマー成分100質量部に対し、1〜10質量部の範囲内である。上記ベンズイミダゾール系化合物の含有量が1質量部未満では、耐熱性向上効果が不十分であり、10質量部を超えると、特に高温高湿雰囲気下においてブルームし易くなる。   Content of the benzimidazole type compound in a flame retardant composition exists in the range of 1-10 mass parts with respect to 100 mass parts of said polymer components. When the content of the benzimidazole compound is less than 1 part by mass, the effect of improving heat resistance is insufficient, and when it exceeds 10 parts by mass, blooming easily occurs particularly in a high temperature and high humidity atmosphere.

難燃性組成物における酸化亜鉛の含有量は、上記ポリマー成分100質量部に対し、1〜10質量部の範囲内である。上記酸化亜鉛の含有量が1質量部未満では、耐熱性向上効果が不十分であり、10質量部を超えると、十分な機械的特性が得られない。   Content of the zinc oxide in a flame-retardant composition exists in the range of 1-10 mass parts with respect to 100 mass parts of said polymer components. When the zinc oxide content is less than 1 part by mass, the effect of improving heat resistance is insufficient, and when it exceeds 10 parts by mass, sufficient mechanical properties cannot be obtained.

上記銅害防止剤は、例えば、3−(N−サリチロイル)アミノ−1,2,4−トリアゾール、デカメチレンジカルボン酸ジサリチロイルヒドラジド、2,3−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]プロピオノヒドラジ等を例示することができる。   Examples of the copper damage inhibitor include 3- (N-salicyloyl) amino-1,2,4-triazole, decamethylenedicarboxylic acid disalicyloyl hydrazide, and 2,3-bis [3- (3,5-diazole). -Tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide and the like.

難燃性組成物における銅害防止剤の含有量は、上記ポリマー成分100質量部に対し、0.1〜5質量部の範囲内である。上記銅害防止剤の含有量が0.1質量部未満では、耐熱性向上効果が不十分であり、5質量部を超えると、耐熱性向上効果が飽和する一方で、高温高湿環境下においてブルームし易くなり、更にコスト増になる。   Content of the copper damage inhibitor in a flame retardant composition exists in the range of 0.1-5 mass parts with respect to 100 mass parts of said polymer components. When the content of the copper damage inhibitor is less than 0.1 parts by mass, the effect of improving heat resistance is insufficient, and when it exceeds 5 parts by mass, the effect of improving heat resistance is saturated, while in a high temperature and high humidity environment. Blooming is easier and the cost increases.

難燃性組成物は、シラン架橋触媒を含有するのが好ましい。シラン架橋触媒としては、例えば、錫、亜鉛、鉄、鉛、コバルト、バリウム、カルシウム等の金属カルボン酸塩、チタン酸エステル、有機塩基、無機酸、有機酸等を例示することができる。具体的にはジブチル錫ジラウレート、ジブチル錫ジマレート、ジブチル錫メルカプトチド(ジブチル錫ビスオクチルチオグリコールエステル塩、ジブチル錫β−メルカプトプロピオン酸塩ポリマー等)、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、酢酸第一錫、カプリル酸第一錫、ナフテン酸鉛、ナフテン酸コバルト、ステアリン酸バリウム、ステアリン酸カルシウム、チタン酸テトラブチルエステル、チタン酸テトラノニルエステル、ジブチルアミン、へキシルアミン、ピリジン、硫酸、塩酸、トルエンスルホン酸、酢酸、ステアリン酸、マレイン酸等を例示することができる。好ましくは、ジブチル錫ジラウレート、ジブチル錫ジマレート、ジブチル錫メルカプチドである。   The flame retardant composition preferably contains a silane crosslinking catalyst. Examples of the silane crosslinking catalyst include metal carboxylates such as tin, zinc, iron, lead, cobalt, barium, and calcium, titanate esters, organic bases, inorganic acids, and organic acids. Specifically, dibutyltin dilaurate, dibutyltin dimaleate, dibutyltin mercaptotide (dibutyltin bisoctylthioglycol ester salt, dibutyltin β-mercaptopropionate polymer, etc.), dibutyltin diacetate, dioctyltin dilaurate, first acetate Tin, stannous caprylate, lead naphthenate, cobalt naphthenate, barium stearate, calcium stearate, tetrabutyl ester titanate, tetranonyl titanate, dibutylamine, hexylamine, pyridine, sulfuric acid, hydrochloric acid, toluenesulfonic acid , Acetic acid, stearic acid, maleic acid and the like. Dibutyltin dilaurate, dibutyltin dimaleate, and dibutyltin mercaptide are preferable.

難燃性組成物におけるシラン架橋触媒の含有量は、シラン変性ポリエチレン系樹脂及びポリエチレン系樹脂等の合計量であるポリマー成分100質量部に対して、0.005〜0.3質量部の範囲である。シラン架橋触媒の配合量は、好ましくは、ポリマー成分100質量部に対して0.01〜0.1質量部である。シラン架橋触媒の配合量がポリマー成分100質量部に対し0.005質量部未満では架橋度が不足し、0.3質量部を超えると成形品の外観が悪化する。   The content of the silane crosslinking catalyst in the flame retardant composition is in the range of 0.005 to 0.3 parts by mass with respect to 100 parts by mass of the polymer component that is the total amount of the silane-modified polyethylene resin and the polyethylene resin. is there. The amount of the silane crosslinking catalyst is preferably 0.01 to 0.1 parts by mass with respect to 100 parts by mass of the polymer component. When the amount of the silane crosslinking catalyst is less than 0.005 parts by mass with respect to 100 parts by mass of the polymer component, the degree of crosslinking is insufficient, and when it exceeds 0.3 parts by mass, the appearance of the molded product deteriorates.

本発明に係る難燃性組成物においては、本発明の特性を阻害しない範囲で、必要に応じて、上記以外の他の添加剤を含有せしめることができる。このような添加剤としては例えば、紫外線吸収剤、加工助剤(ワックス、滑剤等)、難燃助剤、顔料等を例示することができる。   In the flame-retardant composition according to the present invention, other additives than the above may be included as necessary within the range not impairing the characteristics of the present invention. Examples of such additives include ultraviolet absorbers, processing aids (waxes, lubricants, etc.), flame retardant aids, pigments and the like.

本発明の難燃性組成物は、融点が150℃以上のトリアジン系化合物を用いることにより、難燃性組成物を成形し架橋して得られる難燃性樹脂が、樹脂同士が接触した状態で150℃以上の高温で長期間放置された後でも、樹脂同士を良好に剥離することができ、剥離性に優れたものが得られる。これは融点が150℃以上のトリアジン系化合物が、ポリマー成分のポリエチレン系樹脂の未架橋の部分同士が高温下で溶融し接着するのを抑制していると考えられる。   In the flame retardant composition of the present invention, the flame retardant resin obtained by molding and crosslinking the flame retardant composition by using a triazine compound having a melting point of 150 ° C. or higher is in a state where the resins are in contact with each other. Even after being left at a high temperature of 150 ° C. or higher for a long period of time, the resins can be peeled off satisfactorily, and those having excellent peelability can be obtained. It is considered that this is because the triazine compound having a melting point of 150 ° C. or higher suppresses melting and bonding of uncrosslinked portions of the polyethylene resin as a polymer component at a high temperature.

また難燃性組成物は、フェノール系酸化防止剤、ベンズイミダゾール系化合物、酸化亜鉛、銅害防止剤により高い耐熱性が得られる。フェノール系酸化防止剤は、難燃性組成物内の熱劣化とともに発生するラジカルを捕捉する。ベンズイミダゾール化合物は、硫黄原子が酸化亜鉛の働きを受け、熱劣化の進行中にシラン架橋ポリエチレン間に補足的な架橋結合を作ることにより、シラン架橋ポリエチレンの熱劣化を抑制しているものと推察される。さらに、銅害防止剤が、絶縁電線の導体(銅線)から発生する銅イオンを捕捉し、銅が触媒となって絶縁体が熱劣化するのを抑制する。   In addition, the flame retardant composition has high heat resistance due to the phenolic antioxidant, benzimidazole compound, zinc oxide, and copper damage inhibitor. The phenolic antioxidant captures radicals generated with thermal degradation in the flame retardant composition. The benzimidazole compound is presumed to suppress thermal degradation of the silane-crosslinked polyethylene by forming a supplementary cross-linking bond between the silane-crosslinked polyethylene while the sulfur atoms are affected by the action of zinc oxide and thermal degradation is in progress. Is done. Furthermore, the copper damage preventing agent captures copper ions generated from the conductor (copper wire) of the insulated wire, and suppresses thermal degradation of the insulator due to copper as a catalyst.

シラン変性ポリエチレン系樹脂は、ポリエチレン系樹脂とシランカップリング剤等のシラン架橋剤とを有機過酸化物等のラジカル発生剤を用いてグラフト反応させる等の方法により得ることができる。   The silane-modified polyethylene resin can be obtained by a method such as a graft reaction of a polyethylene resin and a silane crosslinking agent such as a silane coupling agent using a radical generator such as an organic peroxide.

本発明においては、シラン架橋を十分なものとするために、予めシラン変性ポリエチレン系樹脂を合成しておき、これと水酸化マグネシウムや水酸化アルミニウム等の無機系難燃剤を接触させるようにする。無機系難燃剤とポリエチレン系樹脂とシランカップリング剤を同時に混練すると、無機系難燃剤の水分がシランカップリング剤と反応して、ポリエチレン系樹脂とシランカップリング剤のグラフト反応を阻害する虞がある。また水分とシランカップリング剤が反応して、ゲル状物質が生成すると、それが組成物から形成した樹脂皮膜の表面に現れて、絶縁体の外観が悪化する虞がある。またシランカップリング剤が水分と反応すると、架橋不足が発生して、耐熱性が低下したりする虞がある。これに対し、予めシラン変性ポリエチレン系樹脂を合成しておいて、後から水分を含む無機系難燃剤等と混合することにより、シラン変性ポリエチレン系樹脂を高い架橋度でシラン架橋することができる。   In the present invention, in order to achieve sufficient silane crosslinking, a silane-modified polyethylene resin is synthesized in advance and brought into contact with an inorganic flame retardant such as magnesium hydroxide or aluminum hydroxide. If an inorganic flame retardant, a polyethylene resin, and a silane coupling agent are kneaded at the same time, the moisture of the inorganic flame retardant reacts with the silane coupling agent, which may inhibit the graft reaction between the polyethylene resin and the silane coupling agent. is there. Further, when moisture and a silane coupling agent react to produce a gel-like substance, it appears on the surface of the resin film formed from the composition, which may deteriorate the appearance of the insulator. Further, when the silane coupling agent reacts with moisture, there is a possibility that insufficient crosslinking occurs and the heat resistance is lowered. On the other hand, by synthesizing a silane-modified polyethylene resin in advance and mixing with an inorganic flame retardant containing moisture later, the silane-modified polyethylene resin can be silane-crosslinked with a high degree of crosslinking.

上記シランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン等のビニルアルコキシシランやノルマルへキシルトリメトキシシラン、ビニルアセトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン等を例示することができる。これらは、1種又は2種以上併用しても良い。   Examples of the silane coupling agent include vinyl alkoxysilanes such as vinyltrimethoxysilane, vinyltriethoxysilane, and vinyltributoxysilane, normal hexyltrimethoxysilane, vinylacetoxysilane, γ-methacryloxypropyltrimethoxysilane, Examples thereof include γ-methacryloxypropylmethyldimethoxysilane. These may be used alone or in combination of two or more.

上記ラジカル発生剤としては、ジクミルパーオキサイド(DCP)、ベンゾイルパーオキサイド、ジクロルベンゾイルパーオキサイド、ジ−tert−ブチルパーオキサイド、ブチルパーアセテート、tert−ブチルパーベンゾエート、2,5−ジメチル2,5−ジ(tert−ブチルパーオキシ)ヘキサン等を例示することができる。より好ましくは、ジクミルパーオキサイド(DCP)である。   Examples of the radical generator include dicumyl peroxide (DCP), benzoyl peroxide, dichlorobenzoyl peroxide, di-tert-butyl peroxide, butyl peracetate, tert-butyl perbenzoate, 2,5-dimethyl-2, Examples thereof include 5-di (tert-butylperoxy) hexane. More preferred is dicumyl peroxide (DCP).

以下、難燃性樹脂の製造方法について説明する。難燃性樹脂は、混練機を用いて上記の難燃性組成物の各成分を混練し、所定の樹脂形状に成形し、この成形体の水架橋を行うことで、難燃性樹脂が得られる。難燃性樹脂の製造方法は、下記の方法が好ましい。予め上記の難燃性組成物を、ポリエチレン系樹脂にシランカップリング剤をグラフト重合させたシラン変性ポリエチレン系樹脂を含有するA成分と、ポリエチレン系樹脂に、水酸化マグネシウム又は/及び水酸化アルミニウムと、融点150℃以上のトリアジン系化合物と、フェノール系酸化防止剤と、ベンズイミダゾール系化合物と、酸化亜鉛と、銅害防止剤を配合して分散してなるB成分と、ポリエチレン系樹脂に、シラン架橋触媒を配合して分散してなるC成分に分けて混練し、所定の形状に成形した後、水架橋を行い、シラン架橋させる。上記A成分〜C成分は、成形直前にこれらを加熱溶融して混練するのが好ましい。   Hereinafter, the manufacturing method of a flame-retardant resin is demonstrated. The flame retardant resin is obtained by kneading each component of the above flame retardant composition using a kneader, forming the resin into a predetermined resin shape, and water-crosslinking the molded product. It is done. The following method is preferable as the method for producing the flame retardant resin. A flame retardant composition in advance, a component A containing a silane-modified polyethylene resin obtained by graft polymerization of a silane coupling agent to a polyethylene resin, and a magnesium resin or / and aluminum hydroxide to a polyethylene resin. A B component formed by mixing and dispersing a triazine compound having a melting point of 150 ° C. or higher, a phenolic antioxidant, a benzimidazole compound, zinc oxide, and a copper damage inhibitor, and a polyethylene resin, The components are mixed and dispersed into a C component formed by dispersing and crosslinking a crosslinking catalyst, and after forming into a predetermined shape, water crosslinking is performed to perform silane crosslinking. The components A to C are preferably heated and melted and kneaded immediately before molding.

上記の混練機としては、バンバリミキサー、加圧ニーダー、混練押出機、二軸押出機、ロール等が挙げられる。またシラン架橋は、水あるいは水蒸気等による水架橋を用いることができる。   Examples of the kneader include a Banbury mixer, a pressure kneader, a kneading extruder, a twin screw extruder, and a roll. For silane crosslinking, water crosslinking with water or steam can be used.

上記の製造方法では、シラン変性ポリエチレン系樹脂と無機系難燃剤は、A成分とB成分として別々に混練されるので、無機系難燃剤中の水分がシランカップリング剤と直接反応することが避けられる。シラン変性ポリエチレン系樹脂を調製する際、ポリエチレン系樹脂とシランカップリング剤のグラフト反応が阻害されずゲル状物質が発生する虞がない。そのため難燃性組成物から形成される難燃樹脂の成形品の外観が悪化したり、架橋不足が発生して、耐熱性が低下したりすることがない。   In the above production method, since the silane-modified polyethylene resin and the inorganic flame retardant are separately kneaded as the A component and the B component, it is avoided that the moisture in the inorganic flame retardant reacts directly with the silane coupling agent. It is done. When preparing a silane-modified polyethylene-based resin, the graft reaction between the polyethylene-based resin and the silane coupling agent is not inhibited, and there is no possibility of generating a gel substance. Therefore, the appearance of the molded product of the flame retardant resin formed from the flame retardant composition is not deteriorated, and lack of crosslinking does not occur, so that the heat resistance is not lowered.

本発明の難燃性組成物は、自動車、電子・電気機器に使用される部材や絶縁材料に利用することができ、特に絶縁電線の絶縁層の形成材料(被覆材)として好適に用いられる。   The flame retardant composition of the present invention can be used for members and insulating materials used in automobiles, electronic / electrical equipment, and is particularly preferably used as a material for forming an insulating layer (covering material) of an insulated wire.

難燃性組成物から得られる難燃性樹脂を絶縁電線の被覆材として用いる場合、銅、銅合金、アルミニウム、アルミニウム合金等よりなる導体の外周に上記各成分の混練物を押出成形した後、シラン架橋(水架橋)することで、架橋した難燃性樹脂からなる絶縁体(被覆材)を形成することができる。   When using a flame retardant resin obtained from a flame retardant composition as a covering material for insulated wires, after extruding a kneaded product of the above components on the outer periphery of a conductor made of copper, copper alloy, aluminum, aluminum alloy, etc. By performing silane crosslinking (water crosslinking), an insulator (covering material) made of a crosslinked flame-retardant resin can be formed.

本発明に係る絶縁電線は、上記の難燃性組成物から形成された絶縁体により導体の外周が被覆されているものである。上記導体は、その導体径や導体の材質等は特に限定されるものではなく、絶縁電線の用途等に応じて適宜選択することができる。また難燃性組成物からなる絶縁体の被覆層は、単層であっても、2層以上の複数層であってもいずれでも良い。また絶縁体の被覆層の厚さについても特に制限はなく、導体径等を考慮して適宜定めることができる。   The insulated wire according to the present invention is one in which the outer periphery of a conductor is covered with an insulator formed from the flame retardant composition. The conductor diameter and material of the conductor are not particularly limited, and can be appropriately selected according to the use of the insulated wire. Further, the insulating coating layer made of the flame retardant composition may be a single layer or a plurality of layers of two or more layers. The thickness of the insulating coating layer is not particularly limited, and can be appropriately determined in consideration of the conductor diameter and the like.

以下、本発明の実施例、比較例を示す。
〔供試材料及び調製方法〕
本実施例及び比較例において使用した各成分の供試材料及び調製方法を示す。
Examples of the present invention and comparative examples are shown below.
[Test materials and preparation methods]
The test materials and preparation methods of the respective components used in the examples and comparative examples are shown.

[A成分]シラン変性したポリエチレン(シラン変性ポリエチレン系樹脂)

・ポリエチレン[デュポン ダウ エラストマージャパン社製、商品名「エンゲージ 8003」、密度0.885g/cm
・シランカップリング剤(ビニル系)[東レダウコーニング社製、商品名「SZ6300」]
・ジクミルパーオキサイド(DCP)[日本油脂社製、商品名「パークミルD」]
[Component A] Silane-modified polyethylene (Silane-modified polyethylene resin)

・ Polyethylene [manufactured by DuPont Dow Elastomer Japan, trade name “engage 8003”, density 0.885 g / cm 3 ]
・ Silane coupling agent (vinyl) [made by Toray Dow Corning Co., Ltd., trade name “SZ6300”]
・ Dicumyl peroxide (DCP) [manufactured by NOF Corporation, trade name “Park Mill D”]

〔A成分(シラングラフトバッチ)の調製〕
ポリエチレン65質量部と、シランカップリング剤0.33質量部と、DCP0.07質量部とを2軸押出混練機に加え200℃で0.1〜2分間加熱混練した後、ペレット化して、シラン変性したポリエチレンを調製した。
[Preparation of component A (silane graft batch)]
65 parts by weight of polyethylene, 0.33 parts by weight of a silane coupling agent, and 0.07 parts by weight of DCP are added to a biaxial extrusion kneader and heated and kneaded at 200 ° C. for 0.1 to 2 minutes. Modified polyethylene was prepared.

[B成分]
・ポリエチレン[デュポン ダウ エラストマージャパン社製、商品名「エンゲージ 8003」、密度0.885g/cm
・水酸化マグネシウム[協和化学社製、商品名「キスマ5」]
・融点が150℃以上のトリアジン系化合物:1,3,5−トリス(3,5−ジ−tert−ブチル−4ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)トリオン[BASF社製、商品名「イルガノックス3114」、融点226℃]
・フェノール系酸化防止剤(1)[BASF社製、商品名「イルガノックス1010」]
・フェノール系酸化防止剤(2)[アデカ社製、商品名「AO80」]
・フェノール系酸化防止剤(3)[BASF社製、商品名「イルガノックス1330」]
・ベンズイミダゾール系化合物[大内新興化学社製、商品名「ノクラックMB」]
・酸化亜鉛[ハクスイテック社製、商品名「酸化亜鉛1種」]
・銅害防止剤[アデカ社製、商品名「CD−1」]
[B component]
・ Polyethylene [manufactured by DuPont Dow Elastomer Japan, trade name “engage 8003”, density 0.885 g / cm 3 ]
・ Magnesium hydroxide [Kyowa Chemical Co., Ltd., trade name “Kisuma 5”]
Triazine compound having a melting point of 150 ° C. or higher: 1,3,5-tris (3,5-di-tert-butyl-4hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) Trione [BASF, trade name “Irganox 3114”, melting point 226 ° C.]
・ Phenolic antioxidant (1) [trade name “Irganox 1010” manufactured by BASF Corporation]
・ Phenolic antioxidant (2) [Adeka's product name “AO80”]
・ Phenolic antioxidant (3) [trade name “Irganox 1330” manufactured by BASF Corporation]
・ Benzimidazole compounds [made by Ouchi Shinsei Chemical Co., Ltd., trade name “NOCRACK MB”]
・ Zinc oxide [manufactured by Hakusuitec Co., Ltd., trade name "Zinc oxide 1 type"]
・ Copper damage prevention agent [manufactured by Adeka, trade name “CD-1”]

〔B成分(難燃剤バッチ)の調製〕
表1〜2に示す配合質量比で、B成分の各成分を2軸押出混練機に加え、200℃で0.1〜2分間加熱混練した後、ペレット化して、難燃剤バッチを調製した。
[Preparation of component B (flame retardant batch)]
Each component of component B was added to a biaxial extrusion kneader at the blending mass ratio shown in Tables 1-2, and after heat-kneading at 200 ° C. for 0.1-2 minutes, pelletized to prepare a flame retardant batch.

[C成分]
・ポリエチレン[デュポン ダウ エラストマージャパン社製、商品名「エンゲージ 8003」、密度0.885g/cm
・シラン架橋触媒(ジブチル錫ジラウレート)[和光純薬社製、試薬]
[C component]
・ Polyethylene [manufactured by DuPont Dow Elastomer Japan, trade name “engage 8003”, density 0.885 g / cm 3 ]
・ Silane cross-linking catalyst (dibutyltin dilaurate) [Wako Pure Chemical Industries, reagent]

〔C成分(触媒バッチ)の調製〕
表1〜2に示す配合質量比でポリエチレンとシラン架橋触媒を2軸押出混練機に加え、200℃で0.1〜2分間加熱混練した後、ペレット化して、触媒バッチを調製した。
[Preparation of component C (catalyst batch)]
Polyethylene and the silane cross-linking catalyst were added to a biaxial extrusion kneader at the blending mass ratio shown in Tables 1 and 2, and kneaded at 200 ° C. for 0.1 to 2 minutes, and then pelletized to prepare a catalyst batch.

〔絶縁電線の作製〕
上記シラングラフトバッチと、上記難燃剤バッチと、上記触媒バッチとを押出機のホッパーで混合して押出機の温度を約180〜200℃に設定して、押出加工を行った。外径2.4mmの導体上に厚さ0.7mmの絶縁体として押出被覆した(被覆外径3.8mm)。その後、60℃、90%湿度の高湿高温槽で24時間水架橋処理を施して絶縁電線を作製した。
[Production of insulated wires]
The silane graft batch, the flame retardant batch, and the catalyst batch were mixed with a hopper of an extruder and the temperature of the extruder was set to about 180 to 200 ° C. to perform extrusion. Extrusion coating was performed on a conductor having an outer diameter of 2.4 mm as an insulator having a thickness of 0.7 mm (coating outer diameter: 3.8 mm). Then, the water-crosslinking process was performed for 24 hours in the high-humidity high temperature tank of 60 degreeC and 90% humidity, and the insulated wire was produced.

得られた絶縁電線について、下記方法に従って難燃性、耐熱性、機械特性、剥離性の評価を行った。その結果を表1〜2に合わせて示す。   About the obtained insulated wire, the flame retardance, heat resistance, mechanical characteristics, and peelability were evaluated according to the following method. The results are shown in Tables 1-2.

〔難燃性〕
JASO D608−92に従い、300mmの試料を用意し、水平燃焼試験を実施した。口径10mmのブンゼンバーナーを用いて還元炎の先端を試料中央部の下側から10秒間当て、炎を静かに取り去った後の残炎時間を測定した。炎がすぐに消えるものを良好「◎」、この残炎時間が30秒以内のものを合格「○」、残炎時間が30秒を超えるものを不合格「×」とした。
〔Flame retardance〕
According to JASO D608-92, a 300 mm sample was prepared and a horizontal combustion test was performed. Using a Bunsen burner with a diameter of 10 mm, the tip of the reducing flame was applied for 10 seconds from the lower side of the center of the sample, and the afterflame time after gently removing the flame was measured. The case where the flame disappeared immediately was judged as “good”, the case where the afterflame time was within 30 seconds was judged as “good”, and the case where the afterflame time was over 30 seconds was judged as “failed”.

〔耐熱性)
150mm以上の試料を用意し、180℃の恒温槽に504時間投入し、その後、室温で電線径の1.5倍の直径のマンドレルに巻付けて絶縁体のヒビ割れ有無を観察した。なお180℃の恒温槽に504時間投入することは、アレニウスプロットの外挿にてISO6722の150℃3000時間の長期耐熱評価に相当することが判っている。試験の結果、変色が少なくヒビ割れのないものを良好「◎」、ヒビ割れが無かったものを合格「○」、ヒビ割れが有ったものを不合格「×」とした。
〔Heat-resistant)
A sample of 150 mm or more was prepared, placed in a constant temperature bath at 180 ° C. for 504 hours, and then wound around a mandrel having a diameter 1.5 times the wire diameter at room temperature to observe the presence or absence of cracks in the insulator. In addition, it has been found that putting in a constant temperature bath at 180 ° C. for 504 hours corresponds to the long-term heat resistance evaluation at 150 ° C. for 3000 hours according to ISO 6722 by extrapolation of the Arrhenius plot. As a result of the test, a sample with little discoloration and no cracks was evaluated as “good”, a sample without cracks was evaluated as “good”, and a sample with cracks was determined as “failed”.

〔機械特性の評価〕
JIS C 3005の引張試験に準拠して、引張試験及び引張伸びを測定した。すなわち絶縁電線を150mmの長さに切り出し、導体を取り除いて絶縁被覆材のみの管状試験片とした後、23℃±5℃の室温下にて、試験片の両端を引張試験機チャックに取り付けた後、引張速度200mm/分で引っ張り、試験片の破断時の荷重及び伸びを測定した。引張強度11MPa以上かつ伸び200%以上のものを良好「◎」、引張強度10MPa以上かつ伸び150%以上のものを合格「○」、引張強度10MPa未満あるいは伸び150%未満のものを不合格「×」とした。
[Evaluation of mechanical properties]
Based on the tensile test of JIS C 3005, the tensile test and the tensile elongation were measured. That is, the insulated wire was cut to a length of 150 mm, the conductor was removed to obtain a tubular test piece made of only an insulating coating material, and both ends of the test piece were attached to a tensile tester chuck at room temperature of 23 ° C. ± 5 ° C. Thereafter, the test piece was pulled at a pulling rate of 200 mm / min, and the load and elongation at break of the test piece were measured. Good when the tensile strength is 11 MPa or more and elongation is 200% or more, “Good”, when the tensile strength is 10 MPa or more and 150% or more is passed, “Good”, and when the tensile strength is less than 10 MPa or less than 150%, "

〔剥離性の評価〕
100mmの電線2本をテープで巻付けたものを、150℃×24時間の条件下に放置した後、テープを取り去り2本の電線を剥がした。すぐに剥がれ接着跡がほとんどついていないものを良好「◎」、剥がれるが接着跡がまばらについているものを合格「○」、剥がれにくく接着跡が全面的についているものを不合格「×」とした。
[Evaluation of peelability]
A tape of two 100 mm wires wound with tape was left under conditions of 150 ° C. × 24 hours, and then the tape was removed and the two wires were peeled off. A sample that immediately peeled off and had almost no adhesion marks was rated as “Excellent”, a sample that peeled off but had a sparse adhesion mark was evaluated as “Good”, and a sample that was difficult to peel off and had an adhesion track all over was rated as “Fail”.

Figure 0005776389
Figure 0005776389

Figure 0005776389
Figure 0005776389

表1に示すように実施例1〜10に係る絶縁電線は、いずれもシラン変性ポリエチレン系樹脂、ポリエチレン系樹脂、無機系難燃剤、融点が150℃以上のトリアジン系化合物、ベンズイミダゾール系化合物、酸化亜鉛、銅害防止剤を所定の範囲内で含有するものであるから、難燃性、耐熱性、機械特性、剥離性の全ての特性について良好又は合格という結果が得られた。   As shown in Table 1, the insulated wires according to Examples 1 to 10 are all silane-modified polyethylene resin, polyethylene resin, inorganic flame retardant, triazine compound having a melting point of 150 ° C. or higher, benzimidazole compound, oxidation Since zinc and a copper damage inhibitor are contained within a predetermined range, the results of good or pass were obtained for all the properties of flame retardancy, heat resistance, mechanical properties, and peelability.

これに対し表2に示すように、比較例1〜7の絶縁電線は、本願発明の構成を備えるものではないので、難燃性、耐熱性、機械特性、剥離性の全ての特性について良好又は合格という結果が得られなかった。すなわち比較例1は、融点が150℃以上のトリアジン系化合物を含有するものではないから、剥離性が不合格であった。比較例2は、ベンズイミダゾール系化合物を含有するものではないから、耐熱性が不合格であった。比較例3は酸化亜鉛を含有するものではないから、耐熱性が不合格であった。比較例4は銅害防止剤を含有するものではないから、耐熱性が不合格であった。比較例5は水酸化マグネシウムを含有するものではないから、難燃性及び耐熱性が不合格であった。比較例3はポリマー成分中のシラン変性ポリエチレンの含有量が少ないので、耐熱性が不合格であった。   On the other hand, as shown in Table 2, since the insulated wires of Comparative Examples 1 to 7 do not have the configuration of the present invention, all the properties of flame retardancy, heat resistance, mechanical properties, and peelability are good or The result of passing was not obtained. That is, since Comparative Example 1 did not contain a triazine compound having a melting point of 150 ° C. or higher, the peelability was unacceptable. Since Comparative Example 2 did not contain a benzimidazole compound, the heat resistance was unacceptable. Since Comparative Example 3 did not contain zinc oxide, the heat resistance was unacceptable. Since Comparative Example 4 did not contain a copper damage inhibitor, the heat resistance was unacceptable. Since Comparative Example 5 did not contain magnesium hydroxide, the flame retardancy and heat resistance were unacceptable. Since the comparative example 3 had little content of the silane modified polyethylene in a polymer component, heat resistance was disqualified.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

Claims (5)

シラン変性ポリエチレン系樹脂40〜80質量部と、ポリエチレン系樹脂20〜60質量部を含有するポリマー成分100質量部に対し、
水酸化マグネシウム又は及び水酸化アルミニウム30〜200質量部、融点150℃以上のトリアジン系化合物0.5〜5質量部、ベンズイミダゾール系化合物1〜10質量部、酸化亜鉛1〜10質量部、銅害防止剤0.1〜5質量部含有し、
前記トリアジン系化合物が、1,3,5−トリス(3,5−ジ−tert−ブチル−4ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)トリオン、又は1,3,5−トリス[(4−tert−ブチル−3−ヒドロキシ−2,6−キシリル)メチル]−1,3,5−トリアジン−2,4,6(1H,3H,5H)トリオンであり、
前記ベンズイミダゾール系化合物が、メルカプトベンズイミダゾール系化合物であることを特徴とする難燃性組成物。
For 100 parts by mass of the polymer component containing 40-80 parts by mass of the silane-modified polyethylene resin and 20-60 parts by mass of the polyethylene resin,
Magnesium hydroxide and / or aluminum hydroxide 30-200 parts by mass, melting point 150 ° C. or higher triazine compound 0.5-5 parts by mass, benzimidazole compound 1-10 parts by mass, zinc oxide 1-10 parts by mass, copper Containing 0.1 to 5 parts by mass of a harmful agent ,
The triazine compound is 1,3,5-tris (3,5-di-tert-butyl-4hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) trione Or 1,3,5-tris [(4-tert-butyl-3-hydroxy-2,6-xylyl) methyl] -1,3,5-triazine-2,4,6 (1H, 3H, 5H) Trion,
The flame retardant composition, wherein the benzimidazole compound is a mercaptobenzimidazole compound .
上記ポリマー成分100質量部に対し、更にフェノール系酸化防止剤1〜10質量部含有することを特徴とする請求項1記載の難燃性組成物。   The flame retardant composition according to claim 1, further comprising 1 to 10 parts by mass of a phenolic antioxidant based on 100 parts by mass of the polymer component. 請求項1に記載の難燃性組成物を用いて難燃性樹脂を製造する方法であり、
ポリエチレン系樹脂にシランカップリング剤をグラフト重合させたシラン変性ポリエチレン系樹脂を含有するA成分と、
ポリエチレン系樹脂に、水酸化マグネシウム又は及び水酸化アルミニウムと、融点150℃以上のトリアジン系化合物と、ベンズイミダゾール系化合物と、酸化亜鉛と、銅害防止剤を配合してなるB成分と、
ポリエチレン系樹脂に、シラン架橋触媒を配合してなるC成分と、
を混練し成形した後、水架橋を行うことを特徴とする難燃性樹脂の製造方法。
A method for producing a flame retardant resin using the flame retardant composition according to claim 1,
A component containing a silane-modified polyethylene resin obtained by graft polymerization of a silane coupling agent to a polyethylene resin;
B component formed by blending magnesium hydroxide or / and aluminum hydroxide, a triazine compound having a melting point of 150 ° C. or higher, a benzimidazole compound, zinc oxide, and a copper damage inhibitor in a polyethylene resin,
A C component obtained by blending a polyethylene-based resin with a silane crosslinking catalyst;
A method for producing a flame retardant resin, characterized in that water crosslinking is performed after kneading and molding.
上記B成分が、更にフェノール系酸化防止剤を配合してなるものであることを特徴とする請求項3記載の難燃性樹脂の製造方法。   The method for producing a flame-retardant resin according to claim 3, wherein the component B is further blended with a phenolic antioxidant. 請求項1又は2に記載の難燃性組成物から形成された絶縁体により、導体の外周が被覆されていることを特徴とする絶縁電線。   An insulated wire, wherein the outer periphery of the conductor is covered with an insulator formed from the flame retardant composition according to claim 1.
JP2011154405A 2011-07-13 2011-07-13 Flame retardant composition having peelability and heat resistance, method for producing flame retardant resin, and insulated wire Expired - Fee Related JP5776389B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011154405A JP5776389B2 (en) 2011-07-13 2011-07-13 Flame retardant composition having peelability and heat resistance, method for producing flame retardant resin, and insulated wire
PCT/JP2012/065326 WO2013008582A1 (en) 2011-07-13 2012-06-15 Releasable and heat-resistant flame retardant composition, method for manufacturing flame retardant resin and insulated electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011154405A JP5776389B2 (en) 2011-07-13 2011-07-13 Flame retardant composition having peelability and heat resistance, method for producing flame retardant resin, and insulated wire

Publications (2)

Publication Number Publication Date
JP2013018896A JP2013018896A (en) 2013-01-31
JP5776389B2 true JP5776389B2 (en) 2015-09-09

Family

ID=47505880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011154405A Expired - Fee Related JP5776389B2 (en) 2011-07-13 2011-07-13 Flame retardant composition having peelability and heat resistance, method for producing flame retardant resin, and insulated wire

Country Status (2)

Country Link
JP (1) JP5776389B2 (en)
WO (1) WO2013008582A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107868315A (en) * 2017-10-19 2018-04-03 合肥朗胜新材料有限公司 A kind of fire-retardant PE materials and preparation method thereof
CN111462949B (en) * 2020-04-10 2021-08-20 湖南幸福星环保科技有限公司 Communication cable

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253527A (en) * 1994-03-15 1995-10-03 Furukawa Electric Co Ltd:The Heat-resistant plastic optical fiber cable
JP4709530B2 (en) * 2004-11-04 2011-06-22 リケンテクノス株式会社 Flame retardant resin composition
JP5560541B2 (en) * 2008-06-27 2014-07-30 株式会社オートネットワーク技術研究所 Flame retardant composition, covered electric wire and wire harness
JP5444737B2 (en) * 2009-01-30 2014-03-19 株式会社オートネットワーク技術研究所 Flame retardant composition, insulated wire, and method for producing flame retardant composition
JP2011119083A (en) * 2009-12-02 2011-06-16 Autonetworks Technologies Ltd Composition for wire coating material, insulated wire, and wire harness
JP5655595B2 (en) * 2011-01-31 2015-01-21 株式会社オートネットワーク技術研究所 Flame-retardant composition having peelability, method for producing flame-retardant resin, and insulated wire

Also Published As

Publication number Publication date
WO2013008582A1 (en) 2013-01-17
JP2013018896A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5444737B2 (en) Flame retardant composition, insulated wire, and method for producing flame retardant composition
JP5593730B2 (en) Wire covering material composition, insulated wire and wire harness
JP5343327B2 (en) Method for producing flame retardant silane-crosslinked olefin resin, insulated wire and method for producing insulated wire
US9951242B1 (en) Electric wire coating material composition, insulated electric wire, and wire harness
JP5703789B2 (en) Wire covering material composition, insulated wire and wire harness
JP2011119083A (en) Composition for wire coating material, insulated wire, and wire harness
JP6284673B1 (en) RESIN COMPOSITION, RESIN COATING MATERIAL, AUTOMATIC WIRE HARNESS, AND AUTOMATIC WIRE HARNESS MANUFACTURING METHOD
JP5845517B2 (en) Flame retardant composition and insulated wire
JP5103061B2 (en) Flame-retardant silane-crosslinked polyolefin resin composition and insulated wire
JP5418449B2 (en) Flame-retardant composition having peelability, method for producing flame-retardant resin, and insulated wire
JP2016050288A (en) Composition for wire covering material, insulated wire and wire harness
WO2016084613A1 (en) Insulated wire
JP5776389B2 (en) Flame retardant composition having peelability and heat resistance, method for producing flame retardant resin, and insulated wire
JP5655595B2 (en) Flame-retardant composition having peelability, method for producing flame-retardant resin, and insulated wire
JP6052042B2 (en) Silane crosslinkable flame retardant composition, insulated wire and method for producing the same
JP2015193689A (en) Flame-retardant composition and insulated wire using the same
JP2021155590A (en) Crosslinked fluororubber composition, wiring material using the same, method for manufacturing the same, and catalyst composition for silane crosslinking
JP2021155589A (en) Crosslinked fluororubber composition, wiring material using the same, and method for manufacturing the same
JP2014214239A (en) Silane crosslinking fire-retardant composition, and insulated wire using the same
JP4968618B2 (en) Method for producing non-halogen flame retardant silane crosslinked insulated wire
JP7214677B2 (en) Crosslinked fluororubber composition, wiring material using the same, and method for producing the same
JP2005344060A (en) Flame-retardant composition having excellent heat resistance and withstand voltage characteristic and electric wire
JP4964412B2 (en) Non-halogen flame retardant composition and electric wire
WO2023089826A1 (en) Resin composition, resinous coating material, insulated electrical wire, automotive wire harness, and method for producing insulated electrical wire for use in automotive wire harness
CN116529300A (en) Resin composition, resin coating material, insulated wire, wire harness for automobile, and method for producing insulated wire for wire harness for automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5776389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees