JP5773719B2 - Method and apparatus for controlling load frequency of power system - Google Patents

Method and apparatus for controlling load frequency of power system Download PDF

Info

Publication number
JP5773719B2
JP5773719B2 JP2011087654A JP2011087654A JP5773719B2 JP 5773719 B2 JP5773719 B2 JP 5773719B2 JP 2011087654 A JP2011087654 A JP 2011087654A JP 2011087654 A JP2011087654 A JP 2011087654A JP 5773719 B2 JP5773719 B2 JP 5773719B2
Authority
JP
Japan
Prior art keywords
lfc
εlfc
secondary battery
hereinafter referred
normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011087654A
Other languages
Japanese (ja)
Other versions
JP2012222994A (en
Inventor
洋之 名古屋
洋之 名古屋
慎太郎 駒見
慎太郎 駒見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Power Co
Original Assignee
Hokuriku Electric Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Power Co filed Critical Hokuriku Electric Power Co
Priority to JP2011087654A priority Critical patent/JP5773719B2/en
Publication of JP2012222994A publication Critical patent/JP2012222994A/en
Application granted granted Critical
Publication of JP5773719B2 publication Critical patent/JP5773719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、二次電池を含む電力系統の負荷周波数制御方法及び装置に関する。   The present invention relates to a load frequency control method and apparatus for an electric power system including a secondary battery.

近年、地球温暖化防止を目的としたCO2排出量の抑制が社会全体に求められており、電気事業においては再生可能エネルギー(以下、本明細書において「RE」という。)の電力系統への大量導入が現実に想定されている。REのうち風力発電や太陽光発電(以下、本明細書において「PV」という。)は、出力が気象条件によって変動するため、周波数調整においては負荷周波数制御(以下、本明細書において「LFC」という。)の調整力が不足することが懸念されている。 In recent years, suppression of CO 2 emissions for the purpose of preventing global warming has been demanded by society as a whole, and in the electric power business, renewable energy (hereinafter referred to as “RE” in this specification) is transferred to the power system. Mass introduction is assumed in reality. Among REs, wind power generation and solar power generation (hereinafter referred to as “PV” in the present specification) output varies depending on weather conditions, and therefore load frequency control (hereinafter referred to as “LFC” in the present specification) in frequency adjustment. There is concern about the lack of adjustment.

また、CO2排出量を削減するには、火力発電の出力を抑制することが望ましいが、火力発電は電力系統のLFCにおいて重量な役割を担っている。現状の負荷周波数制御方法が図5には示されており、これに基づいて、需要電力Pdem、電力系統の電源出力(固定電源の出力Pfix、可変電源の出力Pvar)、可変電源によるLFCの制御残量εLFC、及び連系線潮流出力Ptieの関係を説明すると、以下の通りである。
Pdemに対してPfixとPvarとの合計値を減算した差分が、εLFC(=Ptie)となる。そして、制御量としてのεLFCに基づいて可変電源によるLFC用の制御部がPvarを決定し、その決定されたPvarを電力系統に出力する処理が繰り返される。
つまり、数式で表せば、Ptie=Pdem−Pfix−Pvarとなる。
なお、固定電源とは、LFC機能のない発電設備と、他系統との電力融通を含むものである。LFC機能のない発電設備とは、主に原子力発電機を意味するが、出力調整機能のない水力発電機(自流式水力)、RE等も含まれる。
また、可変電源とは、LFC機能のある発電設備であり、通常、火力発電機、水力発電機(出力調整機能のある調整池式、貯水池式等)を意味する。本願において、水力発電機という場合には、特に断りがない限り、可変電源を意味する。更に、上述した可変電源を通常可変電源といい、通常可変電源によるLFCを通常LFCという。
In order to reduce CO 2 emissions, it is desirable to suppress the output of thermal power generation, but thermal power generation plays a significant role in the LFC of the power system. The current load frequency control method is shown in FIG. 5. Based on this, the demand power Pdem, the power supply output of the power system (fixed power supply output Pfix, variable power supply output Pvar), and control of the LFC by the variable power supply are shown. The relationship between the remaining amount εLFC and the interconnection power flow output Ptie will be described as follows.
The difference obtained by subtracting the total value of Pfix and Pvar from Pdem is εLFC (= Ptie). Then, the control unit for LFC by the variable power source determines Pvar based on εLFC as the control amount, and the process of outputting the determined Pvar to the power system is repeated.
That is, when expressed by a mathematical formula, Ptie = Pdem−Pfix−Pvar.
The fixed power source includes power generation facilities having no LFC function and power interchange between other systems. A power generation facility without an LFC function mainly means a nuclear power generator, but also includes a hydroelectric generator (self-flowing hydropower) without an output adjustment function, an RE, and the like.
The variable power source is a power generation facility having an LFC function, and usually means a thermal power generator or a hydroelectric power generator (regulated pond type, reservoir type or the like having an output adjusting function). In the present application, a hydroelectric generator means a variable power source unless otherwise specified. Further, the variable power source described above is referred to as a normal variable power source, and an LFC using the normal variable power source is referred to as a normal LFC.

他方、需給調整においては、軽負荷期のREの余剰電力の発生が懸念されており、対策として蓄電池に代表される二次電池の設置が必要とされている。   On the other hand, in the supply and demand adjustment, there is concern about generation of surplus power in the light load period, and as a countermeasure, installation of a secondary battery represented by a storage battery is required.

そこで、二次電池によるLFC(二次電池LFC)を行い、通常LFCと併用することが考えられている。つまり、二次電池と通常可変電源とを合わせたものを、可変電源とすることが考えられている。このような負荷周波数制御方法の一例が図6には示されている。先に述べた現状の負荷周波数制御方法との相違点は、制御量としてのεLFCを通常LFC用の制御部と二次電池LFC用の制御部に割り振り、これらの制御部の制御割合に応じたPvarを電力系統に出力している点である。   Therefore, it is considered to perform LFC using a secondary battery (secondary battery LFC) and use it together with normal LFC. That is, it is considered that a combination of the secondary battery and the normal variable power source is a variable power source. An example of such a load frequency control method is shown in FIG. The difference from the current load frequency control method described above is that εLFC as the control amount is allocated to the control unit for the normal LFC and the control unit for the secondary battery LFC, and according to the control ratio of these control units Pvar is output to the power system.

しかしながら、二次電池LFCは、インバータ制御によって放電時には二次電池に貯蔵した電力を出力し、充電時には二次電池に電力を貯蔵するものであるから、通常LFCに比べてはるかに応答性がよく、高速な出力変化が得られる。従って、通常LFCと二次電池LFCを併用した場合、二次電池LFCがLFCの多くを行うことになる。その結果、二次電池の充放電が頻繁に行われ、二次電池の製品寿命を縮めることになる。   However, the secondary battery LFC outputs power stored in the secondary battery at the time of discharging by inverter control, and stores power in the secondary battery at the time of charging. Therefore, the secondary battery LFC is much more responsive than the normal LFC. Fast output change can be obtained. Therefore, when the normal LFC and the secondary battery LFC are used in combination, the secondary battery LFC performs most of the LFC. As a result, the secondary battery is frequently charged and discharged, and the product life of the secondary battery is shortened.

本発明は、上記実情を考慮したもので、LFCに通常LFCと二次電池LFCを併用しながらも、二次電池の負担を軽減することを目的とする。   The present invention has been made in consideration of the above circumstances, and an object of the present invention is to reduce the burden on the secondary battery while using both the normal LFC and the secondary battery LFC in combination with the LFC.

請求項1の発明は、火力発電機水力発電機の少なくとも一方を含む通常可変電源による負荷周波数制御(以下、「通常LFC」という。)と、二次電池による負荷周波数制御(以下、「二次電池LFC」という。)とを併用して行う電力系統の負荷周波数制御方法において、需用電力(以下、「Pdem」という。)に対して、固定電源の出力(以下、「Pfix」という。)、並びに通常可変電源の出力(以下、「Pvar」という。)を減算した値を、通常LFCの制御残量(以下、「εLFC」という。)とし、εLFCに対して、二次電池の出力(以下、「Pbatt」という。)を減算した値を連系線潮流出力(以下、「Ptie」という。)とし、εLFCが閾値の範囲内である場合にはεLFCに基づいて通常LFCを単独で行い、εLFCが閾値の範囲外である場合には、Ptieを二次電池LFCの制御残量とし、Ptieに基づいて二次電池LFCを行うと共に、PtieとPbattとの合計値に等しいεLFCに基づいて通常LFCを行い、εLFCが閾値の範囲内及び範囲外の何れの場合にも、次の計算式、εLFC=Ptie+Pbatt=Pdem−Pfix−Pvarを成立させることを特徴とする。 According to the first aspect of the present invention, load frequency control (hereinafter referred to as “normal LFC”) using a normal variable power source including at least one of a thermal power generator and a hydraulic power generator, and load frequency control (hereinafter referred to as “two” In the power system load frequency control method performed in combination with the secondary battery LFC ) , the output of the fixed power source (hereinafter referred to as “Pfix” ) with respect to the demand power (hereinafter referred to as “Pdem”) . ) , And the value obtained by subtracting the output of the normal variable power source (hereinafter referred to as “Pvar”) as the normal LFC control remaining amount (hereinafter referred to as “εLFC”), and the output of the secondary battery relative to εLFC . The value obtained by subtracting (hereinafter referred to as “Pbatt”) is the interconnected power flow output (hereinafter referred to as “Ptie”), and when the εLFC is within the threshold range, the normal LFC is independently based on the εLFC. ΕLFC is outside the threshold range In this case, Ptie is set as the remaining control amount of the secondary battery LFC, the secondary battery LFC is performed based on Ptie, and the normal LFC is performed based on εLFC equal to the total value of Ptie and Pbatt. It is characterized in that the following formula, εLFC = Ptie + Pbatt = Pdem−Pfix−Pvar, is established in both cases within and outside the threshold range .

上記した請求項1の電力系統の負荷周波数制御方法に対応する装置が、請求項に記載されている。請求項の発明は、火力発電機水力発電機の少なくとも一方を含む通常可変電源による負荷周波数制御(以下、「通常LFC」という。)を行う通常可変電源の制御部と、二次電池による負荷周波数制御(以下、「二次電池LFC」という。)を行う二次電池の制御部と、指令所の制御部と、電力を計測する系統内の計測部とを備える電力系統の負荷周波数制御装置において、系統内の計測部は、需用電力(以下、「Pdem」という。)に対して、固定電源の出力(以下、「Pfix」という。)、並びに通常可変電源の出力(以下、「Pvar」という。)を減算した値を、通常LFCの制御残量(以下、「εLFC」という。)として求め、εLFCに対して、二次電池の出力(以下、「Pbatt」という。)を減算した値を連系線潮流出力(以下、「Ptie」という。)として求め、指令所の制御部は、通常LFCの制御残量(以下、「εLFC」という。)に対する閾値を設定してあると共に、εLFCが閾値の範囲内であるか否かを判定し、εLFCが閾値の範囲内である場合には通常可変電源の制御部がεLFCに基づいて通常LFCを単独で行い、εLFCが閾値の範囲外である場合には、系統内の計測部がεLFCに対してPbattを減算した値をPtieとして求めると共に二次電池LFCの制御残量とし、Ptieに基づいて二次電池の制御部が二次電池LFCを行い、PtiePbattとの合計値に等しいεLFCに基づいて通常可変電源の制御部が通常LFCを行い、εLFCが閾値の範囲内及び範囲外の何れの場合にも、次の計算式、εLFC=Ptie+Pbatt=Pdem−Pfix−Pvarを成立させることを特徴とする。 An apparatus corresponding to the load frequency control method for a power system according to claim 1 is described in claim 2 . The invention of claim 2 includes a control unit of a normal variable power source that performs load frequency control (hereinafter referred to as “normal LFC”) by a normal variable power source including at least one of a thermal power generator and a hydroelectric power generator , and a secondary battery. Load frequency control of a power system including a control unit of a secondary battery that performs load frequency control (hereinafter referred to as “secondary battery LFC”), a control unit of a command center, and a measurement unit in a system that measures power In the apparatus, a measurement unit in the system is configured to output a fixed power source (hereinafter referred to as “Pfix”) as well as a normal variable power source output (hereinafter referred to as “Pdem” ) for power demand (hereinafter referred to as “Pdem”) . The value obtained by subtracting “Pvar”) is obtained as the normal LFC control remaining amount (hereinafter referred to as “εLFC”) , and the output of the secondary battery (hereinafter referred to as “Pbatt”) is subtracted from εLFC. The connected power flow output (hereinafter referred to as “Ptie The control unit at the command center determines whether or not εLFC is within the threshold value range while setting a threshold for the normal LFC control remaining amount (hereinafter referred to as “εLFC”). When εLFC is within the threshold range, the control unit of the normal variable power supply performs normal LFC alone based on εLFC , and when εLFC is outside the threshold range , the measurement unit in the system The value obtained by subtracting Pbatt is obtained as Ptie , and the control remaining amount of the secondary battery LFC is obtained . Based on Ptie , the control unit of the secondary battery performs the secondary battery LFC, and is equal to the total value of Ptie and Pbatt. controller of the normal variable power have line normal LFC based on IpushironLFC, in any case outside the range and scope of IpushironLFC threshold, the following equation, to establish a εLFC = Ptie + Pbatt = Pdem- Pfix-pvar It is characterized by that.

本発明によれば、電力不足の初期段階では通常LFCが行われることになり、電力不足が閾値を越えた場合に始めて二次電池LFCが行われる。また、電力余剰の初期段階では通常LFCが行われることになり、電力余剰が閾値を超えた場合に始めて二次電池LFCによる充電が行われる。従っ、閾値を設けた分だけ、二次電池の負担が軽減される。 According to the present invention, the normal LFC is performed in the initial stage of power shortage, and the secondary battery LFC is performed only when the power shortage exceeds the threshold. Further, normal LFC is performed in the initial stage of power surplus, and charging by the secondary battery LFC is performed only when the power surplus exceeds a threshold value. Therefore, by the amount in which a threshold value, the burden of the rechargeable battery is reduced.

また、通常LFCの制御残量が閾値の範囲内であるか否かに関係なく、通常LFCの制御残量εLFCに基づいて通常LFCが行われることから、通常LFCでは対応できなかった速い需要電力の変動を、二次電池LFCによって対応することができる。   In addition, regardless of whether or not the control remaining amount of the normal LFC is within the threshold range, the normal LFC is performed based on the control remaining amount εLFC of the normal LFC. Can be accommodated by the secondary battery LFC.

電力系統を簡易化して示すブロック図である。It is a block diagram which simplifies and shows an electric power system. 電力系統の負荷周波数制御方法を示すブロック図である。It is a block diagram which shows the load frequency control method of an electric power grid | system. 図2の負荷周波数制御方法を実現するための具体的な一例を示すブロック図である。It is a block diagram which shows a specific example for implement | achieving the load frequency control method of FIG. 図3の具体的な例をシュミレーションにより検証した結果を示すグラフである。It is a graph which shows the result of having verified the specific example of FIG. 3 by simulation. 現状の負荷周波数制御方法を示すブロック図である。It is a block diagram which shows the present load frequency control method. 現状における二次電池を用いた負荷周波数制御方法を示すブロック図である。It is a block diagram which shows the load frequency control method using the secondary battery in the present condition.

図1には、電力系統が簡易化して示されている。電力系統は、固定電源10と可変電源20とによって作られた電力を、変電所50を経て負荷(需要家)60に供給するものである。可変電源20には、通常可変電源30と二次電池(蓄電池)40が用いられている。そして、電力系統で余剰分の電力は他の電力系統70に供給され、不足分の電力は他の電力系統70から供給されるようになっている。   FIG. 1 shows a simplified power system. The power system supplies power generated by the fixed power source 10 and the variable power source 20 to a load (customer) 60 via the substation 50. As the variable power source 20, a normal variable power source 30 and a secondary battery (storage battery) 40 are used. The surplus power in the power system is supplied to the other power system 70, and the insufficient power is supplied from the other power system 70.

また、電力系統には指令所80が設けられている。指令所80には主に経済負荷配分制御用の制御部(図示せず)と、負荷周波数制御用の制御部80cとが設けられている。指令所80に設けられた負荷周波数制御用の制御部80cを主として負荷周波数制御装置が、電力系統内に構築されている。そして、負荷周波数制御装置には通信回線で接続された以下の各種の制御部と計測部が設けられている。   A command station 80 is provided in the power system. The command station 80 is mainly provided with a control unit (not shown) for economic load distribution control and a control unit 80c for load frequency control. A load frequency control device, mainly a control unit 80c for load frequency control provided at the command station 80, is constructed in the power system. The load frequency control device is provided with the following various control units and measurement units connected by a communication line.

制御部としては、上述の指令所80の他、可変電源20(通常可変電源30と二次電池40)に負荷周波数用の制御部が設けられている。制御部の概要をまず述べると、指令所80の制御部80cには、二次電池40からの放電、充電、停止を制御するための閾値が設定されている。また、二次電池40の制御部40c(二次電池LFC用の制御部)は、通常LFCの制御残量εLFCが閾値の範囲内であるか否かによって、二次電池本体に対する充電、停止、放電を決定する。通常可変電源30の制御部30cは、閾値に関係なく、通常LFCの制御残量εLFCに基づいて通常可変電源本体を動作させる。   As the control unit, in addition to the above-described command station 80, a control unit for load frequency is provided in the variable power source 20 (normal variable power source 30 and secondary battery 40). The outline of the control unit will be described first. In the control unit 80c of the command station 80, a threshold value for controlling discharge, charging, and stopping from the secondary battery 40 is set. Further, the control unit 40c (control unit for the secondary battery LFC) of the secondary battery 40 charges, stops, or stops the secondary battery main body depending on whether or not the control remaining amount εLFC of the normal LFC is within the threshold range. Determine the discharge. The control unit 30c of the normal variable power supply 30 operates the normal variable power supply main body based on the control remaining amount εLFC of the normal LFC regardless of the threshold value.

計測部は、リアルタイムで電力を計測するものであって、具体的には次の通りである。
系統内の実際の使用電力(需要電力Pdem)を計測する需用電力計測部80aが、指令所80に設けられている。より詳しく言えば、各所の変電所50の計測部で計測される実際の使用電力が需用電力計測部80aに送信され、需用電力計測部80aではそれら使用電力を集計し、需要電力Pdemを算出する。また、固定電源10からの出力電力(固定電源の出力Pfix)を計測する固定電源出力計測部10a、通常可変電源30からの出力電力(通常可変電源の出力Pvar)を計測する通常可変電源出力計測部30a、二次電池40からの出力電力(二次電池の出力Pbatt)を計測する二次電池出力計測部40aが、各電源に設けられている。そして、これら電源10、30、40の出力計測部で計測した出力電力が指令所80の計測部に送信される。
A measurement part measures electric power in real time, and is specifically as follows.
A command power measuring unit 80a for measuring the actual power used (demand power Pdem) in the system is provided at the command station 80. More specifically, the actual power consumption measured by the measurement unit of each substation 50 is transmitted to the demand power measurement unit 80a, and the demand power measurement unit 80a aggregates the power consumption and calculates the demand power Pdem. calculate. Further, a fixed power output measuring unit 10a that measures output power from the fixed power source 10 (fixed power source output Pfix), and a normal variable power source output measurement that measures output power from the normal variable power source 30 (normal variable power source output Pvar). The secondary battery output measuring unit 40a that measures the output power from the unit 30a and the secondary battery 40 (output Pbatt of the secondary battery) is provided in each power source. Then, the output power measured by the output measuring units of these power supplies 10, 30, and 40 is transmitted to the measuring unit of the command station 80.

その他の計測部については、負荷制御装置による負荷周波数制御方法が示された図2を参照しながら説明する。指令所80には、第1〜第3の制御残量計測部が設けられている。詳しく言えば、以下の通りである。
第1の制御残量計測部81では、PdemからPfixを減算した出力(Pdem−Pfix)が計測される。
第2の制御残量計測部82では、更にPvarを減算した出力=通常可変電源30によるLFCの制御残量εLFC(以下、「通常LFCの制御残量」という。Pdem−Pfix−Pvar=εLFC)が計測される。
第3の制御残量計測部83では、更にPbattを引いた二次電池40の制御残量(εLFC−Pbatt=Ptie)が計測される。
これら第1、第2、第3の制御残量計測部81〜83を合わせたものが、連系線潮流出力Ptieを計測する連系線潮流出力計測部80bである。
また、指令所80には、第4の制御残量計測部84も設けられている。第4の制御残量計測部84では、PtieとPbattとの合計値(通常可変電源30の制御残量、Ptie+Pbatt=εLFC)が計測される。
Other measurement units will be described with reference to FIG. 2 showing a load frequency control method by the load control device. The command station 80 is provided with first to third control remaining amount measuring units. Specifically, it is as follows.
The first control remaining amount measuring unit 81 measures an output (Pdem−Pfix) obtained by subtracting Pfix from Pdem.
In the second control remaining amount measuring unit 82, the output obtained by further subtracting Pvar = the remaining control amount εLFC of the LFC by the normal variable power source 30 (hereinafter referred to as “normal LFC control remaining amount”; Pdem-Pfix−Pvar = εLFC) Is measured.
In the third control remaining amount measuring unit 83, the control remaining amount (εLFC−Pbatt = Ptie) of the secondary battery 40 obtained by further subtracting Pbatt is measured.
A combination of the first, second, and third control remaining amount measuring units 81 to 83 is an interconnected line flow output measuring unit 80b that measures the interconnected line flow output Ptie.
The command station 80 is also provided with a fourth control remaining amount measuring unit 84. The fourth control remaining amount measuring unit 84 measures the total value of Ptie and Pbatt (normally the remaining control amount of the variable power supply 30, Ptie + Pbatt = εLFC).

上述した負荷周波数制御装置による負荷周波数制御方法は以下の手順で行われる。
(1)第1の制御残量計測部81では、Pdem−Pfixが計測される。
(2)第2の制御残量計測部82では、Pdem−Pfix−Pvar=εLFCが計測される。
(3)第3の制御残量計測部83では、εLFC−Pbatt=Ptieが計測される。
(4)指令所80の制御部80cでは、εLFCの値が閾値の範囲内であるか否かを判断する。なお、閾値の値は、範囲内に含まれるか、範囲外に含まれるかいずれかであれば良い。
(5)範囲内である場合にはPbatt=0とする信号を二次電池40の制御部40cに出力する。それが入力された二次電池40の制御部40cでは、二次電池本体からの充放電動作を停止し、線路から二次電池本体が切り離された状態を保持する。
(6)また、範囲外である場合には、閾値を+方向に超えたときにはPtieの値、及び二次電池40に蓄えられている電力量等に応じてPbattを決定し、決定したPbattの信号を二次電池40の制御部40cに出力する。それが入力された二次電池40の制御部40cでは、二次電池本体を線路に接続して放電動作させ、インバータを介してPbattを線路に供給する。
(7)一方、閾値を−方向に越えたときには、二次電池40に蓄えられている電力量に応じてPbattを決定し、決定したPbattの信号を二次電池40の制御部40cに出力する。それが入力された二次電池40の制御部40cでは、二次電池本体を線路に接続して充電動作させ、線路からインバータを経てPbattを二次電池本体に充電する。これら(5)〜(7)の手順が二次電池LFCである。
(8)第4の制御残量計測部84では、Ptie+Pbatt=εLFCの値が計測される。なお、εLFC=Pdem−Pfix−Pvarであるので、Pbattの有無に関係なく、εLFCの信号が指令所80の制御部80cから通常可変電源30の制御部30cに出力される。それが入力された通常可変電源30の制御部30c(通常LFC用の制御部)では、εLFCの値に基づいてPvarを決定し、図示しない通常可変電源本体を動作させ、Pvarを線路に供給する。この(8)の手順が通常LFCである。
The load frequency control method by the load frequency control device described above is performed in the following procedure.
(1) The first control remaining amount measuring unit 81 measures Pdem-Pfix.
(2) The second control remaining amount measuring unit 82 measures Pdem−Pfix−Pvar = εLFC.
(3) The third control remaining amount measuring unit 83 measures εLFC−Pbatt = Ptie.
(4) The control unit 80c of the command station 80 determines whether or not the value of εLFC is within the threshold range. Note that the threshold value may be included within the range or outside the range.
(5) If it is within the range, a signal to set Pbatt = 0 is output to the control unit 40c of the secondary battery 40. In the controller 40c of the secondary battery 40 to which it has been input, the charging / discharging operation from the secondary battery body is stopped, and the state where the secondary battery body is disconnected from the line is maintained.
(6) If it is out of range, Pbatt is determined according to the value of Ptie and the amount of power stored in the secondary battery 40 when the threshold value is exceeded in the + direction. The signal is output to the control unit 40c of the secondary battery 40. In the control unit 40c of the secondary battery 40 to which it has been input, the secondary battery body is connected to the line to perform a discharging operation, and Pbatt is supplied to the line via the inverter.
(7) On the other hand, when the threshold value is exceeded in the-direction, Pbatt is determined according to the amount of power stored in the secondary battery 40, and the determined Pbatt signal is output to the control unit 40c of the secondary battery 40. . In the control unit 40c of the secondary battery 40 to which it has been input, the secondary battery main body is connected to the line to perform a charging operation, and Pbatt is charged from the line through the inverter to the secondary battery main body. These procedures (5) to (7) are the secondary battery LFC.
(8) The fourth control remaining amount measurement unit 84 measures the value of Ptie + Pbatt = εLFC. Since εLFC = Pdem−Pfix−Pvar, the signal of εLFC is output from the control unit 80c of the command station 80 to the control unit 30c of the normal variable power supply 30 regardless of the presence or absence of Pbatt. The control unit 30c (normal LFC control unit) to which the normal variable power supply 30 is input determines Pvar based on the value of εLFC, operates a normal variable power supply main body (not shown), and supplies Pvar to the line. . The procedure (8) is usually LFC.

上述した内容を要約して数式で示すと、連系線潮流出力Ptieは、以下の通りとなる。
Ptie=Pdem−Pfix−Pvar−Pbatt
また、上記式のPbattを左辺に移せば、
Ptie+Pbatt=Pdem−Pfix−Pvar
となる。
上記式の右辺Pdem−Pfix−Pvar=εLFCとなる。つまり、通常LFCの制御量は、二次電池40の有無に関係なく、一定である。
Summarizing the above-described contents and expressing them with mathematical expressions, the interconnected power flow output Ptie is as follows.
Ptie = Pdem−Pfix−Pvar−Pbatt
Also, if you move Pbatt in the above formula to the left side,
Ptie + Pbatt = Pdem−Pfix−Pvar
It becomes.
The right side of the above formula is Pdem−Pfix−Pvar = εLFC. That is, the control amount of the normal LFC is constant regardless of the presence or absence of the secondary battery 40.

図2の負荷周波数制御方法を実現するためのより具体的な一例が図3に示されている。(1)第2の制御残量計測部82で計測された制御量εLFCが閾値の範囲内である場合には、指令所80の制御部80c及び二次電池40の制御部40cは、Pbatt=0とする。
(2)一方、閾値の範囲外である場合には、二次電池40の制御部40cは、第3の制御残量計測部83で計測された制御量Ptieから、Kb(二次電池出力Pbattを安定に制御するためのフィードバックゲインを減算し、その減算値を所定時間(1/Tb)積分し、その積分値に基づいて上限リミッタLbと下限リミッタ−Lbの範囲内で、Pbattを供給するか、充電する。つまり、積分値が+の場合には、上限リミッタLbを最大値としてPbattを決定し、積分値が−の場合には下限リミッタ−Lbを最小値としてPbattを決定する。
(3)また、通常可変電源30の制御部30cは、εLFCの値にKc(増幅率)を乗じ、εLFC×Kcの値を上限リミッタLc1と下限リミッタ−Lc1の範囲内で出力する。そして、その出力値を所定時間(1/Tc)積分し、その積分値に基づいて上限リミッタLc2と下限リミッタ−Lc2の範囲内でPbattを決定する。
A more specific example for realizing the load frequency control method of FIG. 2 is shown in FIG. (1) When the control amount εLFC measured by the second control remaining amount measuring unit 82 is within the threshold value range, the control unit 80c of the command center 80 and the control unit 40c of the secondary battery 40 have Pbatt = 0.
(2) On the other hand, when the value is outside the threshold range, the control unit 40c of the secondary battery 40 determines the Kb (secondary battery output Pbatt) from the control amount Ptie measured by the third control remaining amount measurement unit 83. The feedback gain for stably controlling is subtracted, the subtracted value is integrated for a predetermined time (1 / Tb), and Pbatt is supplied within the range between the upper limiter Lb and the lower limiter -Lb based on the integrated value. That is, when the integral value is +, Pbatt is determined with the upper limit limiter Lb as the maximum value, and when the integral value is-, Pbatt is determined with the lower limiter limit Lb as the minimum value.
(3) Further, the control unit 30c of the normal variable power supply 30 multiplies the value of εLFC by Kc (amplification factor) and outputs the value of εLFC × Kc within the range between the upper limiter Lc1 and the lower limiter-Lc1. Then, the output value is integrated for a predetermined time (1 / Tc), and Pbatt is determined within the range between the upper limiter Lc2 and the lower limiter-Lc2 based on the integration value.

上述した各種のリミッタ及び積分時間は、通常LFCと二次電池LFCを相互補完的に行うように設定することが望ましい。つまり、通常LFCにはゆったりして大きい動作を、二次電池LFCには速くて小さい動作を行わせるようにする。
後述のシミュレーション例では、Lb<Lc1、Lc2としてあるが、これは二次電池LFCのリミッタよりも小さい値に設定することで、二次電池40の出力が通常可変電源30の出力に対して小さな出力ですむようにしている(二次電池本体の充電容量に応じて、可動時の負担を小さくすることができる。)。
また、Tc>Tbとしてあるが、これは二次電池LFCの方の積分動作を速くするため(二次電池40の方が速い動作が期待できるため。)
It is desirable that the various limiters and integration times described above are set so that the normal LFC and the secondary battery LFC are performed in a mutually complementary manner. That is, the normal LFC performs a large and slow operation, and the secondary battery LFC performs a small and fast operation.
In a simulation example to be described later, Lb <Lc1 and Lc2 are set, but this is set to a value smaller than the limiter of the secondary battery LFC so that the output of the secondary battery 40 is smaller than the output of the normal variable power supply 30. The output is reduced (the load during operation can be reduced according to the charge capacity of the secondary battery body).
Moreover, although Tc> Tb, this is for speeding up the integration operation of the secondary battery LFC (since the secondary battery 40 can be expected to operate faster).

図3に示す具体的な例をシュミレーションにより検証した結果が図4である。ここではTc
= 10 min、 Tb = 0.1min、Kc = 100、Lc1 = 1、Lc2 = 1、Kb = 0.02、Lb = 0.2としている。なお、電力の単位はすべて100MWである。速い変動成分を含む需要波形を評価に用いるが、ここでは図4に示すような連続三角波を需用電力Pdemの変動として与えて、本願発明の二次電池LFCありの場合と、比較例の二次電池LFCなしの場合で、通常LFCによる出力Pvarと連系線潮流出力Ptieを比較している(ここでは簡単のため固定電源10の出力Pfix=0としている)。図4(a)に二次電池LFCなしのケース、図4(b)に二次電池LFCありのケースを示す。通常LFCによる通常可変電源30の出力Pvarは、二次電池LFCの有無にかかわらず変わらないことがわかる。よって、本願発明の負荷周波数制御方法は実現可能であり、また通常LFCと二次電池LFCの効果の識別も可能である。さらに、連系線潮流出力Ptieを二次電池40の有無で比較すると、図4(a)の二次電池LFCなしの場合の連系線潮流出力Ptie(=通常LFCの制御残量)の変動が、図4(b)の二次電池LFCありの場合には二次電池LFCによって吸収されるため、連系線潮流出力Ptieが抑制されていることがわかる。つまり、提案した通常LFCと二次電池LFCの協調動作方式によって、通常LFCでは対応できなかった速い変動が、二次電池LFCによって対応されて吸収されていることがわかる。
FIG. 4 shows a result obtained by verifying the specific example shown in FIG. 3 by simulation. Here Tc
= 10 min, Tb = 0.1 min, Kc = 100, Lc1 = 1, Lc2 = 1, Kb = 0.02, and Lb = 0.2. The unit of electricity is 100MW. A demand waveform including a fast fluctuation component is used for the evaluation. Here, a continuous triangular wave as shown in FIG. 4 is given as a fluctuation of the demand power Pdem, and the case where the secondary battery LFC of the present invention is used and When there is no secondary battery LFC, the output Pvar by the normal LFC is compared with the interconnection power output Ptie (here, the output Pfix = 0 of the fixed power source 10 is set for simplicity). FIG. 4A shows a case without the secondary battery LFC, and FIG. 4B shows a case with the secondary battery LFC. It can be seen that the output Pvar of the normal variable power supply 30 by the normal LFC does not change regardless of the presence or absence of the secondary battery LFC. Therefore, the load frequency control method of the present invention can be realized, and the effects of the normal LFC and the secondary battery LFC can be identified. Further, when the interconnection power flow output Ptie is compared with and without the secondary battery 40, the fluctuation of the interconnection power flow output Ptie (= normal LFC control remaining amount) without the secondary battery LFC in FIG. However, since the secondary battery LFC in FIG. 4B is absorbed by the secondary battery LFC, it can be seen that the interconnection power flow output Ptie is suppressed. In other words, it can be seen that by the proposed cooperative operation method of the normal LFC and the secondary battery LFC, fast fluctuations that could not be handled by the normal LFC are absorbed and absorbed by the secondary battery LFC.

本発明は上記実施形態に限定されるものではない。例えば、各種の計測部は、必要な電力情報が得られるならば、系統内のどこに設置してあっても良い。   The present invention is not limited to the above embodiment. For example, various measuring units may be installed anywhere in the system as long as necessary power information can be obtained.

10固定電源
10a固定電源出力計測部
20可変電源
30通常可変電源
30a通常可変電源出力計測部
30c制御部
40二次電池
40a二次電池出力計測部
40c制御部
50変電所
60負荷
70他の電力系統
80指令所
80a需用電力計測部
80b連系線潮流出力計測部
80c制御部
81第1の制御残量計測部
82第2の制御残量計測部
83第3の制御残量計測部
84第4の制御残量計測部
10 fixed power source 10a fixed power source output measuring unit 20 variable power source 30 normal variable power source 30a normal variable power source output measuring unit 30c control unit 40 secondary battery 40a secondary battery output measuring unit 40c control unit 50 substation 60 load 70 other power system 80 command center 80a demand power measuring unit 80b interconnection power flow output measuring unit 80c control unit 81 first control remaining amount measuring unit 82 second control remaining amount measuring unit 83 third control remaining amount measuring unit 84 fourth Control remaining amount measurement unit

Pdem需要電力
εLFC通常LFCの制御残量
Pfix固定電源の出力
Pvar通常可変電源の出力
Pbatt二次電池出力
Ptie連系線潮流出力
Pdem demand power εLFC Normal LFC remaining control
Pfix fixed power supply output
Pvar variable power supply output
Pbatt secondary battery output
Ptie interconnection power flow output

Claims (2)

火力発電機水力発電機の少なくとも一方を含む通常可変電源による負荷周波数制御(以下、「通常LFC」という。)と、二次電池による負荷周波数制御(以下、「二次電池LFC」という。)とを併用して行う電力系統の負荷周波数制御方法において、
需用電力(以下、「Pdem」という。)に対して、固定電源の出力(以下、「Pfix」という。)、並びに通常可変電源の出力(以下、「Pvar」という。)を減算した値を、通常LFCの制御残量(以下、「εLFC」という。)とし、
εLFCに対して、二次電池の出力(以下、「Pbatt」という。)を減算した値を連系線潮流出力(以下、「Ptie」という。)とし、
εLFCが閾値の範囲内である場合にはεLFCに基づいて通常LFCを単独で行い、
εLFCが閾値の範囲外である場合には、Ptieを二次電池LFCの制御残量とし、Ptieに基づいて二次電池LFCを行うと共に、PtieとPbattとの合計値に等しいεLFCに基づいて通常LFCを行い、
εLFCが閾値の範囲内及び範囲外の何れの場合にも、次の計算式、
εLFC=Ptie+Pbatt=Pdem−Pfix−Pvar
を成立させることを特徴とする電力系統の負荷周波数制御方法。
Load frequency control by a normal variable power source including at least one of a thermal power generator and a hydraulic power generator (hereinafter referred to as “normal LFC”) and load frequency control by a secondary battery (hereinafter referred to as “secondary battery LFC”). In the load frequency control method of the electric power system performed in combination with
The value obtained by subtracting the output of the fixed power source (hereinafter referred to as “Pfix”) and the output of the normal variable power source (hereinafter referred to as “Pvar”) from the demand power (hereinafter referred to as “Pdem”) . The normal LFC control remaining amount (hereinafter referred to as “εLFC”) ,
A value obtained by subtracting the output of the secondary battery (hereinafter referred to as “Pbatt”) from εLFC is defined as an interconnection power flow output (hereinafter referred to as “Ptie”).
When εLFC is within the threshold range, normal LFC is normally performed based on εLFC,
When εLFC is out of the threshold range, Ptie is set as the remaining control amount of the secondary battery LFC, the secondary battery LFC is performed based on Ptie, and normal based on εLFC equal to the total value of Ptie and Pbatt Do LFC,
When εLFC is within or outside the threshold range,
εLFC = Ptie + Pbatt = Pdem−Pfix−Pvar
The load frequency control method of the electric power system characterized by establishing .
火力発電機水力発電機の少なくとも一方を含む通常可変電源による負荷周波数制御(以下、「通常LFC」という。)を行う通常可変電源の制御部と、二次電池による負荷周波数制御(以下、「二次電池LFC」という。)を行う二次電池の制御部と、指令所の制御部と、電力を計測する系統内の計測部とを備える電力系統の負荷周波数制御装置において、
系統内の計測部は、需用電力(以下、「Pdem」という。)に対して、固定電源の出力(以下、「Pfix」という。)、並びに通常可変電源の出力(以下、「Pvar」という。)を減算した値を、通常LFCの制御残量(以下、「εLFC」という。)として求め、εLFCに対して、二次電池の出力(以下、「Pbatt」という。)を減算した値を連系線潮流出力(以下、「Ptie」という。)として求め、
指令所の制御部は、通常LFCの制御残量(以下、「εLFC」という。)に対する閾値を設定してあると共に、εLFCが閾値の範囲内であるか否かを判定し、
εLFCが閾値の範囲内である場合には通常可変電源の制御部がεLFCに基づいて通常LFCを単独で行い、
εLFCが閾値の範囲外である場合には、系統内の計測部がεLFCに対してPbattを減算した値をPtieとして求めると共に二次電池LFCの制御残量とし、Ptieに基づいて二次電池の制御部が二次電池LFCを行い、PtiePbattとの合計値に等しいεLFCに基づいて通常可変電源の制御部が通常LFCを行い、
εLFCが閾値の範囲内及び範囲外の何れの場合にも、次の計算式、
εLFC=Ptie+Pbatt=Pdem−Pfix−Pvar
を成立させることを特徴とする電力系統の負荷周波数制御装置。
A control unit of a normal variable power source that performs load frequency control (hereinafter referred to as “normal LFC”) using a normal variable power source including at least one of a thermal power generator and a hydroelectric power generator, and a load frequency control (hereinafter referred to as “ In a load frequency control device for a power system, including a control unit for a secondary battery that performs a secondary battery LFC), a control unit for a command center, and a measurement unit in the system for measuring power,
The measuring unit in the system is connected to the power demand (hereinafter referred to as “Pdem”) , the output of the fixed power source (hereinafter referred to as “Pfix”) , and the output of the normal variable power source (hereinafter referred to as “Pvar” ). the.) obtained by subtracting a value, usually LFC control remaining amount (hereinafter, calculated as referred.) "IpushironLFC" for IpushironLFC, the output of the secondary battery (hereinafter, a value obtained by subtracting the called.) "Pbatt" Calculated as interconnected power flow output (hereinafter referred to as “Ptie”)
The control unit at the command center sets a threshold value for the control remaining amount of normal LFC (hereinafter referred to as “εLFC”) and determines whether εLFC is within the threshold value range.
When εLFC is within the threshold range, the control unit of the normally variable power supply performs normal LFC alone based on εLFC ,
When εLFC is out of the threshold range , the measurement unit in the system obtains the value obtained by subtracting Pbatt from εLFC as Ptie , and the control remaining amount of the secondary battery LFC. Based on Ptie , the secondary battery controller performs secondary battery LFC, the controller of the normal variable power have line normal LFC based on εLFC equal to the sum of Ptie and Pbatt,
When εLFC is within or outside the threshold range,
εLFC = Ptie + Pbatt = Pdem−Pfix−Pvar
Load frequency control device of the electric power system, characterized in that to establish.
JP2011087654A 2011-04-11 2011-04-11 Method and apparatus for controlling load frequency of power system Active JP5773719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011087654A JP5773719B2 (en) 2011-04-11 2011-04-11 Method and apparatus for controlling load frequency of power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011087654A JP5773719B2 (en) 2011-04-11 2011-04-11 Method and apparatus for controlling load frequency of power system

Publications (2)

Publication Number Publication Date
JP2012222994A JP2012222994A (en) 2012-11-12
JP5773719B2 true JP5773719B2 (en) 2015-09-02

Family

ID=47273942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011087654A Active JP5773719B2 (en) 2011-04-11 2011-04-11 Method and apparatus for controlling load frequency of power system

Country Status (1)

Country Link
JP (1) JP5773719B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6474017B2 (en) * 2014-04-02 2019-02-27 富士電機株式会社 Frequency control method and frequency control system in power system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4155674B2 (en) * 1999-07-22 2008-09-24 関西電力株式会社 Frequency control device for power system including secondary battery
JP3738227B2 (en) * 2002-03-20 2006-01-25 関西電力株式会社 Ancillary service providing method and system using secondary battery
JP4967608B2 (en) * 2006-11-07 2012-07-04 株式会社明電舎 Distributed power system

Also Published As

Publication number Publication date
JP2012222994A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
Yin et al. Energy management of DC microgrid based on photovoltaic combined with diesel generator and supercapacitor
JP6194042B2 (en) Power converter, power control system, and power control method
Lu et al. Application of Petri nets for the energy management of a photovoltaic based power station including storage units
KR101119460B1 (en) Power accumulator and hybrid distributed power supply system
KR101785825B1 (en) State of charge based droop control method and apparatus for the reliable operation of a stand alone dc microgrid
CN102163849A (en) Wind power output adaptive smoothing method based on energy storage battery charge state feedback
JP5887431B2 (en) Battery complex system
JP6430775B2 (en) Storage battery device
CN102946113B (en) Super-capacitor terminal voltage control method based on battery and super capacitor
WO2016185660A1 (en) Distributed power supply system, and control method of distributed power supply system
WO2011118766A1 (en) Electric power supply system, central management device, power system stabilization system, central management device control method, and central management device control program
WO2011122681A1 (en) System-stabilizing system, power supply system, method for controlling central management device, and program for central management device
JP6075116B2 (en) Supply and demand control device
US20190058340A1 (en) Energy storage system with improved operating time and operation method thereof
JP2014230455A (en) Power generator
JP2016073193A (en) Control device for energy storage device
Xiao et al. Flat tie-line power scheduling control of grid-connected hybrid microgrids
JP5529029B2 (en) Control method of sodium-sulfur battery
KR20210011727A (en) System and Method for Controlling Inertial of Energy Storage System
JP4783237B2 (en) Transmission loss reduction system and method using secondary battery
KR20170021606A (en) The battery energy storage system and reactive power compensation method using thereof
JP5773719B2 (en) Method and apparatus for controlling load frequency of power system
JPWO2014167830A1 (en) Power control system
JP2014230366A (en) Power generation device
KR101299269B1 (en) Battery Energy Storage System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150630

R150 Certificate of patent or registration of utility model

Ref document number: 5773719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250