JP2014230366A - Power generation device - Google Patents

Power generation device Download PDF

Info

Publication number
JP2014230366A
JP2014230366A JP2013107327A JP2013107327A JP2014230366A JP 2014230366 A JP2014230366 A JP 2014230366A JP 2013107327 A JP2013107327 A JP 2013107327A JP 2013107327 A JP2013107327 A JP 2013107327A JP 2014230366 A JP2014230366 A JP 2014230366A
Authority
JP
Japan
Prior art keywords
power
solar cell
converter
output
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013107327A
Other languages
Japanese (ja)
Inventor
鮫田 芳富
Yoshitomi Sameda
芳富 鮫田
正臣 吉川
Masaomi Yoshikawa
正臣 吉川
俊也 丸地
Shunya Maruchi
俊也 丸地
長谷川 義朗
Yoshiro Hasegawa
義朗 長谷川
俊昭 枝広
Toshiaki Edahiro
俊昭 枝広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013107327A priority Critical patent/JP2014230366A/en
Publication of JP2014230366A publication Critical patent/JP2014230366A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generation device capable of maintaining a voltage of a DC bus for independent operation during a power failure by surely preventing power that should not be returned to a system, from flowing out to the system when performing solar cell power generation and battery discharge.SOLUTION: A power generation device comprises: a battery which is connected to a DC bus and maintains a DC bus voltage constant; a solar cell; a DC/DC converter which converts output of the solar cell and is connected to the DC bus; a bidirectional AC/DC converter which is connected between the DC bus and a system and converts DC power and AC power; an AC measuring part for measuring AC load power of an AC load connected to the system; and an arithmetic part for calculating control power of the AC/DC converter. The arithmetic part controls AC output power of the AC/DC converter equal to or less than (solar cell power+AC measurement power) and causes the solar cell power to flow inversely to the system.

Description

本発明は、太陽電池とバッテリを有する家庭用発電装置に関する。   The present invention relates to a household power generator having a solar cell and a battery.

太陽光発電と、バッテリを組み合わせて、系統連系時は太陽光発電分を系統に戻し、停電時は自立電源となる発電装置の必要性が高まっている。太陽光発電とバッテリ放電を行うときに、バッテリ放電電力など系統に戻す必要のない電力が、系統に流れ出ることを防止する必要がある。   There is a growing need for a power generation device that combines photovoltaic power generation and a battery to return the amount of photovoltaic power generation to the system during grid connection and to be an independent power source during a power failure. When solar power generation and battery discharge are performed, it is necessary to prevent power that does not need to be returned to the system, such as battery discharge power, from flowing into the system.

特許第4765162号公報Japanese Patent No. 4765162

従来の発電装置としては、例えば、系統からの受電電力を検出して、バッテリの双方向チョッパ(DC/DCコンバータ)を制御していた。このような構成の場合、太陽光発電電力が小さく、バッテリ放電していないときに停電すると、DCバス電圧(インバータ入力直流電圧)が低下し、自立運転が困難になるという問題があった。   As a conventional power generator, for example, power received from a system is detected to control a bidirectional chopper (DC / DC converter) of the battery. In the case of such a configuration, there is a problem that if the power generated by the solar power is small and the battery is not discharged, the DC bus voltage (inverter input DC voltage) is lowered and it becomes difficult to operate independently.

実施形態は上述した課題を解決するためになされたものであり、太陽電池発電とバッテリ放電を行うときに、系統に戻す必要のない電力が、系統に流れ出ることを確実に防止し、停電時に自立運転のためのDCバスの電圧維持を可能とする発電装置を提供することを目的とする。   The embodiments have been made to solve the above-described problems, and when performing solar cell power generation and battery discharge, it is possible to reliably prevent power that does not need to be returned to the system from flowing into the system, and to be independent during power outages. An object of the present invention is to provide a power generator capable of maintaining the voltage of a DC bus for operation.

一実施形態に係る発電装置は、DCバスに接続されDCバス電圧を一定に維持するバッテリと、太陽電池と、前記太陽電池の出力を変換し前記DCバスに接続されるDC/DCコンバターと、前記DCバスと系統との間に接続され直流電力と交流電力の変換を行う双方向AC/DC変換器と、前記系統に接続されたAC負荷のAC負荷電力を計測するAC計測部と、前記AC/DC変換器の制御電力を演算する演算部とを具備する。前記演算部は、前記AC/DC変換器のAC出力電力を、(太陽電池電力+AC計測電力)以下に制御し、前記太陽電池電力を前記系統へ逆潮流する。   A power generator according to an embodiment includes a battery connected to a DC bus and maintaining a DC bus voltage constant, a solar cell, a DC / DC converter that converts the output of the solar cell and is connected to the DC bus, A bidirectional AC / DC converter connected between the DC bus and the system for converting DC power and AC power; an AC measuring unit for measuring AC load power of an AC load connected to the system; And an arithmetic unit that calculates the control power of the AC / DC converter. The arithmetic unit controls the AC output power of the AC / DC converter to be equal to or less than (solar cell power + AC measured power), and reversely flows the solar cell power to the system.

第1実施形態に係る発電装置の構成図である。It is a lineblock diagram of the power generator concerning a 1st embodiment. 第1実施形態に係る発電装置の他の実施例であり、バッテリ用DC/DC5が設けられた発電装置の構成図である。It is another Example of the electric power generating apparatus which concerns on 1st Embodiment, and is a block diagram of the electric power generating apparatus provided with DC / DC5 for batteries. 図1に示す発電装置の自立運転時を示す構成図である。It is a block diagram which shows the time of the independent operation of the electric power generating apparatus shown in FIG. 図2に示す発電装置の自立運転時を示す構成図である。It is a block diagram which shows the time of the independent operation of the electric power generating apparatus shown in FIG. 第2実施形態に係る発電装置の構成図である。It is a block diagram of the electric power generating apparatus which concerns on 2nd Embodiment. 図5に示す発電装置の自立運転時を示す構成図である。It is a block diagram which shows the time of the independent operation of the electric power generating apparatus shown in FIG. 第3実施形態に係る発電装置の構成図である。It is a block diagram of the electric power generating apparatus which concerns on 3rd Embodiment. 図7に示す発電装置の自立運転時を示す構成図である。It is a block diagram which shows the time of the independent operation of the electric power generating apparatus shown in FIG.

以下、実施形態に係る発電装置について、図面を参照して説明する。   Hereinafter, a power generator according to an embodiment will be described with reference to the drawings.

[第1実施形態]
(構成)
図1、図2は第1実施形態に係る発電装置の構成図である。
[First Embodiment]
(Constitution)
1 and 2 are configuration diagrams of the power generation device according to the first embodiment.

第1実施形態に係る発電装置は、DCバスに接続するバッテリ4と、太陽電池(以下PVと記述する)2と、PVの出力を変換しDCバスに供給するPV用DC/DCコンバータ(以下PV用DC/DCと記述する)3と、DCバスと系統8との間に接続され直流電力・交流電力の変換を行う双方向AC/DC変換器(以下双方向AC/DCと記述する)1と、系統8に接続される家電製品等のAC負荷9のAC負荷電力を計測するAC計測部7と、AC/DC1の制御電力(AC出力電力)を演算する演算部6から構成される。DCバス電圧とバッテリ電圧が異なる場合は、図2に示すように、バッテリ用双方向DC/DCコンバータ(以下バッテリ用双方向DC/DCと記述する)5を用いて、バッテリ4はDCバスに接続される。   The power generator according to the first embodiment includes a battery 4 connected to a DC bus, a solar cell (hereinafter referred to as PV) 2, and a PV DC / DC converter (hereinafter referred to as PV) that converts the output of PV and supplies it to the DC bus. 3) and a bidirectional AC / DC converter (hereinafter referred to as bidirectional AC / DC) that is connected between the DC bus and the system 8 and converts DC power / AC power. 1, an AC measurement unit 7 that measures the AC load power of an AC load 9 such as a home appliance connected to the system 8, and a calculation unit 6 that calculates the control power (AC output power) of the AC / DC 1. . When the DC bus voltage and the battery voltage are different, as shown in FIG. 2, a battery bidirectional DC / DC converter (hereinafter referred to as a battery bidirectional DC / DC) 5 is used, and the battery 4 is replaced with a DC bus. Connected.

(作用)
演算部6はAC計測電力及びPV電力等に基づいて、双方向AC/DC1出力電力を制御する。双方向AC/DC1は演算部6からの指令によりAC電力制御を行う。PV用DC/DC3は、MPPT(Maximum Power Point Tracking)制御を行い、例えば昇圧チョッパである。系統電圧はAC100VあるいはAC200Vである。図2のバッテリ用双方向DC/DC5は昇降圧チョッパであって、DCバス電圧を一定に保つ制御(DCバス一定電圧制御)を行う。DCバス電圧は例えばDC360V±10%程度である。従ってバッテリ用双方向DC/DC5は、DCバス電圧が所定の値より大きくなればバッテリ4を充電(例えば降圧)し、小さくなればバッテリ4を放電(例えば昇圧)する。尚、DCバス電圧とバッテリ電圧が一致しており、図1のようにバッテリ4がDCバスに直接接続されている場合、バッテリ4は特別な制御を行うことなく、DCバスを一定電圧に維持するように充電又は放電する。
(Function)
The calculation unit 6 controls the bidirectional AC / DC1 output power based on the AC measured power and the PV power. The bidirectional AC / DC 1 performs AC power control according to a command from the calculation unit 6. The DC DC / DC 3 for PV performs MPPT (Maximum Power Point Tracking) control and is, for example, a boost chopper. The system voltage is AC100V or AC200V. A bidirectional DC / DC 5 for battery in FIG. 2 is a step-up / step-down chopper, and performs control (DC bus constant voltage control) for keeping the DC bus voltage constant. The DC bus voltage is, for example, about DC 360V ± 10%. Accordingly, the battery bidirectional DC / DC 5 charges (eg, steps down) the battery 4 when the DC bus voltage exceeds a predetermined value, and discharges (eg, steps up) the battery 4 when the DC bus voltage decreases. Note that when the DC bus voltage and the battery voltage match and the battery 4 is directly connected to the DC bus as shown in FIG. 1, the battery 4 maintains the DC bus at a constant voltage without performing any special control. To charge or discharge.

先ず、ユーザと電力会社の間でPV電力すべてを売電契約としている場合、すなわちバッテリ放電による押上ありにてPV電力を系統へ逆潮流する制御の場合は、演算部6はAC/DC1の制御電力すなわちAC出力電力を(PV電力+AC計測電力)以下に制御する。これにより逆潮流する電力は、
逆潮流電力≦(PV電力+AC計測電力)−AC負荷電力=PV電力・・・(1)
となり、系統に戻す必要のない電力(系統に逆潮流すことが認められないバッテリ放電電力や後述の燃料電池発電電力)が、系統に流れ出ることを防止する。尚、上記のバッテリ放電による押上ありにてPV電力を系統へ逆潮流する制御とは、バッテリを放電しつつ、PV電力すべてを系統へ逆潮流する制御を示す。
First, when all the PV power is contracted to be sold between the user and the power company, that is, in the case of the control to reversely flow the PV power to the system with the push-up due to the battery discharge, the arithmetic unit 6 controls the AC / DC 1. The power, that is, the AC output power is controlled to be equal to or less than (PV power + AC measured power). As a result, the reverse power flow is
Reverse power flow ≦ (PV power + AC measured power) −AC load power = PV power (1)
Thus, it is possible to prevent power that does not need to be returned to the grid (battery discharge power that is not allowed to flow back to the grid or fuel cell power that will be described later) from flowing into the grid. Note that the above-described control for causing the PV power to reversely flow to the system with the push-up due to battery discharge refers to control for causing all the PV power to reversely flow to the system while discharging the battery.

次に、ユーザと電力会社の間で、PV電力から宅内消費分を減じた余剰分を売電契約としている場合、すなわちバッテリ放電による押上なしにてPV電力を系統へ逆潮流する制御のときに、演算部6はAC/DC1のAC出力電力をPV電力以下に制御する。これにより逆潮流する電力は、
逆潮流電力≦PV電力−AC負荷電力 ・・・(2)
となり、系統に戻す必要のない電力が、系統に流れ出ることを防止する。尚、上記のバッテリ放電による押上なしにてPV電力を系統へ逆潮流する制御とは、バッテリを放電させずに、PV電力から負荷の消費電力(負荷電力)を差し引いた電力を系統へ逆潮流する制御を示す。このとき、DCバス電圧は所定電圧(例えば360V)以上に上昇するので、バッテリ4(バッテリ用双方向DC/DC5)による放電は生じない。また、AC/DC1のAC出力電力(PV電力)が、AC負荷電力より小さい場合、不足分は系統9からAC負荷9に供給される。
Next, between the user and the power company, when the surplus amount obtained by subtracting the amount consumed in the home from the PV power is set as a power sale contract, that is, when the control is performed to reversely flow the PV power to the system without boosting due to battery discharge. The calculation unit 6 controls the AC output power of the AC / DC 1 to be equal to or lower than the PV power. As a result, the reverse power flow is
Reverse power flow ≤ PV power-AC load power (2)
Thus, power that does not need to be returned to the grid is prevented from flowing into the grid. Note that the above-described control for reverse power flow of PV power to the system without boosting due to battery discharge means reverse power flow to the system by subtracting the load power (load power) from the PV power without discharging the battery. Indicates the control to be performed. At this time, since the DC bus voltage rises to a predetermined voltage (for example, 360 V) or more, the battery 4 (battery bidirectional DC / DC5) does not discharge. When the AC output power (PV power) of the AC / DC 1 is smaller than the AC load power, the shortage is supplied from the system 9 to the AC load 9.

更に、ユーザと電力会社の間で、売電契約をしていない場合、すなわち系統へ逆潮流しない制御のとき、演算部6はAC/DC1のAC出力電力をAC計測電力以下に制御する。これにより逆潮流する電力は、
逆潮流電力≦AC計測電力−AC負荷電力=0 ・・・(3)
となり、系統に戻す必要のない電力が、系統に流れ出ることを防止する。このとき、(PV電力−AC負荷電力)が正の場合、この(PV電力−AC負荷電力)は、バッテリ4に充電される。
Furthermore, when there is no power sale contract between the user and the power company, that is, when control is performed so as not to flow backward to the grid, the arithmetic unit 6 controls the AC output power of the AC / DC 1 to be equal to or less than the AC measured power. As a result, the reverse power flow is
Reverse power flow ≦ AC measurement power−AC load power = 0 (3)
Thus, power that does not need to be returned to the grid is prevented from flowing into the grid. At this time, when (PV power-AC load power) is positive, the battery 4 is charged with this (PV power-AC load power).

次に、系統が停電し、PV電力が小さいときの動作を図3、図4に示す。   Next, FIG. 3 and FIG. 4 show operations when the system is blacked out and the PV power is small.

図3では、バッテリ4を直接DCバスに接続しているので、DCバス電圧は維持される。図4では、バッテリ用DC/DC5がDCバス一定電圧制御を行っているので、DCバス電圧は維持される。AC/DC1の制御部1aは系統の停電(系統電圧の低下)を検出すると、AC/DC1の制御を、いままでの系統電圧の位相に合わせて交流電力を出力する電力制御から、例えばAC100VをAC/DC1が自ら出力するAC電圧一定制御に切替える。このときのAC出力電力は、
AC出力電力=AC負荷電力=PV電力+バッテリ放電電力 ・・・(4)
となる。PV電力がAC負荷電力を上回る場合は余剰がバッテリに充電される。
In FIG. 3, since the battery 4 is directly connected to the DC bus, the DC bus voltage is maintained. In FIG. 4, since the battery DC / DC 5 performs DC bus constant voltage control, the DC bus voltage is maintained. When the control unit 1a of the AC / DC1 detects a system power failure (decrease in the system voltage), the AC / DC1 is controlled from the power control that outputs AC power in accordance with the phase of the system voltage so far, for example, AC100V. The AC / DC 1 switches to constant AC voltage output that it outputs. The AC output power at this time is
AC output power = AC load power = PV power + battery discharge power (4)
It becomes. When the PV power exceeds the AC load power, the surplus is charged to the battery.

これにより、停電時にDCバス電圧を失って装置が止まることなく、自立運転が可能となる。   Thereby, it becomes possible to perform a self-sustained operation without losing the DC bus voltage at the time of a power failure and stopping the apparatus.

(効果)
系統に戻す必要のない電力が、系統に流れ出ることを防止し、停電時には、バッテリによりDCバスの電圧を維持し、AC負荷に必要な交流電力を供給可能となる。
(effect)
Electric power that does not need to be returned to the grid is prevented from flowing to the grid, and in the event of a power failure, the voltage of the DC bus is maintained by the battery, and the AC power required for the AC load can be supplied.

[第2実施形態]
(構成)
図5は第2実施形態の構成図である。
[Second Embodiment]
(Constitution)
FIG. 5 is a configuration diagram of the second embodiment.

第2実施形態に係る発電装置は、バッテリ4と、バッテリ4の充放電を制御しDCバスに接続されるバッテリ用双方向DC/DC5と、PV2と、PVの出力を変換しDCバスに接続するDC/DC3と、DCバスと系統との間に接続され、直流電力・交流電力の変換を行う双方向AC/DC1と、ACラインに接続されたAC出力燃料電池(以下FCと記述する)10および電気自動車充電器(以下EV充電器と記述する)11と、(AC負荷電力+EV充電器電力)を計測するAC計測部7と、制御電力を演算する演算部6から構成される。DCバス電圧とバッテリ電圧が同一の場合は、バッテリ用双方向DC/DC5は不要である。   The power generation device according to the second embodiment converts the output of the battery 4, the battery bidirectional DC / DC 5 that controls charging / discharging of the battery 4 and is connected to the DC bus, and outputs the PV 2 and PV to the DC bus. DC / DC3, bidirectional AC / DC1 connected between the DC bus and the system and converting DC power / AC power, and AC output fuel cell (hereinafter referred to as FC) connected to the AC line 10 and an electric vehicle charger (hereinafter referred to as an EV charger) 11, an AC measurement unit 7 that measures (AC load power + EV charger power), and a calculation unit 6 that calculates control power. When the DC bus voltage and the battery voltage are the same, the battery bidirectional DC / DC 5 is not necessary.

(作用)
双方向AC/DC1は演算部6からの指令に従いAC電力制御を行い、PV用DC/DC3はMPPT制御を行い、バッテリ用双方向DC/DC5はDCバス一定電圧制御を行う。FC10は演算部6により制御され、FC電力を演算部6へ通知する。
(Function)
The bidirectional AC / DC 1 performs AC power control according to a command from the arithmetic unit 6, the PV DC / DC 3 performs MPPT control, and the battery bidirectional DC / DC 5 performs DC bus constant voltage control. The FC 10 is controlled by the calculation unit 6 and notifies the calculation unit 6 of the FC power.

先ず、ユーザと電力会社の間で、PV電力すべてを売電契約としている場合、すなわちバッテリ放電およびFC発電による押上ありにてPV電力を系統へ逆潮流する制御のとき、演算部6はAC/DC1のAC出力電力を、(PV電力+AC計測電力−FC電力)以下に制御する。これにより逆潮流する電力は、
逆潮流電力≦(PV電力+AC計測電力−FC電力)+FC電力−AC負荷電力−EV充電器電力=PV電力 ・・・(5)
となり、系統に戻す必要のない電力が、系統に流れ出ることを防止する。
First, when all the PV power is contracted to be sold between the user and the power company, that is, when control is performed to reversely flow the PV power to the system with battery discharge and FC power generation, The AC output power of DC1 is controlled to (PV power + AC measurement power-FC power) or less. As a result, the reverse power flow is
Reverse power flow ≦ (PV power + AC measured power−FC power) + FC power−AC load power−EV charger power = PV power (5)
Thus, power that does not need to be returned to the grid is prevented from flowing into the grid.

次に、ユーザと電力会社の間で、PV電力から宅内消費分を減じた余剰分を売電契約としている場合、つまり、バッテリ放電およびFC発電による押上なしにてPV電力を系統へ逆潮流する制御のとき、演算部6はAC/DC1のAC出力電力を、(PV電力−FC電力)以下に制御する。これにより逆潮流する電力は、
逆潮流電力≦(PV電力−FC電力)+FC電力−AC負荷−EV充電器電力=PV電力−AC負荷−EV充電器電力 ・・・(6)
となり、系統に戻す必要のない電力が、系統に流れ出ることを防止する。つまり、PV電力からAC計測電力(EV充電器電力+AC負荷電力)を引いた余剰分が系統に逆潮流される(押上なしにてPV電力が逆潮流される)。このとき、FC電力は、バッテリに充電される。つまり、FC電力は系統側へ流出するが、その分、PV電力がDCバスを介してバッテリ4に充電される。あるいはこの場合、FCを停止し、AC/DC1のAC出力電力をPV電力以下に制御してもよい。
Next, between the user and the power company, if the surplus amount obtained by subtracting the in-house consumption from the PV power is set as a power sale contract, that is, the PV power is reversely flowed to the system without battery discharge and FC power generation. At the time of control, the arithmetic unit 6 controls the AC output power of the AC / DC 1 to (PV power-FC power) or less. As a result, the reverse power flow is
Reverse power flow ≦ (PV power−FC power) + FC power−AC load−EV charger power = PV power−AC load−EV charger power (6)
Thus, power that does not need to be returned to the grid is prevented from flowing into the grid. That is, the surplus obtained by subtracting the AC measured power (EV charger power + AC load power) from the PV power is reversely flowed into the system (PV power is reversely flowed without being pushed up). At this time, the FC power is charged in the battery. That is, FC power flows out to the grid side, but the PV power is charged to the battery 4 through the DC bus accordingly. Alternatively, in this case, the FC may be stopped and the AC output power of the AC / DC 1 may be controlled below the PV power.

更に、ユーザと電力会社の間で、売電契約をしていない場合など、系統へ逆潮流しない制御のとき、演算部6はAC/DC1のAC出力電力を、(AC計測電力−FC電力)以下に制御する。これにより逆潮流する電力は、
逆潮流電力≦(AC計測電力−FC電力)+FC電力−AC負荷−EV充電器電力=0 ・・・(7)
となり、系統に戻す必要のない電力が、系統に流れ出ることを防止する。このとき、(FC電力+PV電力−AC負荷−EV充電器電力)が正のとき、この正の電力は、バッテリに充電される。FC電力が(AC負荷+EV充電器電力)より大きいとき、AC/DC1はAC/DC変換を演算部6より指令され、大きい分の電力がバッテリ4に充電される。
Furthermore, when the user and the electric power company do not have a power sale contract, the control unit 6 calculates the AC output power of the AC / DC 1 as (AC measured power−FC power). Control to: As a result, the reverse power flow is
Reverse power flow ≦ (AC measurement power−FC power) + FC power−AC load−EV charger power = 0 (7)
Thus, power that does not need to be returned to the grid is prevented from flowing into the grid. At this time, when (FC power + PV power−AC load−EV charger power) is positive, the positive power is charged in the battery. When the FC power is larger than (AC load + EV charger power), the AC / DC 1 is instructed by the arithmetic unit 6 to perform AC / DC conversion, and the battery 4 is charged with a larger amount of power.

次に、系統が停電し、PV電力が小さいときの動作を、図6に示す。   Next, FIG. 6 shows the operation when the system fails and the PV power is small.

バッテリ4を直接DCバスに接続、あるいは、バッテリ用DC/DC5がDCバス一定電圧制御を行っているので、DCバス電圧は維持される。AC/DC1の制御部1aは系統の停電を検出して、AC/DC1の制御を、いままでの系統電圧の位相に合わせて交流電力を出力する電力制御から、AC電圧一定制御に切替える。このときのAC出力電力は、
AC出力電力=AC負荷電力+EV充電器電力−FC電力=PV電力+バッテリ放電電力 ・・・(8)
となる。PV電力+FC電力がAC負荷電力+EV充電器電力を上回る場合は余剰がバッテリ4に充電される。
Since the battery 4 is directly connected to the DC bus, or the battery DC / DC 5 performs DC bus constant voltage control, the DC bus voltage is maintained. The control unit 1a of the AC / DC 1 detects a power failure of the system, and switches the control of the AC / DC 1 from the power control that outputs AC power according to the phase of the system voltage so far to the AC voltage constant control. The AC output power at this time is
AC output power = AC load power + EV charger power−FC power = PV power + battery discharge power (8)
It becomes. When PV power + FC power exceeds AC load power + EV charger power, the battery 4 is charged with surplus.

これにより、停電時にDCバス電圧を失って装置が止まることなく、自立運転が可能となる。   Thereby, it becomes possible to perform a self-sustained operation without losing the DC bus voltage at the time of a power failure and stopping the apparatus.

(効果)
FCおよびEV充電器がAC接続されたときに、系統に戻す必要のない電力が、系統に流れ出ることを防止し、停電時にはバッテリによりDCバスの電圧を維持し、AC負荷に必要な交流電力を供給可能となる。
(effect)
When FC and EV chargers are AC-connected, power that does not need to be returned to the grid is prevented from flowing into the grid, and the DC bus voltage is maintained by the battery in the event of a power failure, and AC power required for the AC load is maintained. Supply is possible.

[第3実施形態]
(構成)
図7は第3実施形態の構成図である。
[Third Embodiment]
(Constitution)
FIG. 7 is a configuration diagram of the third embodiment.

第3実施形態に係る発電装置は、バッテリ4と、バッテリ4の充放電を制御しDCバスに接続されるバッテリ用双方向DC/DC5と、PV2と、PVの出力を変換しDCバスに供給するDC/DC3と、DCバスと系統との間に接続され、直流電力・交流電力の変換を行う双方向AC/DC1と、AC負荷電力を計測するAC計測部7と、DCバスにそれぞれ接続されたDC負荷12、DC出力FC13およびEV充電器14と、(DC負荷電力+EV充電器電力)を計測するDC計測部15と、双方向AC/DC1の制御電力(AC出力電力)を演算する演算部6から構成される。DCバス電圧とバッテリ電圧が同一の場合は、バッテリ用双方向DC/DC5は不要である。   The power generation device according to the third embodiment converts the output of the battery 4, the battery bidirectional DC / DC 5 that controls charging / discharging of the battery 4, and is connected to the DC bus, and outputs the PV 2 and PV to the DC bus. Connected to DC / DC3, DC bus and system, bidirectional AC / DC1 for converting DC power / AC power, AC measuring unit 7 for measuring AC load power, and DC bus DC load 12, DC output FC 13 and EV charger 14, DC measurement unit 15 that measures (DC load power + EV charger power), and control power (AC output power) of bidirectional AC / DC 1 are calculated. It is comprised from the calculating part 6. When the DC bus voltage and the battery voltage are the same, the battery bidirectional DC / DC 5 is not necessary.

(作用)
双方向AC/DC1は、演算部6からの指令に従いAC電力制御を行い、PV用DC/DC3は、MPPT制御を行い、バッテリ用双方向DC/DC5は、DCバス一定電圧制御を行う。FC13は、演算部6により制御され、発電電力を演算部6へ通知する。
(Function)
The bidirectional AC / DC 1 performs AC power control in accordance with a command from the arithmetic unit 6, the PV DC / DC 3 performs MPPT control, and the battery bidirectional DC / DC 5 performs DC bus constant voltage control. The FC 13 is controlled by the calculation unit 6 and notifies the calculation unit 6 of the generated power.

先ず、ユーザと電力会社の間で、PV電力すべてを売電契約としている場合、すなわちバッテリ放電およびFC発電による押上ありにてPV電力を系統へ逆潮流する制御のときに、AC/DC1のAC出力電力を(PV電力+AC計測電力)以下に制御する。これにより逆潮流する電力は、
逆潮流電力≦(PV電力+AC計測電力)−AC負荷電力=PV電力 ・・・(9)
となり、系統に戻す必要のない電力が、系統に流れ出ることを防止する。
First, when all the PV power is contracted to be sold between the user and the power company, that is, when the control is performed to reversely flow the PV power to the system with battery discharge and FC power generation, the AC of AC / DC1 The output power is controlled to (PV power + AC measured power) or less. As a result, the reverse power flow is
Reverse power flow ≦ (PV power + AC measured power) −AC load power = PV power (9)
Thus, power that does not need to be returned to the grid is prevented from flowing into the grid.

次に、ユーザと電力会社の間で、PV電力から宅内消費分を減じた余剰分を売電契約としている場合、すなわちバッテリ放電およびFC発電による押上なしにてPV電力を系統へ逆潮流する制御のときに、AC/DC1のAC出力電力を(PV電力−DC計測電力)以下に制御する。これにより逆潮流する電力は、
逆潮流電力≦(PV電力−DC計測電力)−AC負荷電力=PV電力−AC負荷電力−DC負荷電力−EV充電器電力 ・・・(10)
となり、系統に戻す必要のない電力が、系統に流れ出ることを防止する。このとき、FC電力はバッテリ4に充電される。
Next, in the case where the surplus amount obtained by subtracting the residential consumption from the PV power is set as a power sale contract between the user and the electric power company, that is, control to reversely flow the PV power to the system without battery discharge and FC power generation. In this case, the AC output power of the AC / DC 1 is controlled to be equal to or less than (PV power-DC measured power). As a result, the reverse power flow is
Reverse power flow ≦ (PV power−DC measured power) −AC load power = PV power−AC load power−DC load power−EV charger power (10)
Thus, power that does not need to be returned to the grid is prevented from flowing into the grid. At this time, the FC power is charged in the battery 4.

更に、ユーザと電力会社の間で、売電契約をしていない場合、すなわち系統へ逆潮流しない制御のときには、AC/DC1のAC出力電力をAC計測電力以下に制御する。これにより逆潮流する電力は、
逆潮流電力≦AC計測電力−AC負荷電力=0 ・・・(11)
となり、系統に戻す必要のない電力が、系統に流れ出ることを防止する。このとき、(FC電力+PV電力−AC負荷電力−DC負荷電力−EV充電器電力)が正の場合は、この正の電力はバッテリ4に充電される。
Further, when there is no power sale contract between the user and the electric power company, that is, when control is performed so as not to flow backward to the grid, the AC output power of the AC / DC 1 is controlled to be equal to or less than the AC measured power. As a result, the reverse power flow is
Reverse power flow ≦ AC measurement power−AC load power = 0 (11)
Thus, power that does not need to be returned to the grid is prevented from flowing into the grid. At this time, when (FC power + PV power−AC load power−DC load power−EV charger power) is positive, the positive power is charged in the battery 4.

次に、系統が停電し、PV電力が小さいときの動作を図8に示す。   Next, FIG. 8 shows the operation when the system fails and the PV power is small.

バッテリ4を直接DCバスに接続、あるいは、バッテリ用DC/DC5がDCバス一定電圧制御を行っているので、DCバス電圧は維持される。AC/DC1の制御部1aは系統の停電を検出して、AC/DC1の制御を、いままでの系統電圧の位相に合わせて交流電力を出力する電力制御からAC電圧一定制御に切替える。このときのAC出力電力は、
AC出力電力=AC負荷電力=PV電力+FC電力+バッテリ放電電力−EV充電器電力−DC負荷電力 ・・・(12)
となる。PV電力+FC電力がDC負荷電力+EV充電器電力を上回る場合は余剰がバッテリ4に充電される。
Since the battery 4 is directly connected to the DC bus, or the battery DC / DC 5 performs DC bus constant voltage control, the DC bus voltage is maintained. The control unit 1a of the AC / DC 1 detects a power failure of the system, and switches the control of the AC / DC 1 from power control that outputs AC power according to the phase of the system voltage so far to constant AC voltage control. The AC output power at this time is
AC output power = AC load power = PV power + FC power + battery discharge power−EV charger power−DC load power (12)
It becomes. When PV power + FC power exceeds DC load power + EV charger power, the battery 4 is charged with surplus.

これにより、停電時にDCバス電圧を失って装置が止まることなく、自立運転が可能となる。   Thereby, it becomes possible to perform a self-sustained operation without losing the DC bus voltage at the time of a power failure and stopping the apparatus.

(効果)
FCおよびEV充電器がDC接続されたときに、系統に戻す必要のない電力が、系統に流れ出ることを防止し、停電時にはバッテリによりDCバスの電圧を維持し、AC負荷に必要な交流電力を供給可能となる。
(effect)
When FC and EV chargers are connected to DC, power that does not need to be returned to the grid is prevented from flowing into the grid, and the DC bus voltage is maintained by the battery in the event of a power failure, and AC power required for the AC load is maintained. Supply is possible.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…双方向AC/DC、2…太陽電池、3…太陽電池用DC/DC、4…バッテリ、5…バッテリ用双方向DC/DC、6…演算部、7…AC計測部、8…系統、9…AC負荷、10…AC出力燃料電池、11…AC接続EV充電器、12…DC負荷、13…DC出力燃料電池、14…DC接続EV充電器。   DESCRIPTION OF SYMBOLS 1 ... Bidirectional AC / DC, 2 ... Solar cell, 3 ... DC / DC for solar cells, 4 ... Battery, 5 ... Bidirectional DC / DC for batteries, 6 ... Operation part, 7 ... AC measurement part, 8 ... System , 9 ... AC load, 10 ... AC output fuel cell, 11 ... AC connection EV charger, 12 ... DC load, 13 ... DC output fuel cell, 14 ... DC connection EV charger.

Claims (15)

DCバスに接続されDCバス電圧を一定に維持するバッテリと、
太陽電池と、
前記太陽電池の出力を変換し前記DCバスに接続されるDC/DCコンバターと、
前記DCバスと系統との間に接続され直流電力と交流電力の変換を行う双方向AC/DC変換器と、
前記系統に接続されたAC負荷のAC負荷電力を計測するAC計測部と、
前記AC/DC変換器の制御電力を演算する演算部とを具備し、
前記演算部は、前記AC/DC変換器のAC出力電力を、(太陽電池電力+AC計測電力)以下に制御し、前記太陽電池電力を前記系統へ逆潮流する、発電装置。
A battery connected to the DC bus to maintain a constant DC bus voltage;
Solar cells,
A DC / DC converter that converts the output of the solar cell and is connected to the DC bus;
A bi-directional AC / DC converter connected between the DC bus and the system for converting DC power and AC power;
An AC measuring unit for measuring AC load power of an AC load connected to the system;
A calculation unit for calculating the control power of the AC / DC converter,
The calculation unit controls the AC output power of the AC / DC converter to be equal to or less than (solar cell power + AC measured power), and reversely flows the solar cell power to the system.
前記演算部は、前記AC/DC変換器のAC出力電力を太陽電池電力以下に制御し、前記太陽電池電力から前記AC負荷電力を減じた余剰分を前記系統へ逆潮流する、請求項1に記載の発電装置。   The calculation unit controls the AC output power of the AC / DC converter to be equal to or lower than solar cell power, and reversely flows a surplus obtained by subtracting the AC load power from the solar cell power to the system. The power generator described. 前記演算部は、前記AC/DC変換器のAC出力電力を、前記AC計測電力以下に制御し、前記太陽電池電力を前記系統へ逆潮流しない、請求項1に記載の発電装置。   The power generation device according to claim 1, wherein the arithmetic unit controls the AC output power of the AC / DC converter to be equal to or less than the AC measured power, and does not reversely flow the solar cell power to the system. 前記系統に接続されるACラインに接続されるAC出力燃料電池を更に具備し、前記演算部は、前記AC/DC変換器のAC出力電力を(太陽電池電力+AC計測電力−燃料電池電力)以下に制御し、前記太陽電池電力を前記系統へ逆潮流する、請求項1に記載の発電装置。   An AC output fuel cell connected to an AC line connected to the system is further provided, and the calculation unit has an AC output power of the AC / DC converter equal to or less than (solar cell power + AC measurement power−fuel cell power). The power generator according to claim 1, wherein the solar cell power is reversely flowed to the grid. 前記系統に接続されるACラインに接続された電気自動車充電器を更に具備し、
前記AC計測部は(AC負荷電力+電気自動車充電器消費電力)を計測し、前記演算部は、前記AC/DC変換器のAC出力電力を(太陽電池電力+AC計測電力)以下に制御し、前記太陽電池電力を前記系統へ逆潮流する、請求項1に記載の発電装置。
An electric vehicle charger connected to an AC line connected to the system;
The AC measurement unit measures (AC load power + electric vehicle charger power consumption), and the calculation unit controls the AC output power of the AC / DC converter to (solar cell power + AC measurement power) or less, The power generation device according to claim 1, wherein the solar cell power is reversely flowed to the grid.
前記系統に接続されるACラインに接続されたAC出力燃料電池および電気自動車充電器を更に具備し、前記AC計測部は(AC負荷電力+電気自動車充電器消費電力)を計測し、前記演算部は、前記AC/DC変換器のAC出力電力を(太陽電池電力+AC計測電力−燃料電池電力)以下に制御し、前記太陽電池電力を前記系統へ逆潮流する、請求項1に記載の発電装置。   An AC output fuel cell connected to an AC line connected to the system and an electric vehicle charger are further provided, and the AC measurement unit measures (AC load power + electric vehicle charger power consumption), and the arithmetic unit 2. The power generation device according to claim 1, wherein the AC output power of the AC / DC converter is controlled to be equal to or less than (solar cell power + AC measurement power−fuel cell power), and the solar cell power flows backward to the grid. . 前記演算部は、前記AC/DC変換器のAC出力電力を(太陽電池電力−燃料電池電力)以下に制御、あるいは前記燃料電池を停止し、前記AC/DC変換器のAC出力電力を太陽電池電力以下に制御し、前記太陽電池電力からAC計測電力を減じた余剰分を前記系統へ逆潮流する、請求項4又は6に記載の発電装置。   The arithmetic unit controls the AC output power of the AC / DC converter to (solar cell power-fuel cell power) or less, or stops the fuel cell, and converts the AC output power of the AC / DC converter to a solar cell. The power generator according to claim 4 or 6, wherein the power is controlled to be equal to or lower than electric power, and a surplus obtained by subtracting AC measured power from the solar battery power is reversely flowed to the system. 前記演算部は、前記AC/DC変換器のAC出力電力を(AC計測電力−燃料電池電力)以下に制御し、前記太陽電池電力を前記系統へ逆潮流しない、請求項4又は6に記載の発電装置。   The said calculating part controls AC output electric power of the said AC / DC converter below (AC measurement electric power-fuel cell electric power), and does not reversely flow the said solar cell electric power to the said system | strain of Claim 4 or 6 Power generation device. 前記DCバスに接続されるDC出力燃料電池と、前記DCバスに接続されたDC負荷のDC負荷電力を計測するDC計測部とを更に具備し、
前記演算部は、前記AC/DC変換器のAC出力電力を(太陽電池電力+AC計測電力)以下に制御し、前記太陽電池電力を前記系統へ逆潮流する、請求項1に記載の発電装置。
A DC output fuel cell connected to the DC bus; and a DC measuring unit for measuring DC load power of a DC load connected to the DC bus;
The power generation device according to claim 1, wherein the arithmetic unit controls the AC output power of the AC / DC converter to be equal to or less than (solar cell power + AC measured power) and reversely flows the solar cell power to the system.
前記DCバスにはDC負荷が接続され、
前記DCバスに接続される電気自動車充電器と、(DC負荷電力+電気自動車充電器電力)を計測するDC計測部とを更に具備し、
前記演算部は、前記AC/DC変換器のAC出力電力を(太陽電池電力+AC計測電力)以下に制御し、前記太陽電池電力を前記系統へ逆潮流する、請求項1に記載の発電装置。
A DC load is connected to the DC bus,
An electric vehicle charger connected to the DC bus; and a DC measurement unit for measuring (DC load power + electric vehicle charger power),
The power generation device according to claim 1, wherein the arithmetic unit controls the AC output power of the AC / DC converter to be equal to or less than (solar cell power + AC measured power) and reversely flows the solar cell power to the system.
前記DCバスにはDC負荷が接続され、
前記DCバスに接続されるDC出力燃料電池および電気自動車充電器と、(DC負荷電力+電気自動車充電器電力)を計測するDC計測部とを更に具備し、
前記演算部は、前記AC/DC変換器のAC出力電力を(太陽電池電力+AC計測電力)以下に制御し、前記太陽電池電力を前記系統へ逆潮流する、請求項1に記載の発電装置。
A DC load is connected to the DC bus,
A DC output fuel cell and an electric vehicle charger connected to the DC bus; and a DC measuring unit for measuring (DC load power + electric vehicle charger power),
The power generation device according to claim 1, wherein the arithmetic unit controls the AC output power of the AC / DC converter to be equal to or less than (solar cell power + AC measured power) and reversely flows the solar cell power to the system.
前記演算部は、前記AC/DC変換器のAC出力電力を(太陽電池電力−DC計測電力)以下に制御し、前記太陽電池電力からAC計測電力およびDC計測電力を減じた余剰分を系統へ逆潮流する、請求項9乃至11のいずれか1項に記載の発電装置。   The arithmetic unit controls the AC output power of the AC / DC converter to be equal to or less than (solar cell power-DC measured power), and the surplus obtained by subtracting the AC measured power and the DC measured power from the solar cell power is supplied to the system. The power generation device according to any one of claims 9 to 11, wherein the power generation device performs reverse power flow. 前記演算部は、前記AC/DC変換器のAC出力電力をAC計測電力以下に制御し、系統へ逆潮流しない、請求項9乃至12のいずれか1項に記載の発電装置。   The power generation device according to any one of claims 9 to 12, wherein the arithmetic unit controls an AC output power of the AC / DC converter to be equal to or less than an AC measurement power and does not reversely flow into the system. 前記バッテリは、バッテリ出力を双方向に変換するDC/DCコンバータでDCバスに接続される、請求項1乃至13のいずれか1項に記載の発電装置。   The power generator according to any one of claims 1 to 13, wherein the battery is connected to a DC bus by a DC / DC converter that bidirectionally converts battery output. 前記AC/DC変換器は、前記系統の停電を検出し、前記AC/DC変換器の制御を電力制御から、AC電圧一定制御に切替える制御部を具備する、請求項1乃至14のいずれか1項に記載の発電装置。   15. The AC / DC converter includes a control unit that detects a power failure in the system and switches the control of the AC / DC converter from power control to AC voltage constant control. The power generator according to item.
JP2013107327A 2013-05-21 2013-05-21 Power generation device Pending JP2014230366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013107327A JP2014230366A (en) 2013-05-21 2013-05-21 Power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013107327A JP2014230366A (en) 2013-05-21 2013-05-21 Power generation device

Publications (1)

Publication Number Publication Date
JP2014230366A true JP2014230366A (en) 2014-12-08

Family

ID=52129753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013107327A Pending JP2014230366A (en) 2013-05-21 2013-05-21 Power generation device

Country Status (1)

Country Link
JP (1) JP2014230366A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170811A1 (en) * 2015-04-22 2016-10-27 株式会社村田製作所 Energy management system
JP2021045042A (en) * 2017-11-29 2021-03-18 オムロン株式会社 Power storage system
CN112737037A (en) * 2020-12-29 2021-04-30 哈尔滨莱科科技发展有限公司 Portable multi-functional light stores up charging device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170811A1 (en) * 2015-04-22 2016-10-27 株式会社村田製作所 Energy management system
JPWO2016170811A1 (en) * 2015-04-22 2017-04-27 株式会社村田製作所 Energy management system
CN107041162A (en) * 2015-04-22 2017-08-11 株式会社村田制作所 Ems
CN107041162B (en) * 2015-04-22 2019-05-14 株式会社村田制作所 Energy Management System
US10374434B2 (en) 2015-04-22 2019-08-06 Murata Manufacturing Co., Ltd. Energy management system
JP2021045042A (en) * 2017-11-29 2021-03-18 オムロン株式会社 Power storage system
JP7322866B2 (en) 2017-11-29 2023-08-08 オムロン株式会社 power storage system
CN112737037A (en) * 2020-12-29 2021-04-30 哈尔滨莱科科技发展有限公司 Portable multi-functional light stores up charging device

Similar Documents

Publication Publication Date Title
EP3148037B1 (en) Energy storage system
Dali et al. Hybrid solar–wind system with battery storage operating in grid-connected and standalone mode: control and energy management–experimental investigation
JP5327407B2 (en) Storage battery system and control method thereof
TWI497866B (en) Charging equipment
JP2014230455A (en) Power generator
Bao et al. Battery charge and discharge control for energy management in EV and utility integration
JP5541982B2 (en) DC power distribution system
US20170187190A1 (en) Distributed power supply system, power converter device, and method of controlling power factor
JP5709275B2 (en) Power transmission system
CN105552878B (en) DC micro-grid structure
JP6522901B2 (en) DC distribution system
KR20150106694A (en) Energy storage system and method for driving the same
JP2017121171A (en) Storage battery charge-discharge system, and interconnection system
JP2015220889A (en) Power supply system
JP2015198555A (en) Power control method, power control unit, and power control system
JP2017055598A (en) Power control device
Goli et al. Wind powered smart charging facility for PHEVs
KR20150085227A (en) The control device and method for Energy Storage System
KR101587488B1 (en) High efficiency battery charge/discharge system and method in grid-tied system
JP2014230366A (en) Power generation device
Agrawal et al. Hybrid DERs enabled residential microgrid system with MVDC and LVDC bus layout facilities
JP6082565B2 (en) Distributed power system
KR101220500B1 (en) Hybrid solar ups inverter system
JP2016123239A (en) Power control system, power controller, and power control method
JP2015073368A (en) Power conditioner system