JP5773360B2 - Flow measuring device - Google Patents

Flow measuring device Download PDF

Info

Publication number
JP5773360B2
JP5773360B2 JP2011218343A JP2011218343A JP5773360B2 JP 5773360 B2 JP5773360 B2 JP 5773360B2 JP 2011218343 A JP2011218343 A JP 2011218343A JP 2011218343 A JP2011218343 A JP 2011218343A JP 5773360 B2 JP5773360 B2 JP 5773360B2
Authority
JP
Japan
Prior art keywords
pore
intake passage
suction
measuring
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011218343A
Other languages
Japanese (ja)
Other versions
JP2013076685A (en
Inventor
智志 柴
智志 柴
裕利 中尾
裕利 中尾
吾郷 健二
健二 吾郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011218343A priority Critical patent/JP5773360B2/en
Publication of JP2013076685A publication Critical patent/JP2013076685A/en
Application granted granted Critical
Publication of JP5773360B2 publication Critical patent/JP5773360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、細孔内を流れるガスの流量を測定する流量測定装置に関し、より詳しくは、CVD装置にて、減圧下の反応室内に原料ガスを導入するシャワープレートのガス噴射口たる細孔を流れるガスの流量測定に用いられるものに関する。   The present invention relates to a flow rate measuring device for measuring the flow rate of a gas flowing in a pore, and more specifically, a pore serving as a gas injection port of a shower plate for introducing a raw material gas into a reaction chamber under reduced pressure by a CVD device. The present invention relates to one used for measuring the flow rate of flowing gas.

半導体デバイスの製造工程には例えば成膜工程があり、この成膜工程に利用される成膜方法の一つとしてCVD法がある。CVD法を実施するCVD装置は、反応室を画成する真空チャンバを備え、この真空チャンバには、真空ポンプに通じる、圧力制御弁等が介設された排気管が接続されている。また、真空チャンバの天板内側には原料ガスのガス導入部が設けられ、このガス導入部に対向させて真空チャンバの底部には、処理すべき基板を位置決め保持するステージが設けられている(例えば特許文献1参照)。   A semiconductor device manufacturing process includes, for example, a film forming process, and a CVD method is one of film forming methods used in this film forming process. A CVD apparatus that performs a CVD method includes a vacuum chamber that defines a reaction chamber, and an exhaust pipe that is connected to a vacuum pump and is provided with a pressure control valve or the like is connected to the vacuum chamber. Further, a gas gas introduction part for a source gas is provided inside the top plate of the vacuum chamber, and a stage for positioning and holding a substrate to be processed is provided at the bottom part of the vacuum chamber so as to face the gas introduction part ( For example, see Patent Document 1).

ガス導入部は、例えば、真空チャンバの天板内側に真空チャンバ内方に向けて立設した環状壁と、環状壁の下面に装着される、板状の部材に所定のパターンで同一形態(同一径及び同一長さ)の細孔が複数穿設されたシャワープレートとを有し、環状壁とシャワープレートとで区画される空間には、予め混合された、または、混合することなく少なくとも二種の原料ガスを一定の流量で導入するガス導入管が接続されている。そして、上記空間に導入された原料ガスが当該空間で一旦拡散され、シャワープレートの各細孔を通して処理室内の基板表面へと供給される。   For example, the gas introduction part has the same form (the same as a predetermined pattern on a plate-like member mounted on the annular wall standing on the inner side of the vacuum chamber and the lower surface of the annular wall. And a shower plate having a plurality of pores of the same diameter and the same length), and the space defined by the annular wall and the shower plate is premixed or at least two types without mixing. A gas introduction pipe for introducing the raw material gas at a constant flow rate is connected. Then, the source gas introduced into the space is once diffused in the space and supplied to the substrate surface in the processing chamber through each pore of the shower plate.

ここで、CVD法にて成膜する際に基板面内における膜厚の均一性を高める方法の一つとして、シャワープレートの各細孔を介して基板に夫々供給される原料ガスのガス流量を均一にすることが考えられ、これには、シャワープレートの各細孔の加工精度にばらつきがないこと、言い換えると、各細孔のコンダクタンスが互いに一致していることが必要となる。従来、このようにシャワープレートに穿設された細孔の加工精度のばらつきは、例えばピンゲージを各細孔に挿通することで管理されていた。   Here, as one of the methods for improving the uniformity of the film thickness in the substrate surface when the film is formed by the CVD method, the gas flow rate of the source gas supplied to the substrate through each pore of the shower plate is set. It can be considered to be uniform, and this requires that there is no variation in the processing accuracy of each pore of the shower plate, in other words, the conductance of each pore needs to match each other. Conventionally, the variation in the processing accuracy of the pores formed in the shower plate in this way has been managed by, for example, inserting a pin gauge into each pore.

然しながら、近年では、膜厚分布の更なる均一性向上等のため、板状の部材に形成する各細孔として、例えば、径1mmで孔長が20mm以上の高アスペクト比のものが利用される場合もある。このような場合、シャワープレートの母材の材質等によっては、細孔の全てを母材に精度よく機械加工することが困難な場合がある。このため、ピンゲージを用いた従来法の管理方法では、作業性が悪いだけでなく、各細孔のコンダクタンスが互いに一致しているかの判断が実質上できず、高アスペクト比の細孔に対しても効率よくかつ精度よくそのコンダクタンスを測定する、即ち、細孔内を流れるガス流量を測定する装置の開発が望まれている。   However, in recent years, in order to further improve the uniformity of the film thickness distribution, for example, a high aspect ratio having a diameter of 1 mm and a hole length of 20 mm or more is used as each pore formed in the plate-like member. In some cases. In such a case, depending on the material of the base material of the shower plate, it may be difficult to accurately machine all of the pores in the base material. For this reason, the conventional management method using a pin gauge not only has poor workability, but also cannot substantially determine whether the conductances of the respective pores coincide with each other. However, it is desired to develop an apparatus for measuring the conductance efficiently and accurately, that is, for measuring the flow rate of gas flowing in the pores.

特開2005−158919号公報JP 2005-158919 A

本発明は、上記点に鑑み、高アスペクト比の細孔に対しても効率よくかつ精度よく当該細孔内を流れるガスの流量を測定することができる作業性のよい流量測定装置を提供することをその課題とするものである。   In view of the above points, the present invention provides a flow rate measuring apparatus with good workability capable of measuring the flow rate of a gas flowing through the pores efficiently and accurately even for pores with a high aspect ratio. Is the issue.

上記課題を解決するために、本発明は、測定対象物を所定形状の部材に穿設した細孔とし、この細孔内を流れるガスの流量を測定する流量測定装置であって、大気圧より低い所定圧力で吸引する吸引手段と、この吸引手段に夫々接続される主吸気通路及び比較吸気通路とを備え、主吸気通路が細孔の一側に着脱自在に接続され、比較吸気通路が細孔に対応する第1の測定基準孔に連通し、この比較吸気通路に細孔に対応する第2の測定基準孔が介設されると共に主吸気通路に細孔に対応する第3の測定基準孔が介設され、吸引手段を稼働して細孔及び第1の測定基準孔を通してガスを夫々吸引し、細孔及び第3の測定基準孔備の間、及び、第1及び第2の両測定基準孔の間における主吸気通路と比較吸気通路との圧力差を測定する第1の測定手段を設けたことを特徴とする。   In order to solve the above-described problems, the present invention provides a flow rate measuring device for measuring a flow rate of a gas flowing in a pore formed in a member having a predetermined shape as a measurement object, and measuring the flow rate of the gas from the atmospheric pressure. A suction means for sucking at a low predetermined pressure, and a main intake passage and a comparison intake passage connected to the suction means respectively, the main intake passage is detachably connected to one side of the pore, and the comparison intake passage is narrow. A second measurement reference hole corresponding to the pore is provided in the comparative intake passage, and a third measurement reference corresponding to the pore is provided in the main intake passage. A hole is interposed, and the suction means is operated to suck the gas through the fine hole and the first measurement reference hole, respectively, and between the fine hole and the third measurement reference hole and both the first and second measurement holes. A first measurement for measuring a pressure difference between the main intake passage and the comparative intake passage between the measurement reference holes Characterized in that a stage.

本発明によれば、主吸気通路の一端を細孔の一側に接続した後、吸引手段を稼働し、吸引手段により大気圧より低い所定圧力で主吸気通路と比較吸気通路とが夫々吸引されると、細孔の他側から当該細孔を通して主吸気通路に(例えば、大気中の)ガスが吸引されると共に第1の測定基準孔を通して比較吸気通路に(例えば、大気中の)ガスが吸引される。そして、主吸気通路及び比較吸気通路との所定位置(例えば中間位置)での圧力差を測定することで、第1〜第3の各測定基準孔を、測定しようとする細孔に対応させて(つまり、測定しようする細孔の形態に一致させて)精密に機械加工しておけば、主吸気通路及び比較吸気通路の圧力差の絶対値を小さくすることができ、測定環境の影響を受けることなく、上記圧力差から細孔のコンダクタンス、ひいては、細孔を流れるガス流量を精密に相対測定することができる。   According to the present invention, after one end of the main intake passage is connected to one side of the pore, the suction means is operated, and the main intake passage and the comparison intake passage are sucked by the suction means at a predetermined pressure lower than the atmospheric pressure, respectively. Then, gas (for example, in the atmosphere) is sucked into the main intake passage through the pore from the other side of the pore, and gas (for example, in the atmosphere) is sucked into the comparative intake passage through the first measurement reference hole. Sucked. Then, by measuring a pressure difference at a predetermined position (for example, an intermediate position) between the main intake passage and the comparison intake passage, each of the first to third measurement reference holes is made to correspond to the pore to be measured. If precisely machined (that is, matched to the shape of the pore to be measured), the absolute value of the pressure difference between the main intake passage and the comparative intake passage can be reduced, and is affected by the measurement environment. The relative conductance of the conductance of the pores and hence the flow rate of the gas flowing through the pores can be accurately measured from the pressure difference.

本発明においては、前記吸引手段の吸引口と大気圧との圧力差を測定する第2の測定手段を設け、この第2の測定手段で測定した圧力差に応じて吸引手段の吸引速度を制御するように構成することが好ましい。これによれば、大気圧、主吸気通路及び比較吸気通路並びに吸引手段相互の圧力差を一定に保持して測定することで、大気圧の変動の影響を受けずにより一層精度よくガス流量を測定することができる。   In the present invention, there is provided a second measuring means for measuring the pressure difference between the suction port of the suction means and the atmospheric pressure, and the suction speed of the suction means is controlled according to the pressure difference measured by the second measuring means. It is preferable to configure so as to. According to this, by measuring the pressure difference between the atmospheric pressure, the main intake passage, the comparative intake passage, and the suction means at a constant level, the gas flow rate can be measured more accurately without being affected by fluctuations in the atmospheric pressure. can do.

また、本発明においては、前記主吸気通路の少なくとも先端部分が可撓性部材で構成され、可撓性部材の一端に吸着パッドを備えてなることが好ましい。これによれば、測定対象物をCVD装置に利用されるシャワープレートの各細孔とし、これらの細孔を流れるガスの流量を測定するような場合に、吸着パッドを任意の位置に移動させ、吸着パッドを細孔の一側周縁部の周囲を囲って密着するように押圧して吸着させるだけで、主吸気通路と細孔とを連通させて流量測定のための準備ができ、その結果、作業を向上することができ、有利である。   In the present invention, it is preferable that at least a tip portion of the main intake passage is formed of a flexible member, and one end of the flexible member is provided with a suction pad. According to this, when the measurement object is each pore of the shower plate used in the CVD apparatus and the flow rate of the gas flowing through these pores is measured, the suction pad is moved to an arbitrary position, By simply pressing the suction pad so that it surrounds the periphery of one side of the pore and adsorbing it, the main intake passage communicates with the pore to prepare for flow measurement. Work can be improved and is advantageous.

ところで、シャワープレートを備えたCVD装置にて所定面積の基板に対して所定の薄膜を成膜する場合、シャワープレートの各細孔からの噴射されるガス流量にばらつきがあると、基板面内のうち一定の範囲で膜厚のむらが生じる場合が多い。このような場合には、膜厚のむらが生じる部分に対応する位置に存する複数の細孔から噴射されるガスの総流量を管理した方が、膜厚分布の更なる均一性向上を図ることができる。そこで、本発明においては、前記部材に同一形態の細孔が複数形成されているものの場合、前記細孔の複数を集合細孔とし、前記吸着パッドは、集合細孔の周囲を囲って各細孔を通してガスを同時に吸引するように構成することができる。これによれば、流量測定装置の構成を変更することなく、複数の細孔から噴射されるガスの総流量を管理することもでき、有利である。なお、吸着パッドを主吸気通路に着脱自在に設けておき、膜厚分布のむらが生じている範囲に応じて交換できるようにしておけば、使い勝手が向上する。   By the way, when a predetermined thin film is formed on a substrate having a predetermined area in a CVD apparatus equipped with a shower plate, if there is variation in the flow rate of gas injected from each pore of the shower plate, Of these, unevenness in film thickness often occurs within a certain range. In such a case, it is possible to further improve the uniformity of the film thickness distribution by managing the total flow rate of the gas injected from the plurality of pores located at the position corresponding to the portion where the film thickness unevenness occurs. it can. Therefore, in the present invention, in the case where a plurality of pores having the same shape are formed in the member, the plurality of pores are set as aggregate pores, and the suction pad surrounds the circumference of the aggregate pores. It can be configured to suck gas simultaneously through the holes. According to this, the total flow rate of the gas injected from the plurality of pores can be managed without changing the configuration of the flow rate measuring device, which is advantageous. In addition, if the suction pad is detachably provided in the main intake passage so that it can be exchanged according to the range in which the film thickness distribution is uneven, the usability is improved.

本発明の実施形態の流量測定装置の構成を模式的に示す図。The figure which shows typically the structure of the flow volume measuring apparatus of embodiment of this invention. 図1に示す流量測定装置でのガス流量の測定を説明する図。The figure explaining the measurement of the gas flow rate with the flow measuring device shown in FIG. 吸着パッドの変形例を説明する拡大断面図。The expanded sectional view explaining the modification of a suction pad.

以下、図面を参照して、CVD装置のガス導入部を構成する板状の部材に複数の細孔(ガス噴射口)Hを所定パターンで穿設したシャワープレートSPを用い、測定対象物をシャワープレートSPの各細孔(径0.7mm、長さが20mm)とし、この細孔Hを通して流れるガスの流量を測定する場合を例に本発明の実施形態の流量測定装置を説明する。   Hereinafter, with reference to the drawings, a measurement object is showered using a shower plate SP in which a plurality of pores (gas injection ports) H are formed in a predetermined pattern in a plate-like member constituting a gas introduction part of a CVD apparatus. The flow rate measuring device according to the embodiment of the present invention will be described by taking as an example a case where each pore of the plate SP (diameter 0.7 mm, length 20 mm) is measured and the flow rate of the gas flowing through the pore H is measured.

図1を参照して、Mは、本実施形態の流量測定装置である。流量測定装置Mは、大気圧より低い所定圧力で吸引する吸引手段1を備える。吸引手段1はハウジング11を備え、ハウジング内にはシロッコファン12が内蔵されている。シロッコファン12は、ハウジング11に付設したサーボモータ13の出力軸13aに接続され、一定の回転速度で回転駆動されるようになっている。ハウジング11に形成した吸引口14にはT型継手14aが設けられ、主排気通路を構成する第1配管2と、比較排気通路を構成する第2配管3とが夫々接続されている。また、吸引口14には、当該吸引口14と大気圧との間の圧力差を測定する公知の構造の差圧計(第2の測定手段)15が設けられている。   Referring to FIG. 1, M is a flow rate measuring device of the present embodiment. The flow rate measuring device M includes suction means 1 that sucks at a predetermined pressure lower than atmospheric pressure. The suction means 1 includes a housing 11, and a sirocco fan 12 is built in the housing. The sirocco fan 12 is connected to an output shaft 13a of a servo motor 13 attached to the housing 11, and is driven to rotate at a constant rotational speed. The suction port 14 formed in the housing 11 is provided with a T-shaped joint 14a, and the first pipe 2 constituting the main exhaust passage and the second pipe 3 constituting the comparative exhaust passage are connected to each other. The suction port 14 is provided with a differential pressure gauge (second measuring means) 15 having a known structure for measuring a pressure difference between the suction port 14 and the atmospheric pressure.

第1配管2及び第2配管3には、筒状部材4、4が、T型継手14aから等距離の位置に夫々介設されている。筒状部材4、4には、測定しようとする細孔Hの形態に対応させて、即ち、測定しようする細孔Hの内径d及び長さlを一致させて精密に機械加工した細孔が穿設され、第2配管3に設けた筒状部材4の細孔が第2の測定基準孔RH2を構成し、第1配管2に設けた筒状部材4の孔が第3の測定基準孔RH3を構成する。更に、第1配管2と第2配管3とには、T型継手14aから等距離の位置(好ましくは、主吸気通路及び比較吸気通路の全長の中間位置)で夫々分岐され、この分岐した分岐配管5、5が公知の構造の差圧計(第1の測定手段)6に夫々接続されている。そして、上記各部品が、持ち運び可能な筺体F(図1中、一点鎖線で示す)に収納されている。 In the first pipe 2 and the second pipe 3, cylindrical members 4 1 and 4 2 are respectively provided at positions equidistant from the T-shaped joint 14a. The cylindrical members 4 1 , 4 2 are finely machined precisely according to the shape of the pore H to be measured, that is, by matching the inner diameter d and the length l of the pore H to be measured. hole is drilled, a second pore of the tubular member 4 2 provided to the pipe 3 constitutes a second metric hole RH2, the first pipe 2 provided with the tubular member 4 1 of the hole 3 Measurement reference hole RH3. Further, the first pipe 2 and the second pipe 3 are respectively branched at a position equidistant from the T-shaped joint 14a (preferably, an intermediate position of the entire length of the main intake passage and the comparison intake passage). The pipes 5 1 and 5 2 are respectively connected to a differential pressure gauge (first measuring means) 6 having a known structure. And each said component is accommodated in the housing F (it shows with the dashed-dotted line in FIG. 1) which can be carried.

第1配管2及び第2配管3の端部には夫々継手(所謂ワンタッチ継手)7、7が設けられている。そして、一方の継手7には、筺体Fを貫通して外方にのびる、主排気通路を構成する第3配管2aが接続され、第3配管2aの端部に吸着パッド8が着脱自在に取り付けられている。吸着パッド8としては、樹脂製等の公知のものが利用でき、その基端が第3配管2aに外嵌され、基端からスカート状に下方にのびる吸着部を、細孔Hの一側周縁部の周囲を囲うようにシャワープレートの平坦面(図1中、上面)に押圧して吸着させることができるようになっている。これにより、第3配管2aと細孔Hとが互いに連通される。なお、第3配管2aへの吸着パッド8の取付方法は、気密保持されるように取付できるものであれば、上記限定されるものではない。また、他方の継手7には、筺体Fを貫通して外方にのびる、比較排気通路を構成する第4配管3aが接続されている。第3配管2a及び第4配管3aとしては、同一径かつ同一の長さの合成樹脂製のエアーチューブを用いられる。そして、第4配管3aの端部が、筺体Fに取り付けられた筒状部材4に接続されている。この場合、筒状部材4には、上記同様、測定しようする細孔Hの形態に一致させて精密に機械加工した孔が穿設され、第4配管3aに設けた筒状部材4の孔が第1の測定基準孔RH1を構成する。 Joints (so-called one-touch joints) 7 1 and 7 2 are provided at the ends of the first pipe 2 and the second pipe 3, respectively. Then, the one of the joint 71, extends outwardly through the housing F, the third pipe 2a constituting the main exhaust passage is connected detachably suction pad 8 to the end of the third pipe 2a It is attached. As the suction pad 8, a known material such as a resin can be used, and a suction part extending from the base end to the third pipe 2 a and extending downward in a skirt shape from the base end to one side peripheral edge of the pore H The flat surface (upper surface in FIG. 1) of the shower plate can be pressed and adsorbed so as to surround the periphery of the portion. Thereby, the 3rd piping 2a and the pore H are mutually connected. Note that the attachment method of the suction pad 8 to the third pipe 2a is not limited as long as it can be attached so as to be kept airtight. Further, the other joint 7 2, extends outwardly through the housing F, fourth pipe 3a constituting the comparison exhaust passage are connected. As the third pipe 2a and the fourth pipe 3a, synthetic resin air tubes having the same diameter and the same length are used. The end of the fourth pipe 3a is connected to the tubular member 4 3 attached to the housing F. In this case, the tubular member 4 3, in the same manner as described above, precision machined holes to match the form of the pores H to be measured is bored, cylindrical housing 4 3 provided in the fourth pipe 3a The hole constitutes the first measurement reference hole RH1.

また、筐体Fにはコンピュータ、メモリやシーケンサ等を備えた制御ユニットCが内蔵され、吸引手段1の稼動や差圧計6の測定値から細孔Hを通して流れるガス流量等を算出すること等を統括して制御するようになっている。なお、サーボモータ13の回転速度は、差圧計15の測定値に基づき、吸気口14での吸気速度が大気圧より低い所定圧力(例えば、大気圧−200Pa)に維持されるようにフィードバック制御される。以下に、本実施形態の流量測定装置を用いた細孔Hを通して流れるガスの流量測定について説明する。   The housing F includes a control unit C including a computer, a memory, a sequencer, and the like, and calculates the flow rate of gas flowing through the pores H from the operation of the suction means 1 and the measured value of the differential pressure gauge 6. It is designed to be controlled in an integrated manner. The rotational speed of the servo motor 13 is feedback-controlled based on the measured value of the differential pressure gauge 15 so that the intake speed at the intake port 14 is maintained at a predetermined pressure lower than atmospheric pressure (for example, atmospheric pressure −200 Pa). The Below, the flow measurement of the gas which flows through the pore H using the flow measuring device of this embodiment is demonstrated.

先ず、第3配管2aの吸着パッド8をシャワープレートSPに押圧し、細孔Hの一側周縁部の周囲を囲って密着するように吸着させた後(図1参照)、吸引手段1を稼働する。そして、吸引手段1により大気圧より低い所定圧力で主吸気通路2、2aと比較吸気通路3、3aが夫々吸引されると、細孔Hの他側から当該細孔Hを通して主吸気通路2、2aに(大気中の)ガスが吸引されると共に第1の測定基準孔RH1を通して比較吸気通路3、3aに(大気中の)ガスが吸引される。   First, the suction pad 8 of the third pipe 2a is pressed against the shower plate SP so as to adsorb so as to surround the periphery of one side of the pore H (see FIG. 1), and then the suction means 1 is operated. To do. When the main intake passages 2, 2a and the comparison intake passages 3, 3a are respectively sucked by the suction means 1 at a predetermined pressure lower than the atmospheric pressure, the main intake passage 2, Gas (in the atmosphere) is sucked into 2a and gas (in the atmosphere) is sucked into the comparative intake passages 3, 3a through the first measurement reference hole RH1.

ここで、図2を参照して、細孔Hを通して主吸気通路2、2aを流れるガス流量をQ1、第1の測定基準孔RH1を通して比較吸気通路3、3aを流れるガス流量をQ2とし、また、第1の測定基準孔RH1のコンダクタンスをC1、第2の測定基準孔RH2のコンダクタンスをC2、第3の測定基準孔RH3のコンダクタンスをC3及び細孔HのコンダクタンスをC4とし、更に、細孔H及び第3の測定基準孔RH3の間における主吸気通路2、2aの圧力をP、第1及び第2の両測定基準孔RH1、RH2の間における比較吸気通路3、3a内の圧力をP(つまり、差圧計15の圧力差)とすると共に、吸引手段1のうち主吸気通路2、2a及び比較吸気通路3、3aに通じる吸引口14の圧力をP、大気圧をPとした場合、次の関係が成立する。即ち、
Q2=C1(P−P)=C2(P−P)・・・(式1)
Q1=C3(P−P)=C4(P−P)・・・(式2)
上記式1及び式2から、
C4/C3=(P−P+(P−P)×C1/C2)/(P−P)・・・(式3)
Here, with reference to FIG. 2, the gas flow rate flowing through the main intake passages 2 and 2a through the pores H is Q1, the gas flow rate flowing through the comparative intake passages 3 and 3a through the first measurement reference hole RH1 is Q2, and The conductance of the first measurement reference hole RH1 is C1, the conductance of the second measurement reference hole RH2 is C2, the conductance of the third measurement reference hole RH3 is C3, and the conductance of the pore H is C4. P 1 the pressure in the main air intake passage 2,2a between H and the third metric hole RH3, the pressure in comparison intake passage 3,3a between both the first and second measurement reference holes RH1, RH2 P 2 (that is, the pressure difference of the differential pressure gauge 15), the pressure of the suction port 14 leading to the main intake passages 2, 2 a and the comparison intake passages 3, 3 a in the suction means 1 is P 3 , and the atmospheric pressure is P 0. If The following relationship is established. That is,
Q2 = C1 (P 0 -P 2 ) = C2 (P 2 -P 3) ··· ( Equation 1)
Q1 = C3 (P 1 -P 3 ) = C4 (P 0 -P 1) ··· ( Equation 2)
From Equation 1 and Equation 2 above,
C4 / C3 = (P 1 −P 2 + (P 0 −P 2 ) × C 1 / C 2) / (P 0 −P 1 ) (Equation 3)

以上より、第1〜第3の各測定基準孔RH1、RH2、RH3を、測定しようとする細孔Hに対応させて(つまり、測定しようする細孔の径d及び長さlを一致させて)精密に機械加工しておけば、上記圧力差、即ち、差圧計15の測定値から細孔Hのコンダクタンス、ひいては、細孔Hを流れるガスの流量を精密に相対測定することができる。この場合、制御ユニットCに差圧計15で測定した圧力差が入力され、これを基にガス流量が指示されるようになっている。   From the above, the first to third measurement reference holes RH1, RH2, and RH3 are made to correspond to the pore H to be measured (that is, the diameter d and the length l of the pore to be measured are made to coincide with each other). If the machine is precisely machined, the relative conductance of the conductance of the pores H and hence the flow rate of the gas flowing through the pores H can be precisely measured from the pressure difference, that is, the measured value of the differential pressure gauge 15. In this case, the pressure difference measured by the differential pressure gauge 15 is input to the control unit C, and the gas flow rate is instructed based on this pressure difference.

以上説明したように、本実施形態によれば、主吸気通路2、2a及び比較吸気通路3、3aとの所定位置(例えば中間位置)での圧力差を測定することで、第1〜第3の各測定基準孔RH1〜RH3を、測定しようとする細孔Hに対応させて精密に機械加工しておけば、主吸気通路2、2a及び比較吸気通路3、3aの圧力差の絶対値を小さくすることができ、測定環境の影響を受けることなく、上記圧力差(P−P)から細孔HのコンダクタンスC4、ひいては、細孔Hを流れるガス流量を精密に相対測定することができる。また、第2の測定手段15の測定値に応じてサーボモータ13の速度(即ち、吸引速度)を制御するため、大気圧、主吸気通路2、2a及び比較吸気通路3、3a並びに吸引手段1相互の圧力差の一定に保持して測定することで、大気圧の変動の影響を受けずにより精度よくガス流量を測定することができる。更に、第3配管2aを可撓性のエアーチューブで構成したため、吸着パッド8を任意の位置に移動させ、細孔Hの一側周縁部の周囲を囲って密着するように吸着パッド8を吸着させるだけで流量測定のための準備ができ、その結果、作業を向上することができ、有利である。 As described above, according to the present embodiment, the first to third are measured by measuring the pressure difference between the main intake passages 2 and 2a and the comparison intake passages 3 and 3a at a predetermined position (for example, an intermediate position). If each of the measurement reference holes RH1 to RH3 is precisely machined corresponding to the hole H to be measured, the absolute value of the pressure difference between the main intake passages 2 and 2a and the comparison intake passages 3 and 3a is obtained. The relative conductance of the conductance C4 of the pore H and the flow rate of the gas flowing through the pore H can be precisely measured from the pressure difference (P 1 -P 2 ) without being affected by the measurement environment. it can. Further, in order to control the speed (ie, suction speed) of the servo motor 13 in accordance with the measured value of the second measuring means 15, the atmospheric pressure, the main intake passages 2, 2a, the comparative intake passages 3, 3a, and the suction means 1 are controlled. By measuring while maintaining a constant pressure difference between each other, the gas flow rate can be measured with higher accuracy without being affected by fluctuations in atmospheric pressure. Further, since the third pipe 2a is composed of a flexible air tube, the suction pad 8 is moved to an arbitrary position, and the suction pad 8 is sucked so as to be in close contact with the periphery of the one side periphery of the pore H. It is advantageous to prepare for the flow rate measurement, and as a result, work can be improved.

以上、本発明の実施形態について説明したが、本発明は上記に限定されるものではない。上記実施形態では、サーボモータ13とシロッコファン12とを備えたものを例に吸引手段1を説明したが、脈動等することなく、一定の吸引速度で安定して吸引できるものであれば、特に制限はなく、例えば駆動源としてDCモータ等を利用することもできる。また、第1〜第4の各配管として、エアーチューブを用いた場合を例に説明したが、これに限定されるものではなく、金属製のものを用いてもよい。この場合、少なくとも第3配管2aのみが可撓性を有していればよい。更に、上記実施形態では、シャワープレートSPの線状の細孔Hを測定対象物としたが、これに限定されるものではなく、湾曲させて形成したようなものであっても本発明の流量測定装置を用いてガス流量を測定することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited above. In the above embodiment, the suction means 1 has been described by way of an example including the servo motor 13 and the sirocco fan 12. However, if the suction means 1 can be stably suctioned at a constant suction speed without pulsation, etc. There is no limitation, and for example, a DC motor or the like can be used as a drive source. Moreover, although the case where an air tube was used was demonstrated to the example as each 1st-4th piping, it is not limited to this, You may use metal things. In this case, at least only the 3rd piping 2a should just have flexibility. Furthermore, in the above embodiment, the linear pore H of the shower plate SP is the measurement object, but the measurement object is not limited to this, and the flow rate of the present invention is not limited to this. The gas flow rate can be measured using a measuring device.

また、上記実施形態では、吸着パッド8を1本の細孔Hの一側周縁部の周囲を囲って密着するように吸着させたものを例に説明したが、これに限定されるものではない。ここで、上記シャワープレートSPを備えたCVD装置にて基板に対して所定の薄膜を成膜する場合、シャワープレートの各細孔Hからの噴射されるガス流量にばらつきがあると、基板面内のうち一定の範囲で膜厚のむらが生じる場合が多く、膜厚のむらが生じる部分に対応する位置に存する複数の細孔Hから噴射されるガスの総流量を管理した方が、膜厚分布の更なる均一性向上を図ることができる。このため、図3に示すように、シャワープレートSPに穿設された細孔Hのうち一定の範囲(つまり、膜厚のむらが生じる部分に対応する範囲)内に存する各細孔Hを集合細孔Hsとし、吸着パッド80は、集合細孔Hsの周囲を囲って各細孔Hを通してガスを同時に吸引するように構成することができる。これによれば、流量測定装置の構成を変更することなく、複数の細孔から噴射されるガスの総流量を管理することもでき、有利である。   Further, in the above-described embodiment, the suction pad 8 is described as an example in which the suction pad 8 is adsorbed so as to be in close contact with the periphery of the one side periphery of the fine hole H. However, the present invention is not limited to this. . Here, when a predetermined thin film is formed on the substrate by the CVD apparatus provided with the shower plate SP, if the flow rate of the gas injected from each pore H of the shower plate varies, In many cases, unevenness of the film thickness occurs in a certain range, and it is better to manage the total flow rate of the gas injected from the plurality of pores H existing at the position corresponding to the portion where the unevenness of the film thickness occurs. Further improvement in uniformity can be achieved. For this reason, as shown in FIG. 3, each pore H existing within a certain range (that is, a range corresponding to a portion in which the film thickness is uneven) among the pores H formed in the shower plate SP is gathered into a fine cell. With the holes Hs, the suction pad 80 can be configured to simultaneously suck gas through each of the pores H surrounding the aggregate pores Hs. According to this, the total flow rate of the gas injected from the plurality of pores can be managed without changing the configuration of the flow rate measuring device, which is advantageous.

SP…シャワープレート、H…細孔(測定対象物)、1…吸引手段、14…吸気口、2…第1配管(主吸引通路)、2a…第3配管、3…第2配管(比較吸引通路)、3a…第4配管(比較吸引通路)、RH1〜RH4…第1〜第3の各測定基準孔、6、15…差圧計、8…吸着パッド。
SP ... Shower plate, H ... Fine pore (measurement object), 1 ... Suction means, 14 ... Intake port, 2 ... First pipe (main suction passage), 2a ... Third pipe, 3 ... Second pipe (comparative suction) (Passage), 3a ... fourth pipe (comparative suction passage), RH1 to RH4 ... first to third measurement reference holes, 6, 15 ... differential pressure gauge, 8 ... suction pad.

Claims (1)

測定対象物を所定形状の部材に穿設した細孔とし、この細孔内を流れるガスの流量を測定する流量測定装置であって、
大気圧より低い所定圧力で吸引する吸引手段と、この吸引手段に夫々接続される主吸気通路及び比較吸気通路とを備え、
主吸気通路が細孔の一側に着脱自在に接続され、比較吸気通路が細孔に対応する第1の測定基準孔に連通し、この比較吸気通路に細孔に対応する第2の測定基準孔が介設されると共に主吸気通路に細孔に対応する第3の測定基準孔が介設され、
吸引手段を稼働して細孔及び第1の測定基準孔を通してガスを夫々吸引し、細孔及び第3の測定基準孔の間、及び、第1及び第2の両測定基準孔の間における主吸気通路と比較吸気通路との圧力差を測定する第1の測定手段を設け、
前記吸引手段の吸引口と大気圧との圧力差を測定する第2の測定手段を設け、この第2の測定手段で測定した圧力差に応じて吸引手段の吸引速度を制御するように構成し、前記主吸気通路の少なくとも先端部分が可撓性部材で構成され、可撓性部材の一端に吸着パッドを備えてなり、前記部材に同一形態の細孔が複数形成され、前記細孔の複数を集合細孔とし、前記吸着パッドは、集合細孔の周囲を囲って各細孔を通してガスを同時に吸引するように構成されることを特徴とする流量測定装置。
A flow rate measuring device for measuring a flow rate of a gas flowing in a pore formed in a member having a predetermined shape as a measurement object,
A suction means for sucking at a predetermined pressure lower than the atmospheric pressure, and a main intake passage and a comparative intake passage respectively connected to the suction means,
The main intake passage is detachably connected to one side of the pore, the comparison intake passage communicates with a first measurement reference hole corresponding to the pore, and the second measurement reference corresponding to the pore is connected to the comparison intake passage. And a third measurement reference hole corresponding to the fine hole is interposed in the main intake passage,
The suction means is operated to suck the gas through the pore and the first measurement reference hole, respectively, and between the pore and the third measurement reference hole, and between the first and second measurement reference holes. Providing a first measuring means for measuring a pressure difference between the intake passage and the comparative intake passage;
A second measuring means for measuring the pressure difference between the suction port of the suction means and the atmospheric pressure is provided, and the suction speed of the suction means is controlled according to the pressure difference measured by the second measuring means. , At least a tip portion of the main intake passage is made of a flexible member, and is provided with a suction pad at one end of the flexible member, and a plurality of pores of the same shape are formed in the member, And the suction pad is configured to simultaneously suck gas through each of the pores surrounding the aggregated pores .
JP2011218343A 2011-09-30 2011-09-30 Flow measuring device Active JP5773360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011218343A JP5773360B2 (en) 2011-09-30 2011-09-30 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011218343A JP5773360B2 (en) 2011-09-30 2011-09-30 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2013076685A JP2013076685A (en) 2013-04-25
JP5773360B2 true JP5773360B2 (en) 2015-09-02

Family

ID=48480253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011218343A Active JP5773360B2 (en) 2011-09-30 2011-09-30 Flow measuring device

Country Status (1)

Country Link
JP (1) JP5773360B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6281276B2 (en) * 2013-12-17 2018-02-21 三菱マテリアル株式会社 Method for manufacturing electrode plate for plasma processing apparatus
CN109883663A (en) * 2018-12-28 2019-06-14 洛阳铭圣测控科技有限公司 A method of detection spilehole and miniature stomata flow value

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204243A (en) * 1989-02-03 1990-08-14 Canon Inc Substance suction device
JP3146076B2 (en) * 1992-10-20 2001-03-12 日本たばこ産業株式会社 Ventilation detection method and device
JP2661631B2 (en) * 1995-03-09 1997-10-08 工業技術院長 Simple calibration device and method for critical nozzle
JP4124383B2 (en) * 1998-04-09 2008-07-23 財団法人国際科学振興財団 Shower plate for microwave excited plasma device and microwave excited plasma device
JP2004125756A (en) * 2002-10-07 2004-04-22 Dainippon Printing Co Ltd Method and apparatus for measuring dimension of gap
US20070151328A1 (en) * 2005-12-30 2007-07-05 Asml Holding N.V. Vacuum driven proximity sensor

Also Published As

Publication number Publication date
JP2013076685A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5773360B2 (en) Flow measuring device
JP5837003B2 (en) Coating module
TWI847382B (en) Vacuum adsorption system and method
CN104295606A (en) Annular belt compound throttling static-pressure air thrust bearing
JP2009257585A (en) Table for vacuum application guided by means of aerostatics bearing element
JP2017187060A (en) Air Bearing
CN101144885B (en) Suction means and lens module assembling apparatus
CN114512435A (en) High-precision wafer carrier ceramic carrying disc
CN107338479B (en) A kind of inlet duct and method of vertical diffusion furnace
JP5344690B2 (en) Vacuum dryer
CN107061497B (en) A kind of high-precision interferometer gas-static snubber base
JP2020505121A5 (en)
WO2011065021A1 (en) Vacuum chuck
JP4877690B2 (en) Static pressure slider
JP4850117B2 (en) Adsorbent for vacuum adsorption device and vacuum adsorption device
TWI353914B (en)
TWI725152B (en) Substrate processing apparatus
JP2013245732A (en) Workpiece levitation device
WO2016009491A1 (en) Inspection method
JP2016178115A (en) Flow passage structure, intake/exhaust member, and processing device
CN105690579A (en) Retaining tool, retaining unit, and etching device
JP2007229889A (en) Chuck table inspection method
JP2004281645A (en) Substrate treating device
JP2017187297A (en) Suction stand
WO2023116161A1 (en) Vacuum suction-type heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150623

R150 Certificate of patent or registration of utility model

Ref document number: 5773360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250