JP5768999B2 - Motor control device and vehicle steering device - Google Patents

Motor control device and vehicle steering device Download PDF

Info

Publication number
JP5768999B2
JP5768999B2 JP2011030586A JP2011030586A JP5768999B2 JP 5768999 B2 JP5768999 B2 JP 5768999B2 JP 2011030586 A JP2011030586 A JP 2011030586A JP 2011030586 A JP2011030586 A JP 2011030586A JP 5768999 B2 JP5768999 B2 JP 5768999B2
Authority
JP
Japan
Prior art keywords
motor
phase
power supply
switch
supply circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011030586A
Other languages
Japanese (ja)
Other versions
JP2012170276A (en
Inventor
千徳 稔
稔 千徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011030586A priority Critical patent/JP5768999B2/en
Publication of JP2012170276A publication Critical patent/JP2012170276A/en
Application granted granted Critical
Publication of JP5768999B2 publication Critical patent/JP5768999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Controls (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Multiple Motors (AREA)

Description

この発明は、モータ制御装置および車両用操舵装置に関する。   The present invention relates to a motor control device and a vehicle steering device.

車両用操舵装置として、電動パワーステアリング装置と、ステアリングホイール等の操作部材の位置を調整する位置調整装置とを備えたものがある。位置調整装置には、たとえば、操作部材の前後位置を調整するためのテレスコピック調整装置や操作部材の上下位置を調整するためのチルト調整装置がある。
電動パワーステアリング装置は、電動パワーステアリング用モータ(EPS(Electric Power Steering)用モータ)を含む。テレスコピック調整装置は、テレスコピック調整用モータを含む。チルト調整装置は、チルト調整用モータを含む。EPS用モータは、たとえば、三相ブラシレスモータである。テレスコピック調整用モータおよびチルト調整用モータは、たとえば、ブラシ付直流モータである。
Some vehicle steering devices include an electric power steering device and a position adjusting device that adjusts the position of an operation member such as a steering wheel. Examples of the position adjusting device include a telescopic adjusting device for adjusting the front-rear position of the operating member and a tilt adjusting device for adjusting the vertical position of the operating member.
The electric power steering apparatus includes an electric power steering motor (EPS (Electric Power Steering motor)). The telescopic adjustment device includes a telescopic adjustment motor. The tilt adjustment device includes a tilt adjustment motor. The EPS motor is, for example, a three-phase brushless motor. The telescopic adjustment motor and the tilt adjustment motor are, for example, brushed DC motors.

EPS用モータは、EPS用モータの駆動回路を含むEPS用コントローラ(EPS用ECU)によって制御されている。一方、チルト調整用モータおよびテレスコピック調整用モータは、各モータの駆動回路を含む位置調整用コントローラ(位置調整用ECU)によって制御されている。   The EPS motor is controlled by an EPS controller (EPS ECU) including an EPS motor drive circuit. On the other hand, the tilt adjustment motor and the telescopic adjustment motor are controlled by a position adjustment controller (position adjustment ECU) including a drive circuit of each motor.

特開平10-164888号公報Japanese Patent Laid-Open No. 10-164888 特許第3839142号公報Japanese Patent No.3839142 特開平5-137380号公報Japanese Unexamined Patent Publication No. 5-137380 特許第3854190号公報Japanese Patent No. 3854190

従来においては、EPS用モータ、チルト調整用モータおよびテレスコピック調整用モータを駆動するためには、EPS用モータの駆動回路と、チルト調整用モータの駆動回路と、テレスコピック調整用モータの駆動回路とが必要である。これらの駆動回路は複数のFET(電界効果トランジスタ:field Effect Transistor)等のスイッチング素子を含んでいるため、多数のスイッチング素子が必要となる。   Conventionally, in order to drive an EPS motor, a tilt adjustment motor, and a telescopic adjustment motor, an EPS motor drive circuit, a tilt adjustment motor drive circuit, and a telescopic adjustment motor drive circuit include: is necessary. Since these drive circuits include switching elements such as a plurality of FETs (field effect transistors), a large number of switching elements are required.

たとえば、EPS用モータの駆動回路を、6つのFETを含む三相ブリッジインバータ回路で構成し、チルト調整用モータの駆動回路およびテレスコピック調整用モータの駆動回路を、4つのFETを含むHブリッジ回路で構成した場合には、14個のFETが必要となる。
この発明の目的は、1つの駆動回路によって、三相モータと2つの直流モータとを駆動することが可能となるモータ制御装置を提供することである。
For example, the EPS motor drive circuit is composed of a three-phase bridge inverter circuit including six FETs, and the tilt adjustment motor drive circuit and the telescopic adjustment motor drive circuit are H-bridge circuits including four FETs. If configured, 14 FETs are required.
An object of the present invention is to provide a motor control device that can drive a three-phase motor and two DC motors by one drive circuit.

この発明の目的は、1つの駆動回路によって、電動パワーステアリング用モータとチルト調整用モータとテレスコピック調整用モータとを駆動することが可能となる車両用操舵装置を提供することである。   An object of the present invention is to provide a vehicle steering apparatus that can drive an electric power steering motor, a tilt adjustment motor, and a telescopic adjustment motor by a single drive circuit.

上記の目的を達成するための請求項1記載の発明は、三相モータ(6)と、前記三相モータの第1相に対応したハイサイドおよびローサイドのスイッチング素子(FET1,FET2)と、前記三相モータの第2相に対応したハイサイドおよびローサイドのスイッチング素子(FET3,FET4)と、前記三相モータの第3相に対応したハイサイドおよびローサイドのスイッチング素子(FET5,FET6)とを有し、前記第1相、第2相および前記第3相にそれぞれ対応する第1相配線(15)、第2相配線(16)および第3相配線(17)からなる第1の給電回路を介して前記三相モータに接続された三相ブリッジインバータ回路(11)と、前記第1の給電経路を開閉するための経路開閉手段(18A,18B)と、前記第1相配線と前記第2相配線との間に第2の給電回路(21,22)を介して接続された第1の直流モータ(8)と、前記第2相配線と前記第3相配線との間に第3の給電回路(23,24)を介して接続された第2の直流モータ(9)と、前記第2の給電回路を開閉する第1のスイッチ(R1)と、前記第3の給電回路のうち、前記第2相配線と前記第2の直流モータとを接続する部分を開閉する第2のスイッチ(R2)と、前記第2の直流モータと前記第2のスイッチとの接続点を、第3のスイッチ(R3)を介して前記第1相配線に接続するための切替回路(25)とを含む、モータ制御装置である。なお、括弧内の英数字は、後述の実施形態における対応構成要素等を表すが、むろん、この発明の範囲は当該実施形態に限定されない。以下、この項において同じ。   The invention according to claim 1 for achieving the above object includes a three-phase motor (6), high-side and low-side switching elements (FET1, FET2) corresponding to the first phase of the three-phase motor, High-side and low-side switching elements (FET3, FET4) corresponding to the second phase of the three-phase motor, and high-side and low-side switching elements (FET5, FET6) corresponding to the third phase of the three-phase motor And a first feeding circuit comprising a first phase wiring (15), a second phase wiring (16) and a third phase wiring (17) corresponding to the first phase, the second phase and the third phase, respectively. A three-phase bridge inverter circuit (11) connected to the three-phase motor via the path, path opening / closing means (18A, 18B) for opening / closing the first power feeding path, and the first phase A first DC motor (8) connected via a second power feeding circuit (21, 22) between the wire and the second phase wiring, and the second phase wiring and the third phase wiring A second DC motor (9) connected between them via a third power supply circuit (23, 24), a first switch (R1) for opening and closing the second power supply circuit, and the third Of the power supply circuit, a second switch (R2) that opens and closes a portion connecting the second phase wiring and the second DC motor, and a connection point between the second DC motor and the second switch. Is a motor control device including a switching circuit (25) for connecting to the first phase wiring via a third switch (R3). In addition, although the alphanumeric character in parentheses represents a corresponding component in an embodiment described later, of course, the scope of the present invention is not limited to the embodiment. The same applies hereinafter.

経路開閉手段によって第1の給電経路を閉鎖し、第1〜第3のスイッチをオフにすると、三相モータが三相ブリッジインバータ回路に接続されるので、三相モータを駆動させることが可能となる。一方、経路開閉手段によって第1の給電経路を開放し、第1〜第3のスイッチを制御するとともに、三相ブリッジインバータ回路内のスイッチング素子を制御することにより、第1の直流モータおよび第2の直流モータのいずれか一方または両方を駆動させることが可能となる。つまり、1つの三相ブリッジインバータ回路によって、三相モータと2つの直流モータとを駆動することが可能となる。これにより、三相モータと第1の直流モータと第2の直流モータとを駆動するために必要なFET等のスイッチング素子の数を低減させることができる。   When the first power supply path is closed by the path opening / closing means and the first to third switches are turned off, the three-phase motor is connected to the three-phase bridge inverter circuit, so that the three-phase motor can be driven. Become. On the other hand, the first power supply path is opened by the path opening / closing means, the first to third switches are controlled, and the switching elements in the three-phase bridge inverter circuit are controlled, whereby the first DC motor and the second switch are controlled. Any one or both of the DC motors can be driven. That is, a three-phase motor and two DC motors can be driven by one three-phase bridge inverter circuit. Thereby, the number of switching elements such as FETs required for driving the three-phase motor, the first DC motor, and the second DC motor can be reduced.

ところで、第1のスイッチおよび第2のスイッチをオンとし、三相ブリッジインバータ回路内の所定の2つのスイッチング素子をオンにすることにより、第1の直流モータと第2の直流モータとを直列運転することが可能である。このような動作モードを直列運転可能な動作モードと言うことにする。しかしながら、直列運転可能な動作モードにおいて、第1の直流モータと第2の直流モータとを直列運転すると、各直流モータに印加される電圧が低下するため、各直流モータのトルクが低下する。   By the way, by turning on the first switch and the second switch and turning on two predetermined switching elements in the three-phase bridge inverter circuit, the first DC motor and the second DC motor are operated in series. Is possible. Such an operation mode is referred to as an operation mode capable of serial operation. However, when the first DC motor and the second DC motor are operated in series in an operation mode in which series operation is possible, the voltage applied to each DC motor is decreased, and thus the torque of each DC motor is decreased.

この発明では、第2の直流モータと第2のスイッチとの接続点を、第3のスイッチを介して第1相配線に接続するための切替回路を含んでいるので、直列運転可能な動作モードにおいて、第1の直流モータと第2の直流モータとを並列運転することが可能となる。これにより、直列運転可能な動作モードにおいて、各直流モータのトルクが低下するのを防止できる。   In this invention, since the switching circuit for connecting the connection point between the second DC motor and the second switch to the first phase wiring via the third switch is included, an operation mode capable of series operation is provided. In this case, the first DC motor and the second DC motor can be operated in parallel. Thereby, it is possible to prevent the torque of each DC motor from decreasing in an operation mode in which series operation is possible.

請求項2記載の発明は、前記第1の直流モータの正極側端子が第2の給電回路を介して前記第1相配線に接続され、前記第1の直流モータの負極側端子が第2の給電回路を介して前記第2相配線に接続され、前記第2の直流モータの正極側端子が第3の給電回路を介して前記第2相配線に接続され、前記第2の直流モータの負極側端子が第3の給電回路を介して前記第3相配線に接続され、前記第1の直流モータおよび前記第2の直流モータが正転方向に回転する動作モードにおいて、前記第1および第2の直流モータを並列運転させるための第1制御手段(12)を含み、前記第1制御手段は、前記第1のスイッチおよび前記第3のスイッチをオン状態にさせるとともに前記第2のスイッチをオフ状態にさせる手段(12)と、前記第1相に対応するハイサイドのスイッチング素子、前記第2相に対応するローサイドのスイッチング素子および前記第3相に対応するローサイドのスイッチング素子をオン状態にさせる手段(12)とを含む、請求項1に記載のモータ制御装置である。 In a second aspect of the present invention, the positive terminal of the first DC motor is connected to the first phase wiring via a second power supply circuit, and the negative terminal of the first DC motor is the second terminal. The second DC wiring is connected to the second phase wiring via a power feeding circuit, the positive terminal of the second DC motor is connected to the second phase wiring via a third power feeding circuit, and the negative polarity of the second DC motor is connected. In an operation mode in which a side terminal is connected to the third phase wiring via a third power feeding circuit, and the first DC motor and the second DC motor rotate in the forward direction, the first and second Including first control means (12) for operating the DC motors in parallel, wherein the first control means turns on the first switch and the third switch and turns off the second switch. Means (12) for bringing into a state and said first phase 2. The corresponding high-side switching element, the low-side switching element corresponding to the second phase, and the means (12) for turning on the low-side switching element corresponding to the third phase. It is a motor control device.

第1制御手段によって前記のような制御が行なわれると、電源から第1相に対応するハイサイドのスイッチング素子(図2の例ではFET1)、第2の給電回路(図2の例では21,22)、第1の直流モータ(8)および第2相に対応するローサイドのスイッチング素子(図2の例ではFET4)を介して接地へと電流が流れるとともに、電源から第1相に対応するハイサイドのスイッチング素子(図2の例ではFET1)、第3のスイッチ(R3)、第2の直流モータ(9)および第3相に対応するローサイドのスイッチング素子(図2の例ではFET6)を介して接地へと電流が流れる。これにより、第1の直流モータ側から第2のスイッチを介して第2の直流モータ側に電流が流れるように第1および第2の直流モータを直列運転することが可能な動作モードにおいて、第1および第2の直流モータを並列運転させることができる。   When the above control is performed by the first control means, a high-side switching element (FET1 in the example of FIG. 2) corresponding to the first phase from the power source, a second power feeding circuit (21 in the example of FIG. 2), 22) A current flows to the ground via the first DC motor (8) and the low-side switching element (FET4 in the example of FIG. 2) corresponding to the second phase, and a high level corresponding to the first phase from the power source. Via the side switching element (FET1 in the example of FIG. 2), the third switch (R3), the second DC motor (9), and the low-side switching element corresponding to the third phase (FET6 in the example of FIG. 2) Current flows to ground. Thus, in the operation mode in which the first and second DC motors can be operated in series so that current flows from the first DC motor side to the second DC motor side via the second switch, The first and second DC motors can be operated in parallel.

請求項3記載の発明は、前記第1の直流モータの正極側端子が第2の給電回路を介して前記第1相配線に接続され、前記第1の直流モータの負極側端子が第2の給電回路を介して前記第2相配線に接続され、前記第2の直流モータの正極側端子が第3の給電回路を介して前記第2相配線に接続され、前記第2の直流モータの負極側端子が第3の給電回路を介して前記第3相配線に接続され、前記第1の直流モータおよび前記第2の直流モータが逆転方向に回転する動作モードにおいて、前記第1および第2の直流モータを並列運転させるための第2制御手段(12)を含み、前記第2制御手段は、前記第1のスイッチおよび前記第3のスイッチをオン状態にさせるとともに前記第2のスイッチをオフ状態にさせる手段(12)と、前記第1相に対応するローサイドのスイッチング素子、前記第2相に対応するハイサイドのスイッチング素子および前記第3相に対応するハイサイドのスイッチング素子をオン状態にさせる手段(12)とを含む、請求項1または2に記載のモータ制御装置である。 According to a third aspect of the present invention, the positive terminal of the first DC motor is connected to the first phase wiring via a second power supply circuit, and the negative terminal of the first DC motor is the second terminal. The second DC wiring is connected to the second phase wiring via a power feeding circuit, the positive terminal of the second DC motor is connected to the second phase wiring via a third power feeding circuit, and the negative polarity of the second DC motor is connected. In an operation mode in which a side terminal is connected to the third-phase wiring via a third power feeding circuit, and the first DC motor and the second DC motor rotate in the reverse direction, the first and second Second control means (12) for operating DC motors in parallel includes the second control means turning on the first switch and the third switch and turning off the second switch. Means (12) for making the first phase 3. A corresponding low-side switching element, a high-side switching element corresponding to the second phase, and a means (12) for turning on a high-side switching element corresponding to the third phase. It is a motor control device given in above.

第2制御手段によって前記のような制御が行なわれると、電源から第2相に対応するハイサイドのスイッチング素子(図2の例ではFET3)、第2の給電回路(図2の例では21,22)、第1の直流モータ(8)および第1相に対応するローサイドのスイッチング素子(図2の例ではFET2)を介して接地へと電流が流れるとともに、電源から第3相に対応するハイサイドのスイッチング素子(図2の例ではFET5)、第2の直流モータ(9)、第3のスイッチ(R3)および第1相に対応するローサイドのスイッチング素子(図2の例ではFET2)を介して接地へと電流が流れる。これにより、第2の直流モータ側から第2のスイッチを介して第1の直流モータ側に電流が流れるように第1および第2の直流モータを直列運転することが可能な動作モードにおいて、第1および第2の直流モータを並列運転させることができる。   When the above-described control is performed by the second control means, the high-side switching element (FET 3 in the example of FIG. 2) corresponding to the second phase from the power source, the second feeding circuit (21 in the example of FIG. 2), 22), a current flows to the ground via the first DC motor (8) and the low-side switching element (FET2 in the example of FIG. 2) corresponding to the first phase, and a high level corresponding to the third phase from the power source. Via the side switching element (FET5 in the example of FIG. 2), the second DC motor (9), the third switch (R3), and the low-side switching element corresponding to the first phase (FET2 in the example of FIG. 2) Current flows to ground. Thus, in the operation mode in which the first and second DC motors can be operated in series so that current flows from the second DC motor side to the first DC motor side via the second switch, The first and second DC motors can be operated in parallel.

請求項4記載の発明は、三相モータ(6)と、前記三相モータの第1相に対応したハイサイドおよびローサイドのスイッチング素子(FET1,FET2)と、前記三相モータの第2相に対応したハイサイドおよびローサイドのスイッチング素子(FET3,FET4)と、前記三相モータの第3相に対応したハイサイドおよびローサイドのスイッチング素子(FET5,FET6)とを有し、前記第1相、第2相および前記第3相にそれぞれ対応する第1相配線(15)、第2相配線(16)および第3相配線(17)からなる第1の給電回路を介して前記三相モータに接続された三相ブリッジインバータ回路(11)と、前記第1の給電経路を開閉するための経路開閉手段(18A,18B)と、前記第1相配線と前記第2相配線との間に第2の給電回路(31,32)を介して接続された第1の直流モータ(8)と、前記第2相配線と前記第3相配線との間に第3の給電回路(33,34)を介して接続された第2の直流モータ(9)と、前記第2の給電回路のうち、前記第2相配線と前記第2の直流モータとを接続する部分を開閉する第1のスイッチ(R1)と、前記第3の給電回路を開閉する第2のスイッチ(R2)と、前記第1の直流モータと前記第1のスイッチとの接続点を、第3のスイッチ(R3)を介して前記第3相配線に接続するための切替回路(35)とを含む、モータ制御装置である。   The invention according to claim 4 includes a three-phase motor (6), high-side and low-side switching elements (FET1, FET2) corresponding to the first phase of the three-phase motor, and a second phase of the three-phase motor. A corresponding high-side and low-side switching element (FET3, FET4), and a high-side and low-side switching element (FET5, FET6) corresponding to the third phase of the three-phase motor, Connected to the three-phase motor via a first feeding circuit comprising a first phase wiring (15), a second phase wiring (16) and a third phase wiring (17) corresponding to the two-phase and the third phase, respectively. A three-phase bridge inverter circuit (11), a path opening / closing means (18A, 18B) for opening / closing the first power feeding path, and between the first phase wiring and the second phase wiring. A first DC motor (8) connected via a second power supply circuit (31, 32) and a third power supply circuit (33, 34) between the second phase wiring and the third phase wiring. ) And a first switch that opens and closes a portion of the second power feeding circuit that connects the second phase wiring and the second DC motor. (R1), a second switch (R2) that opens and closes the third power feeding circuit, and a connection point between the first DC motor and the first switch via a third switch (R3) And a switching circuit (35) for connecting to the third phase wiring.

経路開閉手段によって第1の給電経路を閉鎖し、第1〜第3のスイッチをオフにすると、三相モータが三相ブリッジインバータ回路に接続されるので、三相モータを駆動させることが可能となる。一方、経路開閉手段によって第1の給電経路を開放し、第1〜第3のスイッチを制御するとともに、三相ブリッジインバータ回路内のスイッチング素子を制御することにより、第1の直流モータおよび第2の直流モータのいずれか一方または両方を駆動させることが可能となる。つまり、1つの三相ブリッジインバータ回路によって、三相モータと2つの直流モータとを駆動することが可能となる。これにより、三相モータと第1の直流モータと第2の直流モータとを駆動するために必要なFET等のスイッチング素子の数を低減させることができる。   When the first power supply path is closed by the path opening / closing means and the first to third switches are turned off, the three-phase motor is connected to the three-phase bridge inverter circuit, so that the three-phase motor can be driven. Become. On the other hand, the first power supply path is opened by the path opening / closing means, the first to third switches are controlled, and the switching elements in the three-phase bridge inverter circuit are controlled, whereby the first DC motor and the second switch are controlled. Any one or both of the DC motors can be driven. That is, a three-phase motor and two DC motors can be driven by one three-phase bridge inverter circuit. Thereby, the number of switching elements such as FETs required for driving the three-phase motor, the first DC motor, and the second DC motor can be reduced.

ところで、第1のスイッチおよび第2のスイッチをオンとし、三相ブリッジインバータ回路内の所定の2つのスイッチング素子をオンにすることにより、第1の直流モータと第2の直流モータとを直列運転することが可能である。このような動作モードを直列運転可能な動作モードと言うことにする。しかしながら、直列運転可能な動作モードにおいて、第1の直流モータと第2の直流モータとを直列運転すると、各直流モータに印加される電圧が低下するため、各直流モータのトルクが低下する。   By the way, by turning on the first switch and the second switch and turning on two predetermined switching elements in the three-phase bridge inverter circuit, the first DC motor and the second DC motor are operated in series. Is possible. Such an operation mode is referred to as an operation mode capable of serial operation. However, when the first DC motor and the second DC motor are operated in series in an operation mode in which series operation is possible, the voltage applied to each DC motor is decreased, and thus the torque of each DC motor is decreased.

この発明では、第1の直流モータと第1のスイッチとの接続点を、第3のスイッチを介して第3相配線に接続するための切替回路を含んでいるので、直列運転可能な動作モードにおいて、第1の直流モータと第2の直流モータとを並列運転することが可能となる。これにより、直列運転可能な動作モードにおいて、各直流モータのトルクが低下するのを防止できる。   In this invention, since the switching circuit for connecting the connection point between the first DC motor and the first switch to the third phase wiring through the third switch is included, the operation mode in which series operation is possible In this case, the first DC motor and the second DC motor can be operated in parallel. Thereby, it is possible to prevent the torque of each DC motor from decreasing in an operation mode in which series operation is possible.

請求項5記載の発明は、前記第1の直流モータの正極側端子が第2の給電回路を介して前記第1相配線に接続され、前記第1の直流モータの負極側端子が第2の給電回路を介して前記第2相配線に接続され、前記第2の直流モータの正極側端子が第3の給電回路を介して前記第2相配線に接続され、前記第2の直流モータの負極側端子が第3の給電回路を介して前記第3相配線に接続され、前記第1の直流モータおよび前記第2の直流モータが正転方向に回転する動作モードにおいて、前記第1および第2の直流モータを並列運転させるための第1制御手段(12)を含み、前記第1制御手段は、前記第2のスイッチおよび前記第3のスイッチをオン状態にさせるとともに前記第1のスイッチをオフ状態にさせる手段(12)と、前記第1相に対応するハイサイドのスイッチング素子、前記第2相に対応するハイサイドのスイッチング素子および前記第3相に対応するローサイドのスイッチング素子をオン状態にさせる手段(12)とを含む、請求項4に記載のモータ制御装置である。 According to a fifth aspect of the present invention, a positive terminal of the first DC motor is connected to the first phase wiring via a second power supply circuit, and a negative terminal of the first DC motor is a second terminal. The second DC wiring is connected to the second phase wiring via a power feeding circuit, the positive terminal of the second DC motor is connected to the second phase wiring via a third power feeding circuit, and the negative polarity of the second DC motor is connected. In an operation mode in which a side terminal is connected to the third phase wiring via a third power feeding circuit, and the first DC motor and the second DC motor rotate in the forward direction, the first and second Including first control means (12) for operating the DC motors in parallel, wherein the first control means turns on the second switch and the third switch and turns off the first switch. Means (12) for bringing into a state and said first phase 5. A corresponding high-side switching element, a high-side switching element corresponding to the second phase, and a means (12) for turning on a low-side switching element corresponding to the third phase. This is a motor control device.

第1制御手段によって前記のような制御が行なわれると、電源から第1相に対応するハイサイドのスイッチング素子(図13の例ではFET1)、第1の直流モータ(8)、第3のスイッチ(R3)および第3相に対応するローサイドのスイッチング素子(図13の例ではFET6)を介して接地へと電流が流れるとともに、電源から第2相に対応するハイサイドのスイッチング素子(図13の例ではFET3)、第3の給電回路(図13の例では33,34)、第2の直流モータ(9)および第3相に対応するローサイドのスイッチング素子(図13の例ではFET6)を介して接地へと電流が流れる。これにより、第1の直流モータ側から第1のスイッチを介して第2の直流モータ側に電流が流れるように第1および第2の直流モータを直列運転することが可能な動作モードにおいて、第1および第2の直流モータを並列運転させることができる。   When the above control is performed by the first control means, the high-side switching element (FET 1 in the example of FIG. 13) corresponding to the first phase from the power source, the first DC motor (8), the third switch (R3) and a low-side switching element corresponding to the third phase (FET 6 in the example of FIG. 13), a current flows to the ground, and a high-side switching element corresponding to the second phase from the power source (of FIG. 13). In the example, FET3), the third feeding circuit (33, 34 in the example of FIG. 13), the second DC motor (9), and the low-side switching element corresponding to the third phase (FET6 in the example of FIG. 13). Current flows to ground. Thus, in the operation mode in which the first and second DC motors can be operated in series so that current flows from the first DC motor side to the second DC motor side via the first switch, The first and second DC motors can be operated in parallel.

請求項6記載の発明は、前記第1の直流モータの正極側端子が第2の給電回路を介して前記第1相配線に接続され、前記第1の直流モータの負極側端子が第2の給電回路を介して前記第2相配線に接続され、前記第2の直流モータの正極側端子が第3の給電回路を介して前記第2相配線に接続され、前記第2の直流モータの負極側端子が第3の給電回路を介して前記第3相配線に接続され、前記第1の直流モータおよび前記第2の直流モータが逆転方向に回転する動作モードにおいて、前記第1および第2の直流モータを並列運転させるための第2制御手段(12)を含み、前記第2制御手段は、前記第2のスイッチおよび前記第3のスイッチをオン状態にさせるとともに前記第1のスイッチをオフ状態にさせる手段(12)と、前記第1相に対応するローサイドのスイッチング素子、前記第2相に対応するローサイドのスイッチング素子および前記第3相に対応するハイサイドのスイッチング素子をオン状態にさせる手段(12)とを含む、請求項4または5に記載のモータ制御装置である。
In a sixth aspect of the present invention, a positive terminal of the first DC motor is connected to the first phase wiring via a second power supply circuit, and a negative terminal of the first DC motor is a second terminal. The second DC wiring is connected to the second phase wiring via a power feeding circuit, the positive terminal of the second DC motor is connected to the second phase wiring via a third power feeding circuit, and the negative polarity of the second DC motor is connected. In an operation mode in which a side terminal is connected to the third-phase wiring via a third power feeding circuit, and the first DC motor and the second DC motor rotate in the reverse direction, the first and second Second control means (12) for operating DC motors in parallel includes the second switch and the third switch being turned on and the first switch being turned off. Means (12) for making the first phase 6 or 5 including: a corresponding low-side switching element; a low-side switching element corresponding to the second phase; and a means (12) for turning on a high-side switching element corresponding to the third phase. It is a motor control apparatus of description.

第1制御手段によって前記のような制御が行なわれると、電源から第3相に対応するハイサイドのスイッチング素子(図13の例ではFET5)、第3のスイッチ(R3)、第1の直流モータ(8)および第1相に対応するローサイドのスイッチング素子(図13の例ではFET2)を介して接地へと電流が流れるとともに、電源から第3相に対応するハイサイドのスイッチング素子(図13の例ではFET5)、第3の給電回路(図13の例では33,34)、第2の直流モータ(9)および第2相に対応するローサイドのスイッチング素子(図13の例ではFET4)を介して接地へと電流が流れる。これにより、第2の直流モータ側から第1のスイッチを介して第1の直流モータ側に電流が流れるように第1および第2の直流モータを直列運転することが可能な動作モードにおいて、第1および第2の直流モータを並列運転させることができる。   When the above-described control is performed by the first control means, the high-side switching element (FET 5 in the example of FIG. 13) corresponding to the third phase from the power source, the third switch (R3), the first DC motor (8) and a current flows to the ground via the low-side switching element corresponding to the first phase (FET2 in the example of FIG. 13), and the high-side switching element corresponding to the third phase from the power source (of FIG. 13). In the example, FET5), the third feeding circuit (33, 34 in the example of FIG. 13), the second DC motor (9), and the low-side switching element corresponding to the second phase (FET4 in the example of FIG. 13). Current flows to ground. Thus, in the operation mode in which the first and second DC motors can be operated in series so that a current flows from the second DC motor side to the first DC motor side via the first switch, The first and second DC motors can be operated in parallel.

請求項7記載の発明は、請求項1〜6のいずれか一項に記載のモータ制御装置(10)を含み、前記三相モータが電動パワーステアリング用の三相ブラシレスモータであり、前記第1の直流モータおよび前記第2の直流モータのうちのいずれか一方が操舵部材の所定の第1方向位置を調整するためのテレスコピック調整用モータであり、他方が前記操舵部材の所定の第2方向位置を調整するためのチルト調整用モータである、車両用操舵装置である。   The invention according to claim 7 includes the motor control device (10) according to any one of claims 1 to 6, wherein the three-phase motor is a three-phase brushless motor for electric power steering, One of the direct current motor and the second direct current motor is a telescopic adjustment motor for adjusting a predetermined first direction position of the steering member, and the other is a predetermined second direction position of the steering member. This is a vehicle steering device that is a tilt adjusting motor for adjusting the angle.

この発明では、電動パワーステアリング用の三相ブラシレスモータ、テレスコピック調整用モータおよびチルト調整用モータを有する車両用操舵装置において、請求項1〜6記載の発明と同様な効果が得られる。   In the present invention, in the vehicle steering apparatus having the three-phase brushless motor for electric power steering, the telescopic adjustment motor, and the tilt adjustment motor, the same effects as those of the first to sixth aspects of the invention can be obtained.

この発明の第1の実施形態に係るモータ制御装置を含む車両用操舵装置の概略的な構成を示す模式図である。1 is a schematic diagram illustrating a schematic configuration of a vehicle steering apparatus including a motor control device according to a first embodiment of the present invention. ECUの電気的構成を示す概略図である。It is the schematic which shows the electric constitution of ECU. 第1モードにおけるECUの動作を説明するための電気回路図である。It is an electric circuit diagram for demonstrating operation | movement of ECU in a 1st mode. 第2モードにおけるECUの動作を説明するための電気回路図である。It is an electric circuit diagram for demonstrating operation | movement of ECU in a 2nd mode. 第3モードにおけるECUの動作を説明するための電気回路図である。It is an electric circuit diagram for demonstrating operation | movement of ECU in a 3rd mode. 第4モードにおけるECUの動作を説明するための電気回路図である。It is an electric circuit diagram for demonstrating operation | movement of ECU in a 4th mode. 第5モードにおけるECUの動作を説明するための電気回路図である。It is an electric circuit diagram for demonstrating operation | movement of ECU in a 5th mode. 第6モードにおけるECUの動作を説明するための電気回路図である。It is an electric circuit diagram for demonstrating operation | movement of ECU in a 6th mode. 第7モードにおけるECUの動作を説明するための電気回路図である。It is an electric circuit diagram for demonstrating operation | movement of ECU in a 7th mode. 第8モードにおけるECUの動作を説明するための電気回路図である。It is an electric circuit diagram for demonstrating operation | movement of ECU in an 8th mode. 制御部の全体的な処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the whole process of a control part. 第1の実施形態の変形例を示す概略図である。It is the schematic which shows the modification of 1st Embodiment. この発明の第2の実施形態に係るモータ制御装置であるECUの電気的構成を示す概略図である。It is the schematic which shows the electric constitution of ECU which is a motor control apparatus which concerns on 2nd Embodiment of this invention. 第1モードにおけるECUの動作を説明するための電気回路図である。It is an electric circuit diagram for demonstrating operation | movement of ECU in a 1st mode. 第2モードにおけるECUの動作を説明するための電気回路図である。It is an electric circuit diagram for demonstrating operation | movement of ECU in a 2nd mode. 第3モードにおけるECUの動作を説明するための電気回路図である。It is an electric circuit diagram for demonstrating operation | movement of ECU in a 3rd mode. 第4モードにおけるECUの動作を説明するための電気回路図である。It is an electric circuit diagram for demonstrating operation | movement of ECU in a 4th mode. 第5モードにおけるECUの動作を説明するための電気回路図である。It is an electric circuit diagram for demonstrating operation | movement of ECU in a 5th mode. 第6モードにおけるECUの動作を説明するための電気回路図である。It is an electric circuit diagram for demonstrating operation | movement of ECU in a 6th mode. 第7モードにおけるECUの動作を説明するための電気回路図である。It is an electric circuit diagram for demonstrating operation | movement of ECU in a 7th mode. 第8モードにおけるECUの動作を説明するための電気回路図である。It is an electric circuit diagram for demonstrating operation | movement of ECU in an 8th mode. 第2の実施形態の変形例を示す概略図である。It is the schematic which shows the modification of 2nd Embodiment.

以下では、この発明を車両用操舵装置に適用した場合の実施形態について、添付図面を参照して詳細に説明する。
図1は、この発明の第1の実施形態に係るモータ制御装置を含む車両用操舵装置の概略的な構成を示す模式図である。
車両用操舵装置は、ステアリングホイール(操作部材)1と、ステアリングコラム2と、電動パワーステアリング装置3と、電動テレスコピック調整装置(図示略)と、電動チルト調整装置(図示略)と、モータ制御装置としての電子制御ユニット(ECU:Electronic Control Unit)10とを備えている。
Hereinafter, an embodiment when the present invention is applied to a vehicle steering system will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic diagram showing a schematic configuration of a vehicle steering apparatus including a motor control apparatus according to a first embodiment of the present invention.
The vehicle steering device includes a steering wheel (operation member) 1, a steering column 2, an electric power steering device 3, an electric telescopic adjustment device (not shown), an electric tilt adjustment device (not shown), and a motor control device. As an electronic control unit (ECU) 10.

ステアリングコラム2は、ステアリングホイール1を回転自在に支持するものである。ステアリングホイール1は、ステアリングコラム2に回転自在に支持されたステアリングシャフト4と、中間軸5とを介して図示しない転舵機構に連結されている。
電動パワーステアリング装置3は、運転者の操舵を補助するための装置である。電動テレスコピック調整装置は、ステアリングホイール1の前後位置(コラム軸方向位置)を調整するための装置である。電動チルト調整装置は、ステアリングホイール1の上下位置(コラム軸方向に対する傾動位置)を調整するための装置である。ECU10は、電動パワーステアリング装置3と、電動テレスコピック調整装置と、電動チルト調整装置とを制御するための装置である。電動テレスコピック調整装置と電動チルト調整装置とを総称して位置調整装置という場合がある。
The steering column 2 supports the steering wheel 1 rotatably. The steering wheel 1 is connected to a steering mechanism (not shown) via a steering shaft 4 rotatably supported by the steering column 2 and an intermediate shaft 5.
The electric power steering device 3 is a device for assisting the driver's steering. The electric telescopic adjustment device is a device for adjusting the front-rear position (column axial direction position) of the steering wheel 1. The electric tilt adjusting device is a device for adjusting the vertical position (tilting position with respect to the column axis direction) of the steering wheel 1. The ECU 10 is a device for controlling the electric power steering device 3, the electric telescopic adjustment device, and the electric tilt adjustment device. The electric telescopic adjustment device and the electric tilt adjustment device may be collectively referred to as a position adjustment device.

電動パワーステアリング装置3は、操舵補助力(アシスト力)を発生するEPS用モータ6と、EPS用モータ6の出力トルクを転舵機構に伝達するための減速機構7とを含む。EPS用モータ6は、この実施形態では、三相ブラシレスモータからなる。
電動テレスコピック調整装置は、ステアリングホイール1をコラム軸方向に移動させるための機構と、この機構を駆動するためのテレスコピック調整用モータ(以下、「テレスコピックモータ8」という)を含んでいる。テレスコピックモータ8は、この実施形態では、ブラシ付直流モータからなる。
The electric power steering device 3 includes an EPS motor 6 that generates a steering assist force (assist force), and a speed reduction mechanism 7 that transmits an output torque of the EPS motor 6 to the steering mechanism. In this embodiment, the EPS motor 6 is a three-phase brushless motor.
The electric telescopic adjustment device includes a mechanism for moving the steering wheel 1 in the column axial direction and a telescopic adjustment motor (hereinafter referred to as “telescopic motor 8”) for driving the mechanism. In this embodiment, the telescopic motor 8 is a DC motor with a brush.

電動チルト調整装置は、ステアリングホイール1をコラム軸方向に対して傾動させるための機構と、この機構を駆動するためのチルト調整用モータ(以下、「チルトモータ9」という)を含んでいる。チルトモータ9は、この実施形態では、ブラシ付直流モータからなる。
EPS用モータ6、テレスコピックモータ8およびチルトモータ9は、ECU10によって制御される。テレスコピックモータ8とチルトモータ9とを総称して、「位置調整用モータ」という場合がある。
The electric tilt adjusting device includes a mechanism for tilting the steering wheel 1 with respect to the column axial direction and a tilt adjusting motor (hereinafter referred to as “tilt motor 9”) for driving the mechanism. In this embodiment, the tilt motor 9 is composed of a DC motor with a brush.
The EPS motor 6, the telescopic motor 8, and the tilt motor 9 are controlled by the ECU 10. The telescopic motor 8 and the tilt motor 9 may be collectively referred to as “position adjusting motor”.

図2は、ECU10の電気的構成を示す概略図である。
ECU10は、各モータ6,8,9の駆動電力を生成する駆動回路11と、駆動回路11を制御するための制御部12とを備えている。制御部12は、CPU(中央処理装置)とこのCPUの動作プログラム等を記憶したメモリ(ROM,RAM、書き換え可能な不揮発性メモリ等)とを含むマイクロコンピュータで構成されている。
FIG. 2 is a schematic diagram showing an electrical configuration of the ECU 10.
The ECU 10 includes a drive circuit 11 that generates drive power for the motors 6, 8, and 9, and a control unit 12 that controls the drive circuit 11. The control unit 12 is composed of a microcomputer including a CPU (central processing unit) and a memory (ROM, RAM, rewritable nonvolatile memory, etc.) that stores an operation program of the CPU.

駆動回路11は、EPS用モータ6(三相ブラシレスモータ)を駆動するために使用される三相ブリッジインバータ回路である。この実施形態では、EPS用モータ6を駆動するための駆動回路11が、テレスコピックモータ8およびチルトモータ9を駆動するための駆動回路としても使用される。
この駆動回路11では、EPS用モータ6のU相に対応した一対の電界効果トランジスタFET1,FET2の直列回路と、V相に対応した一対の電界効果トランジスタFET3,FET4の直列回路と、W相に対応した一対の電界効果トランジスタFET5,FET6の直列回路とが、直流電源14と接地との間に並列に接続されている。以下において、各相の一対のFETのうち、電源14側のものを「ハイサイドFET」といい、接地側のものを「ローサイドFET」という場合がある。
The drive circuit 11 is a three-phase bridge inverter circuit used for driving the EPS motor 6 (three-phase brushless motor). In this embodiment, the drive circuit 11 for driving the EPS motor 6 is also used as a drive circuit for driving the telescopic motor 8 and the tilt motor 9.
In the drive circuit 11, a series circuit of a pair of field effect transistors FET1 and FET2 corresponding to the U phase of the EPS motor 6, a series circuit of a pair of field effect transistors FET3 and FET4 corresponding to the V phase, and a W phase A series circuit of a corresponding pair of field effect transistors FET5 and FET6 is connected in parallel between the DC power supply 14 and the ground. In the following, among the pair of FETs of each phase, the one on the power source 14 side may be referred to as “high side FET”, and the ground side may be referred to as “low side FET”.

EPS用モータ6は、第1の給電回路15,16,17を介して駆動回路11に接続されている。具体的には、EPS用モータ6のU相界磁コイル6Uは、U相に対応した一対のFET1,FET2の間の接続点にU相配線15を介して接続されている。EPS用モータ6のV相界磁コイル6Vは、V相配線16およびEPS用リレー18Aを介して、V相に対応した一対のFET3,FET4の間の接続点に接続されている。EPS用モータ6のW相界磁コイル6Wは、W相配線17およびEPS用リレー18Bを介して、W相に対応した一対のFET5,FET6の間の接続点に接続されている。   The EPS motor 6 is connected to the drive circuit 11 via the first power supply circuits 15, 16, and 17. Specifically, the U-phase field coil 6U of the EPS motor 6 is connected via a U-phase wiring 15 to a connection point between a pair of FET1 and FET2 corresponding to the U-phase. The V-phase field coil 6V of the EPS motor 6 is connected to a connection point between the pair of FET3 and FET4 corresponding to the V-phase via the V-phase wiring 16 and the EPS relay 18A. The W-phase field coil 6W of the EPS motor 6 is connected to a connection point between the pair of FETs 5 and 6 corresponding to the W-phase via the W-phase wiring 17 and the EPS relay 18B.

EPSモータ6の周囲には、EPSモータ6のロータの回転位置(ロータ回転角)を検出するための回転位置センサ19が設けられている。回転位置センサ19は、後述する車内LAN30を介して制御部12に接続されている。EPS用リレー18A,18Bによって、第1の給電回路15,16,17を開閉するための経路開閉手段が構成されている。   Around the EPS motor 6, a rotational position sensor 19 for detecting the rotational position (rotor rotational angle) of the rotor of the EPS motor 6 is provided. The rotational position sensor 19 is connected to the control unit 12 via an in-vehicle LAN 30 described later. The EPS relays 18A and 18B constitute path opening / closing means for opening and closing the first power feeding circuits 15, 16, and 17.

テレスコピックモータ8は、U相配線15とV相配線16との間に、第2の給電回路21,22を介して接続されている。具体的には、テレスコピックモータ8の正極側端子(+)は、第1接続線21および第1のリレーR1を介してU相配線15に接続されている。一方、テレスコピックモータ8の負極側端子(−)は、第2接続線22を介してV相配線16に接続されている。なお、第1のリレーR1を、第1接続線21側に設けるのではなく、第2接続線22側に設けるようにしてもよい。この実施形態では、テレスコピックモータ8が正転方向に回転されるとステアリングホイール1の位置が車両の後方に移動し、テレスコピックモータ8が逆転方向に回転されるとステアリングホイール1の位置が車両の前方に移動する。   The telescopic motor 8 is connected between the U-phase wiring 15 and the V-phase wiring 16 via second power feeding circuits 21 and 22. Specifically, the positive terminal (+) of the telescopic motor 8 is connected to the U-phase wiring 15 via the first connection line 21 and the first relay R1. On the other hand, the negative terminal (−) of the telescopic motor 8 is connected to the V-phase wiring 16 via the second connection line 22. Note that the first relay R1 may be provided not on the first connection line 21 side but on the second connection line 22 side. In this embodiment, when the telescopic motor 8 is rotated in the forward rotation direction, the position of the steering wheel 1 moves to the rear of the vehicle, and when the telescopic motor 8 is rotated in the reverse rotation direction, the position of the steering wheel 1 is moved to the front of the vehicle. Move to.

チルトモータ9は、V相配線16とW相配線17との間に、第3の給電回路23,24を介して接続されている。具体的には、チルトモータ9の正極側端子(+)は、第3接続線23および第2のリレーR2を介してV相配線16に接続されている。一方、チルトモータ9の負極側端子(−)は、第4接続線24を介して、W相配線17に接続されている。チルトモータ9の正極側端子(+)と第2リレーR2との接続点は、第3のリレーR3を有する第5接続線(切替回路)25を介して、U相配線15に接続されている。この実施形態では、チルトモータ9が正転方向に回転されるとステアリングホイール1の位置が上方に移動し、チルトモータ9が逆転方向に回転されるとステアリングホイール1の位置が下方に移動する。第1、第2および第3のリレーR1,R2,R3を総称して、「位置調整用リレー」という場合がある。   The tilt motor 9 is connected between the V-phase wiring 16 and the W-phase wiring 17 via third power feeding circuits 23 and 24. Specifically, the positive terminal (+) of the tilt motor 9 is connected to the V-phase wiring 16 via the third connection line 23 and the second relay R2. On the other hand, the negative terminal (−) of the tilt motor 9 is connected to the W-phase wiring 17 via the fourth connection line 24. A connection point between the positive terminal (+) of the tilt motor 9 and the second relay R2 is connected to the U-phase wiring 15 via a fifth connection line (switching circuit) 25 having a third relay R3. . In this embodiment, when the tilt motor 9 is rotated in the forward direction, the position of the steering wheel 1 moves upward, and when the tilt motor 9 is rotated in the reverse direction, the position of the steering wheel 1 moves downward. The first, second, and third relays R1, R2, and R3 may be collectively referred to as “position adjusting relays”.

ローサイドFET2,FET4およびFET6と接地とを接続するための各接続線には、EPS用モータ6のV相、W相およびU相の相電流I,I,Iを検出するための電流センサ27V,27W,27Uがそれぞれ設けられている。これらの電流センサ27V,27W,27Uは、テレスコピックモータ8、チルトモータ9等に流れる電流を検出するために用いることが可能である。これらの電流センサ27V,27W,27Uは、制御部12に接続されている。 In each connection line for connecting the low-side FET 2, FET 4, and FET 6 to the ground, a current for detecting the phase currents I V , I W , and I U of the EPS motor 6 is provided. Sensors 27V, 27W, and 27U are provided, respectively. These current sensors 27V, 27W, and 27U can be used to detect a current flowing through the telescopic motor 8, the tilt motor 9, and the like. These current sensors 27 </ b> V, 27 </ b> W, and 27 </ b> U are connected to the control unit 12.

制御部12には、車内LAN(CAN:Controller Area Network)30が接続されている。車内LAN30には、前述した回転位置センサ19、車速センサ31、操舵トルクセンサ32等のセンサ類、位置調整用操作部33等が接続されている。車速センサ31は、車両の速度を検出するものである。操舵トルクセンサ32は、ステアリングホイール1に与えられた操舵トルクを検出するものである。   An in-vehicle LAN (CAN: Controller Area Network) 30 is connected to the control unit 12. Connected to the in-vehicle LAN 30 are the above-described sensors such as the rotational position sensor 19, the vehicle speed sensor 31, the steering torque sensor 32, the position adjusting operation unit 33, and the like. The vehicle speed sensor 31 detects the speed of the vehicle. The steering torque sensor 32 detects the steering torque applied to the steering wheel 1.

位置調整用操作部33は、たとえば、車両内の運転席の横に配置され、車両の側面に平行な操作面を有している。この操作面には、仮想の正方形の各コーナと各辺の中央とにそれぞれ配置された8つの位置調整キー34を備えている。8つの位置調整キー34のうち、前記仮想の正方形の各辺の中央に配置されたキーが、チルト調整またはテレスコピック調整を単独で行うための単独調整キー34,34,34,34である。 The position adjustment operation unit 33 is disposed, for example, beside a driver seat in the vehicle and has an operation surface parallel to the side surface of the vehicle. The operation surface is provided with eight position adjustment keys 34 arranged at each corner of the virtual square and at the center of each side. Of the eight position adjustment keys 34, a key arranged at the center of each side of the virtual square is a single adjustment key 34 U , 34 D , 34 F , 34 R for independently performing tilt adjustment or telescopic adjustment. It is.

単独調整キー34,34,34,34のうち、前記仮想正方形の上下の各辺の中央に配置された上下一対のキーがチルト調整を単独で行うためのチルト調整キー34,34である。上側のチルト調整キー34は、ステアリングホイール1の位置を上方向に移動させるためのキーであり、下側のチルト調整キー34は、ステアリングホイール1の位置を下方向に移動させるためのキーである。 Alone adjustment key 34 U, 34 D, 34 F , 34 among R, the tilt adjustment for upper and lower pair of keys arranged in the center of each side of the upper and lower virtual square performed alone tilt adjustment key 34 U, 34 D. The upper tilt adjustment key 34 U is a key for moving the position of the steering wheel 1 upward, and the lower tilt adjustment key 34 D is a key for moving the position of the steering wheel 1 downward. It is.

単独調整キー34,34,34,34のうち、前記仮想の正方形の前側および後側の各辺の中央に配置された前後一対のキーがテレスコピック調整を単独で行うためのテレスコピック調整キー34,34である。前側のテレスコピック調整キー34は、ステアリングホイール1の位置を前方向に移動させるためのキーであり、後側のテレスコピック調整キー34は、ステアリングホイール1の位置を後方向に移動させるためのキーである。なお、この実施形態では、テレスコピック調整キー34,34のいずれか一方と、チルト調整キー34,34のいずれか一方とが同時に押下されている場合には、押下されている2つのキーのうち一方のキー入力のみが有効なものとして受け付けられるものとする。 Among the single adjustment keys 34 U , 34 D , 34 F , and 34 R , telescopic adjustment for a pair of front and rear keys arranged at the center of the front and rear sides of the virtual square to perform telescopic adjustment independently. Keys 34 F and 34 R. The front telescopic adjustment key 34 F is a key for moving the position of the steering wheel 1 forward, and the rear telescopic adjustment key 34 R is a key for moving the position of the steering wheel 1 rearward. It is. In this embodiment, when one of the telescopic adjustment keys 34 R and 34 F and one of the tilt adjustment keys 34 U and 34 D are simultaneously pressed, the two pressed It is assumed that only one of the keys is accepted as valid.

前記仮想の正方形の各コーナに配置されたキーが、チルト調整とテレスコピック調整とを同時に行うための同時調整キー34FU,34FD,34RU,34RDである。各同時調整キー34FU,34FD,34RU,34RDは、それが配置されたコーナ位置に対応した方向にステアリングホイール1の位置を移動させるためのキーである。
制御部12は、電流センサ27U,27V,27W、回転位置センサ19、車速センサ31、操舵トルクセンサ32、位置調整用操作部33等からの入力信号に基づいて、リレー18A,18B,R1〜R3および駆動回路11内のFET1〜FET6を制御する。
Keys arranged at the corners of the virtual square are simultaneous adjustment keys 34 FU , 34 FD , 34 RU , 34 RD for simultaneously performing tilt adjustment and telescopic adjustment. Each simultaneous adjustment key 34 FU , 34 FD , 34 RU , 34 RD is a key for moving the position of the steering wheel 1 in a direction corresponding to the corner position where it is arranged.
Based on input signals from the current sensors 27U, 27V, 27W, the rotational position sensor 19, the vehicle speed sensor 31, the steering torque sensor 32, the position adjustment operation unit 33, and the like, the control unit 12 relays 18A, 18B, R1 to R3. Further, the FET1 to FET6 in the drive circuit 11 are controlled.

制御部12は、常時は、EPS用リレー18A,18Bをオン状態とし、操舵トルクセンサ32によって検出される操舵トルク、車速センサ31によって検出される車速、電流センサ27U,27V,27Wによって検出される相電流および回転位置センサ19によって検出されるEPS用モータ6の回転位置(ロータ回転角)に基づいて、EPS用モータ6を制御する。具体的には、制御部12は、操舵トルクと車速とに基づいて目標電流値を決定し、実際のモータ電流が目標電流値に近づくようにFET1〜FET6を制御する。   The control unit 12 normally turns on the EPS relays 18A and 18B and detects the steering torque detected by the steering torque sensor 32, the vehicle speed detected by the vehicle speed sensor 31, and the current sensors 27U, 27V, and 27W. The EPS motor 6 is controlled based on the phase current and the rotational position (rotor rotation angle) of the EPS motor 6 detected by the rotational position sensor 19. Specifically, the control unit 12 determines a target current value based on the steering torque and the vehicle speed, and controls the FET1 to FET6 so that the actual motor current approaches the target current value.

制御部12は、位置調整用操作部33内のキーが操作された場合において、所定の条件を満たしているときには、EPS用モータ6の制御を中断し、操作されたキーに対応したテレスコピックモータ8および/またはチルトモータ9を制御する。
位置調整用モータ(テレスコピックモータ8またはチルトモータ9)を駆動する場合の動作モードには、第1モード〜第8モードの8種類の動作モードがある。位置調整用モータ8,9が駆動される場合には、EPS用リレー18A,18Bはオフ状態にされる。
When the key in the position adjusting operation unit 33 is operated and the predetermined condition is satisfied, the control unit 12 interrupts the control of the EPS motor 6 and the telescopic motor 8 corresponding to the operated key. And / or the tilt motor 9 is controlled.
There are eight operation modes from the first mode to the eighth mode in the operation mode when driving the position adjusting motor (telescopic motor 8 or tilt motor 9). When the position adjusting motors 8 and 9 are driven, the EPS relays 18A and 18B are turned off.

表1は、位置調整用モータ8,9を駆動する場合の各動作モード(第1モード〜第8モード)の内容と、第1〜第3のリレーR1〜R3および6つのFET1〜FET1のオンオフ状態を示している。表1において、○はオンを、−はオフを示している。   Table 1 shows the contents of each operation mode (first mode to eighth mode) when driving the position adjustment motors 8 and 9, and on / off of the first to third relays R1 to R3 and the six FET1 to FET1. Indicates the state. In Table 1, ◯ indicates on and-indicates off.

Figure 0005768999
各動作モードの内容は、次の通りである。
第1モード:位置調整用モータ8,9のうち、テレスコピックモータ8のみが正転方向に回転するモードであり、キー34の操作に基づいて設定されるモードである。
Figure 0005768999
The contents of each operation mode are as follows.
The first mode: among the position adjustment motor 8,9 is a mode in which only the telescopic motor 8 rotates in the forward direction, is a mode that is set based on the operation of the key 34 R.

第2モード:位置調整用モータ8,9のうち、テレスコピックモータ8のみが逆転方向に回転するモードであり、キー34の操作に基づいて設定されるモードである。
第3モード:位置調整用モータ8,9のうち、チルトモータ9のみが正転方向に回転するモードであり、キー34の操作に基づいて設定されるモードである。
第4モード:位置調整用モータ8,9のうち、チルトモータ9のみが逆転方向に回転するモードであり、キー34の操作に基づいて設定されるモードである。
Second mode: among the position adjustment motor 8,9 is a mode in which only the telescopic motor 8 rotates in the reverse direction, is a mode that is set based on the operation of the key 34 F.
Third Mode: of a position adjustment motor 8,9 is a mode in which only the tilt motor 9 rotates in the forward direction, is a mode that is set based on the operation of the key 34 U.
Fourth Mode of position adjusting motors 8 and 9, a mode in which only the tilt motor 9 rotates in the reverse direction, is a mode that is set based on the operation of the key 34 D.

第5モード:テレスコピックモータ8が正転方向に回転するとともにチルトモータ9が正転方向に回転するモードであり、キー34RUの操作に基づいて設定されるモードである。
第6モード:テレスコピックモータ8が正転方向に回転するとともにチルトモータ9が逆転方向に回転するモードであり、キー34RDの操作に基づいて設定されるモードである。
Fifth mode: a mode in which the telescopic motor 8 rotates in the forward direction and the tilt motor 9 rotates in the forward direction, and is a mode set based on the operation of the key 34 RU .
Sixth mode: a mode in which the telescopic motor 8 rotates in the forward direction and the tilt motor 9 rotates in the reverse direction, and is a mode set based on the operation of the key 34 RD .

第7モード:テレスコピックモータ8が逆転方向に回転するとともにチルトモータ9が正転方向に回転するモードであり、キー34FUの操作に基づいて設定されるモードである。
第8モード:テレスコピックモータ8が逆転方向に回転するとともにチルトモータ9が逆転方向に回転するモードであり、キー34FDの操作に基づいて設定されるモードである。
Seventh mode: a mode in which the telescopic motor 8 rotates in the reverse rotation direction and the tilt motor 9 rotates in the normal rotation direction, and is a mode set based on the operation of the key 34 FU .
Eighth mode: a mode in which the telescopic motor 8 rotates in the reverse direction and the tilt motor 9 rotates in the reverse direction, and is a mode set based on the operation of the key 34 FD .

図3は、第1モードにおけるECU10の動作を説明するための電気回路図である。
第1モードでは、第1のリレーR1がオンされるとともに、第1のFET1および第4のFET4がオンとされる。したがって、電源14から、第1のFET1、第1のリレーR1、テレスコピックモータ8および第4のFET4を通って、接地へと電流が流れる。これにより、テレスコピックモータ8の正極側端子(+)に正電圧が印加されるので、テレスコピックモータ8が正転方向に回転する。
FIG. 3 is an electric circuit diagram for explaining the operation of the ECU 10 in the first mode.
In the first mode, the first relay R1 is turned on, and the first FET 1 and the fourth FET 4 are turned on. Therefore, a current flows from the power supply 14 to the ground through the first FET 1, the first relay R 1, the telescopic motor 8 and the fourth FET 4. Thereby, since a positive voltage is applied to the positive terminal (+) of the telescopic motor 8, the telescopic motor 8 rotates in the forward rotation direction.

図4は、第2モードにおけるECU10の動作を説明するための電気回路図である。
第2モードでは、第1のリレーR1がオンされるとともに、第2のFET2および第3のFET3がオンとされる。したがって、電源14から、第3のFET3、テレスコピックモータ8、第1のリレーR1および第2のFET2を通って、接地へと電流が流れる。これにより、テレスコピックモータ8の負極側端子(−)に正電圧が印加されるので、テレスコピックモータ8が逆転方向に回転する。
FIG. 4 is an electric circuit diagram for explaining the operation of the ECU 10 in the second mode.
In the second mode, the first relay R1 is turned on, and the second FET 2 and the third FET 3 are turned on. Therefore, a current flows from the power source 14 to the ground through the third FET 3, the telescopic motor 8, the first relay R1, and the second FET 2. Thereby, since a positive voltage is applied to the negative terminal (−) of the telescopic motor 8, the telescopic motor 8 rotates in the reverse direction.

図5は、第3モードにおけるECU10の動作を説明するための電気回路図である。
第3モードでは、第2のリレーR2がオンされるとともに、第3のFET3および第6のFET6がオンとされる。したがって、電源14から、第3のFET3、第2のリレーR2、チルトモータ9および第6のFET6を通って、接地へと電流が流れる。これにより、チルトモータ9の正極側端子(+)に正電圧が印加されるので、チルトモータ9が正転方向に回転する。
FIG. 5 is an electric circuit diagram for explaining the operation of the ECU 10 in the third mode.
In the third mode, the second relay R2 is turned on, and the third FET 3 and the sixth FET 6 are turned on. Therefore, a current flows from the power supply 14 to the ground through the third FET 3, the second relay R 2, the tilt motor 9 and the sixth FET 6. Thereby, since a positive voltage is applied to the positive terminal (+) of the tilt motor 9, the tilt motor 9 rotates in the forward rotation direction.

図6は、第4モードにおけるECU10の動作を説明するための電気回路図である。
第4モードでは、第2のリレーR2がオンされるとともに、第4のFET4および第5のFET5がオンとされる。したがって、電源14から、第5のFET5、チルトモータ9、第2のリレーR2および第4のFET4を通って、接地へと電流が流れる。これにより、チルトモータ9の負極側端子(−)に正電圧が印加されるので、チルトモータ9が逆転方向に回転する。
FIG. 6 is an electric circuit diagram for explaining the operation of the ECU 10 in the fourth mode.
In the fourth mode, the second relay R2 is turned on, and the fourth FET 4 and the fifth FET 5 are turned on. Therefore, a current flows from the power source 14 to the ground through the fifth FET 5, the tilt motor 9, the second relay R 2, and the fourth FET 4. Thereby, since a positive voltage is applied to the negative terminal (−) of the tilt motor 9, the tilt motor 9 rotates in the reverse direction.

図7は、第6モードにおけるECU10の動作を説明するための電気回路図である。
第6モードでは、第1のリレーR1および第2のリレーR2がオンされるとともに、第1のFET1、第4のFET4および第5のFET5がオンとされる。したがって、電源14から、第1のFET1、第1のリレーR1、テレスコピックモータ8および第4のFET4を通って、接地へと電流が流れるとともに、電源14から、第5のFET5、チルトモータ9、第2のリレーR2および第4のFET4を通って、接地へと電流が流れる。これにより、テレスコピックモータ8が正転方向に回転するとともに、チルトモータ9が逆転方向に回転する。この場合には、テレスコピックモータ8とチルトモータ9とが並列運転される。
FIG. 7 is an electric circuit diagram for explaining the operation of the ECU 10 in the sixth mode.
In the sixth mode, the first relay R1 and the second relay R2 are turned on, and the first FET1, the fourth FET4, and the fifth FET5 are turned on. Therefore, a current flows from the power source 14 to the ground through the first FET 1, the first relay R 1, the telescopic motor 8 and the fourth FET 4, and from the power source 14, the fifth FET 5, the tilt motor 9, A current flows through the second relay R2 and the fourth FET 4 to ground. As a result, the telescopic motor 8 rotates in the forward direction and the tilt motor 9 rotates in the reverse direction. In this case, the telescopic motor 8 and the tilt motor 9 are operated in parallel.

図8は、第7モードにおけるECU10の動作を説明するための電気回路図である。
第7モードでは、第1のリレーR1および第2のリレーR2がオンされるとともに、第2のFET2、第3のFET3および第6のFET6がオンとされる。したがって、電源14から、第3のFET3、テレスコピックモータ8、第1のリレーR1および第2のFET2を通って、接地へと電流が流れるとともに、電源14から、第3のFET3、第2のリレーR2、チルトモータ9および第6のFET6を通って、接地へと電流が流れる。これにより、テレスコピックモータ8が逆転方向に回転するとともに、チルトモータ9が正転方向に回転する。この場合には、テレスコピックモータ8とチルトモータ9とが並列運転される。
FIG. 8 is an electric circuit diagram for explaining the operation of the ECU 10 in the seventh mode.
In the seventh mode, the first relay R1 and the second relay R2 are turned on, and the second FET2, the third FET3, and the sixth FET6 are turned on. Therefore, a current flows from the power source 14 to the ground through the third FET 3, the telescopic motor 8, the first relay R1, and the second FET 2, and from the power source 14, the third FET 3, the second relay. A current flows to the ground through R2, the tilt motor 9 and the sixth FET 6. Thereby, the telescopic motor 8 rotates in the reverse rotation direction, and the tilt motor 9 rotates in the normal rotation direction. In this case, the telescopic motor 8 and the tilt motor 9 are operated in parallel.

次に、第5モードにおけるECU10の動作を説明する。第5モードは、この実施形態では、テレスコピックモータ8が正転方向に回転され、チルトモータ9が正転方向に回転される動作モードである。
このように両モータ8,9を回転させるには、第1のリレーR1および第2のリレーR2をオンにするとともに、第1のFET1および第6のFET6をオンすることによって、テレスコピックモータ8とチルトモータ9とを直列運転することが考えられる。この場合、テレスコピックモータ8側から第2のリレーR2を介してチルトモータ9側に電流が流れるように、両モータ8,9が直列運転される。しかしながら、テレスコピックモータ8とチルトモータ9とを直列運転すると、各モータ8,9に印加される電圧が低下するため、各モータ8,9のトルクが低下する。
Next, the operation of the ECU 10 in the fifth mode will be described. In this embodiment, the fifth mode is an operation mode in which the telescopic motor 8 is rotated in the forward rotation direction and the tilt motor 9 is rotated in the forward rotation direction.
In order to rotate both the motors 8 and 9 in this way, the first relay R1 and the second relay R2 are turned on, and the first FET 1 and the sixth FET 6 are turned on. It is conceivable to operate the tilt motor 9 in series. In this case, both motors 8 and 9 are operated in series so that a current flows from the telescopic motor 8 side to the tilt motor 9 side via the second relay R2. However, when the telescopic motor 8 and the tilt motor 9 are operated in series, the voltage applied to the motors 8 and 9 is reduced, so that the torque of the motors 8 and 9 is reduced.

そこで、この実施形態では、第5モードにおいて、各モータ8,9のトルクが低下しないように、テレスコピックモータ8とチルトモータ9とが並列運転される。
図9は、第5モードにおけるECU10の動作を説明するための電気回路図である。
第5モードでは、第1のリレーR1および第3のリレーR3がオンとされ、第2のリレーR2がオフとされる。また、第1のFET1、第4のFET4および第6のFET6がオンとされる。したがって、電源14から、第1のFET1、第1のリレーR1、テレスコピックモータ8および第4のFET4を通って、接地へと電流が流れるとともに、電源14から、第1のFET1、第3のリレーR3、チルトモータ9および第6のFET6を通って、接地へと電流が流れる。これにより、テレスコピックモータ8が正転方向に回転するとともに、チルトモータ9が正転方向に回転する。つまり、テレスコピックモータ8とチルトモータ9とが並列運転される。これにより、第5モードにおいて、両モータ8,9のトルクが低下するのを防止できる。
Therefore, in this embodiment, in the fifth mode, the telescopic motor 8 and the tilt motor 9 are operated in parallel so that the torque of the motors 8 and 9 does not decrease.
FIG. 9 is an electric circuit diagram for explaining the operation of the ECU 10 in the fifth mode.
In the fifth mode, the first relay R1 and the third relay R3 are turned on, and the second relay R2 is turned off. Also, the first FET 1, the fourth FET 4, and the sixth FET 6 are turned on. Therefore, a current flows from the power source 14 to the ground through the first FET 1, the first relay R 1, the telescopic motor 8 and the fourth FET 4, and from the power source 14, the first FET 1 and the third relay Current flows through R3, tilt motor 9 and sixth FET 6 to ground. Thereby, the telescopic motor 8 rotates in the forward rotation direction, and the tilt motor 9 rotates in the forward rotation direction. That is, the telescopic motor 8 and the tilt motor 9 are operated in parallel. Thereby, in the 5th mode, it can prevent that the torque of both motors 8 and 9 falls.

次に、第8モードにおけるECU10の動作を説明する。第8モードは、この実施形態では、テレスコピックモータ8が逆転方向に回転され、チルトモータ9が逆転方向に回転される動作モードである。
このように両モータ8,9を回転させるには、第1のリレーR1および第2のリレーR2をオンにするとともに、第5のFET5および第2のFET2をオンすることによって、テレスコピックモータ8とチルトモータ9とを直列運転することが考えられる。この場合、チルトモータ9側から第2のリレーR2を介してテレスコピックモータ8側に電流が流れるように、両モータ8,9が直列運転される。しかしながら、テレスコピックモータ8とチルトモータ9とを直列運転すると、各モータ8,9に印加される電圧が低下するため、各モータ8,9のトルクが低下する。
Next, the operation of the ECU 10 in the eighth mode will be described. In this embodiment, the eighth mode is an operation mode in which the telescopic motor 8 is rotated in the reverse direction and the tilt motor 9 is rotated in the reverse direction.
In order to rotate both the motors 8 and 9 in this manner, the first relay R1 and the second relay R2 are turned on, and the fifth FET 5 and the second FET 2 are turned on. It is conceivable to operate the tilt motor 9 in series. In this case, both motors 8 and 9 are operated in series so that current flows from the tilt motor 9 side to the telescopic motor 8 side via the second relay R2. However, when the telescopic motor 8 and the tilt motor 9 are operated in series, the voltage applied to the motors 8 and 9 is reduced, so that the torque of the motors 8 and 9 is reduced.

そこで、この実施形態では、第8モードにおいて、各モータ8,9のトルクが低下しないように、テレスコピックモータ8とチルトモータ9とが並列運転される。
図10は、第8モードにおけるECU10の動作を説明するための電気回路図である。
第8モードでは、第1のリレーR1および第3のリレーR3がオンとされ、第2のリレーR2がオフとされる。また、第2のFET2、第3のFET3および第5のFET5がオンとされる。したがって、電源14から、第3のFET3、テレスコピックモータ8、第1のリレーR1および第2のFET2を通って、接地へと電流が流れるとともに、電源14から、第5のFET5、チルトモータ9、第3のリレーR3および第2のFET2を通って、接地へと電流が流れる。これにより、テレスコピックモータ8が逆転方向に回転するとともに、チルトモータ9が逆転方向に回転する。つまり、テレスコピックモータ8とチルトモータ9とが並列運転される。これにより、第8モードにおいて、両モータ8,9のトルクが低下するのを防止できる。
Therefore, in this embodiment, in the eighth mode, the telescopic motor 8 and the tilt motor 9 are operated in parallel so that the torque of the motors 8 and 9 does not decrease.
FIG. 10 is an electric circuit diagram for explaining the operation of the ECU 10 in the eighth mode.
In the eighth mode, the first relay R1 and the third relay R3 are turned on, and the second relay R2 is turned off. In addition, the second FET 2, the third FET 3, and the fifth FET 5 are turned on. Therefore, a current flows from the power source 14 to the ground through the third FET 3, the telescopic motor 8, the first relay R1, and the second FET 2, and from the power source 14, the fifth FET 5, the tilt motor 9, A current flows through the third relay R3 and the second FET 2 to ground. Thereby, the telescopic motor 8 rotates in the reverse direction, and the tilt motor 9 rotates in the reverse direction. That is, the telescopic motor 8 and the tilt motor 9 are operated in parallel. Thereby, in the 8th mode, it can prevent that the torque of both motors 8 and 9 falls.

図11は、制御部12による全体的な処理の手順を示すフローチャートである。
イグニッションキーがオンされると、制御部12は、入出力ポート(I/Oポート)を初期化する(ステップS1)。そして、制御部12は、位置調整装置の初期設定を行う(ステップS2)。具体的には、制御部12は、ステアリングホイール1の位置が所定の初期位置となるように、テレスコピックモータ8およびチルトモータ9を制御する。
FIG. 11 is a flowchart showing an overall processing procedure performed by the control unit 12.
When the ignition key is turned on, the control unit 12 initializes the input / output port (I / O port) (step S1). And the control part 12 performs the initial setting of a position adjustment apparatus (step S2). Specifically, the control unit 12 controls the telescopic motor 8 and the tilt motor 9 so that the position of the steering wheel 1 becomes a predetermined initial position.

次に、制御部12は、入力ポートの読み込みを行う(ステップS3)。そして、制御部12は、位置調整操作が行なわれているか否かを判別する(ステップS4)。具体的には、制御部12は、8つの位置調整キー34のオンオフ状態を調べ、これらの全てのキー34がオフであれば、位置調整操作が行なわれていないと判別する。一方、これらのキー34のうちの1つでもオンである場合には、制御部12は、位置調整操作が行なわれていると判別する。   Next, the control unit 12 reads the input port (step S3). And the control part 12 discriminate | determines whether position adjustment operation is performed (step S4). Specifically, the control unit 12 checks the on / off state of the eight position adjustment keys 34 and determines that the position adjustment operation is not performed if all these keys 34 are off. On the other hand, when any one of these keys 34 is on, the control unit 12 determines that the position adjustment operation is being performed.

位置調整操作が行なわれていないと判別された場合には(ステップS4:NO)、EPS用リレー18A,18Bがオフであればそれらをオンさせた後(ステップS5)、EPS制御を一定時間行なう(ステップS6)。具体的には、制御部12は、操舵トルクと車速とに基づいて目標電流値を決定し、実際のモータ電流が目標電流値に近づくようにFET1〜FET6を制御する。この後、制御部12は、イグニッションキーのオフ操作が行なわれたか否かを判別する(ステップS7)。イグニッションキーのオフ操作が行なわれていなければ(ステップS7:NO)、ステップS3に戻る。   If it is determined that the position adjustment operation has not been performed (step S4: NO), if the EPS relays 18A and 18B are off, they are turned on (step S5), and then EPS control is performed for a predetermined time. (Step S6). Specifically, the control unit 12 determines a target current value based on the steering torque and the vehicle speed, and controls the FET1 to FET6 so that the actual motor current approaches the target current value. Thereafter, the control unit 12 determines whether or not the ignition key is turned off (step S7). If the ignition key is not turned off (step S7: NO), the process returns to step S3.

前記ステップS4において、位置調整操作が行なわれていると判別された場合には(ステップS4:YES)、制御部12は、EPS用モータ6のモータ電流(EPS電流)の絶対値が所定のしきい値A(A>0)未満であるか否かを判別する(ステップS8)。具体的には、制御部12は、電流センサ27U,27V,27Wによって検出される各相の相電流I,I,Iの絶対値が所定のしきい値A未満であるか否か(全ての相電流の絶対値がしきい値A未満であるか否か)を判別する。このしきい値Aは、零に近い所定の値に設定される。 When it is determined in step S4 that the position adjustment operation is being performed (step S4: YES), the control unit 12 sets the absolute value of the motor current (EPS current) of the EPS motor 6 to a predetermined value. It is determined whether or not it is less than a threshold value A (A> 0) (step S8). Specifically, the control unit 12 determines whether or not the absolute values of the phase currents I U , I V , and I W detected by the current sensors 27U, 27V, and 27W are less than a predetermined threshold A. (Whether or not the absolute values of all the phase currents are less than the threshold value A). This threshold A is set to a predetermined value close to zero.

EPS電流の絶対値が所定のしきい値A以上である場合には(ステップS8:NO)、制御部12は、操舵角が中立位置付近の不感帯ではないと判断し、ステップS7に移行する。つまり、操舵角が中立位置付近の不感帯でない場合には、運転者によって位置調整装置が行われたとしても、位置調整は行われない。
前記ステップS8において、モータ電流の絶対値が所定のしきい値A未満であると判別された場合には(ステップS8:YES)、制御部12は、操舵角が中立位置付近の不感帯であると判断し、EPS用リレー18A,18Bをオフする(ステップS9)。この後、制御部12は、位置調整モータ8,9の制御処理(位置調整制御処理)を行なう(ステップS10)。具体的には、制御部12は、8つの位置調整キー34のうち、操作されている位置調整キーに対応した動作モード(第1モード〜第8モード)で、テレスコピックモータ8およびチルトモータ9の一方または両方を駆動する。なお、位置調整制御処理の終了時には、第1〜第6のFET1〜FET6および第1〜第3のリレーR1〜R3は、オフ状態とされる。
If the absolute value of the EPS current is greater than or equal to the predetermined threshold A (step S8: NO), the control unit 12 determines that the steering angle is not a dead zone near the neutral position, and proceeds to step S7. That is, when the steering angle is not a dead zone near the neutral position, position adjustment is not performed even if the position adjustment device is performed by the driver.
When it is determined in step S8 that the absolute value of the motor current is less than the predetermined threshold A (step S8: YES), the control unit 12 determines that the steering angle is a dead zone near the neutral position. The EPS relays 18A and 18B are turned off (step S9). Thereafter, the control unit 12 performs control processing (position adjustment control processing) for the position adjustment motors 8 and 9 (step S10). Specifically, the control unit 12 operates the telescopic motor 8 and the tilt motor 9 in the operation mode (first mode to eighth mode) corresponding to the operated position adjustment key among the eight position adjustment keys 34. Drive one or both. At the end of the position adjustment control process, the first to sixth FET1 to FET6 and the first to third relays R1 to R3 are turned off.

位置調整制御処理が終了すると、ステップS7に移行する。ステップS7において、イグニッションキーのオフ操作が行なわれたと判別された場合には(ステップS7:YES)、制御部12は、EPS用リレー18A,18Bをオフする(ステップS11)。この後、制御部12は、位置調整装置の終了設定を行う(ステップS12)。具体的には、制御部12は、ステアリングホイール1の位置が所定の終了位置となるように、テレスコピックモータ8およびチルトモータ9を制御する。そして、処理を終了する。   When the position adjustment control process ends, the process proceeds to step S7. If it is determined in step S7 that the ignition key has been turned off (step S7: YES), the controller 12 turns off the EPS relays 18A and 18B (step S11). Thereafter, the control unit 12 performs termination setting of the position adjustment device (step S12). Specifically, the control unit 12 controls the telescopic motor 8 and the tilt motor 9 so that the position of the steering wheel 1 becomes a predetermined end position. Then, the process ends.

前記第1の実施形態によれば、EPS用モータ6を駆動するための駆動回路(三相ブリッジインバータ回路)11によって、チルトモータ9およびテレスコピックモータ8を駆動することができる。このため、EPS用モータ6と、位置調整用モータ8,9とを駆動するために必要なFET等のスイッチング素子の数を低減させることができる。
また、前述したように、チルトモータ9およびテレスコピックモータ8を直列運転可能な動作モードである第5モードまたは第8モードにおいては、チルトモータ9およびテレスコピックモータ8を並列運転させることができる。このため、第5モードまたは第8モードにおいて、これらのモータ8,9のトルクが低下するのを防止できる。
According to the first embodiment, the tilt motor 9 and the telescopic motor 8 can be driven by the drive circuit (three-phase bridge inverter circuit) 11 for driving the EPS motor 6. For this reason, the number of switching elements such as FETs required for driving the EPS motor 6 and the position adjusting motors 8 and 9 can be reduced.
Further, as described above, in the fifth mode or the eighth mode, which is an operation mode in which the tilt motor 9 and the telescopic motor 8 can be operated in series, the tilt motor 9 and the telescopic motor 8 can be operated in parallel. For this reason, in the 5th mode or the 8th mode, it can prevent that the torque of these motors 8 and 9 falls.

以上、この発明の第1の実施形態について説明したが、この発明はさらに他の形態で実施することもできる。たとえば、図2の回路図において、テレスコピックモータ8とチルトモータ8の位置を入れ替えてもよい。
また、前記第1の実施形態では、チルトモータ9の正極側端子(+)と第2のリレーR2との接続点は、第3のリレーR3を有する第5接続線(切替回路)25を介して、U相配線15に接続されている。しかし、これに代えて、図12に示すように、チルトモータ9の正極側端子(+)と第2リレーR2との接続点を、第3のリレーR3を有する第6接続線(切替回路)26を介して、テレスコピックモータ8の正極側端子(+)と第1のリレーR1との接続点に接続するようにしてもよい。この場合には、チルトモータ9の正極側端子(+)と第2リレーR2との接続点は、第3のリレーR3および第1のリレーR1を介してU相配線15に接続されることになる。この場合にも、第1モード〜第8モードにおけるリレーR1,R2,R3およびFETの制御内容は、前述した制御内容と同じとなる。
Although the first embodiment of the present invention has been described above, the present invention can be implemented in other forms. For example, in the circuit diagram of FIG. 2, the positions of the telescopic motor 8 and the tilt motor 8 may be interchanged.
In the first embodiment, the connection point between the positive terminal (+) of the tilt motor 9 and the second relay R2 is connected via the fifth connection line (switching circuit) 25 having the third relay R3. And connected to the U-phase wiring 15. However, instead of this, as shown in FIG. 12, the connection point between the positive terminal (+) of the tilt motor 9 and the second relay R2 is the sixth connection line (switching circuit) having the third relay R3. 26 may be connected to a connection point between the positive terminal (+) of the telescopic motor 8 and the first relay R1. In this case, the connection point between the positive terminal (+) of the tilt motor 9 and the second relay R2 is connected to the U-phase wiring 15 via the third relay R3 and the first relay R1. Become. Also in this case, the control contents of the relays R1, R2, R3 and FET in the first mode to the eighth mode are the same as the control contents described above.

また、テレスコピックモータ8の正極側端子(+)と負極側端子(−)とが反対となるように、テレスコピックモータ8の接続方向を反対にしてもよい。同様に、チルトモータ9の正極側端子(+)と負極側端子(−)とが反対となるように、チルトモータ9の接続方向を反対にしてもよい。いずれの場合にも、第1のリレーR1と第2のリレーR2とをオンとした場合に、テレスコピックモータ8とチルトモータ9とを直列運転することが可能な動作モードにおいては、前記第5モードまたは前記第8モードと同様な制御を行うことにより、これらのモータ8,9を並列運転させることが可能である。   Further, the connection direction of the telescopic motor 8 may be reversed so that the positive terminal (+) and the negative terminal (−) of the telescopic motor 8 are opposite. Similarly, the connecting direction of the tilt motor 9 may be reversed so that the positive terminal (+) and the negative terminal (−) of the tilt motor 9 are opposite. In any case, in the operation mode in which the telescopic motor 8 and the tilt motor 9 can be operated in series when the first relay R1 and the second relay R2 are turned on, the fifth mode Alternatively, these motors 8 and 9 can be operated in parallel by performing the same control as in the eighth mode.

以下、第2の実施形態について説明する。第2の実施形態では、前述した第1の実施形態と比べて、第1、第2および第3のリレーR1、R2,R3の接続位置が異なっている。なお、第2の実施形態においても、制御部12による全体的な処理の手順は、図11を用いて説明した処理手順と同じである。
図13は、この発明の第2の実施形態に係るモータ制御装置であるECU10の電気的構成を示す概略図である。図13において、図2に対応する部分には、図2と同一参照符号を付してある。
Hereinafter, the second embodiment will be described. In the second embodiment, the connection positions of the first, second, and third relays R1, R2, and R3 are different from those of the first embodiment described above. In the second embodiment, the overall processing procedure by the control unit 12 is the same as the processing procedure described with reference to FIG.
FIG. 13 is a schematic diagram showing an electrical configuration of the ECU 10 that is the motor control device according to the second embodiment of the present invention. 13, parts corresponding to those in FIG. 2 are denoted by the same reference numerals as those in FIG.

テレスコピックモータ8は、U相配線15とV相配線16との間に、第2の給電回路31,32を介して接続されている。具体的には、テレスコピックモータ8の正極側端子(+)は、第1接続線31を介してU相配線15に接続されている。一方、テレスコピックモータ8の負極側端子(−)は、第2接続線32および第1のリレーR1を介してV相配線16に接続されている。この実施形態では、テレスコピックモータ8が正転方向に回転されるとステアリングホイール1の位置が車両の後方に移動し、テレスコピックモータ8が逆転方向に回転されるとステアリングホイール1の位置が車両の前方に移動する。   The telescopic motor 8 is connected between the U-phase wiring 15 and the V-phase wiring 16 via second power feeding circuits 31 and 32. Specifically, the positive terminal (+) of the telescopic motor 8 is connected to the U-phase wiring 15 via the first connection line 31. On the other hand, the negative terminal (−) of the telescopic motor 8 is connected to the V-phase wiring 16 via the second connection line 32 and the first relay R1. In this embodiment, when the telescopic motor 8 is rotated in the forward rotation direction, the position of the steering wheel 1 moves to the rear of the vehicle, and when the telescopic motor 8 is rotated in the reverse rotation direction, the position of the steering wheel 1 is moved to the front of the vehicle. Move to.

チルトモータ9は、V相配線16とW相配線17との間に、第3の給電回路33,34を介して接続されている。具体的には、チルトモータ9の正極側端子(+)は、第3接続線33を介してV相配線16に接続されている。一方、チルトモータ9の負極側端子(−)は、第4接続線34および第2のリレーR2を介して、W相配線17に接続されている。なお、第2のリレーR1を、第4接続線34側に設けるのではなく、第3接続線33側に設けるようにしてもよい。この実施形態では、チルトモータ9が正転方向に回転されるとステアリングホイール1の位置が上方に移動し、チルトモータ9が逆転方向に回転されるとステアリングホイール1の位置が下方に移動する。   The tilt motor 9 is connected between the V-phase wiring 16 and the W-phase wiring 17 via third power feeding circuits 33 and 34. Specifically, the positive terminal (+) of the tilt motor 9 is connected to the V-phase wiring 16 via the third connection line 33. On the other hand, the negative terminal (−) of the tilt motor 9 is connected to the W-phase wiring 17 via the fourth connection line 34 and the second relay R2. The second relay R1 may be provided not on the fourth connection line 34 side but on the third connection line 33 side. In this embodiment, when the tilt motor 9 is rotated in the forward direction, the position of the steering wheel 1 moves upward, and when the tilt motor 9 is rotated in the reverse direction, the position of the steering wheel 1 moves downward.

テレスコピックモータ8の負極側端子(−)と第1のリレーR2との接続点は、第3のリレーR3を有する第5接続線(切替回路)35を介して、W相配線17に接続されている。第1、第2および第3のリレーR1,R2,R3を総称して、「位置調整用リレー」という場合がある。
制御部12は、電流センサ27U,27V,27W、回転位置センサ19、車速センサ31、操舵トルクセンサ32、位置調整用操作部33等からの入力信号に基づいて、リレー18A,18B,R1〜R3および駆動回路11内のFET1〜FET6を制御する。
A connection point between the negative terminal (−) of the telescopic motor 8 and the first relay R2 is connected to the W-phase wiring 17 via a fifth connection line (switching circuit) 35 having a third relay R3. Yes. The first, second, and third relays R1, R2, and R3 may be collectively referred to as “position adjusting relays”.
Based on input signals from the current sensors 27U, 27V, 27W, the rotational position sensor 19, the vehicle speed sensor 31, the steering torque sensor 32, the position adjustment operation unit 33, and the like, the control unit 12 relays 18A, 18B, R1 to R3. Further, the FET1 to FET6 in the drive circuit 11 are controlled.

制御部12は、常時は、EPS用リレー18A,18Bをオン状態とし、操舵トルクセンサ32によって検出される操舵トルク、車速センサ31によって検出される車速、電流センサ27U,27V,27Wによって検出される相電流および回転位置センサ19によって検出されるEPS用モータ6の回転位置(ロータ回転角)に基づいて、EPS用モータ6を制御する。具体的には、制御部12は、操舵トルクと車速とに基づいて目標電流値を決定し、実際のモータ電流が目標電流値に近づくようにFET1〜FET6を制御する。   The control unit 12 normally turns on the EPS relays 18A and 18B and detects the steering torque detected by the steering torque sensor 32, the vehicle speed detected by the vehicle speed sensor 31, and the current sensors 27U, 27V, and 27W. The EPS motor 6 is controlled based on the phase current and the rotational position (rotor rotation angle) of the EPS motor 6 detected by the rotational position sensor 19. Specifically, the control unit 12 determines a target current value based on the steering torque and the vehicle speed, and controls the FET1 to FET6 so that the actual motor current approaches the target current value.

制御部12は、位置調整用操作部33内のキーが操作された場合において、所定の条件を満たしているときには、EPS用モータ6の制御を中断し、操作されたキーに対応したテレスコピックモータ8および/またはチルトモータ9を制御する。
位置調整用モータ(テレスコピックモータ8またはチルトモータ9)を駆動する場合の動作モードには、第1モード〜第8モードの8種類の動作モードがある。位置調整用モータ8,9が駆動される場合には、EPS用リレー18A,18Bはオフ状態にされる。
When the key in the position adjusting operation unit 33 is operated and the predetermined condition is satisfied, the control unit 12 interrupts the control of the EPS motor 6 and the telescopic motor 8 corresponding to the operated key. And / or the tilt motor 9 is controlled.
There are eight operation modes from the first mode to the eighth mode in the operation mode when driving the position adjusting motor (telescopic motor 8 or tilt motor 9). When the position adjusting motors 8 and 9 are driven, the EPS relays 18A and 18B are turned off.

表2は、位置調整用モータ8,9を駆動する場合の各動作モード(第1モード〜第8モード)の内容と、第1〜第3のリレーR1〜R3および6つのFET1〜FET1のオンオフ状態を示している。表1において、○はオンを、−はオフを示している。   Table 2 shows the contents of each operation mode (first mode to eighth mode) when driving the position adjusting motors 8 and 9, and the first to third relays R1 to R3 and the six FET1 to FET1 on / off. Indicates the state. In Table 1, ◯ indicates on and-indicates off.

Figure 0005768999
各動作モードの内容は、次の通りである。
第1モード:位置調整用モータ8,9のうち、テレスコピックモータ8のみが正転方向に回転するモードであり、キー34の操作に基づいて設定されるモードである。
Figure 0005768999
The contents of each operation mode are as follows.
The first mode: among the position adjustment motor 8,9 is a mode in which only the telescopic motor 8 rotates in the forward direction, is a mode that is set based on the operation of the key 34 R.

第2モード:位置調整用モータ8,9のうち、テレスコピックモータ8のみが逆転方向に回転するモードであり、キー34の操作に基づいて設定されるモードである。
第3モード:位置調整用モータ8,9のうち、チルトモータ9のみが正転方向に回転するモードであり、キー34の操作に基づいて設定されるモードである。
第4モード:位置調整用モータ8,9のうち、チルトモータ9のみが逆転方向に回転するモードであり、キー34の操作に基づいて設定されるモードである。
Second mode: among the position adjustment motor 8,9 is a mode in which only the telescopic motor 8 rotates in the reverse direction, is a mode that is set based on the operation of the key 34 F.
Third Mode: of a position adjustment motor 8,9 is a mode in which only the tilt motor 9 rotates in the forward direction, is a mode that is set based on the operation of the key 34 U.
Fourth Mode of position adjusting motors 8 and 9, a mode in which only the tilt motor 9 rotates in the reverse direction, is a mode that is set based on the operation of the key 34 D.

第5モード:テレスコピックモータ8が正転方向に回転するとともにチルトモータ9が正転方向に回転するモードであり、キー34RUの操作に基づいて設定されるモードである。
第6モード:テレスコピックモータ8が正転方向に回転するとともにチルトモータ9が逆転方向に回転するモードであり、キー34RDの操作に基づいて設定されるモードである。
Fifth mode: a mode in which the telescopic motor 8 rotates in the forward direction and the tilt motor 9 rotates in the forward direction, and is a mode set based on the operation of the key 34 RU .
Sixth mode: a mode in which the telescopic motor 8 rotates in the forward direction and the tilt motor 9 rotates in the reverse direction, and is a mode set based on the operation of the key 34 RD .

第7モード:テレスコピックモータ8が逆転方向に回転するとともにチルトモータ9が正転方向に回転するモードであり、キー34FUの操作に基づいて設定されるモードである。
第8モード:テレスコピックモータ8が逆転方向に回転するとともにチルトモータ9が逆転方向に回転するモードであり、キー34FDの操作に基づいて設定されるモードである。
Seventh mode: a mode in which the telescopic motor 8 rotates in the reverse rotation direction and the tilt motor 9 rotates in the normal rotation direction, and is a mode set based on the operation of the key 34 FU .
Eighth mode: a mode in which the telescopic motor 8 rotates in the reverse direction and the tilt motor 9 rotates in the reverse direction, and is a mode set based on the operation of the key 34 FD .

図14は、第1モードにおけるECU10の動作を説明するための電気回路図である。
第1モードでは、第1のリレーR1がオンされるとともに、第1のFET1および第4のFET4がオンとされる。したがって、電源14から、第1のFET1、テレスコピックモータ8、第1のリレーR1および第4のFET4を通って、接地へと電流が流れる。これにより、テレスコピックモータ8の正極側端子(+)に正電圧が印加されるので、テレスコピックモータ8が正転方向に回転する。
FIG. 14 is an electric circuit diagram for explaining the operation of the ECU 10 in the first mode.
In the first mode, the first relay R1 is turned on, and the first FET 1 and the fourth FET 4 are turned on. Therefore, a current flows from the power supply 14 to the ground through the first FET 1, the telescopic motor 8, the first relay R 1, and the fourth FET 4. Thereby, since a positive voltage is applied to the positive terminal (+) of the telescopic motor 8, the telescopic motor 8 rotates in the forward rotation direction.

図15は、第2モードにおけるECU10の動作を説明するための電気回路図である。
第2モードでは、第1のリレーR1がオンされるとともに、第2のFET2および第3のFET3がオンとされる。したがって、電源14から、第3のFET3、第1のリレーR1、テレスコピックモータ8および第2のFET2を通って、接地へと電流が流れる。これにより、テレスコピックモータ8の負極側端子(−)に正電圧が印加されるので、テレスコピックモータ8が逆転方向に回転する。
FIG. 15 is an electric circuit diagram for explaining the operation of the ECU 10 in the second mode.
In the second mode, the first relay R1 is turned on, and the second FET 2 and the third FET 3 are turned on. Therefore, a current flows from the power source 14 to the ground through the third FET 3, the first relay R 1, the telescopic motor 8, and the second FET 2. Thereby, since a positive voltage is applied to the negative terminal (−) of the telescopic motor 8, the telescopic motor 8 rotates in the reverse direction.

図16は、第3モードにおけるECU10の動作を説明するための電気回路図である。
第3モードでは、第2のリレーR2がオンされるとともに、第3のFET3および第6のFET6がオンとされる。したがって、電源14から、第3のFET3、チルトモータ9、第2のリレーR2および第6のFET6を通って、接地へと電流が流れる。これにより、チルトモータ9の正極側端子(+)に正電圧が印加されるので、チルトモータ9が正転方向に回転する。
FIG. 16 is an electric circuit diagram for explaining the operation of the ECU 10 in the third mode.
In the third mode, the second relay R2 is turned on, and the third FET 3 and the sixth FET 6 are turned on. Therefore, a current flows from the power source 14 to the ground through the third FET 3, the tilt motor 9, the second relay R 2, and the sixth FET 6. Thereby, since a positive voltage is applied to the positive terminal (+) of the tilt motor 9, the tilt motor 9 rotates in the forward rotation direction.

図17は、第4モードにおけるECU10の動作を説明するための電気回路図である。
第4モードでは、第2のリレーR2がオンされるとともに、第4のFET4および第5のFET5がオンとされる。したがって、電源14から、第5のFET5、第2のリレーR2、チルトモータ9および第4のFET4を通って、接地へと電流が流れる。これにより、チルトモータ9の負極側端子(−)に正電圧が印加されるので、チルトモータ9が逆転方向に回転する。
FIG. 17 is an electric circuit diagram for explaining the operation of the ECU 10 in the fourth mode.
In the fourth mode, the second relay R2 is turned on, and the fourth FET 4 and the fifth FET 5 are turned on. Therefore, a current flows from the power source 14 to the ground through the fifth FET 5, the second relay R 2, the tilt motor 9, and the fourth FET 4. Thereby, since a positive voltage is applied to the negative terminal (−) of the tilt motor 9, the tilt motor 9 rotates in the reverse direction.

図18は、第6モードにおけるECU10の動作を説明するための電気回路図である。
第6モードでは、第1のリレーR1および第2のリレーR2がオンされるとともに、第1のFET1、第4のFET4および第5のFET5がオンとされる。したがって、電源14から、第1のFET1、テレスコピックモータ8、第1のリレーR1および第4のFET4を通って、接地へと電流が流れるとともに、電源14から、第5のFET5、第2のリレーR2、チルトモータ9および第4のFET4を通って、接地へと電流が流れる。これにより、テレスコピックモータ8が正転方向に回転するとともに、チルトモータ9が逆転方向に回転する。この場合には、テレスコピックモータ8とチルトモータ9とが並列運転される。
FIG. 18 is an electric circuit diagram for explaining the operation of the ECU 10 in the sixth mode.
In the sixth mode, the first relay R1 and the second relay R2 are turned on, and the first FET1, the fourth FET4, and the fifth FET5 are turned on. Therefore, current flows from the power source 14 to the ground through the first FET 1, the telescopic motor 8, the first relay R 1, and the fourth FET 4, and from the power source 14 to the fifth FET 5 and the second relay. A current flows to the ground through R2, the tilt motor 9 and the fourth FET 4. As a result, the telescopic motor 8 rotates in the forward direction and the tilt motor 9 rotates in the reverse direction. In this case, the telescopic motor 8 and the tilt motor 9 are operated in parallel.

図19は、第7モードにおけるECU10の動作を説明するための電気回路図である。
第7モードでは、第1のリレーR1および第2のリレーR2がオンされるとともに、第2のFET2、第3のFET3および第6のFET6がオンとされる。したがって、電源14から、第3のFET3、第1のリレーR1、テレスコピックモータ8および第2のFET2を通って、接地へと電流が流れるとともに、電源14から、第3のFET3、チルトモータ9、第2のリレーR2および第6のFET6を通って、接地へと電流が流れる。これにより、テレスコピックモータ8が逆転方向に回転するとともに、チルトモータ9が正転方向に回転する。この場合には、テレスコピックモータ8とチルトモータ9とが並列運転される。
FIG. 19 is an electric circuit diagram for explaining the operation of the ECU 10 in the seventh mode.
In the seventh mode, the first relay R1 and the second relay R2 are turned on, and the second FET2, the third FET3, and the sixth FET6 are turned on. Therefore, a current flows from the power source 14 to the ground through the third FET 3, the first relay R1, the telescopic motor 8, and the second FET 2, and from the power source 14, the third FET 3, the tilt motor 9, A current flows through the second relay R2 and the sixth FET 6 to ground. Thereby, the telescopic motor 8 rotates in the reverse rotation direction, and the tilt motor 9 rotates in the normal rotation direction. In this case, the telescopic motor 8 and the tilt motor 9 are operated in parallel.

次に、第5モードにおけるECU10の動作を説明する。第5モードは、この実施形態では、テレスコピックモータ8が正転方向に回転され、チルトモータ9が正転方向に回転される動作モードである。
このように両モータ8,9を回転させるには、第1のリレーR1および第2のリレーR2をオンにするとともに、第1のFET1および第6のFET6をオンすることによって、テレスコピックモータ8とチルトモータ9とを直列運転することが考えられる。この場合、テレスコピックモータ8側から第1のリレーR1を介してチルトモータ9側に電流が流れるように、両モータ8,9が直列運転される。しかしながら、テレスコピックモータ8とチルトモータ9とを直列運転すると、各モータ8,9に印加される電圧が低下するため、各モータ8,9のトルクが低下する。
Next, the operation of the ECU 10 in the fifth mode will be described. In this embodiment, the fifth mode is an operation mode in which the telescopic motor 8 is rotated in the forward rotation direction and the tilt motor 9 is rotated in the forward rotation direction.
In order to rotate both the motors 8 and 9 in this way, the first relay R1 and the second relay R2 are turned on, and the first FET 1 and the sixth FET 6 are turned on. It is conceivable to operate the tilt motor 9 in series. In this case, both motors 8 and 9 are operated in series so that a current flows from the telescopic motor 8 side to the tilt motor 9 side via the first relay R1. However, when the telescopic motor 8 and the tilt motor 9 are operated in series, the voltage applied to the motors 8 and 9 is reduced, so that the torque of the motors 8 and 9 is reduced.

そこで、この実施形態では、第5モードにおいて、各モータ8,9のトルクが低下しないように、テレスコピックモータ8とチルトモータ9とが並列運転される。
図20は、第5モードにおけるECU10の動作を説明するための電気回路図である。
第5モードでは、第2のリレーR2および第3のリレーR3がオンとされ、第1のリレーR1がオフとされる。また、第1のFET1、第3のFET3および第6のFET6がオンとされる。したがって、電源14から、第1のFET1、テレスコピックモータ8、第3のリレーR3および第6のFET6を通って、接地へと電流が流れるとともに、電源14から、第3のFET3、チルトモータ9、第2のリレーR2および第6のFET6を通って、接地へと電流が流れる。これにより、テレスコピックモータ8が正転方向に回転するとともに、チルトモータ9が正転方向に回転する。つまり、テレスコピックモータ8とチルトモータ9とが並列運転される。これにより、第5モードにおいて、両モータ8,9のトルクが低下するのを防止できる。
Therefore, in this embodiment, in the fifth mode, the telescopic motor 8 and the tilt motor 9 are operated in parallel so that the torque of the motors 8 and 9 does not decrease.
FIG. 20 is an electric circuit diagram for explaining the operation of the ECU 10 in the fifth mode.
In the fifth mode, the second relay R2 and the third relay R3 are turned on, and the first relay R1 is turned off. In addition, the first FET 1, the third FET 3, and the sixth FET 6 are turned on. Therefore, a current flows from the power source 14 to the ground through the first FET 1, the telescopic motor 8, the third relay R3, and the sixth FET 6, and from the power source 14, the third FET 3, the tilt motor 9, A current flows through the second relay R2 and the sixth FET 6 to ground. Thereby, the telescopic motor 8 rotates in the forward rotation direction, and the tilt motor 9 rotates in the forward rotation direction. That is, the telescopic motor 8 and the tilt motor 9 are operated in parallel. Thereby, in the 5th mode, it can prevent that the torque of both motors 8 and 9 falls.

次に、第8モードにおけるECU10の動作を説明する。第8モードは、この実施形態では、テレスコピックモータ8が逆転方向に回転され、チルトモータ9が逆転方向に回転される動作モードである。
このように両モータ8,9を回転させるには、第1のリレーR1および第2のリレーR2をオンにするとともに、第5のFET5および第2のFET2をオンすることによって、テレスコピックモータ8とチルトモータ9とを直列運転することが考えられる。この場合、チルトモータ9側から第1のリレーR1を介してテレスコピックモータ8側に電流が流れるように、両モータ8,9が直列運転される。しかしながら、テレスコピックモータ8とチルトモータ9とを直列運転すると、各モータ8,9に印加される電圧が低下するため、各モータ8,9のトルクが低下する。
Next, the operation of the ECU 10 in the eighth mode will be described. In this embodiment, the eighth mode is an operation mode in which the telescopic motor 8 is rotated in the reverse direction and the tilt motor 9 is rotated in the reverse direction.
In order to rotate both the motors 8 and 9 in this manner, the first relay R1 and the second relay R2 are turned on, and the fifth FET 5 and the second FET 2 are turned on. It is conceivable to operate the tilt motor 9 in series. In this case, both motors 8 and 9 are operated in series so that current flows from the tilt motor 9 side to the telescopic motor 8 side via the first relay R1. However, when the telescopic motor 8 and the tilt motor 9 are operated in series, the voltage applied to the motors 8 and 9 is reduced, so that the torque of the motors 8 and 9 is reduced.

そこで、この実施形態では、第8モードにおいて、各モータ8,9のトルクが低下しないように、テレスコピックモータ8とチルトモータ9とが並列運転される。
図21は、第8モードにおけるECU10の動作を説明するための電気回路図である。
第8モードでは、第2のリレーR2および第3のリレーR3がオンとされ、第1のリレーR1がオフとされる。また、第2のFET2、第4のFET4および第5のFET5がオンとされる。したがって、電源14から、第5のFET5、第3のリレーR3、テレスコピックモータ8および第2のFET2を通って、接地へと電流が流れるとともに、電源14から、第5のFET5、第2のリレーR2、チルトモータ9および第4のFET4を通って、接地へと電流が流れる。これにより、テレスコピックモータ8が逆転方向に回転するとともに、チルトモータ9が逆転方向に回転する。つまり、テレスコピックモータ8とチルトモータ9とが並列運転される。これにより、第8モードにおいて、両モータ8,9のトルクが低下するのを防止できる。
Therefore, in this embodiment, in the eighth mode, the telescopic motor 8 and the tilt motor 9 are operated in parallel so that the torque of the motors 8 and 9 does not decrease.
FIG. 21 is an electric circuit diagram for explaining the operation of the ECU 10 in the eighth mode.
In the eighth mode, the second relay R2 and the third relay R3 are turned on, and the first relay R1 is turned off. In addition, the second FET 2, the fourth FET 4, and the fifth FET 5 are turned on. Therefore, a current flows from the power source 14 to the ground through the fifth FET 5, the third relay R 3, the telescopic motor 8 and the second FET 2, and from the power source 14 to the fifth FET 5 and the second relay. A current flows to the ground through R2, the tilt motor 9 and the fourth FET 4. Thereby, the telescopic motor 8 rotates in the reverse direction, and the tilt motor 9 rotates in the reverse direction. That is, the telescopic motor 8 and the tilt motor 9 are operated in parallel. Thereby, in the 8th mode, it can prevent that the torque of both motors 8 and 9 falls.

前記第2の実施形態によれば、EPS用モータ6を駆動するための駆動回路(三相ブリッジインバータ回路)11によって、チルトモータ9およびテレスコピックモータ8を駆動することができる。このため、EPS用モータ6と、位置調整用モータ8,9とを駆動するために必要なFET等のスイッチング素子の数を低減させることができる。
また、前述したように、チルトモータ9およびテレスコピックモータ8を直列運転可能な動作モードである第5モードまたは第8モードにおいては、チルトモータ9およびテレスコピックモータ8を並列運転させることができる。このため、第5モードまたは第8モードにおいて、これらのモータ8,9のトルクが低下するのを防止できる。
According to the second embodiment, the tilt motor 9 and the telescopic motor 8 can be driven by the drive circuit (three-phase bridge inverter circuit) 11 for driving the EPS motor 6. For this reason, the number of switching elements such as FETs required for driving the EPS motor 6 and the position adjusting motors 8 and 9 can be reduced.
Further, as described above, in the fifth mode or the eighth mode, which is an operation mode in which the tilt motor 9 and the telescopic motor 8 can be operated in series, the tilt motor 9 and the telescopic motor 8 can be operated in parallel. For this reason, in the 5th mode or the 8th mode, it can prevent that the torque of these motors 8 and 9 falls.

以上、この発明の第2の実施形態について説明したが、この発明はさらに他の形態で実施することもできる。たとえば、図13の回路図において、テレスコピックモータ8とチルトモータ8の位置を入れ替えてもよい。
また、前記第2の実施形態では、テレスコピックモータ8の負極側端子(−)と第1のリレーR1との接続点は、第3のリレーR3を有する第5接続線(切替回路)35を介して、W相配線17に接続されている。しかし、これに代えて、図22に示すように、テレスコピックモータ8の負極側端子(−)と第1のリレーR1との接続点を、第3のリレーR3を有する第6接続線(切替回路)36を介して、チルトモータ9の負極側端子(−)と第2のリレーR2との接続点に接続するようにしてもよい。この場合には、テレスコピックモータ8の負極側端子(−)と第1のリレーR1との接続点は、第3のリレーR3および第2のリレーR2を介してW相配線17に接続されることになる。この場合にも、第1モード〜第8モードにおけるリレーR1,R2,R3およびFETの制御内容は、前述した制御内容と同じとなる。
Although the second embodiment of the present invention has been described above, the present invention can be implemented in other forms. For example, in the circuit diagram of FIG. 13, the positions of the telescopic motor 8 and the tilt motor 8 may be interchanged.
In the second embodiment, the connection point between the negative terminal (−) of the telescopic motor 8 and the first relay R1 is connected via the fifth connection line (switching circuit) 35 having the third relay R3. And connected to the W-phase wiring 17. However, instead of this, as shown in FIG. 22, the connection point between the negative electrode side terminal (−) of the telescopic motor 8 and the first relay R1 is connected to the sixth connection line (switching circuit) having the third relay R3. ) 36 may be connected to a connection point between the negative terminal (−) of the tilt motor 9 and the second relay R2. In this case, the connection point between the negative terminal (-) of the telescopic motor 8 and the first relay R1 is connected to the W-phase wiring 17 via the third relay R3 and the second relay R2. become. Also in this case, the control contents of the relays R1, R2, R3 and FET in the first mode to the eighth mode are the same as the control contents described above.

また、テレスコピックモータ8の正極側端子(+)と負極側端子(−)とが反対となるように、テレスコピックモータ8の接続方向を反対にしてもよい。同様に、チルトモータ9の正極側端子(+)と負極側端子(−)とが反対となるように、チルトモータ9の接続方向を反対にしてもよい。いずれの場合にも、第1のリレーR1と第2のリレーR2とをオンとした場合に、テレスコピックモータ8とチルトモータ9とを直列運転することが可能な動作モードにおいては、前記第5モードまたは前記第8モードと同様な制御を行うことにより、これらのモータ8,9を並列運転させることが可能である。   Further, the connection direction of the telescopic motor 8 may be reversed so that the positive terminal (+) and the negative terminal (−) of the telescopic motor 8 are opposite. Similarly, the connecting direction of the tilt motor 9 may be reversed so that the positive terminal (+) and the negative terminal (−) of the tilt motor 9 are opposite. In any case, in the operation mode in which the telescopic motor 8 and the tilt motor 9 can be operated in series when the first relay R1 and the second relay R2 are turned on, the fifth mode Alternatively, these motors 8 and 9 can be operated in parallel by performing the same control as in the eighth mode.

また、前記第1および第2の実施形態では、テレスコピック調整キー34,34のいずれか一方と、チルト調整キー34,34のいずれか一方とが同時に押下されている場合には、押下されている2つのキーのうち一方のキー入力のみが有効なものとして受け付けられているが、両方のキー入力をともに有効なものとして受け付けてもよい。この場合には、前記2つのキー入力に応じて、テレスコピックモータ8およびチルトモータ9の両方が駆動されることになる。 In the first and second embodiments, when one of the telescopic adjustment keys 34 R and 34 F and one of the tilt adjustment keys 34 U and 34 D are simultaneously pressed, Only one of the two pressed keys is accepted as valid, but both key inputs may be accepted as valid. In this case, both the telescopic motor 8 and the tilt motor 9 are driven according to the two key inputs.

その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。   In addition, various design changes can be made within the scope of matters described in the claims.

6…EPS用モータ、8…テレスコピックモータ、9…チルトモータ、10…ECU、11…駆動回路、12…制御部、15…U相配線、16…V相配線、17…W相配線、18A,18B…EPS用リレー、21,31…第1接続線、22,32…第2接続線、23,33…第3接続線、24,34…第4接続線、25,35…第5接続線(切替回路)、26,36…第6接続線(切替回路)、27U,27V,27W…電流センサ、34,34,34,34…単独調整キー、34RU,34RD,34FU,34FD…同時調整キー、R1…第1のリレー、R2…第2のリレー、R3…第3のリレー 6 ... EPS motor, 8 ... telescopic motor, 9 ... tilt motor, 10 ... ECU, 11 ... drive circuit, 12 ... control unit, 15 ... U phase wiring, 16 ... V phase wiring, 17 ... W phase wiring, 18A, 18B: Relay for EPS, 21, 31 ... First connection line, 22, 32 ... Second connection line, 23, 33 ... Third connection line, 24, 34 ... Fourth connection line, 25, 35 ... Fifth connection line (switching circuit), 26, 36 ... sixth connection line (switching circuit), 27U, 27V, 27W ... current sensor, 34 U, 34 D, 34 F, 34 R ... alone adjustment key, 34 RU, 34 RD, 34 FU , 34 FD ... Simultaneous adjustment key, R1 ... First relay, R2 ... Second relay, R3 ... Third relay

Claims (7)

三相モータと、
前記三相モータの第1相に対応したハイサイドおよびローサイドのスイッチング素子と、前記三相モータの第2相に対応したハイサイドおよびローサイドのスイッチング素子と、前記三相モータの第3相に対応したハイサイドおよびローサイドのスイッチング素子とを有し、前記第1相、第2相および前記第3相にそれぞれ対応する第1相配線、第2相配線および第3相配線からなる第1の給電回路を介して前記三相モータに接続された三相ブリッジインバータ回路と、
前記第1の給電経路を開閉するための経路開閉手段と、
前記第1相配線と前記第2相配線との間に第2の給電回路を介して接続された第1の直流モータと、
前記第2相配線と前記第3相配線との間に第3の給電回路を介して接続された第2の直流モータと、
前記第2の給電回路を開閉する第1のスイッチと、
前記第3の給電回路のうち、前記第2相配線と前記第2の直流モータとを接続する部分を開閉する第2のスイッチと、
前記第2の直流モータと前記第2のスイッチとの接続点を、第3のスイッチを介して前記第1相配線に接続するための切替回路とを含む、モータ制御装置。
A three-phase motor,
High-side and low-side switching elements corresponding to the first phase of the three-phase motor, high-side and low-side switching elements corresponding to the second phase of the three-phase motor, and third phase of the three-phase motor A first power supply comprising a first phase wiring, a second phase wiring, and a third phase wiring corresponding to the first phase, the second phase, and the third phase, respectively. A three-phase bridge inverter circuit connected to the three-phase motor via a circuit;
Path opening and closing means for opening and closing the first power feeding path;
A first DC motor connected via a second power supply circuit between the first phase wiring and the second phase wiring;
A second DC motor connected via a third power feeding circuit between the second phase wiring and the third phase wiring;
A first switch for opening and closing the second power feeding circuit;
A second switch for opening and closing a portion connecting the second phase wiring and the second DC motor in the third power feeding circuit;
A motor control device comprising: a switching circuit for connecting a connection point between the second DC motor and the second switch to the first phase wiring via a third switch.
前記第1の直流モータの正極側端子が第2の給電回路を介して前記第1相配線に接続され、前記第1の直流モータの負極側端子が第2の給電回路を介して前記第2相配線に接続され、
前記第2の直流モータの正極側端子が第3の給電回路を介して前記第2相配線に接続され、前記第2の直流モータの負極側端子が第3の給電回路を介して前記第3相配線に接続され、
前記第1の直流モータおよび前記第2の直流モータが正転方向に回転する動作モードにおいて、前記第1および第2の直流モータを並列運転させるための第1制御手段を含み、
前記第1制御手段は、
前記第1のスイッチおよび前記第3のスイッチをオン状態にさせるとともに前記第2のスイッチをオフ状態にさせる手段と、
前記第1相に対応するハイサイドのスイッチング素子、前記第2相に対応するローサイドのスイッチング素子および前記第3相に対応するローサイドのスイッチング素子をオン状態にさせる手段とを含む、請求項1に記載のモータ制御装置。
A positive terminal of the first DC motor is connected to the first phase wiring via a second power supply circuit, and a negative terminal of the first DC motor is connected to the second power supply circuit via a second power supply circuit. Connected to the phase wiring,
The positive terminal of the second DC motor is connected to the second phase wiring via a third power supply circuit, and the negative terminal of the second DC motor is connected to the third power supply circuit via a third power supply circuit. Connected to the phase wiring,
Including first control means for operating the first and second DC motors in parallel in an operation mode in which the first DC motor and the second DC motor rotate in the forward direction .
The first control means includes
Means for turning on the first switch and the third switch and turning off the second switch;
The high-side switching element corresponding to the first phase, the low-side switching element corresponding to the second phase, and the low-side switching element corresponding to the third phase are turned on. The motor control apparatus described.
前記第1の直流モータの正極側端子が第2の給電回路を介して前記第1相配線に接続され、前記第1の直流モータの負極側端子が第2の給電回路を介して前記第2相配線に接続され、
前記第2の直流モータの正極側端子が第3の給電回路を介して前記第2相配線に接続され、前記第2の直流モータの負極側端子が第3の給電回路を介して前記第3相配線に接続され、
前記第1の直流モータおよび前記第2の直流モータが逆転方向に回転する動作モードにおいて、前記第1および第2の直流モータを並列運転させるための第2制御手段を含み、
前記第2制御手段は、
前記第1のスイッチおよび前記第3のスイッチをオン状態にさせるとともに前記第2のスイッチをオフ状態にさせる手段と、
前記第1相に対応するローサイドのスイッチング素子、前記第2相に対応するハイサイドのスイッチング素子および前記第3相に対応するハイサイドのスイッチング素子をオン状態にさせる手段とを含む、請求項1または2に記載のモータ制御装置。
A positive terminal of the first DC motor is connected to the first phase wiring via a second power supply circuit, and a negative terminal of the first DC motor is connected to the second power supply circuit via a second power supply circuit. Connected to the phase wiring,
The positive terminal of the second DC motor is connected to the second phase wiring via a third power supply circuit, and the negative terminal of the second DC motor is connected to the third power supply circuit via a third power supply circuit. Connected to the phase wiring,
A second control means for operating the first and second DC motors in parallel in an operation mode in which the first DC motor and the second DC motor rotate in the reverse direction ;
The second control means includes
Means for turning on the first switch and the third switch and turning off the second switch;
2. A low-side switching element corresponding to the first phase, a high-side switching element corresponding to the second phase, and a means for turning on a high-side switching element corresponding to the third phase. Or the motor control apparatus of 2.
三相モータと、
前記三相モータの第1相に対応したハイサイドおよびローサイドのスイッチング素子と、前記三相モータの第2相に対応したハイサイドおよびローサイドのスイッチング素子と、前記三相モータの第3相に対応したハイサイドおよびローサイドのスイッチング素子とを有し、前記第1相、第2相および前記第3相にそれぞれ対応する第1相配線、第2相配線および第3相配線からなる第1の給電回路を介して前記三相モータに接続された三相ブリッジインバータ回路と、
前記第1の給電経路を開閉するための経路開閉手段と、
前記第1相配線と前記第2相配線との間に第2の給電回路を介して接続された第1の直流モータと、
前記第2相配線と前記第3相配線との間に第3の給電回路を介して接続された第2の直流モータと、
前記第2の給電回路のうち、前記第2相配線と前記第の直流モータとを接続する部分を開閉する第1のスイッチと、
前記第3の給電回路を開閉する第2のスイッチと、
前記第1の直流モータと前記第1のスイッチとの接続点を、第3のスイッチを介して前記第3相配線に接続するための切替回路とを含む、モータ制御装置。
A three-phase motor,
High-side and low-side switching elements corresponding to the first phase of the three-phase motor, high-side and low-side switching elements corresponding to the second phase of the three-phase motor, and third phase of the three-phase motor A first power supply comprising a first phase wiring, a second phase wiring, and a third phase wiring corresponding to the first phase, the second phase, and the third phase, respectively. A three-phase bridge inverter circuit connected to the three-phase motor via a circuit;
Path opening and closing means for opening and closing the first power feeding path;
A first DC motor connected via a second power supply circuit between the first phase wiring and the second phase wiring;
A second DC motor connected via a third power feeding circuit between the second phase wiring and the third phase wiring;
A first switch that opens and closes a portion of the second power feeding circuit that connects the second phase wiring and the first DC motor;
A second switch for opening and closing the third power feeding circuit;
A motor control device comprising: a switching circuit for connecting a connection point between the first DC motor and the first switch to the third phase wiring via a third switch.
前記第1の直流モータの正極側端子が第2の給電回路を介して前記第1相配線に接続され、前記第1の直流モータの負極側端子が第2の給電回路を介して前記第2相配線に接続され、
前記第2の直流モータの正極側端子が第3の給電回路を介して前記第2相配線に接続され、前記第2の直流モータの負極側端子が第3の給電回路を介して前記第3相配線に接続され、
前記第1の直流モータおよび前記第2の直流モータが正転方向に回転する動作モードにおいて、前記第1および第2の直流モータを並列運転させるための第1制御手段を含み、
前記第1制御手段は、
前記第2のスイッチおよび前記第3のスイッチをオン状態にさせるとともに前記第1のスイッチをオフ状態にさせる手段と、
前記第1相に対応するハイサイドのスイッチング素子、前記第2相に対応するハイサイドのスイッチング素子および前記第3相に対応するローサイドのスイッチング素子をオン状態にさせる手段とを含む、請求項4に記載のモータ制御装置。
A positive terminal of the first DC motor is connected to the first phase wiring via a second power supply circuit, and a negative terminal of the first DC motor is connected to the second power supply circuit via a second power supply circuit. Connected to the phase wiring,
The positive terminal of the second DC motor is connected to the second phase wiring via a third power supply circuit, and the negative terminal of the second DC motor is connected to the third power supply circuit via a third power supply circuit. Connected to the phase wiring,
Including first control means for operating the first and second DC motors in parallel in an operation mode in which the first DC motor and the second DC motor rotate in the forward direction .
The first control means includes
Means for turning on the second switch and the third switch and turning off the first switch;
The high-side switching device corresponding to the first phase, the high-side switching device corresponding to the second phase, and the low-side switching device corresponding to the third phase are turned on. The motor control device described in 1.
前記第1の直流モータの正極側端子が第2の給電回路を介して前記第1相配線に接続され、前記第1の直流モータの負極側端子が第2の給電回路を介して前記第2相配線に接続され、
前記第2の直流モータの正極側端子が第3の給電回路を介して前記第2相配線に接続され、前記第2の直流モータの負極側端子が第3の給電回路を介して前記第3相配線に接続され、
前記第1の直流モータおよび前記第2の直流モータが逆転方向に回転する動作モードにおいて、前記第1および第2の直流モータを並列運転させるための第2制御手段を含み、
前記第2制御手段は、
前記第2のスイッチおよび前記第3のスイッチをオン状態にさせるとともに前記第1のスイッチをオフ状態にさせる手段と、
前記第1相に対応するローサイドのスイッチング素子、前記第2相に対応するローサイドのスイッチング素子および前記第3相に対応するハイサイドのスイッチング素子をオン状態にさせる手段とを含む、請求項4または5に記載のモータ制御装置。
A positive terminal of the first DC motor is connected to the first phase wiring via a second power supply circuit, and a negative terminal of the first DC motor is connected to the second power supply circuit via a second power supply circuit. Connected to the phase wiring,
The positive terminal of the second DC motor is connected to the second phase wiring via a third power supply circuit, and the negative terminal of the second DC motor is connected to the third power supply circuit via a third power supply circuit. Connected to the phase wiring,
A second control means for operating the first and second DC motors in parallel in an operation mode in which the first DC motor and the second DC motor rotate in the reverse direction ;
The second control means includes
Means for turning on the second switch and the third switch and turning off the first switch;
The low-side switching element corresponding to the first phase, the low-side switching element corresponding to the second phase, and the high-side switching element corresponding to the third phase are turned on. 5. The motor control device according to 5.
請求項1〜6のいずれか一項に記載のモータ制御装置を含み、
前記三相モータが電動パワーステアリング用の三相ブラシレスモータであり、
前記第1の直流モータおよび前記第2の直流モータのうちのいずれか一方が操舵部材の所定の第1方向位置を調整するためのチルト調整用モータであり、他方が前記操舵部材の所定の第2方向位置を調整するためのテレスコピック調整用モータである、車両用操舵装置。
Including the motor control device according to any one of claims 1 to 6,
The three-phase motor is a three-phase brushless motor for electric power steering;
One of the first DC motor and the second DC motor is a tilt adjustment motor for adjusting a predetermined first direction position of the steering member, and the other is a predetermined first motor of the steering member. A vehicle steering apparatus, which is a telescopic adjustment motor for adjusting a position in two directions.
JP2011030586A 2011-02-16 2011-02-16 Motor control device and vehicle steering device Active JP5768999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011030586A JP5768999B2 (en) 2011-02-16 2011-02-16 Motor control device and vehicle steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011030586A JP5768999B2 (en) 2011-02-16 2011-02-16 Motor control device and vehicle steering device

Publications (2)

Publication Number Publication Date
JP2012170276A JP2012170276A (en) 2012-09-06
JP5768999B2 true JP5768999B2 (en) 2015-08-26

Family

ID=46973810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011030586A Active JP5768999B2 (en) 2011-02-16 2011-02-16 Motor control device and vehicle steering device

Country Status (1)

Country Link
JP (1) JP5768999B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020089172A (en) * 2018-11-29 2020-06-04 株式会社デンソー Rotary machine control device
WO2021085177A1 (en) * 2019-11-01 2021-05-06 株式会社デンソー Rotating machine control device
WO2021085178A1 (en) * 2019-11-01 2021-05-06 株式会社デンソー Rotating machine control device
JP2021078341A (en) * 2019-11-01 2021-05-20 株式会社デンソー Rotary machine control device
JP2021078340A (en) * 2019-11-01 2021-05-20 株式会社デンソー Rotary machine control device
JP2021172274A (en) * 2020-04-28 2021-11-01 株式会社デンソー Control device for brake device for automobile
WO2021251273A1 (en) * 2020-06-11 2021-12-16 株式会社デンソー Rotating machine control device
WO2022030423A1 (en) * 2020-08-03 2022-02-10 株式会社デンソー Multiple motor drive system
WO2022113714A1 (en) * 2020-11-24 2022-06-02 株式会社デンソー Motor control device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018128399A1 (en) * 2018-11-13 2020-05-14 Thyssenkrupp Ag Steering column for a steering system of a motor vehicle with a control unit for two adjustment drives
DE102019201053A1 (en) * 2019-01-28 2020-07-30 Lenze Automation Gmbh Frequency converter and system
JP7472745B2 (en) * 2020-09-30 2024-04-23 株式会社デンソー Motor Drive System
JP7468296B2 (en) 2020-10-27 2024-04-16 株式会社デンソー Motor Control Device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05137380A (en) * 1991-11-15 1993-06-01 Mitsubishi Heavy Ind Ltd Motor controller
JP3545124B2 (en) * 1996-01-10 2004-07-21 愛知電機株式会社 Motor drive control device
JPH10164888A (en) * 1996-11-29 1998-06-19 Hitachi Medical Corp Motor driving controller
JP3411191B2 (en) * 1997-06-30 2003-05-26 アスモ株式会社 Power steering device
JP3839142B2 (en) * 1997-09-19 2006-11-01 本田技研工業株式会社 Electric motor drive
US6969969B2 (en) * 2002-02-21 2005-11-29 Diehl Ako Stiftung & Co. Kg Circuit arrangement for the actuation of an electric-motor drive, in particular a pump drive, in a large domestic appliance
JP3854190B2 (en) * 2002-04-26 2006-12-06 株式会社ジェイテクト Motor control device
JP2003333895A (en) * 2002-05-14 2003-11-21 Niles Co Ltd Motor drive circuit
US20060022620A1 (en) * 2004-07-27 2006-02-02 Siemens Vdo Automotive Inc. Series speed manipulation for dual fan module
JP4475403B2 (en) * 2004-09-07 2010-06-09 三菱電機株式会社 Electric power steering control device
JP5125055B2 (en) * 2006-10-26 2013-01-23 日本精工株式会社 Steering control device and method
JP5193908B2 (en) * 2009-03-11 2013-05-08 アルプス電気株式会社 Drive device
JP5614588B2 (en) * 2010-12-21 2014-10-29 株式会社ジェイテクト Vehicle steering system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052695B2 (en) 2018-11-29 2022-04-12 株式会社デンソー Rotating machine control device
US11081981B2 (en) 2018-11-29 2021-08-03 Denso Corporation Rotating machine controller
JP2020089172A (en) * 2018-11-29 2020-06-04 株式会社デンソー Rotary machine control device
JP7283443B2 (en) 2019-11-01 2023-05-30 株式会社デンソー Rotating machine control device
JP2021078341A (en) * 2019-11-01 2021-05-20 株式会社デンソー Rotary machine control device
US11811338B2 (en) 2019-11-01 2023-11-07 Denso Corporation Rotating machine control device
US11750120B2 (en) 2019-11-01 2023-09-05 Denso Corporation Rotating machine control device
WO2021085177A1 (en) * 2019-11-01 2021-05-06 株式会社デンソー Rotating machine control device
CN114630782B (en) * 2019-11-01 2024-04-02 株式会社电装 Rotary electric machine control device
WO2021085178A1 (en) * 2019-11-01 2021-05-06 株式会社デンソー Rotating machine control device
JP2021078340A (en) * 2019-11-01 2021-05-20 株式会社デンソー Rotary machine control device
CN114630782A (en) * 2019-11-01 2022-06-14 株式会社电装 Rotating electric machine control device
JP7205519B2 (en) 2019-11-01 2023-01-17 株式会社デンソー Rotating machine control device
JP7226390B2 (en) 2020-04-28 2023-02-21 株式会社デンソー Control device for automotive braking system
JP2021172274A (en) * 2020-04-28 2021-11-01 株式会社デンソー Control device for brake device for automobile
JP2021197789A (en) * 2020-06-11 2021-12-27 株式会社デンソー Rotary machine control device
JP7347341B2 (en) 2020-06-11 2023-09-20 株式会社デンソー Rotating machine control device
WO2021251273A1 (en) * 2020-06-11 2021-12-16 株式会社デンソー Rotating machine control device
WO2022030423A1 (en) * 2020-08-03 2022-02-10 株式会社デンソー Multiple motor drive system
JP2022083159A (en) * 2020-11-24 2022-06-03 株式会社デンソー Motor control device
JP7415891B2 (en) 2020-11-24 2024-01-17 株式会社デンソー motor control device
WO2022113714A1 (en) * 2020-11-24 2022-06-02 株式会社デンソー Motor control device

Also Published As

Publication number Publication date
JP2012170276A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5768999B2 (en) Motor control device and vehicle steering device
US10998842B2 (en) Power conversion device, motor drive unit, and electric power steering device
JP6874758B2 (en) Power converter, motor drive unit, electric power steering device and relay module
JP6888609B2 (en) Power converter, motor drive unit and electric power steering device
JP5614576B2 (en) Vehicle steering system
JP5282376B2 (en) Electric power steering device
JP5742356B2 (en) Control device for electric power steering device
WO2013069473A1 (en) Electrically operated power steering device
CN109874381B (en) Power conversion device, motor drive unit, and electric power steering device
JP2007295658A (en) Motor controller and motor-driven power steering controller employing the same
JP5614588B2 (en) Vehicle steering system
JP2007099066A (en) Electric power steering device
JP7014183B2 (en) Power converter, motor drive unit and electric power steering device
JP5768998B2 (en) Motor control device and vehicle steering device
JP2016208585A (en) Motor controller and electrically-driven power steering device
JP4644013B2 (en) Electric power steering device
JP2005065443A (en) Electric power steering device
WO2018173425A1 (en) Power conversion device, motor drive unit, and electric power steering device
JP2011176912A (en) Motor controller
US11420672B2 (en) Power conversion device, motor drive unit, and electric power steering device
JP7415891B2 (en) motor control device
JP2018152973A (en) Power conversion circuit, motor control device and power steering device
JP2016208584A (en) Motor controller and electrically-driven power steering device
JP2019092342A (en) Motor controller
JP2005170294A (en) Electric power steering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150610

R150 Certificate of patent or registration of utility model

Ref document number: 5768999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150