JP5766516B2 - Cylindrical fluidized bed furnace - Google Patents

Cylindrical fluidized bed furnace Download PDF

Info

Publication number
JP5766516B2
JP5766516B2 JP2011125985A JP2011125985A JP5766516B2 JP 5766516 B2 JP5766516 B2 JP 5766516B2 JP 2011125985 A JP2011125985 A JP 2011125985A JP 2011125985 A JP2011125985 A JP 2011125985A JP 5766516 B2 JP5766516 B2 JP 5766516B2
Authority
JP
Japan
Prior art keywords
fluidized bed
furnace
waste
discharge port
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011125985A
Other languages
Japanese (ja)
Other versions
JP2012251748A (en
Inventor
山口 繁
繁 山口
龍一 石川
龍一 石川
浩喜 今村
浩喜 今村
秀子 杉山
秀子 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Environmental Plant Co Ltd
Original Assignee
Ebara Environmental Plant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Environmental Plant Co Ltd filed Critical Ebara Environmental Plant Co Ltd
Priority to JP2011125985A priority Critical patent/JP5766516B2/en
Publication of JP2012251748A publication Critical patent/JP2012251748A/en
Application granted granted Critical
Publication of JP5766516B2 publication Critical patent/JP5766516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、廃棄物を処理する円筒形流動床炉に係り、特に炉床の水平断面を円形とした円筒状の炉本体と円筒状の炉本体の中心から偏芯して設けられた不燃物排出口とを備える円筒形流動床炉に関する。   The present invention relates to a cylindrical fluidized bed furnace for treating waste, and in particular, a cylindrical furnace main body having a circular horizontal cross section of the hearth and an incombustible material provided eccentrically from the center of the cylindrical furnace main body. The present invention relates to a cylindrical fluidized bed furnace having a discharge port.

従来から廃棄物処理装置として流動床炉が用いられている。流動床炉は流動媒体(砂等)の大きな熱容量を利用して、高温に熱した流動媒体中に廃棄物を投入し、廃棄物の乾燥、熱分解および燃焼を短時間に行なわせるもので、流動床焼却炉や流動床ガス化溶融炉(流動床式ガス化炉と溶融燃焼炉とで構成される)に用いられている。流動床炉は、激しく流動する流動媒体と処理対象物との間で熱交換が速やかに行われるため熱移動速度が速く、反応が速やかに行われるという特質および流動層では流動媒体が流動している縦方向での物質移動は行なわれやすいが水平方向での物質移動が行なわれにくいという特質を有している。そのため、流動床炉の廃棄物処理への適用においては、先ず、汚泥等の均質で分散しやすいものを対象物とし、炉床に均一に供給するようにされた。処理対象を都市ごみ等の固形廃棄物とする場合には、予め処理対象物を破砕し、炉床に均一に供給する方法が用いられた。   Conventionally, a fluidized bed furnace has been used as a waste treatment apparatus. A fluidized bed furnace uses a large heat capacity of a fluid medium (sand, etc.), throws waste into a fluid medium heated to a high temperature, and allows the waste to be dried, pyrolyzed and burned in a short time. It is used in fluidized bed incinerators and fluidized bed gasification and melting furnaces (consisting of a fluidized bed gasification furnace and a melting combustion furnace). In a fluidized bed furnace, heat exchange is performed quickly between a fluid medium that flows violently and the object to be processed, so that the heat transfer speed is fast and the reaction is performed quickly. The material movement in the vertical direction is easy to be performed, but the material movement in the horizontal direction is difficult to be performed. Therefore, in the application of the fluidized bed furnace to the waste treatment, first, a homogeneous and easily dispersible material such as sludge is used as an object and is supplied uniformly to the hearth. When solid waste such as municipal waste is used as a treatment target, a method is used in which the treatment target is crushed in advance and uniformly supplied to the hearth.

流動床炉としては、炉床の水平断面を円形とし、即ち炉を円筒形状とし、炉床中央部に不燃物排出口を設けた円筒形流動床炉があり、この円筒形流動床炉は構造的に最もシンプルであり、円筒形状であるため熱応力も均等に分散し、耐火材等の耐久性に富むという利点があるため、従来から多く用いられている。この円筒形流動床炉では、炉床中央部の不燃物排出口の上方は流動化空気が供給されないため、いわゆる固定層となっている。そのため、この固定層に廃棄物が取り込まれると、流動媒体が流動化していないため、流動媒体と処理対象物の間の熱交換は熱伝導のみとなり、熱交換が速やかに行われないので、処理対象物の熱分解が進みにくく、また流動化空気の供給が無いため熱分解残渣(チャー)が流動化空気により燃焼することもない。そうすると、不燃物排出口から不燃物に混じって、熱分解残渣が排出されることになり、燃焼効率が低下すると共に、ダイオキシン類は熱分解残渣(チャー)に含まれるため、不燃物のダイオキシン類濃度が高くなるという不都合が生じる。この不都合が生じないように、不燃物排出口周辺の流動化空気量を増やし、上記固定層を不燃物排出口直上部の最小限の領域として、処理対象物や熱分解残渣(チャー)が不燃物排出口から排出されないようにしている。即ち、炉床全域で均等な流動化を行わせる、いわゆるバブリング流動層を採用している。   As a fluidized bed furnace, there is a cylindrical fluidized bed furnace in which the horizontal cross section of the hearth is circular, that is, the furnace is cylindrical, and an incombustible discharge port is provided at the center of the hearth. Since it has the simplest and cylindrical shape, thermal stress is evenly distributed, and there is an advantage that the durability of the refractory material and the like is high. In this cylindrical fluidized bed furnace, fluidized air is not supplied above the incombustible discharge port in the center of the hearth, so that it is a so-called fixed bed. Therefore, when waste is taken into this fixed bed, the fluidized medium is not fluidized, so heat exchange between the fluidized medium and the object to be treated is only heat conduction, and heat exchange is not performed quickly. The thermal decomposition of the object is difficult to proceed, and since there is no supply of fluidized air, the thermal decomposition residue (char) is not combusted by the fluidized air. If it does so, it will be mixed with incombustibles from the incombustible discharge port, and the pyrolysis residue will be discharged, the combustion efficiency will be reduced, and dioxins are included in the pyrolysis residue (char), so dioxins of incombustibles There is a disadvantage that the concentration becomes high. In order to prevent this inconvenience, the amount of fluidized air around the incombustible discharge port is increased, and the fixed layer is made the minimum area just above the incombustible discharge port, so that the processing object and pyrolysis residue (char) are incombustible. The product is prevented from being discharged from the outlet. In other words, a so-called bubbling fluidized bed is employed that allows uniform fluidization throughout the hearth.

上述した円筒形流動床炉では、炉内中央部に処理対象物を供給し、円形の炉床水平断面の周辺部の緩やかに下降する流動媒体中に処理対象物を飲み込ませ、流動床内で熱反応を行わせ、不燃物排出口から不燃物が流動媒体と共に排出される。円筒形流動床炉では、処理対象物を炉床中央部に供給するために、炉天井中央部より処理対象物を供給したり、炉床上部に処理対象物がスムーズに落下して炉床中央部に供給されるようなシュートを設けていた。   In the above-described cylindrical fluidized bed furnace, the object to be treated is supplied to the central part of the furnace, and the object to be treated is swallowed into the fluid medium gradually descending in the periphery of the horizontal cross section of the circular hearth. A thermal reaction is performed, and the incombustible material is discharged together with the fluid medium from the incombustible material discharge port. In a cylindrical fluidized bed furnace, in order to supply the object to be processed to the center of the hearth, the object to be processed is supplied from the center of the hearth, or the object to be processed falls smoothly to the upper part of the hearth and the center of the hearth A chute that is supplied to the section was provided.

しかしながら、炉天井部から供給するのでは施設の所要高さが高くなり、炉の側壁からシュートで炉床中央部を狙って供給しても、処理対象物が多種の成分からなる都市ごみ等の廃棄物では、各種成分の形状や比重等の違いにより落下位置が異なり、廃棄物を炉床に均等に供給して流動床内に取り込むことは困難であり、廃棄物の供給位置が偏りがちとなり炉床で熱反応が行われる領域も偏りがちであった。処理対象物を炉床周辺から均等に供給するためには多数の給じん装置を炉周辺に配置することとなり非現実的である。このため、炉床の全域において処理対象物の処理を行なうことが困難であり、廃棄物の処理は炉床の一部に偏って行われがちであった。   However, if it is supplied from the furnace ceiling, the required height of the facility will be high, and even if it is supplied from the side wall of the furnace with a chute aiming at the center of the hearth, the waste to be treated consists of various components. In waste, the drop position varies depending on the shape and specific gravity of various components, and it is difficult to supply waste evenly to the hearth and take it into the fluidized bed, and the supply position of waste tends to be biased. The region where the thermal reaction takes place in the hearth tends to be biased. In order to supply the object to be treated evenly from the periphery of the hearth, it is impractical to arrange a large number of dust supply devices around the furnace. For this reason, it is difficult to treat the object to be treated in the whole area of the hearth, and the waste is apt to be biased toward a part of the hearth.

一方、都市ごみ等の処理対象物中には石ころ、瓦礫、陶磁器片や金属類等の不燃物が含まれ、これらの不燃物を流動床から安定して排出させることが流動媒体を流動化させ安定した流動床を維持するために不可欠である。このため、砂等からなる流動媒体に、中央部よりも周辺部の方の質量速度が大きくなるように流動化ガスを供給することにより、炉の中央部に流動媒体が沈降拡散する移動層を形成し、炉内周辺部に流動媒体が活発に流動化している流動層を形成し、流動媒体を移動層と流動層との間を循環させ、流動床内に流動媒体の水平方向の移動を促進させたいわゆる旋回流式流動床炉が開発されている(特許文献1参照)。   On the other hand, municipal wastes and other objects to be treated contain incombustible materials such as stones, rubble, ceramic pieces and metals, and the stable discharge of these incombustible materials from the fluidized bed fluidizes the fluidized medium. It is essential to maintain a stable fluidized bed. For this reason, by supplying a fluidizing gas to a fluid medium made of sand or the like so that the mass velocity in the peripheral part is larger than that in the central part, a moving bed where the fluid medium settles and diffuses in the central part of the furnace Forming a fluidized bed in which the fluidized medium is actively fluidized in the periphery of the furnace, circulating the fluidized medium between the moving bed and the fluidized bed, and moving the fluidized medium horizontally in the fluidized bed. An accelerated so-called swirling fluidized bed furnace has been developed (see Patent Document 1).

旋回流式流動床炉では流動媒体の循環流中に処理対象物を取り込み炉床中で熱反応を行わせるとともに、流動媒体の循環流により炉内周辺部にある不燃物排出口から不燃物を安定して排出するものである。流動媒体の循環流を用いて不燃物の排出を行わせるため、特許文献1に記載されているような炉床の水平断面を矩形とした流動床炉が多く用いられている。   In a swirling fluidized bed furnace, the object to be treated is taken into the circulating flow of the fluid medium to cause a thermal reaction in the hearth, and the incombustible material is discharged from the incombustible discharge port in the periphery of the furnace by the circulating fluid medium. It discharges stably. In order to discharge incombustibles using a circulating flow of a fluidized medium, a fluidized bed furnace having a rectangular horizontal cross section as described in Patent Document 1 is often used.

特公昭62−5242号公報Japanese Examined Patent Publication No. 62-5242

上述したように、流動床炉は、炉床の水平断面を円形とした円筒形流動床炉と炉床の水平断面を矩形とした流動床炉に概略大別することができる。円筒形流動床炉は、構造的に最もシンプルで熱応力も均等に分散し、耐火材等の耐久性に富むという利点があるが、廃棄物を炉床に均等に供給して流動床内に取り込むことは困難であり、廃棄物の供給位置が偏りがちとなり炉床で熱反応が行われる領域も偏りがちであり、廃棄物の処理は炉床の一部に偏って行われがちであるという欠点がある。一方、炉床の水平断面を矩形とした循環流式流動床炉は、構造的に複雑で熱応力が角部等に集中しやすく耐火材等の耐久性に劣るという欠点があるが、不燃物を流動床から安定して排出することができるという利点がある。   As described above, the fluidized bed furnace can be roughly divided into a cylindrical fluidized bed furnace in which the horizontal cross section of the hearth is circular and a fluidized bed furnace in which the horizontal cross section of the hearth is rectangular. Cylindrical fluidized bed furnaces are the simplest structurally and have the advantage of being evenly distributed in thermal stress and being highly durable, such as refractory materials. It is difficult to take in, the supply position of the waste tends to be biased, and the region where the thermal reaction is performed in the hearth tends to be biased, and the waste processing tends to be biased to a part of the hearth There are drawbacks. On the other hand, the circulating flow type fluidized bed furnace with a rectangular horizontal cross section of the hearth has the disadvantage that it is structurally complex and thermal stress tends to concentrate on the corners, etc. Can be discharged stably from the fluidized bed.

本発明者らは、円筒形流動床の構造的に優れた点に着目するとともに旋回流式流動床炉における不燃物を流動床から安定して排出することができる点に着目し、円筒形流動床炉に流動媒体の循環流を適用することを試みることにより以下の知見を得たものである。すなわち、炉床中央部に不燃物排出口を設けた円筒形流動床炉に循環流を適用する場合、炉内中央部に流動媒体が沈降拡散する移動層を形成し、炉内周辺部に流動媒体が活発に流動化している流動層を形成し、炉内中央部に廃棄物を供給すると、炉内中央部において沈降拡散する移動層の流動媒体とともに未反応の廃棄物が不燃物排出口から多量に排出されてしまうという問題がある。これを避けるために、炉内周辺部に流動媒体が沈降拡散する移動層を形成し、炉内中央部に流動媒体が活発に流動化している流動層を形成し、炉内中央部に廃棄物を供給すると、廃棄物は、流動床上部において炉内中央部から炉内周辺部に放射状に移動する流動媒体によって炉内周辺部に運ばれて炉内周辺部の移動層に飲み込まれて移動層内で熱反応が行われる。
しかしながら、炉内中央部に供給された廃棄物が炉内中央部から炉内周辺部に移動する流動媒体によって放射状に運ばれる際に、廃棄物が円周方向に均等に分散することが難しく、熱反応が行われる領域が偏りがちになるという問題がある。
The inventors pay attention to the structurally superior point of the cylindrical fluidized bed and pay attention to the point that the incombustible material in the swirling fluidized bed furnace can be discharged stably from the fluidized bed. The following knowledge was acquired by trying to apply the circulating flow of a fluid medium to a bed furnace. That is, when applying a circulating flow to a cylindrical fluidized bed furnace with an incombustible discharge port in the center of the hearth, a moving bed in which the fluid medium settles and diffuses is formed in the center of the furnace and flows in the periphery of the furnace When a fluidized bed in which the medium is actively fluidized is formed and waste is supplied to the central part of the furnace, unreacted waste is discharged from the incombustible discharge port together with the fluidized medium of the moving bed that settles and diffuses in the central part of the furnace There is a problem that a large amount is discharged. In order to avoid this, a moving bed in which the flowing medium settles and diffuses is formed in the periphery of the furnace, a fluidized bed in which the flowing medium is actively fluidized is formed in the center of the furnace, and waste is formed in the center of the furnace. The waste is transported to the periphery of the furnace by the fluidized medium that moves radially from the center of the furnace to the periphery of the furnace in the upper part of the fluidized bed, and is swallowed by the moving bed in the periphery of the furnace. The thermal reaction takes place within.
However, when the waste supplied to the central part of the furnace is conveyed radially by the fluid medium moving from the central part of the furnace to the peripheral part of the furnace, it is difficult for the waste to be evenly distributed in the circumferential direction, There is a problem that the region where the thermal reaction is performed tends to be biased.

本発明者らは、上記知見に基づいて、円筒形流動床炉において廃棄物の供給条件と炉床流動化の条件を最適化するための試験を繰り返し行うことにより、流動媒体の循環流によって廃棄物を炉内中央部の流動層から炉内周辺部の移動層に放射状に均等に分散させて移動層の全面に均等に飲み込ませることは難しいため、炉内周辺部の移動層に直接に廃棄物を供給して廃棄物を飲み込ませることが廃棄物の供給条件としては最適であることを見出した。また、水平断面が円形の流動床炉においては炉内周辺部の移動層と炉内中央部の流動層との間で流動媒体が放射状に半径方向内方と外方との間で移動することになるため、円の中央付近から円の周方向に流動媒体を拡散させるに際し、流動媒体の均等な拡散は困難であり、炉内全面にわたって均一な循環流を形成することが難しく、流動媒体の循環流を形成する場合には移動層と流動層とが不燃物排出口を中心にして放射状に半径方向で同一の面積とした水平断面が円形の流動床炉が最適であることを見出し、本発明の創案に至ったものである。
すなわち、本発明は、炉床の不燃物排出口の位置を円筒形の炉本体の軸心から偏芯させ、不燃物排出口から遠い位置の炉壁の廃棄物供給口から廃棄物を供給し、炉床の廃棄物供給部と不燃物排出口との間に流動媒体の循環流を形成することにより、廃棄物を炉床に均一に供給する必要がなく、流動床内の広範囲で熱反応を行わせ、不燃物へのチャーの混入を防止することができる円筒形流動床炉を提供することを目的とする。
Based on the above findings, the present inventors have repeatedly conducted tests for optimizing waste supply conditions and furnace bed fluidization conditions in a cylindrical fluidized bed furnace, thereby disposing of waste by circulating flow of a fluid medium. It is difficult to disperse the material evenly from the fluidized bed in the central part of the furnace to the moving bed in the peripheral part of the furnace so that it can be swallowed evenly on the entire surface of the moving bed. It was found that supplying the waste and swallowing the waste is the optimum waste supply condition. In a fluidized bed furnace with a circular horizontal cross section, the fluidized medium must move radially inward and outward between the moving bed in the periphery of the furnace and the fluidized bed in the center of the furnace. Therefore, when the fluid medium is diffused from the vicinity of the center of the circle in the circumferential direction of the circle, it is difficult to evenly diffuse the fluid medium, and it is difficult to form a uniform circulating flow over the entire surface of the furnace. When forming a circulating flow, we found that a fluidized bed furnace with a circular horizontal cross section with the same area in the radial direction with the moving bed and fluidized bed radially centered around the incombustible discharge port is optimal. Invented the invention.
That is, according to the present invention, the position of the incombustible discharge port of the hearth is eccentric from the axial center of the cylindrical furnace body, and the waste is supplied from the waste supply port of the furnace wall far from the incombustible discharge port. By forming a circulating flow of the fluidized medium between the waste supply part of the hearth and the incombustible discharge port, it is not necessary to supply the waste uniformly to the hearth, and the thermal reaction takes place in a wide range within the fluidized bed. An object of the present invention is to provide a cylindrical fluidized bed furnace capable of preventing char from being mixed into incombustible materials.

上記目的を達成するために、本発明の円筒形流動床炉は、廃棄物を処理する流動床炉において、水平断面が円形に形成された円筒形の炉本体と、前記炉本体の底部に配置され、流動化ガスを供給して流動媒体を流動させる気体供給口を設けた床板と、前記円筒形の炉本体の底部に設けられ、該円筒形の炉本体の軸心から偏芯して配置された不燃物排出口と、前記円筒形の炉本体の軸心を挟んで前記不燃物排出口と反対側にある炉壁に設けられた廃棄物供給口とを備え、前記廃棄物供給口がある側の炉壁と前記不燃物排出口との間の床板に設けられた気体供給口から噴出される流動化ガスの供給量に廃棄物供給口側と不燃物排出口側とで差を設けて前記不燃物排出口側の流動化速度を前記廃棄物供給口側の流動化速度より大きくし、前記廃棄物供給口側に流動媒体が沈降する移動層を形成し、前記不燃物排出口側に流動媒体が上昇する流動層を形成し、前記円筒形の炉本体の軸心を挟んで前記廃棄物供給口がある側の炉壁と反対側の炉壁と、前記不燃物排出口との間の流動化速度を前記不燃物排出口側の大きな流動化速度と同等にして、不燃物排出口周囲に流動媒体が上下動を繰り返すバブリング流動層を形成したことを特徴とする。 In order to achieve the above object, a cylindrical fluidized bed furnace according to the present invention is a fluidized bed furnace for treating waste, and a cylindrical furnace body having a circular horizontal cross section is disposed at the bottom of the furnace body. And a floor plate provided with a gas supply port for supplying a fluidizing gas and flowing a fluid medium, and provided at the bottom of the cylindrical furnace body, and arranged eccentrically from the axial center of the cylindrical furnace body A non-combustible material discharge port, and a waste supply port provided on a furnace wall on the opposite side of the non-combustible material discharge port across the axial center of the cylindrical furnace body, the waste supply port A difference is provided between the waste supply port side and the incombustible material discharge port side in the supply amount of fluidized gas ejected from the gas supply port provided in the floor plate between the furnace wall on a certain side and the incombustible material discharge port The fluidization speed on the non-combustible discharge port side is larger than the fluidization speed on the waste supply port side, Bed material to form a moving layer to settle on the sheet inlet side, the incombustible discharge port side to the fluidized medium forms a fluidized layer increases, the waste feed port across the axis of the cylindrical furnace body The fluidization speed between the furnace wall on the opposite side and the furnace wall on the opposite side and the incombustible material discharge port is equivalent to the large fluidization speed on the incombustible material discharge port side, and flows around the incombustible material discharge port. A bubbling fluidized bed in which the medium repeatedly moves up and down is formed .

本発明によれば、廃棄物供給口の直下の炉床にある廃棄物供給部と不燃物排出口との間に、大きな面積の循環流流動層を形成することができる。この循環流流動層は水平断面が概略扇面状の流動床をなし、この概略扇面状の流動床において炉内周辺部の移動層と炉内中央部の流動層との間で流動媒体の循環流を形成する際に流動媒体が円の周方向に拡散することなく、水平断面が矩形の流動床に類似した流動媒体の循環流となる。そして、廃棄物供給口の直下には、流動媒体が比較的ゆっくりした速度で上方から下方に移動する移動層が形成されるため、廃棄物供給口から流動床に供給された廃棄物を移動層の沈降流により直ちに飲み込ませることができる。廃棄物は移動層に飲み込まれて流動媒体と共に下方に移動する際に、流動媒体の熱によって廃棄物の乾燥及び熱分解が行われて、廃棄物中の水分が蒸発し、廃棄物中の可燃分から可燃ガスが発生して、脆い熱分解残渣となる。熱分解残渣は、不燃物及び熱分解によって脆くなった未燃物(チャー)を含んでいる。移動層で生成される熱分解残渣は、流動媒体と共に、床板に至ると、傾斜した床板に沿って流動層に向かう。流動層に至った熱分解残渣は、流動化ガスにより未燃物(チャー)が不燃物から剥離し、未燃物(チャー)が剥離して残った不燃物は一部の流動媒体と共に不燃物排出口に向かう。このとき、不燃物排出口は円筒状の炉本体の軸心から偏芯しているので、不燃物から未燃物(チャー)が剥離するための移動距離を確保することができ、熱分解残渣中の不燃物が確実に流動層の一定距離を移動することとなって、未燃物(チャー)と不燃物との分離を適切に行うことができる。不燃物は、一部の流動媒体と共に不燃物排出口へ流入して流動床炉外へ排出される。   According to the present invention, it is possible to form a circulating fluidized bed having a large area between the waste supply part in the hearth just below the waste supply port and the incombustible discharge port. This circulating flow fluidized bed forms a fluidized bed having a substantially fan-like horizontal cross section, and the circulating flow of the fluidized medium between the moving bed in the periphery of the furnace and the fluidized bed in the center of the furnace in the substantially sectorized fluidized bed. The fluidized medium is not diffused in the circumferential direction of the circle when forming the fluid, and the fluidized medium circulates like a fluidized bed having a rectangular horizontal section. Since a moving bed in which the fluid medium moves from the upper side to the lower side at a relatively slow speed is formed immediately below the waste supply port, the waste supplied from the waste supply port to the fluidized bed is transferred to the moving bed. Can be swallowed immediately by the settling flow. When the waste is swallowed into the moving bed and moves downward together with the fluidized medium, the wastewater is dried and pyrolyzed by the heat of the fluidized medium, the moisture in the waste is evaporated, and the combustible in the waste is combusted. Combustible gas is generated from the minute and becomes a brittle pyrolysis residue. The pyrolysis residue includes incombustible materials and unburned materials (chars) that have become brittle by thermal decomposition. When the pyrolysis residue generated in the moving bed reaches the floor plate together with the fluidized medium, it goes to the fluidized bed along the inclined floor plate. The pyrolysis residue that has reached the fluidized bed peels off the unburned material (char) from the incombustible material by the fluidizing gas, and the unburned material (char) is peeled off from the incombustible material. Head to the outlet. At this time, since the incombustible discharge port is eccentric from the axial center of the cylindrical furnace body, it is possible to secure a moving distance for unburned material (char) to be peeled from the incombustible material, and the pyrolysis residue The incombustible material in the inside surely moves a certain distance of the fluidized bed, so that the unburned material (char) and the incombustible material can be appropriately separated. The incombustible material flows into the incombustible material discharge port together with a part of the fluidized medium and is discharged out of the fluidized bed furnace.

他方、不燃物から剥離した未燃物(チャー)は、流動化ガスが供給されることに伴って流動する流動媒体と共に上方に移動する。このとき、未燃物(チャー)は、供給された流動化ガスによって燃焼が行われ、流動媒体を加熱しつつ燃焼ガスを発生し、気体に搬送される程度の微細な未燃物(チャー)及び灰分の粒子となる。流動層においては、未燃物(チャー)の燃焼に伴って徐々に温度が上昇して行くので、下部から上部に行くにつれて温度が比例的に上昇して行く。他方、流動層の上部に至った流動媒体は、流動床表面にばらまかれ、移動層の沈降流に飲み込まれる。流動媒体は、流動層において、移動層で廃棄物の熱分解を適切に行うことができる温度に上昇させられる。移動層に流入した流動媒体は、再び供給された廃棄物を受け入れて、上述の移動層及び流動層における熱反応を繰り返す。
本発明によれば、移動層と流動層とを有した水平断面が概略扇面状の循環流流動層に加えて、不燃物排出口を挟んで循環流流動層の領域の反対側にバブリング流動層を形成することにより、不燃物排出口の周辺の流動化ガス量を増やし、固定層を不燃物排出口直上部の最小限の領域として、廃棄物や熱分解残渣(チャー)が不燃物排出口から排出されないようにしている。
On the other hand, the unburned material (char) peeled from the incombustible material moves upward together with the fluidized medium that flows as the fluidizing gas is supplied. At this time, the unburned matter (char) is burned by the supplied fluidized gas, and the combustion medium is generated while heating the fluid medium, and the unburned matter (char) is conveyed to the gas. And particles of ash. In the fluidized bed, the temperature gradually rises as the unburned matter (char) burns, so the temperature rises proportionally from the bottom to the top. On the other hand, the fluid medium reaching the upper part of the fluidized bed is dispersed on the surface of the fluidized bed and swallowed by the settling flow of the moving bed. The fluidized medium is raised in the fluidized bed to a temperature at which waste can be properly pyrolyzed in the moving bed. The fluidized medium that has flowed into the moving bed receives the waste again supplied and repeats the thermal reaction in the moving bed and the fluidized bed.
According to the present invention, the horizontal cross section having a moving bed and a fluidized bed has a substantially circular fan-shaped circulating fluidized bed, and a bubbling fluidized bed on the opposite side of the region of the circulating fluidized bed across the incombustible discharge port. By increasing the amount of fluidized gas around the incombustible discharge port, the fixed layer is the minimum area directly above the incombustible discharge port, and waste and pyrolysis residue (char) are discharged into the incombustible discharge port. So that it will not be discharged from.

本発明の好ましい態様によれば、前記廃棄物供給口がある側の炉壁と前記不燃物排出口との間の床板に設けられた気体供給口を廃棄物供給口側の気体供給口と不燃物排出口側の気体供給口とに2つ以上に分けることを特徴とする。
本発明によれば、廃棄物供給口側から不燃物排出口側までの気体供給口を2つ以上のグループに分け、分けられた各グループの気体供給口からの気体噴出量により流動媒体の流動化速度に差を設けることで、流動層における流動媒体の上昇流又は移動層の流動媒体の沈降流をより細かく調整することができ、廃棄物の熱反応がより進行するように流動層の不燃物の移動及び移動層における沈降が行われる。
According to a preferred aspect of the present invention, the gas supply port provided in the floor plate between the furnace wall on the side where the waste supply port is located and the incombustible discharge port is connected to the gas supply port on the waste supply port side and non-combustible. It is characterized by being divided into two or more gas supply ports on the object discharge port side.
According to the present invention, the gas supply ports from the waste supply port side to the incombustible discharge port side are divided into two or more groups, and the flow of the fluidized medium is determined by the amount of gas ejected from the divided gas supply ports. By providing a difference in the conversion rate, the upward flow of the fluidized medium in the fluidized bed or the sedimentary flow of the fluidized medium in the moving bed can be adjusted more finely, and the incombustibility of the fluidized bed can be increased so that the thermal reaction of waste proceeds more. Movement of objects and settling in the moving bed takes place.

本発明の好ましい態様によれば、前記廃棄物供給口がある側の炉壁と前記不燃物排出口との間の床板に設けられた気体供給口は前記床板の下に設けた空気箱に仕切りを設けて分割することにより区画したことを特徴とする。   According to a preferred aspect of the present invention, the gas supply port provided in the floor plate between the furnace wall on the side where the waste supply port is located and the incombustible discharge port is partitioned into an air box provided under the floor plate. It is characterized by partitioning by providing and dividing.

本発明の好ましい態様によれば、前記廃棄物供給口がある側の炉壁と前記不燃物排出口との間の炉内領域に、前記移動層と前記流動層との間を流動媒体が循環する循環流が形成されることを特徴とする。   According to a preferred aspect of the present invention, a fluid medium circulates between the moving bed and the fluidized bed in a furnace region between the furnace wall on the side where the waste supply port is located and the incombustible discharge port. A circulating flow is formed.

本発明の好ましい態様によれば、前記床板に設けられた前記気体供給口は、前記不燃物排出口を中心とした同心円上および同心の円弧上に配列されていることを特徴とする。
本発明によれば、同心円上に配置された気体供給口からは、実質的に大きな流動化速度を与えるように流動化ガスを噴出し、床板の同心円の上方に流動媒体が活発に流動する強流動化域を形成し、円弧上に配置された気体供給口からは、実質的に小さな流動化速度を与えるように流動化ガスを噴出し、床板の円弧の上方に流動媒体が比較的ゆっくりした速度で流動する弱流動化域を形成する。前記同心円のうち、円弧に隣接している概略半円の部分の上方に形成された強流動化域と、円弧の上方に形成された弱流動化域とが相隣接して存在する結果、弱流動化域で流動媒体が比較的ゆっくりした速度で上方から下方に移動する移動層が形成されて、強流動化域で流動媒体が下方から上方に移動する流動層が形成される。したがって、弱流動化域と強流動化域とが相隣接する領域全体においては、流動媒体が、下部では弱流動化域から強流動化域(移動層から流動層)へ、上部では強流動化域から弱流動化域(流動層から移動層)へ移動することで、弱流動化域と強流動化域(移動層と流動層)との間を流動媒体が循環する循環流が形成される。
According to a preferred aspect of the present invention, the gas supply ports provided in the floor board are arranged on a concentric circle and a concentric arc centered on the incombustible discharge port.
According to the present invention, the fluidizing gas is ejected from the gas supply ports arranged on the concentric circles so as to give a substantially large fluidizing speed, and the fluid medium actively flows above the concentric circles of the floor plate. From the gas supply port that forms the fluidization zone and is arranged on the arc, the fluidizing gas is ejected so as to give a substantially small fluidization speed, and the fluid medium becomes relatively slow above the arc of the floor plate. A weak fluidization zone that flows at a speed is formed. Among the concentric circles, a strong fluidization region formed above a substantially semicircular portion adjacent to the arc and a weak fluidization region formed above the arc are present as a result of being weak. In the fluidization zone, a moving bed is formed in which the fluid medium moves from the upper side to the lower side at a relatively slow speed, and in the strong fluidization zone, a fluid bed in which the fluid medium moves from the lower side to the upper side is formed. Therefore, in the entire region where the weak fluidization zone and the strong fluidization zone are adjacent to each other, the fluidized medium is fluidized from the weak fluidization zone to the strong fluidization zone (moving bed to fluidized bed) at the bottom, and strong fluidization at the top. By moving from the zone to the weak fluidized zone (from the fluidized bed to the moving bed), a circulating flow is formed in which the fluid medium circulates between the weakly fluidized zone and the strong fluidized zone (moving bed and fluidized bed). .

本発明の好ましい態様によれば、前記廃棄物供給口の位置にスクリューフィーダからなる廃棄物供給装置を設置したことを特徴とする。
本発明によれば、円筒状炉壁に設けた廃棄物供給口に、略水平方向に廃棄物を供給するスクリューフィーダからなる廃棄物供給装置を設けたため、炉天井中央部より廃棄物を供給したり、炉床上部に廃棄物がスムーズに落下して炉床中央部に供給されるようなシュートを設ける必要がなく、施設の全高(高さ)を低くすることができる。
According to a preferred aspect of the present invention, a waste supply device comprising a screw feeder is installed at the position of the waste supply port.
According to the present invention, since the waste supply device including the screw feeder that supplies the waste in a substantially horizontal direction is provided at the waste supply port provided in the cylindrical furnace wall, the waste is supplied from the center of the furnace ceiling. In addition, there is no need to provide a chute that allows the waste to fall smoothly and be supplied to the center of the hearth, and the overall height (height) of the facility can be reduced.

本発明は、以下に列挙する効果を奏する。
(1)円筒形状の流動床炉であるため、構造的に最もシンプルとなり炉の製作が容易となり、また炉壁が円筒形状であるため、耐火物の耐久性が向上する。
(2)廃棄物供給口の直下の炉床にある廃棄物供給部と不燃物排出口との間に、大きな面積の循環流流動層を形成することができる。この循環流流動層は水平断面が概略扇面状の流動床をなし、この概略扇面状の流動床において炉内周辺部の移動層と炉内中央部側の流動層との間で流動媒体の循環流を形成する際に流動媒体が円の周方向に拡散することなく、水平断面が矩形の流動床に類似した流動媒体の循環流となり、炉内周辺部から不燃物排出口に向かう流動媒体の流れによって不燃物を炉外にスムーズに排出できる。
(3)廃棄物供給口の直下には、流動媒体が比較的ゆっくりした速度で上方から下方に移動する移動層が形成されているため、廃棄物供給口から流動床に供給された廃棄物を移動層の沈降流により直ちに飲み込ませることができる。そのため、廃棄物を炉床に均等に分散供給する必要がなく、廃棄物の供給が容易である。
(4)円筒状炉壁に設けた廃棄物供給口に、略水平方向に廃棄物を供給するスクリューフィーダからなる廃棄物供給装置を設けたため、炉天井中央部より廃棄物を供給したり、炉床上部に廃棄物がスムーズに落下して炉床中央部に供給されるようなシュートを設ける必要がなく、施設の全高(高さ)を低くすることができる。
The present invention has the following effects.
(1) Since it is a cylindrical fluidized bed furnace, the structure is the simplest and the furnace can be easily manufactured, and the furnace wall has a cylindrical shape, so that the durability of the refractory is improved.
(2) A large-sized circulating fluidized bed can be formed between the waste supply part in the hearth just below the waste supply port and the incombustible discharge port. This circulating fluidized bed forms a fluidized bed with a substantially fan-like horizontal cross section, and in this fluidized bed with a substantially fanlike surface, the fluid medium circulates between the moving bed at the periphery of the furnace and the fluidized bed at the center of the furnace. When the flow is formed, the flowing medium does not diffuse in the circumferential direction of the circle, and the horizontal section becomes a circulating flow of the flowing medium similar to a rectangular fluidized bed, and the flowing medium flows from the periphery of the furnace toward the incombustible discharge port. Non-combustible materials can be discharged smoothly outside the furnace by the flow.
(3) Since a moving bed in which the fluid medium moves from the upper side to the lower side at a relatively slow speed is formed immediately below the waste supply port, the waste supplied to the fluidized bed from the waste supply port It can be swallowed immediately by the sedimentary flow of the moving bed. Therefore, it is not necessary to uniformly distribute the waste to the hearth, and the waste can be easily supplied.
(4) Since a waste supply device comprising a screw feeder for supplying waste in a substantially horizontal direction is provided at the waste supply port provided in the cylindrical furnace wall, waste is supplied from the center of the furnace ceiling, It is not necessary to provide a chute that allows the waste to fall smoothly and be supplied to the center of the hearth, so that the overall height (height) of the facility can be lowered.

図1は、本発明の円筒形流動床炉の全体構成を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing the overall configuration of a cylindrical fluidized bed furnace of the present invention. 図2は図1のII−II線断面図である。2 is a sectional view taken along line II-II in FIG. 図3(a)は炉本体の円筒状炉壁と床板とを示す平面図であり、図3(b)は炉本体の円筒状炉壁と床板とを示す縦断面図である。FIG. 3A is a plan view showing a cylindrical furnace wall and a floor plate of the furnace body, and FIG. 3B is a longitudinal sectional view showing a cylindrical furnace wall and the floor plate of the furnace body. 図4は図3(a)の要部拡大図である。FIG. 4 is an enlarged view of the main part of FIG.

以下、本発明に係る円筒形流動床炉の実施の形態について図1乃至図4を参照して説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Embodiments of a cylindrical fluidized bed furnace according to the present invention will be described below with reference to FIGS. In the drawings, the same or similar members are denoted by the same or similar reference numerals, and redundant description is omitted.

図1は、本発明の円筒形流動床炉の全体構成を示す縦断面図である。図2は図1のII-II線断面図である。図1および図2に示すように、円筒形流動床炉1は、廃棄物Wを処理する炉本体10と、導入した廃棄物Wを熱反応させる流動床20と、流動床20を支える床板30とを備えている。流動床20は、典型的には珪砂等の砂である流動媒体が集積して形成されたベッドである。炉本体10は、炉床の水平断面が円形に形成された円筒状の炉本体からなっている。炉本体10の底部には、円筒状の炉本体の中心から偏芯した位置に不燃物排出口11が設けられている。図2に示すように、不燃物排出口11は水平断面が円形であり、不燃物排出口11の中心11oは円筒状の炉本体10の中心(軸心)10oから距離Lだけ偏芯している。この偏芯距離Lは、円筒状の炉本体10の内径をdとすると、L(mm)=0.086d(mm)〜(d−1000)/2(mm)に設定されている。(但し、d(mm)>1500mm)   FIG. 1 is a longitudinal sectional view showing the overall configuration of a cylindrical fluidized bed furnace of the present invention. 2 is a cross-sectional view taken along line II-II in FIG. As shown in FIGS. 1 and 2, a cylindrical fluidized bed furnace 1 includes a furnace body 10 that processes waste W, a fluidized bed 20 that thermally reacts the introduced waste W, and a floor plate 30 that supports the fluidized bed 20. And. The fluidized bed 20 is a bed formed by accumulating a fluid medium that is typically sand such as silica sand. The furnace body 10 is formed of a cylindrical furnace body in which the horizontal cross section of the hearth is formed in a circular shape. An incombustible discharge port 11 is provided at a position eccentric from the center of the cylindrical furnace body at the bottom of the furnace body 10. As shown in FIG. 2, the incombustible discharge port 11 has a circular horizontal cross section, and the center 11o of the incombustible discharge port 11 is eccentric from the center (axial center) 10o of the cylindrical furnace body 10 by a distance L. Yes. The eccentric distance L is set to L (mm) = 0.086 d (mm) to (d−1000) / 2 (mm), where d is the inner diameter of the cylindrical furnace body 10. (However, d (mm)> 1500 mm)

前記炉本体10の炉壁には、不燃物排出口11から最も離間した位置にスクリューフィーダからなる廃棄物供給装置40が設置されている。廃棄物供給装置40の先端部に廃棄物供給口41が形成されている。すなわち、廃棄物Wは、不燃物排出口11から遠い位置の炉壁に形成された廃棄物供給口41から流動床20に供給されるようになっている。このように、円筒状炉壁に設けた廃棄物供給口41に、略水平方向に廃棄物Wを供給するスクリューフィーダからなる廃棄物供給装置40を設けたため、炉天井中央部より廃棄物Wを供給したり、炉床上部に廃棄物Wがスムーズに落下して炉床中央部に供給されるようなシュートを設ける必要がなく、施設の全高(高さ)を低くすることができる。   A waste supply device 40 including a screw feeder is installed on the furnace wall of the furnace body 10 at a position farthest from the incombustible discharge port 11. A waste supply port 41 is formed at the tip of the waste supply device 40. In other words, the waste W is supplied to the fluidized bed 20 from the waste supply port 41 formed on the furnace wall far from the incombustible discharge port 11. As described above, since the waste supply port 40 provided with the screw feeder that supplies the waste W in the substantially horizontal direction is provided at the waste supply port 41 provided in the cylindrical furnace wall, the waste W is supplied from the center of the furnace ceiling. There is no need to supply or provide a chute that allows the waste W to smoothly fall and be supplied to the center of the hearth, and the overall height (height) of the facility can be reduced.

また、炉本体10の上部には、廃棄物Wを熱反応させた際に生じるガスを排出する排気口12が形成されている。炉本体10内の流動床20の上方にある空間はフリーボード13になっている。炉本体10が焼却炉の場合にはフリーボード13に2次空気を供給して可燃ガスを燃焼させることにより燃焼ガスが排気口12から排出される。炉本体10がガス化炉の場合には可燃ガスが排気口12から排出される。   Further, an exhaust port 12 for discharging a gas generated when the waste W is subjected to a thermal reaction is formed in the upper portion of the furnace body 10. A space above the fluidized bed 20 in the furnace body 10 is a free board 13. When the furnace body 10 is an incinerator, the combustion gas is discharged from the exhaust port 12 by supplying secondary air to the free board 13 and burning the combustible gas. When the furnace body 10 is a gasification furnace, combustible gas is discharged from the exhaust port 12.

図3(a)は炉本体10の円筒状炉壁と床板30とを示す平面図であり、図3(b)は炉本体10の円筒状炉壁と床板30とを示す縦断面図である。図3(a)に示すように、床板30は不燃物排出口11を中心として概略逆円錐状(すり鉢状)に形成されており、床板30には、流動化ガスとしての流動化空気を炉内に噴出するための多数の散気ノズル31,32が配置されている。これらの散気ノズル31,32は流動化空気を供給して流動媒体を流動させる気体供給口を構成する。散気ノズル31,32は、不燃物排出口11を中心とする複数の同心円(C1,C2,C3,C4,C5)上に配置されている。なお、図3(a)では、同心円(C1〜C5)上に配置された散気ノズル31,32の一部のみを図示している。また、C3,C4,C5は、円ではなく円弧になっているため、以下の説明では円弧C3,C4,C5として説明する。   FIG. 3A is a plan view showing the cylindrical furnace wall and the floor plate 30 of the furnace body 10, and FIG. 3B is a longitudinal sectional view showing the cylindrical furnace wall and the floor board 30 of the furnace body 10. . As shown in FIG. 3 (a), the floor plate 30 is formed in a substantially inverted conical shape (conical shape) with the incombustible discharge port 11 as a center, and the floor plate 30 is supplied with fluidized air as a fluidizing gas in a furnace. A large number of air diffuser nozzles 31 and 32 for jetting in are arranged. These aeration nozzles 31 and 32 constitute gas supply ports for supplying fluidized air to flow the fluid medium. The diffuser nozzles 31 and 32 are arranged on a plurality of concentric circles (C1, C2, C3, C4, C5) centering on the incombustible discharge port 11. In FIG. 3A, only a part of the diffuser nozzles 31 and 32 arranged on the concentric circles (C1 to C5) is illustrated. Since C3, C4, and C5 are arcs instead of circles, the following explanation will be made as arcs C3, C4, and C5.

図3(b)に示すように、床板30の下方には、床板30から間隔をあけて底板33が設けられており、床板30と底板33との間の空間は、床板30から底板33まで延びる仕切板34によって2つの空間に分割されている。図3(a)において、点線で示すように、仕切板34は、5つの同心円および円弧C1〜C5のうち、2つの同心円C1,C2と3つの円弧C3,C4,C5とを分割するように配置されている。このように、床板30と底板33との間の空間が仕切板34で分割されることにより、床板30の下方に2つの空気箱35,36が形成されることとなる。2つの空気箱35,36には、炉外から空気箱35,36に流動化空気を導く空気管51,52がそれぞれ接続されている。空気管51,52には、内部を流れる空気流量を調節する調節弁V1,V2がそれぞれ配設されている。2つの空気管51,52は最上流部で合流して1つの空気管53となり、空気管53には流動化空気を圧送する空気ブロワ54が配設されている。なお、空気管51および52にそれぞれブロワを設けてもよい。   As shown in FIG. 3B, a bottom plate 33 is provided below the floor plate 30 with a space from the floor plate 30, and the space between the floor plate 30 and the bottom plate 33 is from the floor plate 30 to the bottom plate 33. It is divided into two spaces by an extending partition plate 34. In FIG. 3A, as shown by the dotted line, the partition plate 34 divides two concentric circles C1 and C2 and three arcs C3, C4, and C5 out of the five concentric circles and arcs C1 to C5. Has been placed. As described above, the space between the floor plate 30 and the bottom plate 33 is divided by the partition plate 34, whereby two air boxes 35 and 36 are formed below the floor plate 30. Air pipes 51 and 52 for guiding fluidized air from outside the furnace to the air boxes 35 and 36 are connected to the two air boxes 35 and 36, respectively. The air pipes 51 and 52 are respectively provided with control valves V1 and V2 for adjusting the flow rate of air flowing inside. The two air pipes 51 and 52 join together at the most upstream portion to form one air pipe 53, and an air blower 54 that pumps fluidized air is disposed in the air pipe 53. In addition, you may provide a blower in the air pipes 51 and 52, respectively.

図4は図3(a)の要部拡大図である。図4では散気ノズル31,32は図示を省略している。図3(b)に示すように構成された流動化空気供給系統において、調節弁V1の開度を調節して空気管51を流れる空気流量を調節することにより、2つの同心円C1,C2上に配置された散気ノズル31からは、実質的に大きな流動化速度を与えるように流動化空気を噴出する。その結果、図4に示すように、床板30の2つの同心円C1,C2の上方に流動媒体が活発に流動する強流動化域SFを形成する。また、図3(b)に示す調節弁V2の開度を調節して空気管52を流れる空気流量を調節することにより、3つの円弧C3,C4,C5上に配置された散気ノズル32からは、実質的に小さな流動化速度を与えるように流動化空気を噴出する。その結果、図4に示すように、床板30の3つの円弧C3,C4,C5の上方に流動媒体が比較的ゆっくりした速度で流動する弱流動化域WFを形成する。   FIG. 4 is an enlarged view of the main part of FIG. In FIG. 4, the aeration nozzles 31 and 32 are not shown. In the fluidized air supply system configured as shown in FIG. 3B, the flow rate of the air flowing through the air pipe 51 is adjusted by adjusting the opening of the control valve V1, so that the two concentric circles C1 and C2 are placed. From the arranged aeration nozzle 31, fluidized air is ejected so as to give a substantially large fluidization speed. As a result, as shown in FIG. 4, a strong fluidization zone SF in which the fluid medium actively flows is formed above the two concentric circles C <b> 1 and C <b> 2 of the floor plate 30. Further, by adjusting the opening of the control valve V2 shown in FIG. 3B to adjust the flow rate of air flowing through the air pipe 52, the air diffuser nozzles 32 arranged on the three arcs C3, C4, C5 are used. Jets fluidized air to provide a substantially small fluidization rate. As a result, as shown in FIG. 4, a weak fluidization zone WF is formed above the three arcs C3, C4, C5 of the floor plate 30 where the fluid medium flows at a relatively slow speed.

図4に示すように、前記2つの同心円C1,C2のうち、円弧C3,C4,C5に隣接している概略半円の部分C1−1,C2−1の上方に形成された強流動化域SFと、3つの円弧C3,C4,C5の上方に形成された弱流動化域WFとが相隣接して存在する結果、弱流動化域WFで流動媒体が比較的ゆっくりした速度で上方から下方に移動する移動層21が形成されて、強流動化域SFで流動媒体が下方から上方に移動する流動層22が形成される。したがって、弱流動化域WFと強流動化域WFとが相隣接する領域全体においては、流動媒体が、下部では弱流動化域WFから強流動化域SF(移動層21から流動層22)へ、上部では強流動化域SFから弱流動化域WF(流動層22から移動層21)へ移動することで、弱流動化域WFと強流動化域SF(移動層21と流動層22)との間を流動媒体が循環する循環流が形成される。   As shown in FIG. 4, of the two concentric circles C1 and C2, a strong fluidization zone formed above the substantially semicircular portions C1-1 and C2-1 adjacent to the arcs C3, C4 and C5. As a result of the SF and the weak fluidization zone WF formed above the three arcs C3, C4, C5, the fluidized medium moves downward from above at a relatively slow speed in the weak fluidization zone WF. Is formed, and a fluidized bed 22 is formed in which the fluidized medium moves upward from below in the strong fluidization zone SF. Therefore, in the entire region where the weak fluidization zone WF and the strong fluidization zone WF are adjacent to each other, the fluidized medium is from the weak fluidization zone WF to the strong fluidization zone SF (moving bed 21 to fluidized bed 22) in the lower part. In the upper part, by moving from the strong fluidization zone SF to the weak fluidization zone WF (from the fluidized bed 22 to the moving bed 21), the weak fluidizing zone WF and the strong fluidized zone SF (moving bed 21 and fluidized bed 22) A circulating flow in which the fluid medium circulates between the two is formed.

一方、前記2つの同心円C1,C2のうち、円弧C3,C4,C5の反対側にある概略半円の部分C1−2,C2−2の上方に形成される強流動化域SFは、隣接する弱流動化域が存在しないため、この領域は、流動媒体が上下動を繰り返す、いわゆるバブリング流動層となる。すなわち、図4に示すように、流動床20内には、移動層21と流動層22とが相隣接することにより形成される循環流流動層と、強流動化域が単独で存在するために形成されるバブリング流動層とが併存することになる。図4において、循環流流動層は、概略扇面状の閉曲線CLで表される領域内に形成される。バブリング流動層は、不燃物排出口11を挟んで閉曲線CLで表される領域の反対側の領域に形成される。図2に示すように、不燃物排出口11の中心11oは円筒状の炉本体10の中心(軸心)10oから偏芯して設けられている。   On the other hand, of the two concentric circles C1 and C2, the strong fluidization areas SF formed above the substantially semicircular portions C1-2 and C2-2 on the opposite side of the arcs C3, C4, and C5 are adjacent to each other. Since there is no weak fluidization zone, this zone becomes a so-called bubbling fluidized bed in which the fluid medium repeats vertical movement. That is, as shown in FIG. 4, the fluidized bed 20 includes a circulating fluidized bed formed by the moving bed 21 and the fluidized bed 22 adjacent to each other, and a strong fluidized zone. The bubbling fluidized bed formed will coexist. In FIG. 4, the circulating fluidized bed is formed in a region represented by a substantially fan-shaped closed curve CL. The bubbling fluidized bed is formed in a region opposite to the region represented by the closed curve CL with the incombustible discharge port 11 in between. As shown in FIG. 2, the center 11 o of the incombustible discharge port 11 is provided eccentric from the center (axial center) 10 o of the cylindrical furnace body 10.

また、スクリューフィーダからなる廃棄物供給装置40は、中心11oと中心10oとを結ぶ線を延長した線上にあって不燃物排出口11から最も離間した位置の炉壁に設けられている。そのため、廃棄物供給装置40の先端部にある廃棄物供給口41の直下の炉床にある廃棄物供給部と不燃物排出口11との間に、大きな面積の循環流流動層(概略扇面状の閉曲線CLで示す)を形成することができる。この循環流流動層は水平断面が概略扇面状の流動床をなし、この概略扇面状の流動層においては炉内周辺部の移動層と炉内中央部の流動層との間で流動媒体の循環流を形成する際に流動媒体が円の周方向に拡散することなく、水平断面が矩形の流動床に類似した流動媒体の循環流となる。そして、廃棄物供給口41の直下には、流動媒体が比較的ゆっくりした速度で上方から下方に移動する移動層21が形成されるため、廃棄物供給装置40から流動床20に供給された廃棄物Wを移動層21の沈降流により直ちに飲み込ませることができる。   Moreover, the waste supply apparatus 40 which consists of a screw feeder is provided in the furnace wall of the position which is on the line which extended the line which connects the center 11o and the center 10o, and was most separated from the incombustible material discharge port 11. FIG. Therefore, a large-sized circulating fluidized bed (generally fan-shaped) is formed between the waste supply unit in the hearth just below the waste supply port 41 at the tip of the waste supply device 40 and the incombustible discharge port 11. Of the closed curve CL). This circulating fluidized bed has a fluidized bed with a substantially fan-shaped horizontal section. In this fluidized bed having a generally fan-shaped surface, the fluid medium is circulated between the moving bed in the periphery of the furnace and the fluidized bed in the center of the furnace. When the flow is formed, the fluidized medium does not diffuse in the circumferential direction of the circle, so that the fluidized medium circulates like a fluidized bed having a rectangular horizontal section. Since the moving bed 21 in which the fluid medium moves from the upper side to the lower side at a relatively slow speed is formed immediately below the waste supply port 41, the waste supplied from the waste supply device 40 to the fluidized bed 20 is disposed. The object W can be swallowed immediately by the settling flow of the moving bed 21.

図4においてはまた、散気ノズル31の流動化空気量をC1−1とC2−1とで差を設けることにより強流動化域SFにおいて流動化速度に差をつけることもできる。このようにすることで強流動化域SFの流動を細かく調整できる。さらに、3つの円弧C3,C4,C5の上方に形成される弱流動化域WFにおいてもC3,C4,C5の順に円弧の流動化空気量を相対的に小さくし、2段階又は3段階の差をつけた流動化速度となるようにすることもできる。このようにすることで弱流動化域WFの沈降を細かく調整することができる。強流動化域SF及び弱流動化域WFにおいて細やかに流動化速度を変えることにより、流動媒体の上昇及び沈降による熱反応をより効率よく進行させることができる。上述のC1−1とC2−1とで流動化速度に差をつけることで必然的に概略半円の部分C1−2とC2−2のバブリング流動層においても流動化速度に差をつけることができる。   In FIG. 4, it is also possible to make a difference in the fluidization speed in the strong fluidization region SF by providing a difference in the fluidization air amount of the air diffusion nozzle 31 between C1-1 and C2-1. By doing in this way, the flow of the strong fluidization area SF can be finely adjusted. Further, in the weak fluidization zone WF formed above the three arcs C3, C4, and C5, the amount of fluidized air in the arc is relatively decreased in the order of C3, C4, and C5, and the difference between two or three stages is achieved. It is also possible to make the fluidization speed with a mark. By doing in this way, the sedimentation of the weak fluidization zone WF can be finely adjusted. By finely changing the fluidization speed in the strong fluidization zone SF and the weak fluidization zone WF, the thermal reaction due to the rise and sedimentation of the fluidized medium can be advanced more efficiently. By making a difference in fluidization speed between the above-described C1-1 and C2-1, it is inevitably possible to make a difference in fluidization speed even in the bubbling fluidized bed of the approximately semicircular portions C1-2 and C2-2. it can.

図3(a)および図3(b)に示す例においては、床板30の下方の空間を仕切板34によって2つの空気箱35,36に分割したが、仕切板34を省略して1つの空気箱としてもよい。その場合には、2つの同心円C1,C2がある領域の単位面積当たりの散気ノズル31の個数を3つの円弧C3,C4,C5がある領域の単位面積当たりの散気ノズル32の個数よりも多くすることにより、2つの同心円C1,C2がある領域の流動化空気量を3つの円弧C3,C4,C5がある領域の流動化空気量より多くして流動化速度に差をつけるようにすればよい。もしくは、2つの同心円C1,C2がある領域の単位面積当たりの散気ノズル31の通気抵抗が3つの円弧C3,C4,C5がある領域の単位面積当たりの散気ノズル32の通気抵抗より小さくなるように散気ノズル31および散気ノズル32の孔径を調整することにより、2つの同心円C1,C2がある領域の流動化空気量を3つの円弧C3,C4,C5がある領域の流動化空気量より多くして流動化速度に差をつけるようにすればよい。   In the example shown in FIGS. 3A and 3B, the space below the floor plate 30 is divided into two air boxes 35 and 36 by the partition plate 34. However, the partition plate 34 is omitted and one air is provided. It is good also as a box. In that case, the number of the diffuser nozzles 31 per unit area in the region where the two concentric circles C1 and C2 are present is larger than the number of diffuser nozzles 32 per unit area in the region where the three arcs C3, C4 and C5 are present. By increasing the amount, the amount of fluidized air in the region where the two concentric circles C1 and C2 are present is made larger than the amount of fluidized air in the region where the three arcs C3, C4 and C5 are present so as to differentiate the fluidization speed. That's fine. Alternatively, the airflow resistance of the air diffuser nozzle 31 per unit area in the region having the two concentric circles C1 and C2 is smaller than the airflow resistance of the air diffuser nozzle 32 per unit area in the region having the three arcs C3, C4, and C5. By adjusting the hole diameters of the diffuser nozzle 31 and the diffuser nozzle 32 as described above, the fluidized air amount in the region where the two concentric circles C1 and C2 are present is changed to the fluidized air amount in the region where the three arcs C3, C4 and C5 are present. It is sufficient to increase the difference in fluidization speed.

しかしながら、散気ノズルの個数や吹き出し孔径が決まってしまうと、流動化空気量を変更した場合に流動化空気量の配分も変化することになる。このため、流動化空気量の大小の配分を変えないで、流動化空気量の調整を可能とするために、床板下の空気箱を分割(同心円状に)して、それぞれの空気箱毎の流動化空気量を調整できるようにすることが好ましい。
図3(a)および図3(b)に示す例においては、床板30の下方の空間を仕切板34によって2つの空気箱35,36に分割したが、2つの同心円C1,C2において流動化空気量に差を設ける場合は、各円が存在する領域ごとに空気箱35を図示しない仕切板によりさらに分割してもよい。同様に3つの円弧C3,C4,C5においても空気箱36をさらに2分割(たとえばC3とC4及びC5とに分割)するか若しくは各円弧毎に3分割にすることによりC3,C4,C5の各領域の流動化空気量に2段階又は3段階の差をつけるようにしてもよい。
However, if the number of diffuser nozzles and the diameter of the blowout hole are determined, the distribution of the fluidized air amount also changes when the fluidized air amount is changed. For this reason, in order to make it possible to adjust the fluidizing air amount without changing the distribution of the fluidizing air amount, the air box under the floor board is divided (concentrically), and each air box is divided. It is preferable that the amount of fluidized air can be adjusted.
In the example shown in FIG. 3A and FIG. 3B, the space below the floor plate 30 is divided into two air boxes 35 and 36 by the partition plate 34, but fluidized air in two concentric circles C1 and C2. When providing a difference in quantity, the air box 35 may be further divided by a partition plate (not shown) for each region where each circle exists. Similarly, in the three arcs C3, C4, and C5, the air box 36 is further divided into two parts (for example, divided into C3, C4, and C5) or divided into three parts for each arc, so that each of C3, C4, and C5 is obtained. You may make it give the difference of 2 steps | paragraphs or 3 steps | paragraphs to the fluidization air quantity of an area | region.

次に、図1乃至図4に示すように構成された円筒形流動床炉1の作用を説明する。流動床炉1で処理される廃棄物Wは、典型的には、都市ごみ、汚泥、木くず等の、質や量が不均一であって、燃焼が不安定になりがちなものを想定しており、本実施の形態では都市ごみであるとして説明する。廃棄物Wは、概ね、水分と可燃分と灰分(不燃物を含む)とからなり、熱反応によって、水分は蒸発し、可燃分は一部が可燃ガス(熱分解ガス)として揮発し、熱分残渣Wrとなる。廃棄物Wから水分が蒸発し可燃ガスが揮発したもの、すなわち未燃物(チャー)Wcおよび不燃物Wnが熱分解残渣Wrである。熱分解残渣Wr中の未燃物(チャー)Wcは、流動層22内で不燃物Wnと分離されたうえで流動層22内で一部が燃焼して燃焼ガスや微細な未燃物(チャー)Wcとして流動化空気と共にフリーボード13に送られるのが好ましい。   Next, the operation of the cylindrical fluidized bed furnace 1 configured as shown in FIGS. 1 to 4 will be described. The waste W processed in the fluidized bed furnace 1 is typically assumed to be non-uniform in quality and quantity, such as municipal waste, sludge, and wood scrap, and which tends to become unstable. In the present embodiment, it is assumed that it is municipal waste. Waste W generally consists of moisture, combustible components, and ash (including non-combustible materials). The water evaporates due to thermal reaction, and some of the combustible components volatilize as combustible gas (pyrolysis gas). Minute residue Wr. The waste water W evaporates and the combustible gas is volatilized, that is, the unburned material (char) Wc and the non-combustible material Wn are the pyrolysis residue Wr. The unburned matter (char) Wc in the pyrolysis residue Wr is separated from the incombustible material Wn in the fluidized bed 22 and then partially burned in the fluidized bed 22 to burn combustion gas and fine unburned matter (char). ) Wc is preferably sent to the freeboard 13 together with the fluidized air.

廃棄物Wは、スクリューフィーダからなる廃棄物供給装置40によって、移動層21に供給される。このとき、調節弁V1,V2の開度を調節して流動層22および移動層21に供給する流動化空気の流量を調節している。典型的には、流動層22に供給する流動化空気は、調節弁V1により、流動層22の流動媒体を上方へ運搬しつつ移動層21に到達するまで移動させることができ、かつ所定の基準で未燃物(チャー)Wcを燃焼させることができる空気(酸素)を流動層22に供給できる流量に調節される。「所定の基準で未燃物(チャー)Wcを燃焼させる」とは、典型的には、所定の濃度を超えた未燃物が不燃物Wnと共に流動床炉1外に流出しない程度に流動床20内の未燃物濃度を低下させると共に、流動層22から移動層21へ移った流動媒体によって移動層21における廃棄物Wの熱分解を適切に行うことができる熱量を流動媒体が保有するように流動層22において未燃物(チャー)Wcを燃焼させることである。   The waste W is supplied to the moving bed 21 by a waste supply device 40 including a screw feeder. At this time, the flow rate of the fluidized air supplied to the fluidized bed 22 and the moving bed 21 is adjusted by adjusting the opening degree of the control valves V1, V2. Typically, the fluidized air supplied to the fluidized bed 22 can be moved by the control valve V1 until it reaches the moving bed 21 while conveying the fluidized medium of the fluidized bed 22 upward. Thus, the flow rate is adjusted so that air (oxygen) capable of burning the unburned material (char) Wc can be supplied to the fluidized bed 22. “Burning the unburned material (char) Wc on a predetermined basis” typically means that the unburned material exceeding a predetermined concentration does not flow out of the fluidized bed furnace 1 together with the incombustible material Wn. In addition to reducing the unburned matter concentration in the fluidized bed 20, the fluidized medium retains an amount of heat that can appropriately perform the thermal decomposition of the waste W in the moving bed 21 by the fluidized medium transferred from the fluidized bed 22 to the moving bed 21. In the fluidized bed 22, unburned matter (char) Wc is burned.

ここで「所定の濃度を超えた未燃物が不燃物Wnと共に流動床炉1外に流出しない」未燃物の「所定の濃度」は、典型的には、流動媒体や不燃物Wnに未燃物(チャー)Wcが付着して同伴されると、ダイオキシン類は未燃物(チャー)Wcに含まれやすいため、不燃物Wnのダイオキシン類濃度が高くなることがないように、未燃物の濃度が0〜0.1重量%になるように管理される。   Here, the “predetermined concentration” of the unburned material “unburned material exceeding the predetermined concentration does not flow out of the fluidized bed furnace 1 together with the unburned material Wn” is typically unexposed to the fluid medium or the unburned material Wn. Since the dioxins are likely to be included in the unburned material (char) Wc when the burned material (char) Wc is attached and entrained, the unburned material Wn should not have a high concentration of dioxins. The concentration is controlled to be 0 to 0.1% by weight.

そして、所定の濃度を超えた未燃物が不燃物Wnと共に流動床炉1外へ排出しないようにするため、移動層21における廃棄物Wの熱分解は、流動層22に移動したときに未燃物(チャー)Wcの不燃物Wnからの剥離が適切に行われる程度の脆さの熱分解残渣Wrを生成することができるようにする(廃棄物Wの適切な熱分解)。他方、移動層21に供給する流動化空気は、移動層21の流動媒体を流動層22との間で循環流動させることができる流量に調節される。移動層21に供給する流動化空気の質量流量が流動層22に供給する流動化空気の質量流量よりも小さくなるように調節し、本実施の形態では移動層21に供給する流動化空気の質量流量を0.5〜1.5Gmf、流動層22に供給する流動化空気の質量流量を1.5〜5Gmf程度としている。なお、流動媒体が流動化を開始する質量流量が1Gmfとなる。   In order to prevent unburned substances exceeding a predetermined concentration from being discharged out of the fluidized bed furnace 1 together with the incombustibles Wn, the thermal decomposition of the waste W in the moving bed 21 is not performed when moving to the fluidized bed 22. It is possible to generate a thermal decomposition residue Wr that is brittle to the extent that the combustion material (char) Wc is appropriately separated from the non-combustible material Wn (appropriate thermal decomposition of the waste W). On the other hand, the fluidized air supplied to the moving bed 21 is adjusted to a flow rate that allows the flowing medium of the moving bed 21 to circulate and flow with the fluidized bed 22. The mass flow rate of the fluidized air supplied to the moving bed 21 is adjusted so that the mass flow rate of the fluidized air supplied to the moving bed 22 is smaller than the mass flow rate of the fluidized air supplied to the fluidized bed 22. The flow rate is set to 0.5 to 1.5 Gmf, and the mass flow rate of fluidized air supplied to the fluidized bed 22 is set to about 1.5 to 5 Gmf. The mass flow rate at which the fluid medium starts fluidizing is 1 Gmf.

移動層21に供給された廃棄物Wは、移動層21に飲み込まれて流動媒体と共に下方に移動する。このとき、流動媒体の熱によって廃棄物Wの乾燥及び熱分解が行われて、廃棄物W中の水分が蒸発し、廃棄物W中の可燃分から可燃ガスが発生して、脆い熱分解残渣Wrとなる。熱分解残渣Wrは、典型的には、不燃物Wn及び熱分解によって脆くなった未燃物(チャー)Wcを含んでいる。移動層21で生成される熱分解残渣Wrは、流動媒体と共に、床板30に至ると、傾斜した床板30に沿って流動層22に向かう。流動層22に至った熱分解残渣Wrは、流動化空気により未燃物(チャー)Wcが不燃物Wnから剥離し、未燃物(チャー)Wcが剥離して残った不燃物Wnは一部の流動媒体と共に不燃物排出口11に向かう。このとき、不燃物排出口11は円筒状の炉本体10の中心(軸心)10oから距離Lだけ偏芯しているので、不燃物Wnから未燃物(チャー)Wcが剥離するための移動距離を確保することができ、熱分解残渣Wr中の不燃物Wnが確実に流動層22の一定距離を移動することとなって、未燃物(チャー)Wcと不燃物Wnとの分離を適切に行うことができる。不燃物Wnは、一部の流動媒体と共に不燃物排出口11へ流入して流動床炉1外へ排出され、不燃物分離装置(不図示)において未酸化かつ未燃物(チャー)の付着がない状態で回収される。不燃物分離装置(不図示)で不燃物Wnが回収された後の流動媒体は、流動媒体循環装置(不図示)を介して炉本体10内に戻される。
図3(b)に示すように、不燃物排出口11の半径をR、不燃物排出口11の中心11oから炉本体10の炉壁までの半径をR、不燃物排出口11の中心11oから仕切板34までの半径をRとすると、流動層の移動距離は(R−R)である。不燃物排出口11の中心11oは円筒状の炉本体10の中心(軸心)10oから距離Lだけ偏芯させているため、Rが大きくなり、流動層の移動距離が大きくなる。ちなみにR=R/√2である。
The waste W supplied to the moving bed 21 is swallowed by the moving bed 21 and moves downward together with the fluidized medium. At this time, the waste W is dried and pyrolyzed by the heat of the fluidized medium, the water in the waste W evaporates, combustible gas is generated from the combustible matter in the waste W, and the brittle pyrolysis residue Wr It becomes. The thermal decomposition residue Wr typically includes an incombustible material Wn and an unburned material (char) Wc that has become brittle by thermal decomposition. When the pyrolysis residue Wr produced in the moving bed 21 reaches the floor plate 30 together with the fluidized medium, it goes to the fluidized bed 22 along the inclined floor plate 30. The pyrolysis residue Wr that has reached the fluidized bed 22 is separated from the incombustible material (char) Wc by the fluidized air, and a part of the incombustible material Wn remaining after the unburned material (char) Wc is separated. To the incombustible discharge port 11 together with the fluid medium. At this time, since the incombustible discharge port 11 is eccentric by a distance L from the center (axial center) 10o of the cylindrical furnace body 10, the movement for separating the unburned material (char) Wc from the incombustible material Wn. The distance can be secured, and the non-combustible material Wn in the pyrolysis residue Wr surely moves a certain distance of the fluidized bed 22 to appropriately separate the unburned material (char) Wc and the non-combustible material Wn. Can be done. The non-combustible material Wn flows into the non-combustible material discharge port 11 together with a part of the fluid medium and is discharged out of the fluidized bed furnace 1, and non-oxidized and unburned material (char) adheres to the non-combustible material separator (not shown). It is collected without any. The fluid medium after the incombustible material Wn is collected by the incombustible material separation device (not shown) is returned to the furnace body 10 through the fluid medium circulation device (not shown).
As shown in FIG. 3B, the radius of the incombustible discharge port 11 is R 0 , the radius from the center 11o of the incombustible discharge port 11 to the furnace wall of the furnace body 10 is R 1 , and the center of the incombustible discharge port 11 the radius to the partition plate 34 when the R 2 from 11o, the moving distance of the fluidized bed is (R 2 -R 0). Since the center 11o of the incombustible discharge port 11 is allowed only eccentric center (axial center) Distance from 10o L of the cylindrical furnace body 10, R 2 is increased, the moving distance of the fluidized bed is increased. Incidentally, R 2 = R 1 / √2.

他方、不燃物Wnから剥離した未燃物(チャー)Wcは、流動化空気が供給されることに伴って流動する流動媒体と共に上方に移動する。このとき、未燃物(チャー)Wcは、供給された流動化空気によって燃焼が行われ、流動媒体を加熱しつつ燃焼ガスを発生し、気体に搬送される程度の微細な未燃物(チャー)及び灰分の粒子となる。流動層22においては、未燃物(チャー)Wcの燃焼に伴って徐々に温度が上昇して行くので、下部から上部に行くにつれて温度が比例的に上昇して行く。他方、流動層22の上部に至った流動媒体は、移動層21に流入する。流動媒体は、流動層22において、移動層21に流動したときに廃棄物Wの熱分解を適切に行うことができる温度に上昇させられる。移動層21に流入した流動媒体は、再び供給された廃棄物Wを受け入れて、上述の移動層21及び流動層22における熱反応を繰り返す。   On the other hand, the unburned material (char) Wc peeled off from the non-combustible material Wn moves upward together with the fluid medium that flows as fluidized air is supplied. At this time, the unburned matter (char) Wc is combusted by the supplied fluidized air, generates a combustion gas while heating the fluidized medium, and is transported to the gas. ) And ash particles. In the fluidized bed 22, the temperature gradually increases as the unburned substance (char) Wc is burned, so that the temperature increases proportionally from the lower part to the upper part. On the other hand, the fluid medium reaching the upper part of the fluidized bed 22 flows into the moving bed 21. The fluidized medium is raised in the fluidized bed 22 to a temperature at which the waste W can be appropriately thermally decomposed when it flows into the moving bed 21. The fluid medium flowing into the moving bed 21 receives the waste W supplied again and repeats the thermal reaction in the moving bed 21 and the fluidized bed 22 described above.

上記のように作用する流動床炉1では、未燃物(チャー)Wcが不燃物Wnから剥離しきらずに不燃物Wnと共に不燃物排出口11に流出することを抑制するため、流動化空気の流量を調節することにより、流動層22の温度を調節する。流動化空気の増減は、未燃物(チャー)Wcの燃焼に用いられる酸素の増減に関係するため、流動層22の温度は、流動化空気の流量を増加させると上昇し、流量を減少させると下降する。   In the fluidized bed furnace 1 that operates as described above, the unburnt material (char) Wc is not completely separated from the incombustible material Wn and is prevented from flowing out to the incombustible material discharge port 11 together with the incombustible material Wn. The temperature of the fluidized bed 22 is adjusted by adjusting the flow rate. Since the increase / decrease in the fluidized air is related to the increase / decrease in the oxygen used to burn the unburned matter (char) Wc, the temperature of the fluidized bed 22 increases and increases the flow rate of the fluidized air. And descend.

他方、都市ごみ等の廃棄物Wは、その性質上、保有熱量にばらつきがあるため、燃焼が安定しにくいという事情がある。単位時間当たりに流動床炉1に導入される廃棄物Wの質や量が安定していないと、可燃ガスや燃焼ガスの発生量が変動するため、流動床炉1内の圧力が変動し、流動床炉1の安定した運転が困難となる。発生する可燃ガスの量の変動を抑制するために、移動層21における廃棄物Wの乾燥及び熱分解を緩やかに行わせることが好ましい。移動層21における廃棄物Wの乾燥及び熱分解が緩やかに行われると、流動層22に入る熱分解残渣Wrの量の変動も抑制されるため、燃焼ガスの発生量の変動も抑制されることとなる。移動層21における廃棄物Wの乾燥及び熱分解を緩やかにするには、移動層21の温度を、廃棄物Wの熱分解を適切に行うことができる範囲で極力低くするとよい。   On the other hand, the waste W such as municipal waste has a situation in which combustion is difficult to stabilize because of the variation in the amount of retained heat. If the quality and quantity of waste W introduced into the fluidized bed furnace 1 per unit time is not stable, the amount of combustible gas and combustion gas varies, so the pressure in the fluidized bed furnace 1 varies, Stable operation of the fluidized bed furnace 1 becomes difficult. In order to suppress fluctuations in the amount of generated combustible gas, it is preferable to slowly dry and thermally decompose the waste W in the moving bed 21. When drying and thermal decomposition of the waste W in the moving bed 21 are performed slowly, fluctuations in the amount of thermal decomposition residue Wr entering the fluidized bed 22 are also suppressed, so fluctuations in the amount of combustion gas generated are also suppressed. It becomes. In order to moderate the drying and thermal decomposition of the waste W in the moving layer 21, the temperature of the moving layer 21 may be lowered as much as possible within a range where the thermal decomposition of the waste W can be appropriately performed.

本実施形態の流動床炉1においては、移動層21と流動層22とを有した水平断面が概略扇面状の循環流流動層(閉曲線CLで示される)に加えて、不燃物排出口11を挟んで閉曲線CLで示される領域の反対側にバブリング流動層を形成することにより、不燃物排出口11の周辺の流動化空気量を増やし、固定層を不燃物排出口直上部の最小限の領域として、廃棄物や熱分解残渣(チャー)が不燃物排出口11から排出されないようにしている。   In the fluidized bed furnace 1 of the present embodiment, the non-combustible material discharge port 11 is provided in addition to the circulating fluidized bed (indicated by the closed curve CL) in which the horizontal section having the moving bed 21 and the fluidized bed 22 is substantially fan-shaped. By forming a bubbling fluidized bed on the opposite side of the region indicated by the closed curve CL, the amount of fluidized air around the incombustible material discharge port 11 is increased, and the fixed layer is the minimum region directly above the incombustible material discharge port. As described above, waste and pyrolysis residue (char) are prevented from being discharged from the incombustible discharge port 11.

これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。   Although the embodiment of the present invention has been described so far, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention may be implemented in various different forms within the scope of the technical idea.

1 円筒形流動床炉
10 炉本体
10o 中心
11 不燃物排出口
11o 中心
13 フリーボード
20 流動床
21 移動層
22 流動層
30 床板
33 底板
34 仕切板
35,36 空気箱
31,32 散気ノズル
40 廃棄物供給装置
41 廃棄物供給口
51,52,53 空気管
54 空気ブロワ
C1,C2,C3,C4,C5 同心円
d 内径
L 偏芯距離
SF 強流動化域
WF 弱流動化域
V1,V2 調節弁
DESCRIPTION OF SYMBOLS 1 Cylindrical fluidized bed furnace 10 Furnace main body 10o Center 11 Incombustible material discharge port 11o Center 13 Free board 20 Fluidized bed 21 Moving bed 22 Fluidized bed 30 Floor plate 33 Bottom plate 34 Partition plate 35, 36 Air box 31, 32 Air diffuser nozzle 40 Disposal Material supply device 41 Waste supply port 51, 52, 53 Air pipe 54 Air blower C1, C2, C3, C4, C5 Concentric circle d Inner diameter L Eccentric distance SF Strong fluidization zone WF Weak fluidization zone V1, V2 Control valve

Claims (6)

廃棄物を処理する流動床炉において、
水平断面が円形に形成された円筒形の炉本体と、
前記炉本体の底部に配置され、流動化ガスを供給して流動媒体を流動させる気体供給口を設けた床板と、
前記円筒形の炉本体の底部に設けられ、該円筒形の炉本体の軸心から偏芯して配置された不燃物排出口と、
前記円筒形の炉本体の軸心を挟んで前記不燃物排出口と反対側にある炉壁に設けられた廃棄物供給口とを備え、
前記廃棄物供給口がある側の炉壁と前記不燃物排出口との間の床板に設けられた気体供給口から噴出される流動化ガスの供給量に廃棄物供給口側と不燃物排出口側とで差を設けて前記不燃物排出口側の流動化速度を前記廃棄物供給口側の流動化速度より大きくし、前記廃棄物供給口側に流動媒体が沈降する移動層を形成し、前記不燃物排出口側に流動媒体が上昇する流動層を形成し
前記円筒形の炉本体の軸心を挟んで前記廃棄物供給口がある側の炉壁と反対側の炉壁と、前記不燃物排出口との間の流動化速度を前記不燃物排出口側の大きな流動化速度と同等にして、不燃物排出口周囲に流動媒体が上下動を繰り返すバブリング流動層を形成したことを特徴とする円筒形流動床炉。
In a fluidized bed furnace that treats waste,
A cylindrical furnace body with a circular horizontal cross section;
A floor plate disposed at the bottom of the furnace body and provided with a gas supply port for supplying a fluidizing gas to flow a fluid medium;
An incombustible discharge port provided at the bottom of the cylindrical furnace body and arranged eccentrically from the axis of the cylindrical furnace body;
A waste supply port provided on the furnace wall on the opposite side of the incombustible discharge port across the axis of the cylindrical furnace body,
The waste supply port side and the incombustible discharge port are connected to the supply amount of fluidized gas ejected from the gas supply port provided on the floor plate between the furnace wall on the side where the waste supply port is located and the incombustible discharge port. A fluidization speed on the non-combustible discharge port side is made larger than the fluidization speed on the waste supply port side by forming a difference between the side and the moving medium in which the fluid medium settles on the waste supply port side, Forming a fluidized bed in which the fluidized medium rises on the incombustible discharge port side ;
The fluidization speed between the furnace wall on the side opposite to the furnace wall on the side where the waste supply port is located across the axial center of the cylindrical furnace main body and the incombustible material discharge port is the incombustible material discharge port side. A cylindrical fluidized bed furnace in which a bubbling fluidized bed in which the fluidized medium repeatedly moves up and down is formed around the incombustible discharge port, at the same fluidization speed as the above.
前記廃棄物供給口がある側の炉壁と前記不燃物排出口との間の床板に設けられた気体供給口を廃棄物供給口側の気体供給口と不燃物排出口側の気体供給口とに2つ以上に分けることを特徴とする請求項1記載の円筒形流動床炉。   The gas supply port provided on the floor plate between the furnace wall on the side where the waste supply port is located and the incombustible discharge port is divided into a gas supply port on the waste supply port side and a gas supply port on the incombustible discharge port side. The cylindrical fluidized bed furnace according to claim 1, wherein the cylindrical fluidized bed furnace is divided into two or more. 前記廃棄物供給口がある側の炉壁と前記不燃物排出口との間の床板に設けられた気体供給口は前記床板の下に設けた空気箱に仕切りを設けて分割することにより区画したことを特徴とする請求項2記載の円筒形流動床炉。   The gas supply port provided in the floor plate between the furnace wall on the side where the waste supply port is located and the incombustible discharge port is partitioned by dividing the air box provided under the floor plate with a partition. The cylindrical fluidized bed furnace according to claim 2. 前記廃棄物供給口がある側の炉壁と前記不燃物排出口との間の炉内領域に、前記移動層と前記流動層との間を流動媒体が循環する循環流が形成されることを特徴とする請求項1乃至3のいずれか1項に記載の円筒形流動床炉。   A circulating flow in which a fluid medium circulates between the moving bed and the fluidized bed is formed in a furnace region between the furnace wall on the side where the waste supply port is located and the incombustible discharge port. The cylindrical fluidized bed furnace according to any one of claims 1 to 3, wherein the cylindrical fluidized bed furnace is provided. 前記床板に設けられた前記気体供給口は、前記不燃物排出口を中心とした同心円上および同心の円弧上に配列されていることを特徴とする請求項1乃至のいずれか1項に記載の円筒形流動床炉。 The said gas supply port provided in the said floor board is arrange | positioned on the concentric circle centering on the said incombustible discharge port, and the concentric circular arc, The any one of Claim 1 thru | or 4 characterized by the above-mentioned. Cylindrical fluidized bed furnace. 前記廃棄物供給口の位置にスクリューフィーダからなる廃棄物供給装置を設置したことを特徴とする請求項1乃至のいずれか1項に記載の円筒形流動床炉。 The cylindrical fluidized bed furnace according to any one of claims 1 to 5 , wherein a waste supply device including a screw feeder is installed at a position of the waste supply port.
JP2011125985A 2011-06-06 2011-06-06 Cylindrical fluidized bed furnace Active JP5766516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011125985A JP5766516B2 (en) 2011-06-06 2011-06-06 Cylindrical fluidized bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011125985A JP5766516B2 (en) 2011-06-06 2011-06-06 Cylindrical fluidized bed furnace

Publications (2)

Publication Number Publication Date
JP2012251748A JP2012251748A (en) 2012-12-20
JP5766516B2 true JP5766516B2 (en) 2015-08-19

Family

ID=47524722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011125985A Active JP5766516B2 (en) 2011-06-06 2011-06-06 Cylindrical fluidized bed furnace

Country Status (1)

Country Link
JP (1) JP5766516B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045422A (en) * 2013-08-27 2015-03-12 株式会社Ihi Fluidized-bed boiler
JP6338430B2 (en) * 2014-04-16 2018-06-06 荏原環境プラント株式会社 Swirling fluidized bed furnace

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271016A (en) * 1987-04-27 1988-11-08 Nkk Corp Refuse incinerating fluidized bed furnace
JP2007163132A (en) * 1996-06-21 2007-06-28 Ebara Corp Method and apparatus for gasifying fluidized bed
JP3916179B2 (en) * 1997-05-13 2007-05-16 株式会社荏原製作所 High temperature gasification method and apparatus for waste
JP2002195534A (en) * 2000-12-26 2002-07-10 Mitsubishi Heavy Ind Ltd Method and system for controlling combustion of refuse incinerator
JP2002295818A (en) * 2001-03-30 2002-10-09 Hitachi Zosen Corp Fluidized-bed incinerator

Also Published As

Publication number Publication date
JP2012251748A (en) 2012-12-20

Similar Documents

Publication Publication Date Title
RU2159896C2 (en) Fluidized-bed thermal reaction unit
US4060041A (en) Low pollution incineration of solid waste
CA2609396C (en) Apparatus and process for the pyrolysis of agricultural biomass
JPS6217123B2 (en)
JP2657896B2 (en) Fluid bed reactor and combustion method
JP5753585B2 (en) Waste treatment facility
JP5744904B2 (en) Fluidized bed furnace and waste treatment method
JP5766516B2 (en) Cylindrical fluidized bed furnace
WO2013035615A1 (en) Fluidized bed furnace and waste disposal method using fluidized bed furnace
JP2021504136A (en) Equipment equipped with an annular jet fluidized bed and its operation method
JP3913229B2 (en) Circulating fluid furnace
JP2005299938A (en) Circulated fluidized furnace
CN111836996B (en) Fluidized bed heat recovery device
JP2003042424A (en) Fluidized bed furnace, and supply method for solid incinerated substance with low specific gravity to the fluidized bed furnace
KR970009484B1 (en) Fluidized bed process and apparatus for carrying out the process
EP1143195B1 (en) Method and device for the combustion of granular solid fuel or liquid fuel on a granular solid carrier
JPS58213187A (en) Fluidized bed type heat exchanger and its operation method
US3853076A (en) Furnaces
JPS6040886B2 (en) Fluidized bed thermal reactor
JP6022662B1 (en) Solid fuel combustion equipment
JP3387989B2 (en) Fluidized bed furnace
RU2576651C1 (en) Combustion method of solid domestic wastes
JPH09236227A (en) Fluidized bed type thermal reaction device
JPH03244910A (en) Air diffusion pipe arranging structure in fluidized incineration device
JPH0616248Y2 (en) Fluidized bed combustor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150617

R150 Certificate of patent or registration of utility model

Ref document number: 5766516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250