JP5766391B2 - 面内及び面外memsデバイスからの加速及び回転判定システム及び方法 - Google Patents

面内及び面外memsデバイスからの加速及び回転判定システム及び方法 Download PDF

Info

Publication number
JP5766391B2
JP5766391B2 JP2009094893A JP2009094893A JP5766391B2 JP 5766391 B2 JP5766391 B2 JP 5766391B2 JP 2009094893 A JP2009094893 A JP 2009094893A JP 2009094893 A JP2009094893 A JP 2009094893A JP 5766391 B2 JP5766391 B2 JP 5766391B2
Authority
JP
Japan
Prior art keywords
plane
inertial
inertial mass
linear acceleration
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009094893A
Other languages
English (en)
Other versions
JP2009260348A (ja
Inventor
ロバート・ディー・ホーニング
ライアン・スピーノ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of JP2009260348A publication Critical patent/JP2009260348A/ja
Application granted granted Critical
Publication of JP5766391B2 publication Critical patent/JP5766391B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Pressure Sensors (AREA)
  • Gyroscopes (AREA)

Description

本発明は、面内及び面外MEMS(微細電機機械)デバイスからの加速及び回転判定システム及び方法に関する。
なお、本願は、2008年4月10日に出願され、"Systems And Methods For Acceleration and Rotational Determination From An In-plane And Out-of-plane MEMS Device"(面内及び面外MEMSデバイスからの加速及び回転判定システム及び方法)と題する同時係属中の米国仮特許出願第61/043,974号の優先権を主張する。その内容は、ここで引用したことにより、本願にもその全てが含まれるものとする。
従来技術
微細電気機械システム(MEMS)慣性測定ユニットは、3つのジャイロスコープと3つの加速度計とを内蔵し、高度及び加速度の変化を検出する。一般に、3つのジャイロスコープ及び3つの加速度計は、別個の直交軸上に取り付けられ、各々が自身の制御及び読取電子回路の組を有する。尚、3つのジャイロスコープ及び3つの加速度計を正確に実装しなければならないこと、これら6つの別個のユニットからの情報を処理するためには、比較的大量の処理容量が必要となること、並びに3つのジャイロスコープ及び3つの加速度計に給電するために必要な電源を考慮すると、MEMS慣性測定ユニットの組立には固有のコスト(inherent cost)が必要である。多くの用途では、小型化、必要計算量の低減、必要電力の削減、及びMEMS慣性ユニットのコスト削減が求められている。これらの制約を考慮すると、MEMS慣性測定ユニットにおける検知デバイスの数を削減することができれば有利であろう。
従来のMEMSジャイロスコープは、共振慣性質量上に加えられるコリオリ力を測定することによって、角回転を判定するために用いることができる。従来のMEMSジャイロスコープは、2つのシリコン慣性質量を含み、これらは、1つ以上のシリコン固定具を用いて、ガラス製の基板に機械的に結合され、これから懸垂されている。基板内に多数の陥凹(リセス)をエッチングによって形成することにより、シリコン構造の選択部分を、デバイスの内部において自由に前後に移動させることができる。ある種の設計では、基板をシリコン構造の上下に設けて、慣性質量を2枚の基板の間に挟持することができる。基板上に形成される金属トレースのパターンを用いると、種々のバイアス電圧及び信号出力をデバイスに伝えることができる。
多くのMEMSジャイロスコープ用駆動システムは、一般に、多数の駆動エレメントを含み、これらによって、慣性質量は、コリオリ力を検知する方向に対して垂直な駆動軸に沿って前後に振動する。ある種の設計では、例えば、駆動エレメントは、多数の互い違いに配置した縦型櫛状フィンガ、即ち、尖叉を含み、静電作動を用いて電気エネルギを機械エネルギに変換するように構成されている。このような駆動エレメントは、例えば、Tang et al.,の"LATERALLY DRIVEN RESONANT MICROSTRUCTURES"(横駆動共振微細構造)と題する米国特許第5,025,346号、及びJohnson et al.の"MEMS GYROSCOPE WITH HORIZONTALLY ORIENTED DRIVE ELECTRODES"(駆動電極を横方向に向けたMEMSジャイロスコープ)と題する米国特許第7,036,373号に記載されている。双方の内容は、ここで引用したことによりその全体が本願にも含まれるものとする。しかしながら、このようなMEMSデバイスは、オープン・ループ・モードで動作し、加速度及び回転(ジャイロ)応答が互いに結合し、互いに依存し合う。
Michael S. Suttonの"MEMS TUNING FORK GYRO SENSITIVE TO RATE OF ROTATION ABOUT TWO AXES"(2軸を中心とする回転率に感応するMEMS同調フォーク・ジャイロ)と題する、2007年5月11に出願された米国特許出願第11/747629号は、駆動軸に対して直交する2本の異なる軸を中心とする回転を検知するように動作可能なMEMSデバイスを開示する。その内容は、ここで引用したことによりその全体が本願にも含まれるものとする。Supino et al.の"SYSTEMS AND METHODS FOR ACCELERATION AND ROTATIONAL DETERMINATION FROM AN OUT-OF-PLANE MEMS DEVICE"(面外MEMSデバイスから加速度及び回転を判定するシステム及び方法)と題する、2008年3月28日に出願した米国特許出願第12/057,695号は、線形加速度及び回転を検知するように動作可能なMEMSデバイスを開示する。その内容は、ここで引用したことによりその全体が本願にも含まれるものとする。
米国特許第5,025,346号 米国特許第7,036,373号
本発明は、微細電気機械システム(MEMS)慣性センサを用いて、面内線形加速度、面内回転、面外線形加速度、及び面外回転を判定及び/又は検知するシステム及び方法を提供することである。
微細電気機械システム(MEMS)慣性センサを用いて、面内線形加速度、面内回転、面外線形加速度、及び面外回転を判定及び/又は検知するシステム及び方法を開示する。実施形態の一例は、面内軸において位置合わせした第1慣性(プルーフ)質量と第2慣性(プルーフ)質量と、第1慣性質量が間に配置されている第1面外電極対と、第2慣性質量が間に配置されている第2面外電極対と、対向する第1慣性質量の櫛歯フィンガと交互に配置されている複数の櫛歯フィンガを有する第1面内センサ櫛歯と、対向する第2慣性質量の櫛歯フィンガと交互に配置されている複数の櫛歯フィンガを有する第2面内検知櫛歯とを備えている。MEMSセンサの面外線形加速度を、第1面外電極対及び第2面外電極対によって検知することができる。MEMSセンサの面内回転を、第1面外電極対及び第2面外電極対によって検知することができる。MEMSセンサの面内線形加速度を、第1面内検知櫛歯及び第2面内検知櫛歯によって検知することができる。MEMSセンサの面外回転を、第1面内検知櫛歯及び第2面内検知櫛歯によって検知することができる。
面内及び面外方向における線形加速度及び回転を検知するように動作可能な慣性センサの概念的斜視図である。 慣性センサの実施形態例の上下図である。 2つの慣性質量と共に交互に配置されている櫛歯を有する駆動電極を示す、慣性センサの実施形態例の上下図である。 慣性センサの実施形態例の側面図である。 面内ジャイロ検知を示す概念図である。 面外ジャイロ検知を示す概念図である。 面外線形加速度検知を示す概念図である。 面内線形加速度検知を示す概念図である。 慣性センサの実施形態の一部の上下図である。 図9のシステムの一部断面図である。 2本の別個の軸を中心とする回転率を検知する別のシステム例70を示す図である。 慣性センサの一実施形態の一部の概念側面図である。 初期化平衡補正力を加えた慣性センサの一部の一実施形態の概念側面図である。 線形加速度を加えた慣性センサ100の一実施形態の一部の概念側面図である。 回転を加えた慣性センサ100の一実施形態の一部の概念側面図である。 慣性センサの一実施形態の一部に印加する電圧及び検知電圧を示す図である。 慣性センサの実施形態に対して印加する電圧及び検知電圧を示す図である。 慣性センサの実施形態に対して印加する電圧及び検知電圧を示す図である。 慣性センサの一実施形態に結合されるディジタル信号処理システムの実施態様例を示すブロック図である。
慣性センサ100の実施形態は、加速度検知及び回転検知を分離し、回転及び加速度を独立して判定可能にする。図1は、慣性センサ100の実施形態の一部のブロック図である。慣性センサ100の例示部分は、線形加速度又は回転のいずれかを検知するように動作可能である。回転を検知する慣性センサ100の他の部分については、以降で説明する。
慣性センサ100の図示した部分は、第1慣性質量102(ここでは左側慣性質量102とも相互交換可能に称することにする)、及び第2慣性質量104(ここでは右側慣性質量104とも相互交換可能に称することにする)を備えている。左側慣性質量102は、第1左上検知(ULS)電極106と第1左下検知(LLS)電極108との間にある。左側慣性質量102も、第2ULS電極110と第2LLS電極112との間にある。右側慣性質量104は、右上検知(URS)電極114と右下検知(LRS)電極116との間にある。右側慣性質量104も、第2URS電極118と第2LRS電極120との間にある。上下検知電極は、慣性センサ100の面外運動を検知するように動作可能である。検知電極106及び108、検知電極110及び112、検知電極114及び116、並びに検知電極181及び120は、それぞれの慣性質量102、104の面外運動を検知するように動作可能な電極対を形成する。
左側慣性質量102は、ULS電極106、110から、ギャップ(GULS)だけ分離されている。ギャップ(GULS)は、左側慣性質量102とULS電極106、110との間の分離局に依存する容量を規定する。同様に、左側慣性質量102は、LLS電極108、112からギャップ(GLLS)だけ分離されている。ギャップ(GLLS)は、左側慣性質量102とLLS電極108、112との間の分離距離に依存する容量を規定する。面外線形加速度又は面内回転によって生ずる、ギャップGULS及びGLLSに付随する容量変化は検出可能である。
右側慣性質量104は、URS電極114、118からギャップ(GURS)だけ分離されている。ギャップ(GURS)は、右側慣性質量104とURS電極114、118との間の分離距離に依存する容量を規定する。同様に、右側慣性質量104は、LRS電極116、120からギャップ(GLRS)だけ分離されている。ギャップ(GLRS)は、右側慣性質量104とLRS電極116、120との間の分離距離に依存する容量を規定する。面外線形加速度及び面内回転によって生ずる、ギャップGURS及びGLRSに付随する容量変化は検出可能である。
慣性質量102、104は、駆動電極(図1には示されていない)に容量的に結合されている。駆動電極は、交流電流(AC)が駆動電極に印加されると、「前後」運動を慣性質量102、104に付与する。駆動電極によって、慣性質量102、104は、駆動軸(図示するX軸)に沿って前後に共振振動する。駆動軸及びY軸は、慣性質量102、104の面内運動を規定する。左側慣性質量102の運動の相対的方向は、方向ベクトル122aによって示されているが、共振運動の半サイクルの間、方向ベクトル122bで示される、右側慣性質量104の運動の方向とは逆になる。つまり、慣性質量102、104は、図1では互いから遠ざかるように示されている。共振運動の次の半サイクルの間、慣性質量102、104は互いに向かう方向に移動する。慣性質量102、104は、互いに180度位相がずれた対向運動で発振する。尚、慣性センサ100の実施形態は、種々の構成の駆動電極を有するMEMS主体デバイスに実施できることは明らかであろう。
慣性センサ100は更に、慣性質量102に容量的に結合されている少なくとも1つの面内検知電極124を含み、慣性質量102の面内運動を検知する。少なくとも1つの面内検知電極126は、慣性質量104に容量的に結合され、慣性質量104の面内運動を検知する。面内検知電極124、126は、ここでは相互交換可能に面内検知櫛歯とも呼ぶが、櫛歯フィンガ128の対を含む。櫛歯フィンガ対128は、Y軸方向における慣性質量102、104の運動を検知するように動作可能である。図示する櫛歯フィンガ対128では、面内検知電極124の櫛歯フィンガと慣性質量102の櫛歯フィンガとが互い違いに配置されている。Y軸に沿った運動によって、櫛歯フィンガ間のギャップ(GCLS)に変化が生じ、櫛歯フィンガの容量が検出可能に変化する。同様に、面内センサ電極126と慣性質量104の互い違いに配置されている櫛歯フィンガ(図示せず)は、ギャップ(GCRS)の変化に対応する、Y軸に沿った運動を検知する。
図2は、慣性センサ100の実施形態例の上下図であり、最上位にある、面外検知電極対106、108、検知電極110及び112、検知電極114及び116、検知電極118及び120、並びに検知電極124及び126を示す。この実施形態例では、4つの面内検知電極130、132、134、及び136が示されており、これらは前述の面内検知電極124に対応する。面内検知電極130、132、134、及び136は、慣性質量102の対応する櫛歯フィンガと交互に配置されている櫛歯フィンガを有し、複数の櫛歯フィンガ対128を形成する。また、4つの面内検知電極138、140、142、及び144が示されており、前述の面内検知電極126に対応する。面内検知電極138、140、142、及び144は、慣性質量104の対応する櫛歯フィンガと交互に配置されている櫛歯フィンガも有し、複数の櫛歯フィンガ対128を形成する。
図示の面内検知電極130、132、134、136、138、140、142、及び144は、概念的に、4対の櫛歯対128のみを示す。実際の構造では、面内検知電極130、132、134、136、138、140、142、及び144は、これらよりも遥かに多い櫛歯フィンガ対128を有する。更に、概念的な図示のために、面内検知電極130、132、134、136、138、140、142、及び144は、比較的大きな電極として示されている。種々の実施形態では、慣性質量102に容量的に結合されている、図示した4つの面内検知電極130、132、134、及び136、並びに慣性質量104に容量的に結合されている4つの面内検知電極138、140、142、及び144よりも多い場合も、少ない場合もある。更に、種々の面内検知電極の全ては、製造する際には、図示のものよりも比較的小さくなると考えるとよい。
加えて、慣性センサ100の実施形態では、簡潔性のために図には示されていない、他の検知電極を有することもある。例えば、慣性質量102、104に含まれる動力運動(motor motion)を検知するために、ピックオフ(pick-off)検知電極を含めることもできる。
図3は、慣性センサ100の実施形態例の上下図であり、慣性質量102の櫛歯と交互に配置され、これらと容量的に結合されている駆動電極146を示す。駆動電極146は、前述した誘起運動を慣性質量102、104に対して誘発する。
図4は、慣性センサ100の実施形態例の側面図であり、2つの慣性質量102、104、各々上位電極及び下位電極(検知電極106及び108、検知電極110及び112、検知電極114及び116、並びに検知電極118及び120)を有する4つの面外電極対、面内検知電極130、134、138、及び142を示す。また、慣性質量102、104の内部にある駆動電極146も示す。
図5は、面内旋回検知を示す概念図である。図示の回転(Y軸を中心とする、図1参照)は、慣性質量102、104における、図面に入る方向及び図面から出る方向(Z軸、図1参照)の運動を誘発する。以下に説明する、複数の面外検知電極対が、図示の慣性センサ100の回転を検知する。
図6は、面外旋回検知を示す概念図である。図示の回転(Z軸を中心とする、図1参照)が、慣性質量102、104において運動(Y軸に沿った、図1参照)を誘発する。以下で説明する複数の面外検知電極対が、慣性センサ100の図示の回転を検知する。
図7は、面外線形加速度検知を示す概念図である。図示の線形加速度(Z軸に沿った線形加速度、図1参照)が、慣性質量102、104において、反対方向(Z軸に沿った、図1参照)の運動を誘発する。以下で説明する1つ以上の面内検知電極対が、慣性センサ100の図示の回転を検知する。
図8は、面内線形加速度検知を示す概念図である。図示の線形加速(Y軸に沿った線形加速度、図1参照)が、慣性質量102、104において運動を誘発する。この運動の強度は、慣性センサ100の運動(これもY軸に沿った運動、図1参照)よりも小さく、逆方向になっている。以下で説明する1つ以上の面内検知電極対が、慣性センサ100の図示の加速度を検知する。
図9及び図10は、2本の直交する軸を中心とする回転率を測定する慣性センサ100の代替実施形態の一部の例を示す。この慣性センサ100の実施形態の部分は、2つの同調フォーク慣性質量24、26、動力電荷増幅器(motor charge amplifier)44、検知電荷増幅器50、演算デバイス54、及び出力デバイス56を含む。慣性質量24、26は、基板上に配置されている。基板は、面外コリオリ検知電極40及び42を含み、これらは面外慣性質量の運動に感応する。また、センサ20は、面内慣性質量の運動に感応する複数の交互配置櫛歯フィンガを備えている2つの面内コリオリ検知電極63も含む。動力駆動素子60が、櫛歯62を駆動するように電気的に接続されている。動力電荷増幅器44は、複数の検知櫛歯64に電気的に接続されている。
慣性質量24、26をX軸方向に共振して発振するように駆動する。慣性質量24、26は、動力駆動素子60によって、位相はずれで発振するように駆動される。慣性質量24、26の対向する側面上にあるフィンガ(尖叉)は、駆動検知櫛歯64のフィンガと交互に配置されている。動力電荷増幅器44は、動力信号を演算デバイス54に出力し、演算デバイス54は動力駆動信号を発生して、動力駆動素子60を介して動力駆動櫛歯62に送って、慣性質量24、26が機械的な共振周波数で駆動されていることを確保する。
面内コリオリ検知電極63は、Z軸(誘発運動に対して垂直な方向)を中心とする運動によって誘発されるY軸方向における慣性質量24、26の面内運動に対する容量変化の検出を可能とするために、慣性質量26の動力駆動及び駆動検知櫛歯62、64とは非同期となっている。
第1実施形態では、慣性質量24、26の双方が、電圧信号を演算デバイス54に出力するために、電荷増幅器50に電気的に接続されている。出力された電圧信号は、演算デバイス54が受け取る。面内コリオリ電極63に印加される電圧信号は、第1周波数で変調され、面外コリオリ電極40及び42に印加される電圧は、第1周波数とは異なる第2周波数で変調される。演算デバイス54は、変調周波数の双方を復調する復調器を含む。変調周波数は、センサ20の機械的共振から大きく離されている。演算デバイス54が第1周波数に基づいて受信信号を復調した後、演算デバイス54は復調信号を分析して、回転率(rate of rotation)がZ軸を中心に発生したか否か判断する。次に、演算デバイス54は、第2変調周波数で受信した信号を復調し、Y軸を中心とする回転率を判定する。判定した回転率値を、出力デバイス56を通じて出力する。
図11は、2本の別個の軸を中心とする回転率を検知する別の一例のシステム70を示す。システム70は、図9と同じ動力駆動素子60、慣性質量24、26、電極40a、42a、及び櫛歯62、64を含む。システム70は、電極40a、42a及び面内検知櫛歯63からの信号を受け取る演算デバイス54を含む。この例では、慣性質量24、26を、接地のような、既定電圧にバイアスしている。一実施形態では、別個の演算デバイス54は、回転軸毎に回転率値を判定する2つの別個のデバイスとなる。出力デバイス56を介して、判定した回転率値を出力する。
図12は、慣性センサ100の一実施形態の一部の概念側面図である。ここでは、慣性質量102、104は、互いにX軸に沿って一直線状に示されている。固定具302が、左側慣性質量102を、ギャップGULS及びGLLS間に支持する。固定具304が、右側慣性質量104を、ギャップGURS及びGLRS間に支持する。固定具302及び304は、アンカー306に取り付けられている。この実施形態例では、アンカー306を下位基板308に取り付けているが、アンカー306は上位基板310に取り付けてもよく、あるいは代替実施形態では、双方の基板308、310に取り付けてもよい。固定具302、304は、ばね状特性を有する可撓性部材であり、慣性質量102、104を駆動電極(図示せず)によって駆動すると、慣性質量102、104が共振するようになっている。
別の実施形態では、アンカー306を上位基板310に取り付けてもよい。実施形態の中には、複数の固定具を用いて、慣性質量102、104をMEMSデバイス内にある種々の締結点に結合するとよい場合もある。実施形態によっては、固定具302、304を異なるアンカーに接続してもよい。
この慣性センサ100の実施形態例では、慣性質量102、104は、ギャップGULS及びGLLS、並びにギャップGURS及びGLRSが互いに等しくなるように懸垂されている。したがって、慣性質量102、104及び図示する面外電極に付随する上位及び下位容量は、実質的に等しくなる(互いに対して)。例えば、面外電極206、214、228、及び236の表面積及びその他の特性が実質的に同一であると仮定すると、電極206と左側慣性質量102との間の容量、電極214と左側慣性質量102との間の容量、電極228と右側慣性質量104との間の容量、並びに電極236と右側慣性質量104との間の容量は、実質的に同一となる。代替実施形態では、これらの容量は互いに異なっていてもよい。
図示のZ軸に沿った方向における線形加速度によって、慣性質量102、104が一緒に同じ方向に、そして実質的に同じ率及び/又は距離だけ移動する。この移動を、ここでは「共通モード」における移動と呼ぶ。慣性質量102、104の共通モード移動は、ギャップGULS及びGURS間における面外電極対の電極−慣性質量間の容量に、実質的に同じ変化をもたらし、更にギャップGLLS及びGLRS間における面外電極対の電極−慣性質量間の容量に、実質的に同じ変化をもたらす。即ち、上位及び下位ギャップ(GURS、GLRS、GULS、及びGURS)が同一である(即ち、平衡している)と仮定すると、ギャップGULS及びGURS間における面外電極対の容量変化の大きさ、並びにギャップGLLS及びGLRS間における面外電極対の容量変化の大きさは、実質的に同一となる。ギャップGULS、GLLS、GURS、及びGLRSの平衡が取れていないと、上位容量は実質的に同じ量だけ変動し、下位容量も実質的に同じ量だけ変動する。何故なら、これらの容量変化を生ずることになる、慣性質量102、104を移動させる力は、ほぼ等しいからである。線形加速度は、検知した共通モード容量変化から判定することができる。
更に、図示のY軸を中心とする方向の回転によって、慣性質量102、104は逆方向に、実質的に同じ率及び/又は距離だけz方向に移動する。この移動を、ここでは、「差動モード」における移動と呼ぶ。慣性質量102、104の差動モード移動は、コリオリ力によって生ずる。この慣性質量102、104の差動モード移動(逆方向の移動)によって、実質的に同じ大きさの変化がギャップGULS及びGLRS間における電極対の電極−慣性質量間容量に生じ、実質的に同じ大きさの変化がギャップGLLS及びGURS間における電極対の電極−慣性質量間容量に生ずる。回転は、検知した差動モード容量変化から判定することができる。
先に注記したように、この慣性センサ100の実施形態は、加速度検知及び回転検知の間で分離を行い、回転及び加速度を独立して検知し判定するようにしている。好適な実施形態では、コリオリ力から90度位相がずれた直交力(quadrature force)も、加速度及びコリオリ力から切断する。したがって、線形加速度、コリオリ、及び/又は直交力の平衡を調整する(rebalance)力は、電極対に別個に加えられ、慣性質量102、104の位置を固定位置に維持して、ギャップGULS、GLLS、GURS、及びGLRS間におけるそれぞれの電極対に付随する容量が実質的に一致するようにする。つまり、慣性質量102、104の位置間に不平衡が生じた場合(ギャップGULS、GLLS、GURS、及びGLRS間における電極対の電極−慣性質量間容量の変化から検出可能)、平衡調整力は、慣性質量102、104が中心となるように動作する。
コリオリ平衡調整力は、選択した面外電極対によって、慣性質量102に加えられる。また、コリオリ平衡調整力は、別の面外選択電極対によって、慣性質量104にも加えられる。加えられるコリオリ平衡調整力は、慣性センサ100の回転中、慣性質量102、104を中心に位置付ける。必要なコリオリ平衡調整力の大きさは、回転量に対応する。同様に、加えられる線形加速度平衡調整力は、慣性センサ100の線形加速中、慣性質量102、104を中心に位置付ける。必要な線形加速度平衡調整力の大きさは、線形加速度の量に対応する。線形加速度平衡調整力は、選択した電極対に印加される直流(DC)電圧によって提供されるので、線形加速度平衡調整力を、コリオリ平衡調整力から微分することができる。即ち、線形加速度(Z軸に時間可変加速力を誘発する)は、回転(慣性質量102、104の駆動周波数において変調される力を誘発する)とは異なるので、線形加速度平衡調整力及びコリオリ平衡調整力は、別個に判定することができる。
図13は、ベクトル402として示す、初期化平衡調整力402が供給された慣性センサ100の一実施形態の一部の概念側面図である。選択した面外電極を動作させると、初期化平衡調整力をそのそれぞれの慣性質量102、104に加えることができる。これに応じて、ギャップGULS、GLLS、GURS、及びGLRSが互いに等しくなるように設定するか、又は所望の値に設定することができる。
例えば、図13に概念的に示すように、慣性センサ100の製作中に、左側慣性質量102を、面外電極間におけるその所望の理想的位置404(ここでは、相互交換可能に既定位置404とも称する)にしなくてもよい。ここでは、左側慣性質量102は、ギャップGULS及びGLLSは実質的に等しくないように、理想的ではない位置406に示している。慣性質量102の非理想的位置406は、製作の観点では容認できるが、設計及び/又は製作許容度の結果、理想的位置404から非常に異なり、線形加速度及び/又は回転移動の検出において精度低下を招く虞れがある。ベクトル402として示す初期化平衡調整力を1つ以上の選択した面外電極に供給すると、左側慣性質量102をその所望の理想的位置404又はその至近に位置付けし直すことができる。初期化平衡調整力は、慣性質量をその理想的位置に位置付けるために必要な初期化平衡調整量に応じて、等しくしても、又は一意としてもよい。好ましくは、選択した面外電極に印加するDCバイアスから、初期化平衡調整力を得る。初期化平衡調整力は、製作後のベンチ・テストによる等、慣性センサ100の使用に先だって決定すればよい。
図14は、加速度ベクトル502(負のZ軸方向の移動に対応する)で示す線形加速度が加えられた、慣性センサ100の一実施形態の一部の概念的側面図である。慣性力(ベクトル504として示す)が慣性質量102、104に加えられる。これに応じて、慣性質量102、104が、加速期間中に上位基板310に向かって移動する。固定具302、304は、加速が停止したときに慣性質量102、104をそれらの初期位置(図12参照)に戻すように動作する。
前述の慣性質量102、104の共通モード移動は、ギャップGULS及びGLLSを跨ぐ電極対、並びにギャップGURS及びGLRSを跨ぐ電極対の電極−慣性質量間容量に実質的に同じ変化を発生させる。即ち、ギャップGULS及びGURSを跨ぐ電極対の電極−慣性質量間の容量変化の大きさ、並びにギャップGLLS及びGLRSを跨ぐ電極対の電極−慣性質量間の容量変化の大きさは、実質的に同じである。慣性質量102、104の移動に応答して、線形加速度平衡調整力を、選択した電極対を通じて加えて、慣性質量102、104をその元の位置又は既定の位置に位置付けし直すことができる。線形加速度は、加えた線形加速度平衡調整力の量、及び/又は検知した共通モード容量変化から判定することができる。
図15は、回転ベクトル602(Y軸を中心とする回転移動に対応する)で示す回転が加えられた、慣性センサ100の一部の一実施形態の概念的側面図である。慣性質量102、104が外側に移動すると(ベクトル114、116参照)、ベクトル604及び606として示す慣性力が、それぞれ、慣性質量102、104に加えられる。これに応じて、回転期間中、慣性質量102が上位基板310に向かって移動し、動力駆動サイクルのこの一部分(potion)の間、回転期間中に慣性質量104が下位基板308に向かって移動する。慣性質量102、104が内側に移動しているときの動力駆動サイクルの次の部分の間に、前述した慣性質量102、104に加えられる慣性力が逆転する(方向が変化する)。固定具302、304は、回転が停止したときに、慣性質量102、104をそれらの初期位置(図3参照)に戻すように動作する。
前述の慣性質量102、104の差動モード移動により、ギャップGULS、GLLS、GURS、及びGLRSを跨ぐ電極対の電極−慣性質量間の容量に、検出可能な変化が生ずる。ギャップGULS及びGLRSを跨ぐ電極対の電極対−慣性質量間の容量の変化の大きさと、ギャップGLLS及びGURSを跨ぐ電極対の電極−慣性質量間の容量の変化の大きさとは実質的に等しい(ギャップGURS、GLRS、GULS、及びGURSの初期平衡を仮定する)。慣性質量102、104の移動に応答して、コリオリ平衡調整力が、選択した電極対を通じて加えられ、慣性質量102、104をそれらの元の位置又は既定の位置に戻す。回転は、加えられたコリオリ平衡調整力及び/又は検知した差動モード容量変化から判定することができる。
図16は、図1に示した慣性センサ100の一実施形態の一部について、印加電圧及び検知電圧を示す。電極対106及び108によって印加される電圧VULS、VLLS、及び電極対110及び112によって印加される電圧VURS、及びVLRSは、部分的に、線形加速度平衡調整力に対応する。
印加電圧は、3つの機能、即ち、線形加速度平衡調整、回転検知バイアス、及び加速度検知ピック・オフに供する3つの成分を有する。左上印加プレート電圧(VULS)は、以下の式(1)で定義することができる。
ULS=−VSB−V+Vsin(ωt) (1)
ここで、VSBは、回転検知のための検知バイアス(DCバイアス電圧)の印加電圧である。Vは、加えられる線形加速度平衡調整力の電圧である。Vは、加速度検知のためのVCピック・オフ印加電圧である。そして、ωは、印加したACピック・オフ電圧Vpの周波数である。慣性質量102、104の位置不平衡によって、電流iSPOが生ずる。
左下検知印加プレート電圧(VLLS)、右上検知印加プレート電圧(VURS)、及び右下検知印加プレート電圧(VLRS)は、それぞれ、以下の式(2)、(3)、及び(4)によって定義することができる。
LLS=VSB−V+Vsin(ωt) (2)
URS=VSB+V+Vsin(ωt) (3)
LRS=VSB+V−Vsin(ωt) (4)
増幅システム702は、慣性質量102、104からの電圧及び/又は電流を検出するように通信接続されている。増幅システム702の出力は、検知したピック・オフ電圧VSPOに対応する。VSPOは、以下の式(5)によって定義することができる。
SPO=[VΩ・cos(ωt)+[V・sin(ωt)]+[VCM・sin(ωt)] (5)
ここで、VΩは、回転運動に比例するVSPOの部分であり、VはVΩの直角成分であり、VCMは共通モード運動(線形加速度によって生ずる)に比例するVSPOの部分であり、ωは印加した動力周波数(motor frequency)である。
図17は、慣性センサ100の一実施形態の一部にについて、印加電圧及び検知電圧を示す。線形加速度平衡調整力に対応する、前述の印加電圧VULS、VLLS、VURS、及びVLRSが含まれる。これらは、電極対208、216によって慣性質量102に、そして電極対226、234によって慣性質量104に印加される。他の実施形態では、異なる電極を選択して用い、線形加速度平衡調整力を供給することもできる。実施形態によっては、電極208、216、226、及び234は、慣性質量102、104の共通モード移動及び/又は差動モード移動を検知するために用いる電流(又は電圧)を注入するために用いることができる。
電極対210、218は、コリオリ平衡調整力を慣性質量102に供給する。同様に、電極対224、232は、コリオリ平衡調整力を慣性質量104に供給する。好ましくは、慣性質量102に供給するコリオリ平衡調整力は、慣性質量104に供給するコリオリ平衡調整力に対して、方向が逆で大きさを等しくする。他の実施形態では、異なる電極を選択して用いて、コリオリ平衡調整力を供給することもできる。
CULに対応するコリオリ平衡調整力は、電極210によって供給され、以下の式(6)によって定義することができる。
CUL=VCORsin(ωt/2) (6)
ここで、VCORは、コリオリ電圧であり、ωt/2は、慣性質量102、104の動力周波数の周波数の半分である。
CLLに対応するコリオリ平衡調整力は、電極218によって供給され、VCURに対応するコリオリ平衡調整力は、電極224によって供給され、VCLRに対応するコリオリ平衡調整力は、電極232によって供給され、それぞれ、以下の式(7)、(8)、及び(9)によって定義することができる。
CLL=VCORcos(ωt/2) (7)
CUR=VCORcos(ωt/2) (8)
CLR=VCORsin(ωt/2) (9)
実施形態によっては、任意の電極206、214、228、及び236を通じて任意の直交平衡調整力を供給することもできる。直交平衡調整力は、慣性質量102、104の誘導動力運動(motor motion)に比例する。図12から図17に示す実施形態例では、4つの電極が示されており(慣性質量102、104の各端部に1つずつ)、直交平衡調整力の供給に用いられる。代替実施形態では、慣性質量102、104の各々に1つの電極対を用いて、直交平衡調整力を供給することもできる。1対の直交平衡調整電極は、その慣性質量102、104に対して適した位置であればどこに配置してもよい。代替実施形態では、直交平衡調整電極は任意であり、あるいは用いられない。
図18は、慣性センサ100の代替実施形態について、印加電圧及び検知電圧を示す。電極208、216、226、及び234は、それぞれ、ピック・オフ増幅システム902、904、906、及び908に接続されており、それらのそれぞれの電極における電圧を検知、即ち、ピック・オフする。この実施形態では、慣性質量102、104に注入され、望ましくない規制力を加えることになる虞れがある規制信号の補償が可能となる。即ち、回転力と線形加速力との間にある規制結合効果を緩和することができる。何故なら、規制項の周波数の方が高いからである(ω+ω/2)。
増幅システム902は、信号VULSPを出力する。増幅器904、906、及び908は、それぞれ、信号VLLSP、VURSP、及びVLRSPを出力する。回転出力VRATEは、以下の式(10)にしたがって、増幅システム902、904、906、及び908の出力から導出することができる。
RATE=VULSP+VLRSP−VLLSP−VURSP (10)
図19は、慣性センサ100の一実施形態の一部に結合する処理システム1002の実施態様例を示すブロック図である。一実施形態例では、処理システムは、ディジタル信号処理(DSP)電子システムである。処理システム1002は、アナログ・システム、ディジタル・システム、又はその組み合わせとして実施することができ、更に、個々の用途に応じて、ソフトウェア、ハードウェア、又はハードウェア及びソフトウェアの組み合わせとして実現することもできる。
増幅システム702は、検知したピック・オフ電圧VSPOを処理システム1002に供給する。復調器1004、1006及び1008が、VSPOのAC部分を削除することによって、VSPOを復調する。復調器1004に印加する90度クロック、及び復調器1006に印加する0度クロックは、異なる位相(それぞれ、90度及び0度)における多重化(multiplied)動力信号に対応する。
ロー・パス・フィルタ1010は、復調器1004の出力を処理して、コリオリ出力信号を比例−積分−微分(PID)コントローラ1012に出力する。ロー・パス・フィルタ1014及びPIDコントローラ1016は、復調器1004の出力を処理し、直交出力信号を出力する。ロー・パス・フィルタ1018及びPIDコントローラ1020は、復調器1008の出力を処理し、容量の共通モード不平衡に対応する加速度出力信号を出力する。出力信号は、前述の線形加速度平衡調整力に対応する出力VULS、VLLS、VURS、及びVLRSを発生するために用いられ、前述のコリオリ平衡調整力に対応する出力VCUL、VCLL、VCUR、及びVCLRを発生するために用いられる。
慣性センサ100の実施形態は、線形加速度及び回転を検知し判定するように動作可能であり、慣性測定ユニットに組み込むことができる。1つの慣性センサ100は2軸の線形加速度及び2軸の回転を検知するので、2つの慣性センサ100を適正に方位付ければ、従来の慣性測定ユニットにおいて用いられている3つのジャイロスコープ及び3つの加速度の代わりに、1つの慣性測定ユニットを構成するために用いることができる。したがって、用いるコンポーネントが少なくて済むので、コスト削減及び/又は小型化が可能となる。
以上、本発明の好適な実施形態について図示し説明したが、先に注記したように、本発明の主旨や範囲から逸脱することなく、多くの変更を行うことができる。しがって、本発明の範囲は、好適な実施形態の開示によって限定されるのではない。むしろ、以下に続く特許請求の範囲を参照することによって本発明を全体的に判断するものとする。
100 微細電気機械システム(MEMS)センサ
102 第1慣性質量
104 第2慣性質量
106、108 第1面外電極対
114、116 第2面外電極対
128 櫛歯フィンガ
124 第1面内センサ櫛歯
126 第2面内検知櫛歯

Claims (3)

  1. 微細電気機械システム(MEMS)センサ(100)の線形加速度及び回転を検知する方法であって、前記MEMSセンサは、面内軸において位置合わせした第1慣性質量(102)と第2慣性質量(104)と、前記第1慣性質量が間に配置されている第1面外電極対(106、108)と、前記第2慣性質量が間に配置されている第2面外電極対(114、116)と、対向する第1慣性質量の櫛歯フィンガと交互に配置されている複数の櫛歯フィンガ(128)を有する第1面内センサ櫛歯(124)と、前記対向する第2慣性質量の櫛歯フィンガと交互に配置されている複数の櫛歯フィンガ(128)を有する第2面内検知櫛歯(126)とを備えており、前記方法は、
    前記第1慣性質量、及び、前記第2慣性質量の、前記MEMSセンサの面外線形加速度とは反対の方向の運動に基づいて、前記MEMSセンサの面外線形加速度を、前記第1面外電極対及び前記第2面外電極対によって検知するステップと、
    前記第1慣性質量、及び、前記第2慣性質量の、互い相反する方向の運動に基づいて、前記MEMSセンサの面内回転を、前記第1面外電極対及び前記第2面外電極対によって検知するステップと、
    前記第1慣性質量、及び、前記第2慣性質量の、前記MEMSセンサの面内線形加速度の方向とは反対の方向の運動に基づいて、前記MEMSセンサの面内線形加速度を、前記第1面内検知櫛歯及び前記第2面内検知櫛歯によって検知するステップと、
    前記第1慣性質量、及び、前記第2慣性質量の、互いに相反する方向の運動に基づいて、前記MEMSセンサの面外回転を、前記第1面内検知櫛歯及び前記第2面内検知櫛歯によって検知するステップと
    を備えていることを特徴とする方法。
  2. 請求項1記載の方法において、該方法は更に、
    前記第1及び第2慣性質量の共通モード移動から、前記面外線形加速度及び前記面内線形加速度を検知するステップと、
    前記第1及び第2慣性質量の差動モード移動から、前記面外回転及び前記面内回転を検知するステップと
    を備えていることを特徴とする方法。
  3. 請求項1記載の方法において、前記MEMSセンサの面外線形加速度を、前記第1面外電極対及び前記第2電極対によって検知するステップは、
    前記第1慣性質量の面外線形加速度を、前記第1面外電極対によって検知するステップと、
    前記第2慣性質量の面外線形加速度を、前記第2面外電極対によって検知するステップと
    を備えていることを特徴とする方法。
JP2009094893A 2008-04-10 2009-04-09 面内及び面外memsデバイスからの加速及び回転判定システム及び方法 Expired - Fee Related JP5766391B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US4397408P 2008-04-10 2008-04-10
US61/043,974 2008-04-10
US12/183,617 US7984648B2 (en) 2008-04-10 2008-07-31 Systems and methods for acceleration and rotational determination from an in-plane and out-of-plane MEMS device
US12/183,617 2008-07-31

Publications (2)

Publication Number Publication Date
JP2009260348A JP2009260348A (ja) 2009-11-05
JP5766391B2 true JP5766391B2 (ja) 2015-08-19

Family

ID=40873431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009094893A Expired - Fee Related JP5766391B2 (ja) 2008-04-10 2009-04-09 面内及び面外memsデバイスからの加速及び回転判定システム及び方法

Country Status (3)

Country Link
US (1) US7984648B2 (ja)
EP (1) EP2108964B1 (ja)
JP (1) JP5766391B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11300368B2 (en) 2013-11-18 2022-04-12 General Electric Company Monolithic tube-in matrix heat exchanger

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7971483B2 (en) * 2008-03-28 2011-07-05 Honeywell International Inc. Systems and methods for acceleration and rotational determination from an out-of-plane MEMS device
US7984648B2 (en) 2008-04-10 2011-07-26 Honeywell International Inc. Systems and methods for acceleration and rotational determination from an in-plane and out-of-plane MEMS device
US8250916B2 (en) * 2008-08-12 2012-08-28 Hitachi, Ltd. Inertial sensor
US8086328B2 (en) * 2008-08-29 2011-12-27 Honeywell International Inc. Systems and methods for vibration rectification error reduction in closed-loop accelerometer systems
US8532956B2 (en) * 2008-10-27 2013-09-10 General Electric Company Method and system for rotation tracking of a turbomachine component
IT1391972B1 (it) 2008-11-26 2012-02-02 St Microelectronics Rousset Giroscopio microelettromeccanico con movimento di azionamento rotatorio e migliorate caratteristiche elettriche
IT1392741B1 (it) 2008-12-23 2012-03-16 St Microelectronics Rousset Giroscopio microelettromeccanico con migliorata reiezione di disturbi di accelerazione
US8664951B2 (en) * 2009-03-30 2014-03-04 Honeywell International Inc. MEMS gyroscope magnetic sensitivity reduction
IT1394007B1 (it) 2009-05-11 2012-05-17 St Microelectronics Rousset Struttura microelettromeccanica con reiezione migliorata di disturbi di accelerazione
US8151641B2 (en) 2009-05-21 2012-04-10 Analog Devices, Inc. Mode-matching apparatus and method for micromachined inertial sensors
US8314585B2 (en) * 2009-09-25 2012-11-20 Drs Rsta, Inc. Methods and systems for eliminating structural modes in a servo mechanism employed to control a flexible structure
ITTO20091042A1 (it) 2009-12-24 2011-06-25 St Microelectronics Srl Giroscopio integrato microelettromeccanico con migliorata struttura di azionamento
DE102010002657A1 (de) * 2010-03-08 2011-09-08 Robert Bosch Gmbh Elektrodenanordnung für einen Drehratensensor, Drehratensensor und Verfahren zur Ermittlung einer Drehrate
US9027402B2 (en) 2010-04-30 2015-05-12 Hewlett-Packard Development Company, L.P. Error correction in acceleration-sensing devices
CN103221332B (zh) 2010-09-18 2015-11-25 快捷半导体公司 减小微机电系统上的应力的封装
WO2012037539A1 (en) 2010-09-18 2012-03-22 Fairchild Semiconductor Corporation Micromachined 3-axis accelerometer with a single proof-mass
KR101332701B1 (ko) 2010-09-20 2013-11-25 페어차일드 세미컨덕터 코포레이션 기준 커패시터를 포함하는 미소 전자기계 압력 센서
US9515579B2 (en) 2010-11-15 2016-12-06 Digitaloptics Corporation MEMS electrical contact systems and methods
US9426344B2 (en) * 2010-11-15 2016-08-23 DigitalOptics Corporation MEMS Camera modules with inertial sensors
US8748206B2 (en) 2010-11-23 2014-06-10 Honeywell International Inc. Systems and methods for a four-layer chip-scale MEMS device
US8776601B2 (en) 2010-11-23 2014-07-15 Honeywell International Inc. MEMS sensor using multi-layer movable combs
US9171964B2 (en) 2010-11-23 2015-10-27 Honeywell International Inc. Systems and methods for a three-layer chip-scale MEMS device
US9493344B2 (en) 2010-11-23 2016-11-15 Honeywell International Inc. MEMS vertical comb structure with linear drive/pickoff
ITTO20110806A1 (it) 2011-09-12 2013-03-13 St Microelectronics Srl Dispositivo microelettromeccanico integrante un giroscopio e un accelerometro
US9062972B2 (en) * 2012-01-31 2015-06-23 Fairchild Semiconductor Corporation MEMS multi-axis accelerometer electrode structure
US8978475B2 (en) 2012-02-01 2015-03-17 Fairchild Semiconductor Corporation MEMS proof mass with split z-axis portions
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
EP2648334B1 (en) 2012-04-05 2020-06-10 Fairchild Semiconductor Corporation Mems device front-end charge amplifier
EP2647955B8 (en) 2012-04-05 2018-12-19 Fairchild Semiconductor Corporation MEMS device quadrature phase shift cancellation
EP2647952B1 (en) 2012-04-05 2017-11-15 Fairchild Semiconductor Corporation Mems device automatic-gain control loop for mechanical amplitude drive
JP6127377B2 (ja) * 2012-04-10 2017-05-17 セイコーエプソン株式会社 ジャイロセンサーおよび電子機器
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
US9212908B2 (en) 2012-04-26 2015-12-15 Analog Devices, Inc. MEMS gyroscopes with reduced errors
US9310202B2 (en) * 2012-07-09 2016-04-12 Freescale Semiconductor, Inc. Angular rate sensor with quadrature error compensation
DE102013014881B4 (de) 2012-09-12 2023-05-04 Fairchild Semiconductor Corporation Verbesserte Silizium-Durchkontaktierung mit einer Füllung aus mehreren Materialien
US9534896B2 (en) * 2013-03-27 2017-01-03 Honeywell International Inc. Oscillating voltage of sense electrodes in a MEMS tuning fork gyroscope
DE102013216898B4 (de) * 2013-08-26 2023-02-09 Robert Bosch Gmbh Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements
US9404747B2 (en) 2013-10-30 2016-08-02 Stmicroelectroncs S.R.L. Microelectromechanical gyroscope with compensation of quadrature error drift
US8893563B1 (en) * 2014-01-15 2014-11-25 King Fahd University Of Petroleum And Minerals Differential capacitance torque sensor
DE102014202053A1 (de) * 2014-02-05 2015-08-06 Robert Bosch Gmbh Sensorvorrichtung und Verfahren zum Betreiben einer Sensorvorrichtung mit mindestens einer seismischen Masse
US9562767B2 (en) * 2014-08-12 2017-02-07 Honeywell International Inc. Systems and methods for improving MEMS gyroscope start time
US9810535B2 (en) 2015-02-10 2017-11-07 Northrop Grumman Systems Corporation Vibrating-mass gyroscope systems and method
US9869552B2 (en) * 2015-03-20 2018-01-16 Analog Devices, Inc. Gyroscope that compensates for fluctuations in sensitivity
DE102015209100A1 (de) * 2015-05-19 2016-11-24 Robert Bosch Gmbh Drehratensensor und Verfahren zum Betrieb eines Drehratensensors mit kreisförmigem Antrieb
FI127042B (en) * 2015-09-09 2017-10-13 Murata Manufacturing Co Electrode of a microelectromechanical device
JP6657842B2 (ja) * 2015-11-23 2020-03-04 株式会社デンソー 角速度センサ装置
DE102016215975A1 (de) * 2016-08-25 2018-03-01 Robert Bosch Gmbh Verfahren zum Betrieb eines mikromechanischen Bauelements
US20210002128A1 (en) 2018-12-03 2021-01-07 X-Celeprint Limited Enclosed cavity structures
US11274035B2 (en) 2019-04-24 2022-03-15 X-Celeprint Limited Overhanging device structures and related methods of manufacture
US11929744B2 (en) * 2019-02-11 2024-03-12 Texas Instruments Incorporated Differential capacitive sensing system
IT201900009582A1 (it) * 2019-06-20 2020-12-20 St Microelectronics Srl Giroscopio mems con calibrazione del fattore di scala in tempo reale e relativo metodo di calibrazione
CN111208317B (zh) * 2020-02-26 2021-07-02 深迪半导体(绍兴)有限公司 Mems惯性传感器及应用方法和电子设备
US11150262B1 (en) 2020-04-24 2021-10-19 Christohper Williams System and method for angle of attack sensor
WO2021224284A1 (en) 2020-05-05 2021-11-11 X-Celeprint Limited Enclosed cavity structures
US11519726B2 (en) 2020-06-19 2022-12-06 Analog Devices, Inc. Mechanism for selective coupling in microelectromechanical systems inertial sensors
US11722903B2 (en) 2021-04-09 2023-08-08 Northrop Grumman Systems Corporation Environmental verification for controlling access to data
IT202100027764A1 (it) * 2021-10-29 2023-04-29 St Microelectronics Srl Giroscopio mems avente elettrodi di compensazione di quadratura e metodo di compensazione di un errore di quadratura
DE102022211858A1 (de) 2022-11-09 2024-05-16 Robert Bosch Gesellschaft mit beschränkter Haftung Verbesserte Sensoranordnung mit kompensierenden Elektroden

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5025346A (en) 1989-02-17 1991-06-18 Regents Of The University Of California Laterally driven resonant microstructures
JPH05340960A (ja) * 1992-06-09 1993-12-24 Hitachi Ltd 多次元加速度センサ
DE19512804C2 (de) 1995-04-05 2000-06-15 Lucas Ind Plc Hydraulikaggregat für eine blockiergeschützte Fahrzeugbremsanlage
JP3579748B2 (ja) 1995-05-24 2004-10-20 株式会社トキメック ジャイロ装置
US5659195A (en) 1995-06-08 1997-08-19 The Regents Of The University Of California CMOS integrated microsensor with a precision measurement circuit
DE19641284C1 (de) * 1996-10-07 1998-05-20 Inst Mikro Und Informationstec Drehratensensor mit entkoppelten orthogonalen Primär- und Sekundärschwingungen
JP4263790B2 (ja) * 1998-11-13 2009-05-13 株式会社ワコー 角速度センサ
US7051590B1 (en) 1999-06-15 2006-05-30 Analog Devices Imi, Inc. Structure for attenuation or cancellation of quadrature error
JP2002188924A (ja) * 2000-12-20 2002-07-05 Denso Corp 半導体装置
US6928872B2 (en) * 2001-04-27 2005-08-16 Stmicroelectronics S.R.L. Integrated gyroscope of semiconductor material with at least one sensitive axis in the sensor plane
US20040035206A1 (en) 2002-03-26 2004-02-26 Ward Paul A. Microelectromechanical sensors having reduced signal bias errors and methods of manufacturing the same
US6701786B2 (en) 2002-04-29 2004-03-09 L-3 Communications Corporation Closed loop analog gyro rate sensor
US6817244B2 (en) 2003-01-06 2004-11-16 Honeywell International Inc. Methods and systems for actively controlling movement within MEMS structures
US6860151B2 (en) 2003-02-07 2005-03-01 Honeywell International Inc. Methods and systems for controlling movement within MEMS structures
US6848304B2 (en) * 2003-04-28 2005-02-01 Analog Devices, Inc. Six degree-of-freedom micro-machined multi-sensor
US7036372B2 (en) 2003-09-25 2006-05-02 Kionix, Inc. Z-axis angular rate sensor
US6892575B2 (en) 2003-10-20 2005-05-17 Invensense Inc. X-Y axis dual-mass tuning fork gyroscope with vertically integrated electronics and wafer-scale hermetic packaging
US6939473B2 (en) 2003-10-20 2005-09-06 Invensense Inc. Method of making an X-Y axis dual-mass tuning fork gyroscope with vertically integrated electronics and wafer-scale hermetic packaging
US7458263B2 (en) 2003-10-20 2008-12-02 Invensense Inc. Method of making an X-Y axis dual-mass tuning fork gyroscope with vertically integrated electronics and wafer-scale hermetic packaging
US7640803B1 (en) 2004-05-26 2010-01-05 Siimpel Corporation Micro-electromechanical system inertial sensor
US7146856B2 (en) 2004-06-07 2006-12-12 Honeywell International, Inc. Dynamically balanced capacitive pick-off accelerometer
US7036373B2 (en) 2004-06-29 2006-05-02 Honeywell International, Inc. MEMS gyroscope with horizontally oriented drive electrodes
EP1794543B1 (de) * 2004-09-27 2009-11-04 Contitemic Microelectronic GmbH Drehratensensor
US7238999B2 (en) 2005-01-21 2007-07-03 Honeywell International Inc. High performance MEMS packaging architecture
JP2007309653A (ja) * 2006-05-16 2007-11-29 Sony Corp 慣性センサ
US7444868B2 (en) * 2006-06-29 2008-11-04 Honeywell International Inc. Force rebalancing for MEMS inertial sensors using time-varying voltages
US7444869B2 (en) 2006-06-29 2008-11-04 Honeywell International Inc. Force rebalancing and parametric amplification of MEMS inertial sensors
US7703324B2 (en) 2007-05-11 2010-04-27 Honeywell International Inc. MEMS tuning fork gyro sensitive to rate of rotation about two axes
US7971483B2 (en) * 2008-03-28 2011-07-05 Honeywell International Inc. Systems and methods for acceleration and rotational determination from an out-of-plane MEMS device
US7984648B2 (en) 2008-04-10 2011-07-26 Honeywell International Inc. Systems and methods for acceleration and rotational determination from an in-plane and out-of-plane MEMS device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11300368B2 (en) 2013-11-18 2022-04-12 General Electric Company Monolithic tube-in matrix heat exchanger

Also Published As

Publication number Publication date
US7984648B2 (en) 2011-07-26
US20090255336A1 (en) 2009-10-15
EP2108964A3 (en) 2012-02-15
JP2009260348A (ja) 2009-11-05
EP2108964A2 (en) 2009-10-14
EP2108964B1 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5766391B2 (ja) 面内及び面外memsデバイスからの加速及び回転判定システム及び方法
US7971483B2 (en) Systems and methods for acceleration and rotational determination from an out-of-plane MEMS device
US7231824B2 (en) Use of electrodes to cancel lift effects in inertial sensors
US7213458B2 (en) Quadrature reduction in MEMS gyro devices using quad steering voltages
Juneau et al. Dual axis operation of a micromachined rate gyroscope
US6848304B2 (en) Six degree-of-freedom micro-machined multi-sensor
US10436588B2 (en) Vibrating-mass gyroscope systems and method
US7444868B2 (en) Force rebalancing for MEMS inertial sensors using time-varying voltages
JP4458441B2 (ja) 分割電極を有する音叉ジャイロ
JP3898780B2 (ja) チュニングフォーク形ジャイロスコープ
EP2202484A1 (en) Microelectromechanical gyroscope with enhanced rejection of acceleration noise
US7313958B2 (en) Rotational rate sensor
EP3044541B1 (en) Gyroscope structure and gyroscope with improved quadrature compensation
US20030131664A1 (en) Angular velocity sensor
US20120210790A1 (en) Piezoelectric Transducers and Inertial Sensors using Piezoelectric Transducers
JP4719751B2 (ja) 角速度のための振動マイクロ−メカニカルセンサー
WO2006012104A1 (en) Mems gyroscope with horizontally oriented drive electrodes
JP2007519925A (ja) 電子結合を持つ微小機械加工振動ジャイロスコープ、及び方法
WO2004097430A2 (en) Micro-machined multi-sensor providing 2-axes of acceleration sensing and 1-axis of angular rate sensing
WO2001079862A1 (en) Z-axis micro-gyro
KR20090107932A (ko) 평면내 및 평면외 mems 장치로부터 가속 및 회전 판단을 위한 시스템 및 방법
JP3873266B2 (ja) 三次元角速度センサ
KR20090103795A (ko) 평면외 mems 장치로부터 가속 및 회전 판단을 위한 시스템 및 방법
Vu et al. Design and analysis of an integrated 3-DOF sensor for tracking in-plane motion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140605

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140616

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150617

R150 Certificate of patent or registration of utility model

Ref document number: 5766391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees