本発明の実施形態の車両用制動制御装置は、例えばハイブリッド車に搭載されており、図1に示すように、基端部が開口して先端部が閉塞した円筒形状を成すマスタシリンダ11を備え、マスタシリンダ11には、隔壁11aを挟んで基端側に入力シリンダ穴19が、先端部側に加圧シリンダ穴23が形成されている。入力シリンダ穴19には入力ピストン12が、加圧シリンダ穴23には第1及び第2出力ピストン13,14が各々同軸上に配置されて軸方向に沿って摺動自在に嵌合されている。なお、第1及び第2出力ピストン13,14でマスタピストンが構成されている。
入力ピストン12は、マスタシリンダ11の基端部外方に一部がシール部材を介在して摺動可能に突出した突出部分12aと、入力シリンダ穴19の内周にシール部材を介在して摺動自在に嵌合された反力ピストン部12cと、この反力ピストン部12cの先端側軸線上に突き出た当該反力ピストン部12cよりも細径の円柱状の棒状部分12dとが一体となって形成され、また、棒状部分12d及び反力ピストン部12cの内部に、先端が後述の駆動液圧室27側に開口した断面T字状の通路(T字状通路)12eが形成されている。また、突出部分12aは外部に向かって開口した凹部12bが形成されており、その凹部12bにブレーキペダル15の操作ロッド16が嵌合連結されている。
入力ピストン12の棒状部分12dは、隔壁11aをシール部材を介在して摺動可能に貫通して先端部側の加圧シリンダ穴23の駆動液圧室27に僅かに突出し、この突出部分と第1出力ピストン13の基端側の凹状部分との間に所定間隙を形成する。この駆動液圧室27はT字状通路12eを介して反力ピストン部12cの後面側に連通している。なお、ブレーキペダル15を踏んで入力ピストン12を押し進めた際の移動量をブレーキ操作量と言う。
入力シリンダ穴19には、その内周面と、棒状部分12dの外周面及び反力ピストン部12cの前端面とで囲まれた反力液圧室28が形成され、この反力液圧室28の隔壁11aの近傍にはマスタシリンダ11の周壁を外部に貫通するポート29が形成されている。このポート29から後述のように反力液圧室28に流入出されるブレーキ液の圧力で入力ピストン12が基端側へ押圧され、ブレーキペダル15に反力が付与されるようになっている。
第1出力ピストン13は、断面が略H字形状を呈し、加圧シリンダ穴23の後方部にシール部材を介在して摺動自在に嵌合され、加圧シリンダ穴23を駆動液圧室27と第1圧力室32とに分割している。第1出力ピストン13が後退端で隔壁11aに当接したとき、駆動液圧室27の内周面と第1出力ピストン13の外周面との間に軸方向に沿って環状通路17aが形成されるように、駆動液圧室27の内周面は大径に形成されている。第1出力ピストン13の後端面に形成された凹部13aは貫通穴17bによって駆動液圧室27の大径内周部と連通されている。駆動液圧室27の先端側のマスタシリンダ11の周壁には、駆動液圧室27から外部に連通するポート33が形成されている。これにより駆動液圧室27は、ポート33を介してマスタシリンダ11の外部に連通している。
第1出力ピストン13の先端側に配置された第2出力ピストン14は断面がコ字形状を呈し、加圧シリンダ穴23の前方部にシール部材を介在して摺動自在に嵌合され、加圧シリンダ穴23を第1圧力室32と第2圧力室36とに分割している。このようにして、第1出力ピストン13と第2出力ピストン14との間に第1圧力室32が形成され、第2出力ピストン14と加圧シリンダ穴23の先端閉塞面との間に第2加圧室36が形成されている。
第1出力ピストン13のコ字形状の先端側凹部底面と第2出力ピストン14の後端面との間には第1圧縮スプリング24が介在され、第2出力ピストン14のコ字形状の凹部底面と加圧シリンダ穴23の先端閉塞面との間に第2圧縮スプリング25が介在されている。これにより、ブレーキペダル15が無操作状態において、第1及び第2出力ピストン13,14は第1及び第2圧縮スプリング24,25のばね力によってマスタシリンダ11の基端側に付勢され、所定の各不作動位置にそれぞれ停止されている。
ブレーキペダル15の無操作状態において、入力ピストン12は、反力ピストン部12cの後端面が入力シリンダ穴19の後端段部と当接する後退端に停止され、第1出力ピストン13は、後端面が隔壁11aと当接する不作動位置に停止される。このとき、入力ピストン12の棒状部分12dは隔壁11aを貫通し、先端面12gが駆動液圧室27に位置し、第1出力ピストン13の後端面に形成された凹部13aの底面13bと間隔12fを持って離間状態に保持されている。ドライバーがブレーキペダル15を操作し、操作ロッド16で突出部分12aが押圧されて、入力ピストン12が第1出力ピストン13に対して間隔12f分前進すると、入力ピストン12の棒状部分12dの先端面12gが第1出力ピストン13の凹部13aの底面13bに当接してこれを押圧可能となっている。
第1圧力室32には所定の不作動位置に位置する第2出力ピストン14の後端面近傍にマスタシリンダ11の周壁を外部に貫通するポート34が形成され、更に、ブレーキペダル15の無効操作状態において、第1出力ピストン13の周壁及びマスタシリンダ11の周壁を貫通するポート38が形成されている。更に、第2圧力室36には加圧シリンダ穴23の先端閉塞面の近傍に、マスタシリンダ11の周壁を外部に貫通するポート35が形成され、更に、ブレーキペダル15の無効操作状態において、第2加圧ピストン14の周壁及びマスタシリンダ11の周壁を貫通するポート39が形成されている。
駆動液圧室27のポート33は、リニア弁である駆動液圧室流入調整弁V1を介してアキュムレータ(Acc)40の流出入口に液圧供給配管(単に配管ともいう)45a,45b,45cで連結されると共に、リニア弁である駆動液圧室流出調整弁V2を介してリザーバタンク22に配管45a,45d,45eで連結されている。
アキュムレータ40の流出入口には、配管45cから分岐された配管45fで2つの逆止弁Va,Vbを介して液圧ポンプ39の吐出口が連結されている。各逆止弁Va,Vbは液圧ポンプ39からアキュムレータ40への流れのみを許容する状態で介挿されている。逆に各逆止弁Va,Vbは、アキュムレータ40から吐出される圧力が液圧ポンプ39側に行かないように阻止する。
液圧ポンプ39には、液圧ポンプ駆動用のモータ41が連結され、更に、液圧ポンプ39の流入口は、逆止弁Vcを介してリザーバタンク22に配管45gで連結されている。逆止弁Vcはリザーバタンク22から液圧ポンプ39の流入口への流れのみを許容する状態で介挿されている。
また、2つの逆止弁Va,Vbの間の配管45fは分岐され、この分岐された配管45hの他端はリニア弁である反力液圧室流入調整弁V3の一方の口に連結され、他方の口は配管45i,45jを介して反力液圧室28のポート29に連結されている。従って、反力液圧室28のポート29は、配管45j,45i、反力液圧室流入調整弁V3、配管45h,45f及び逆止弁Vaを介して液圧ポンプ39に連結されている。また、ポート29は、リニア弁である反力液圧室流出調整弁V4を介してリザーバタンク22に配管45j,45eで連結されている。更に、ポート38,39も図示せぬ配管によってリザーバタンク22に連結されている。
なお、駆動液圧室流入調整弁V1、駆動液圧室流出調整弁V2、反力液圧室流入調整弁V3及び反力液圧室流出調整弁V4を、単にリニア弁V1〜V4ともいう。
更に、反力液圧室流入調整弁V3と反力液圧室流出調整弁V4とを連結する配管45iの途中と、リザーバタンク22に連結された配管45eの途中とはリリーフ弁Vdを介して配管45kで連結されている。配管45eの途中と、アキュムレータ40と駆動液圧室流入調整弁V1とを連結する配管45cの途中とはリリーフ弁Veを介して配管45mで連結されている。これらリリーフ弁Vd,Veは、反力液圧室28並びにアキュムレータ40に所定以上の圧力が掛かると破損するので、その所定以上の圧力をリザーバタンク22へ逃がして破損を防止するためのものである。
アキュムレータ40の流出入口に接続された配管45cには、アキュムレータ40に蓄圧された圧力エネルギー(アキュムレータ圧)を検出する圧力センサP1が設けられ、駆動液圧室27のポート33に連結された配管45aには、駆動液圧室27内の液圧を検出する圧力センサP2が設けられ、反力液圧室28のポート29に連結された配管45jには、反力液圧室28内の液圧を検出する圧力センサP3が設けられている。
アキュムレータ40は、液圧ポンプ39により発生した液圧を蓄圧するものであり、この蓄圧された液圧が駆動液圧室流入調整弁V1を介して駆動液圧室27へ供給されることにより液圧ブレーキ力(液圧制動力)が得られるようになっている。アキュムレータ圧が所定値以下に低下したことが圧力センサP1によって検出されると液圧ポンプ39は、モータ41によって駆動され、アキュムレータ40にブレーキ液を供給してアキュムレータ40に蓄圧された圧力エネルギーを補給する。また、アキュムレータ40は、液圧ポンプ39が吐出したブレーキ液の脈動を緩和することもできる。
各リニア弁V1〜V4は、流量調整式の電磁弁であり、各リニア弁V1〜V4の絞り抵抗を、次に説明する図2に示すように制御することにより駆動液圧室27及び反力液圧室28の液圧を制御する。図2のX1列のY5,Y6行にも示すように、駆動液圧室流入調整弁V1及び駆動液圧室流出調整弁V2は駆動液圧調整弁部を構成し、反力液圧室流入調整弁V3及び反力液圧室流出調整弁V4は反力液圧調整弁部を構成する。
X2列のY1行に示すブレーキ操作無しの場合に、X2左列のY2行に示すようにアキュムレータ40の蓄圧が十分あって加圧が不要であれば、Y4行に示すようにモータ41を停止し、Y5行に示すようにリニア弁V1を閉弁、リニア弁V2を開弁とし、Y6行に示すようにリニア弁V3,V4を開弁として何も行わないようになっている。一方、X2右例のY2行に示すようにアキュムレータ40に必要な蓄圧力が無く、加圧が必要である場合は、Y4行に示すようにモータ41を高回転で作動させ、Y5行に示すようにリニア弁V1を閉弁、リニア弁V2を開弁とし、Y6行に示すようにリニア弁V3を閉弁、リニア弁V4を開弁として、液圧ポンプ39から吐出されるブレーキ液をアキュムレータ40に供給して蓄圧する。
X3列のY1行に示すようにブレーキ操作有りの場合に、Y2行のX3左列に示すようにアキュムレータ40の加圧が不要であれば、Y4行に示すようにモータ41を低速回転してポンプ39から少ない流量のブレーキ液を吐出させる。そして、Y3行左側に示す回生(回生制動)のみを行う場合は、Y5に示すようにリニア弁V1を閉弁、リニア弁V2を開弁とし、Y6に示すようにリニア弁V3を開弁し、リニア弁V4の開度を制御して反力液圧室28に発生する反力液圧Pを正確かつ円滑に制御し、ブレーキペダル15の操作量に応じた反力を得るようにする。
X3列のY1行に示すブレーキ操作有りで、Y2行に示すようにアキュムレータ40の加圧が不要で、Y3行中央に示す回生+液圧(回生制動+液圧制動)の動作を行う場合、互いに独立した駆動液圧室27及び反力液圧室28の液圧制御が必要であり、駆動液圧室27の応答性と反力液圧室28の制御性とが必要となり、駆動液圧室27と反力液圧室28とは分離した状態で液圧制御することが望ましい。
そこで、Y3行中央の下のY4行に示すように、モータ41を低回転で作動させてポンプ39に少ない流量のブレーキ液を吐出させ、Y5行に示すようにリニア弁V1,V2は開度、即ち絞り抵抗を制御される制御状態とし、Y6行に示すようにリニア弁V3は開弁としてリニア弁V4の開度、即ち絞り抵抗を制御する。リニア弁V1,V2の制御によりアキュムレータ40から供給される液圧が制御されて駆動液圧室27に作動液圧Pが生成される。そして、モータ41の低回転で液圧ポンプ39から供給される少ない流量のブレーキ液は、開弁とされたリニア弁V3を通過し、リニア弁V4で絞られることによって反力液圧室28に反力液圧を生成する。反力液圧は、リニア弁V3を開弁とし、リニア弁V4の開度を制御することによって制御性よく制御され、ブレーキペダル15の操作量に応じた反力を正確かつ円滑に発生する。
また、X3列のY1行に示すブレーキ操作有りで、Y2行に示すようにアキュムレータ40の加圧が不要で、Y3行右側に示す液圧(液圧制動)による制動動作を行う場合、上述のY3行中央の回生+液圧の場合と同じ制御を行う。
次に、X3列のY1行に示すようにブレーキ操作有りの場合に、Y2行のX3右列に示すようにアキュムレータ40の加圧が必要であれば、Y4行に示すようにモータ41を高速回転する。そして、Y3行左側に示す回生(回生制動)のみを行う場合は、Y5に示すようにリニア弁V1を閉弁とし、リニア弁V2を開弁とし、Y6に示すようにリニア弁V3の開度を絞ってリニア弁V4を流れるブレーキ液の流量を制限した状態とし、リニア弁V4の開度を制御して反力液圧室28に生成される反力液圧を正確かつ円滑に制御し、ブレーキペダル15の操作量に応じた反力を得るようにする。リニア弁V3の開度を絞ることにより、モータ41の高回転で液圧ポンプ39から大きい吐出流量で吐出されるブレーキ液を例えばアキュムレータ40側へ「8」の割合、反力液圧室28側へ「2」の割合といった具合に配分することができ、アキュムレータ40に蓄圧を効率的に行うとともに、リニア弁V4を流れるブレーキ液の流量を少なくして反力液圧室28の反力液圧の制御性を高めることができる。
一方、X3列のY1行に示すブレーキ操作有りで、Y2行に示すようにアキュムレータ40の加圧が必要で、Y3行中央に示す回生+液圧の動作を行う場合、アキュムレータ40への蓄圧を行いながら、駆動液圧室27での作動液圧発生の高応答性と反力液圧室28での反力液圧発生の制御性とが必要となる。
そこで、Y4行に示すように、モータ41を高回転で作動させ、Y5行に示すようにリニア弁V1,V2は開度を制御される制御状態とする。そして、Y6に示すようにリニア弁V3の開度を絞ってリニア弁V4を流れるブレーキ液の流量を制限した状態とし、リニア弁V4の開度を制御して反力液圧室28に発生する反力液圧を制御し、ブレーキペダル15の操作量に応じた反力を得るようにする。
また、X3列のY1行に示すブレーキ操作有りで、Y2行に示すようにアキュムレータ40の加圧が必要で、Y3行右側に示す液圧制動のみを行う場合も、上述したY3行中央の回生+液圧の場合と同じ制御を行う。
第1圧力室32のポート34及び第2圧力室36のポート35には、各々吐出液圧配管51,52を介してABS(AntilockBrakeSystem)53が連結され、このABS53に、前輪FR,FL及び後輪RR,RL(以降、車輪FR〜RLとも表現する)を制動するブレーキ装置(図示略)を作動させるホイールシリンダ55FR,55FL,55RR,55RL(以降、ホイールシリンダ55FR〜55RLとも表現する)が連結されている。
つまり、アキュムレータ40から送出された液圧がリニア弁V1およびV2によって制御された作動液圧Pが駆動液圧室27に発生することにより第1ピストン13及び第2出力ピストン14が前進して第1及び第2圧力室32,36が加圧される。第1及び第2圧力室32,36の液圧はポート34,35から吐出液圧配管51,52及びABS53を経由してホイールシリンダ55FR〜55RLへ制動液圧として供給され、これによって車輪FR〜RL延いては車両に液圧制動力が付与される。
このような構成の車両用制動制御装置は、更に、ブレーキECU(電子制御ユニット)62を備え、このブレーキECU62は、ブレーキペダル15に設けられたストロークセンサ61、各リニア弁V1〜V1、圧力センサP1〜P3、モータ41と電気的に接続されており、更にブレーキECU62の上位制御を行うメインECU63に接続されている。ストロークセンサ61は、ブレーキペダル15のペダルストロークを検出してブレーキECU62へ出力し、ブレーキECU62は、そのペダルストロークからブレーキ操作量Sを求める。
ブレーキECU62は、ストロークセンサ61で検出されたブレーキ操作量Sに応じた目標制動力Ftをブレーキ操作量‐目標制動力マップから求め、ブレーキECU62は、その目標制動力Ftを目標回生制動力Frtと目標液圧制動力Fptとに配分する。この目標液圧制動力Fptに応じてブレーキECU62は液圧ブレーキ(液圧制動力)を車輪FR〜RLに付与する。また、目標回生制動力Frtに応じて図略のモータECUが回生ブレーキ(回生制動力)を駆動輪に付与する。即ち、モータECUは、目標回生制動力Frtに応じて図略の電気モータを駆動輪の回転による発電機として作動させることで、回生ブレーキを駆動輪に付与して車両を減速しつつ、運動(回転)エネルギーを電気エネルギーに変換し、この電気エネルギーを図略のインバータを介してバッテリに回収する。
ここで、ブレーキ操作が行われ、且つ回生制動が可能で目標回生制動力が0より大きい場合は、車輪に液圧制動力と回生制動力とが付与される回生協調制御が実行される。このとき目標液圧制動力Fptと目標回生制動力Frtとを加算した目標制動力Ftはブレーキ操作量Sに応じて設定される。このブレーキ操作量Sと目標制動力との関係を示すブレーキ操作量‐目標制動力マップの一例を図3に示す。
バッテリの充電状況等により回生制動が行えないときにも必要な制動力を確保するためには、ブレーキ操作量に対する目標制動力は、まず液圧制動力で確保できるようにしておく必要がある。従って、ブレーキ操作量‐目標制動力マップは、回生制動力が0であるときのブレーキ操作量Sに対する目標液圧制動力を示すものでもある。
本実施の形態におけるブレーキ操作量‐目標制動力マップでは、図3に示すように、ブレーキ操作量Sが、ブレーキペダル15の遊びが詰まった時点でのブレーキ操作量S0から助勢限界操作量S2に達するまでの間は、目標制動力Ftはブレーキ操作量Sに対して実線Ft1で示す所望の傾きの設定サーボ特性で増加している。助勢限界操作量S2は、設定サーボ特性において目標制動力Ftが助勢限界液圧制動力Fpmとなるときの操作量である。ところで、リニア弁V1の絞り抵抗を最小とし、リニア弁V2の絞り抵抗を最大にすると、駆動液圧室27に助勢限界液圧Pmが発生する。駆動液圧室27に助勢限界液圧Pmを発生させたときに車輪FR〜RLに助勢限界液圧制動力Fpmが付与される。
ブレーキ操作量Sが助勢限界操作量S2を超えて、入力ピストン12の先端面12gが第1出力ピストン13の凹部13aの底面13bに当接する当接ブレーキ操作量S3に到達すると、目標制動力Ftはドライバーの踏力に応じて増加する。
このブレーキ操作量Sに対する目標制動力Ftは、ブレーキECU62のメモリにブレーキ操作量‐目標制動力マップとして記憶されている。回生制動が可能な回生協調制御時には、ブレーキECU62は各ブレーキ操作量Sにおいて目標回生制動力Frtを回生制動の可能な範囲で決定し、目標制動力Ftから目標回生制動力Frtを減算して目標液圧制動力Fptを決定する。
ブレーキECU62は、目標液圧制動力Fptに基づいてリニア弁V1,V2の開度を制御して、駆動液圧室27に目標液圧制動力Fptに対応する作動液圧Pを発生させ、ホイールシリンダ55FR〜55RLに制動液圧Pを供給して車輪FR〜RLに目標液圧制動力Fptを付与する。図略のモータECUは、駆動輪に連結された電気モータを目標回生制動力Frtに基づいて回生制御し、駆動輪に目標回生制動力Frtを付与する。
回生協調制御が行われる場合、ブレーキペダル15の踏み込み時に、ブレーキ操作量がS0からS1になるまでの間は、目標液圧制動力は0であり、駆動液圧室27に作動液圧Pが発生されず、回生制動のみが行われて目標回生制動力Frtがブレーキ操作量Sに応じて駆動輪に付与される。ストロークセンサ61で検出されたブレーキ操作量Sが、そのときの目標制動力Ftが最大回生制動力Frmと等しくなるときのブレーキ操作量S1を超えた後は、最大回生制動力Frmに加え、目標制動力Ftから最大回生制動力Frmを減算した目標液圧制動力Fptに対応する作動液圧Ptが駆動液圧室27に発生され、車輪に目標制動力Ftが付与される。
このような構成の車両用制動制御装置において、駆動液圧室27及び反力液圧室28の液圧を制御する際の動作を図4及び図5を参照して説明する。
図4に示すステップSt1において、ブレーキECU62により制動操作中か否かが判定される。詳しくは、ブレーキECU62は、ブレーキ操作量Sが所定値以上である場合に、制動操作中であることを判定する。なお、ブレーキペダル15の踏み込みを検出するブレーキスイッチを備えている場合には、当該ブレーキスイッチの検出信号により、ブレーキペダル15が踏み込まれている場合に、制動操作中であることを判定してもよいし、ブレーキペダル15の踏力を検出する踏力センサを備えている場合には、当該踏力センサの検出信号により、ブレーキペダル15の踏力が所定値以上である場合に、制動動作中であることを判定してもよい。
この結果、ブレーキ操作が無い場合、ステップSt2において、ブレーキECU62により反力液圧室流出調整弁V4が開弁とされる。次に、ステップSt3において、ブレーキECU62により圧力センサP1の圧力が検出され、この結果、アキュムレータ40に加圧が必要か否かが判定される。加圧が不要な場合、ステップSt4において、ブレーキECU62はモータ41の目標回転数を0に設定し、ステップSt5において、反力液圧室流入調整弁V3を開弁とする。更に、ステップSt6において、駆動液圧室流入調整弁V1を閉弁とし、駆動液圧室流出調整弁V2を開弁とする。
このステップSt1〜St6の制御は、上述した図2に示すX2左列の加圧不要の列の動作に対応する。この制御の場合、ブレーキ操作が無で、モータ41が停止状態であり、駆動液圧室流入調整弁V1が閉弁、駆動液圧室流出調整弁V2が開弁、反力液圧室流入調整弁V3及び反力液圧室流出調整弁V4が開弁とされ、何も行われない。
一方、上記ステップSt3において、アキュムレータ40に加圧が必要な場合、ステップSt7において、ブレーキECU62ではモータ41の目標回転数が高速回転数に設定され、ステップSt8において、反力液圧室流入調整弁V3が閉弁とされる。更に、上記ステップSt6で駆動液圧室流入調整弁V1が閉弁、駆動液圧室流出調整弁V2が開弁とされる制御が行われる。
ブレーキECU62が行うこの制御は、図2に示すX2右列における加圧必要の列の動作に対応し、第3制御手段を構成する。第3制御手段は、ブレーキ操作判定手段(ステップSt1)によりブレーキ操作部材(ブレーキペダル15)の操作が無いと判定され、かつ、加圧要否判定手段(ステップSt3)によりアキュムレータ40の加圧を要することが判定されている場合に、駆動液圧調整弁部(V1,V2)によりアキュムレータ40から駆動液圧室27へのブレーキ液の流入を阻止させるとともに、反力液圧調整弁部(V3,V4)によりポンプ39から反力液圧室28へのブレーキ液の流入を阻止させながら、アキュムレータ40を加圧させる。
これにより、アキュムレータ40の加圧のみが必要な場合に、ポンプ39をモータ41によって高速回転駆動し、駆動液圧室27及び反力液圧室28へのブレーキ液の流入を阻止する制御を行うので、アキュムレータ40の加圧を高い応答性で行うことが出来る。
次に、上記ステップSt1において、ブレーキ操作が有りと判定された場合、つまり、ブレーキECU62にストロークセンサ61で検出されたペダルストロークが入力された場合について説明する。図5に示すステップSt9において、ブレーキECU62により反力液圧室流出調整弁V4の開度、即ち絞り抵抗が制御され、反力液圧室28にブレーキストロークに応じた液圧が発生し、ブレーキペダル15にブレーキペダル15の操作量に応じた反力が付与される。
次に、ステップSt10において、ブレーキECU62により圧力センサP1の圧力が検出され、この結果、アキュムレータ40に加圧が必要か否かが判定される。加圧が不要な場合、ステップSt11において、ブレーキECU62ではモータ41の目標回転数が低回転数に設定され、ステップSt12において、反力液圧室流入調整弁V3が開弁とされる。ここで、ステップSt13において、ブレーキ制動力の様態が回生のみであれば、ステップSt6の制御が行われる。
ステップSt13で判定される態様が、回生と液圧による制動、又は液圧による制動のみの場合、ステップSt14において、駆動液圧室流入調整弁V1及び駆動液圧室流出調整弁V2の絞り抵抗の制御により、駆動液圧室27の作動液圧Pが、目標液圧制動力が得られる状態に調整される。
ブレーキECU62が行うステップSt1,St9〜St14の制御は、図2に示すX3左列における加圧不要の列の動作に対応し、第1制御手段を構成する。第1制御手段は、ブレーキ操作判定手段(ステップSt1)によりブレーキ操作部材(ブレーキペダル15)の操作があると判定され、かつ、加圧要否判定手段(ステップSt10)によりアキュムレータ40の加圧が不要であることが判定されている場合に、ポンプ39によるブレーキ液の吐出量を、加圧要否判定手段(ステップSt10)によりアキュムレータ40の加圧を要することが判定されている場合よりも小さくさせ(ステップSt11)、反力液圧調整弁部(V3,V4)に反力液圧室28に生成される反力液圧を調整させる。
ポンプ39とアキュムレータ40との間には、ポンプ39からアキュムレータ40への流れのみを許容する逆止弁Vbが設けられているので、アキュムレータ40に必要な圧力が十分にあって加圧が不要な場合は、アキュムレータ40からブレーキ液が逆止弁Vbを介して反力液圧室28へ流れる事は無い。これにより、アキュムレータ40の加圧が不要な場合は、ポンプ39の吐出量を少なくし反力液圧調整弁部(V3,V4)を流れるブレーキ液の流量を小さくすることによって反力液圧室28での反力液圧Pの生成の制御性を高めるとともに、省エネを図ることが出来る。
次に、上記ステップSt10の判定結果が、アキュムレータ40の加圧が必要な場合、ステップSt15において、ブレーキECU62ではモータ41の目標回転数が高速回転数に設定され、ステップSt16において、反力液圧室流入調整弁V3の絞り抵抗が、反力液圧調整弁部(V3,V4)に流れるブレーキ液の流量を制限するように制御される。この後は上述したステップSt13以降の制御と同じである。
ブレーキECU62が行うステップSt1,St9,St10,St15,St16,St13,St14の制御は、図2に示すX3右列における加圧必要の列の動作に対応し、第2制御手段を構成する。第2制御手段は、ブレーキ操作判定手段(ステップSt1)によりブレーキ操作部材(ブレーキペダル15)の操作があると判定され、かつ、加圧要否判定手段(ステップSt10)によりアキュムレータ40の加圧を要することが判定されている場合に、ポンプ39によるブレーキ液の吐出量を、加圧要否判定手段(ステップSt10)によりアキュムレータ40の加圧が不要であることが判定されている場合よりも大きくし(ステップSt15)、反力液圧調整弁部(V3,V4)に流れるブレーキ液の流量を制限した状態で反力液圧調整弁部(V3,V4)に反力液圧室28に発生する反力液圧Pを調整させる。
アキュムレータ40の加圧が必要な場合はポンプ39の吐出量を多くせざるを得ないが、この場合でも、反力液圧調整弁部V3,V4で反力液圧調整弁部V3,V4に流れるブレーキ液の流量を制限した状態で反力液圧Pを制御するので、アキュムレータ40を加圧しながら反力液圧調整弁部V3,V4へのブレーキ液の流量を少なくして反力液圧室28での反力液圧Pの生成の制御性を高くすることが出来る。
上述のように、本実施の形態によれば、ポンプ39から吐出されて逆止弁Vbを通過するブレーキ液を、駆動液圧調整弁部V1,V2でその流入出を調整しながら、アキュムレータ40に供給すると共に、駆動液圧室27へ供給することができるので、アキュムレータ40を加圧することができ、駆動液圧室27の液圧を目標液圧制動力を得るための作動液圧Pとすることができる。また、ポンプ39から吐出されてポンプ39と逆止弁Vbとの間の部分を通過するブレーキ液を、反力液圧調整弁部V3,V4でその流入出を調整しながら、反力液圧室28へ供給することができるので、反力液圧室28の液圧を、ブレーキペダル15の操作量に応じた反力を得るための反力液圧に正確に制御することができる。つまり、ポンプ39でアキュムレータ40を蓄圧する基本的な構成に逆止弁Vb並びに反力液圧調整弁部V3,V4を備えるという簡易な構成で、反力液圧室28にブレーキ操作量に応じた反力液圧を生成し、ドライバーに違和感を生じさせないように高い制御性でブレーキペダル15に反力を付与することが出来る。