JP5762774B2 - Fluid dynamic bearing device - Google Patents

Fluid dynamic bearing device Download PDF

Info

Publication number
JP5762774B2
JP5762774B2 JP2011041837A JP2011041837A JP5762774B2 JP 5762774 B2 JP5762774 B2 JP 5762774B2 JP 2011041837 A JP2011041837 A JP 2011041837A JP 2011041837 A JP2011041837 A JP 2011041837A JP 5762774 B2 JP5762774 B2 JP 5762774B2
Authority
JP
Japan
Prior art keywords
bearing
peripheral surface
dynamic pressure
hill
shaft member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011041837A
Other languages
Japanese (ja)
Other versions
JP2012177456A (en
Inventor
哲弥 栗村
栗村  哲弥
政治 堀
政治 堀
正志 山郷
正志 山郷
隆生 新井
隆生 新井
冬木 伊藤
冬木 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2011041837A priority Critical patent/JP5762774B2/en
Publication of JP2012177456A publication Critical patent/JP2012177456A/en
Application granted granted Critical
Publication of JP5762774B2 publication Critical patent/JP5762774B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Description

本発明は、流体動圧軸受装置に関する。   The present invention relates to a fluid dynamic bearing device.

流体動圧軸受装置は、軸受部材の内周面と軸部材の外周面との間のラジアル軸受隙間に生じる潤滑油の動圧作用により、軸部材を相対回転自在に支持するものである。流体動圧軸受装置は、優れた回転精度および静粛性を有するため、例えば、各種ディスク駆動装置(HDDの磁気ディスク駆動装置や、CD−ROM等の光ディスク駆動装置等)のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ用、あるいはプロジェクタのカラーホイールモータ用として好適に使用されている。   The fluid dynamic pressure bearing device supports a shaft member so as to be relatively rotatable by a dynamic pressure action of lubricating oil generated in a radial bearing gap between an inner peripheral surface of the bearing member and an outer peripheral surface of the shaft member. Since the fluid dynamic bearing device has excellent rotational accuracy and quietness, for example, for spindle motors of various disk drive devices (such as HDD magnetic disk drive devices and CD-ROM optical disk drive devices), laser beams, etc. It is suitably used for a polygon scanner motor of a printer (LBP) or a color wheel motor of a projector.

流体動圧軸受装置に組み込まれる軸受部材として、焼結金属からなり、内周面に動圧溝領域が形成された焼結軸受を用いる場合がある。例えば図12(a)に示す焼結軸受100は、内周面の軸方向に離隔した2箇所にラジアル軸受面110が設けられ、各ラジアル軸受面110に動圧溝領域が形成される。詳しくは、円周方向に対して一方側及び他方側に傾斜し、ヘリングボーン形状に配列された複数の傾斜溝部101と、複数の傾斜溝部101の円周方向間に設けられた複数の傾斜丘部102と、ラジアル軸受面110の軸方向中央部に設けられ、傾斜丘部102と面一に連続した環状の背部103とが設けられる。各ラジアル軸受面110の軸方向両側には、傾斜溝部101と面一に連続した円筒面104が設けられる。このラジアル軸受面110の動圧溝領域により、焼結軸受100の内周面が面するラジアル軸受隙間に満たされた潤滑油がラジアル軸受面110の軸方向中央側に流動し、背部103において圧力が高められる。   As a bearing member incorporated in a fluid dynamic pressure bearing device, a sintered bearing made of sintered metal and having a dynamic pressure groove region formed on an inner peripheral surface may be used. For example, in the sintered bearing 100 shown in FIG. 12A, radial bearing surfaces 110 are provided at two locations separated in the axial direction on the inner peripheral surface, and a dynamic pressure groove region is formed on each radial bearing surface 110. Specifically, a plurality of inclined groove portions 101 that are inclined to one side and the other side with respect to the circumferential direction and arranged in a herringbone shape, and a plurality of inclined hills provided between the plurality of inclined groove portions 101 in the circumferential direction. The portion 102 and an annular back portion 103 that is provided at the axial center of the radial bearing surface 110 and that is flush with the inclined hill portion 102 are provided. Cylindrical surfaces 104 that are flush with the inclined groove portions 101 are provided on both axial sides of each radial bearing surface 110. Due to the dynamic pressure groove region of the radial bearing surface 110, the lubricating oil filled in the radial bearing gap facing the inner peripheral surface of the sintered bearing 100 flows to the axial center side of the radial bearing surface 110, and the pressure is applied to the back portion 103. Is increased.

焼結軸受の内周面に動圧溝領域を形成する方法として、例えば特許文献1には、焼結体(軸受スリーブ素材)の内周に、動圧溝領域の形状に対応した成形型を有する成形ピンを挿入した後、焼結体を半径方向に圧迫し、その内周面を成形型に押し付けることにより、成形型の形状を焼結体の内周面に転写する方法が示されている。上記の成形ピン(コアロッド)に形成される成形型120は、図13に示すように、動圧溝領域の傾斜溝部を成形する傾斜凸部121と、動圧溝領域の傾斜丘部を成形する傾斜凹部122と、動圧溝領域の背部を成形する環状の背部成形面123とからなる。成形型120の軸方向両側には、傾斜凸部121と面一に連続した円筒面124が設けられる。この成形型120に焼結体の内周面を押し付けることにより、傾斜凸部121が焼結体の内周面に食い込んで傾斜溝部が成形されると共に、傾斜凹部122の内部に焼結体の材料が入り込んで傾斜丘部が成形される。   As a method for forming the dynamic pressure groove region on the inner peripheral surface of the sintered bearing, for example, Patent Document 1 discloses a molding die corresponding to the shape of the dynamic pressure groove region on the inner periphery of the sintered body (bearing sleeve material). After inserting a forming pin having a method, a method is shown in which the shape of the forming die is transferred to the inner peripheral surface of the sintered body by pressing the sintered body in the radial direction and pressing the inner peripheral surface against the forming die. Yes. As shown in FIG. 13, the forming die 120 formed on the forming pin (core rod) forms an inclined convex portion 121 for forming the inclined groove portion of the dynamic pressure groove region and an inclined hill portion of the dynamic pressure groove region. It consists of the inclined recessed part 122 and the cyclic | annular back part shaping | molding surface 123 which shape | molds the back part of a dynamic pressure groove area | region. On both sides in the axial direction of the mold 120, cylindrical surfaces 124 that are continuous with the inclined convex portions 121 are provided. By pressing the inner peripheral surface of the sintered body against the molding die 120, the inclined convex portion 121 bites into the inner peripheral surface of the sintered body to form the inclined groove portion, and at the same time, the inclined concave portion 122 contains the sintered body. The material enters and the sloped hill is formed.

特開平11−190344号公報Japanese Patent Laid-Open No. 11-190344 特開2005−264983号公報Japanese Patent Application Laid-Open No. 2005-264983

しかし、成形型120の傾斜凹部122の内部に焼結体130の材料を入り込ませる際、図14に示すように、傾斜凸部121の側壁121aとの摩擦により焼結体130の材料の流動が阻害され、傾斜凹部122の内部が焼結体130の材料で満たされない恐れがある。特に、傾斜凹部122の先端部122aは、傾斜凸部121の側壁121a及び円筒面124の側壁124aで三方を囲まれた状態となるため(図13参照)、焼結体130の材料が傾斜凹部122の内部に特に入り込みにくくなり、動圧溝領域の傾斜丘部102の先端部102aが所望の高さに達しない恐れがある(図15参照)。この場合、図12(b)に示すように、ラジアル軸受面110の動圧溝領域に、傾斜丘部102の高さが先端に向けて徐々に低くなる、いわゆる「ダレ」が生じる恐れがある。   However, when the material of the sintered body 130 enters the inside of the inclined concave portion 122 of the mold 120, the material of the sintered body 130 flows due to friction with the side wall 121a of the inclined convex portion 121, as shown in FIG. It is obstructed, and the inside of the inclined recess 122 may not be filled with the material of the sintered body 130. In particular, since the tip 122a of the inclined recess 122 is surrounded on three sides by the side wall 121a of the inclined protrusion 121 and the side wall 124a of the cylindrical surface 124 (see FIG. 13), the material of the sintered body 130 is the inclined recess. In particular, it is difficult to enter the interior of 122, and the tip 102a of the inclined hill portion 102 in the dynamic pressure groove region may not reach a desired height (see FIG. 15). In this case, as shown in FIG. 12 (b), there is a possibility that so-called “sagging” occurs in the dynamic pressure groove region of the radial bearing surface 110 in which the height of the inclined hill portion 102 gradually decreases toward the tip. .

このように、動圧溝領域の丘部にダレが生じると、溝深さが先端に向けて徐々に浅くなるため、十分な動圧作用が得られず、軸受剛性の低下を招く恐れがある。かかる不具合を回避するために、例えば特許文献2では、動圧溝領域と対向する平滑面を、その長さが動圧溝領域の長さよりも短くなるように段差でもって区画する構成が示されている。この構成によれば、動圧溝領域のうち、ダレにより溝深さが浅くなった部分は軸受面として機能せず、十分な溝深さを有する部分のみを軸受面として機能するため、軸受剛性の低下を防止できる。   As described above, when sagging occurs in the hill portion of the dynamic pressure groove region, the groove depth gradually becomes shallower toward the tip, so that sufficient dynamic pressure action cannot be obtained, and the bearing rigidity may be reduced. . In order to avoid such a problem, for example, Patent Document 2 shows a configuration in which a smooth surface facing the dynamic pressure groove region is partitioned by a step so that the length thereof is shorter than the length of the dynamic pressure groove region. ing. According to this configuration, in the hydrodynamic groove region, the portion where the groove depth is shallow due to sagging does not function as a bearing surface, and only the portion having a sufficient groove depth functions as a bearing surface. Can be prevented.

しかし、上記特許文献2に記載の方法は、ダレの発生を前提として軸受剛性の低下を抑えるものであり、ダレの発生自体を防止するものではない。また、上記特許文献2に記載の構成では、軸受面よりも広域な動圧溝領域が必要となるため、焼結軸受を大型化せざるを得ず、軸受ユニット全体の大型化を招く。一方、焼結軸受の大きさを維持する場合は、軸受面の面積を縮小せざるを得なくなり、軸受剛性の低下を招く。   However, the method described in Patent Document 2 suppresses a decrease in bearing rigidity on the premise of occurrence of sagging, and does not prevent sagging itself. Further, in the configuration described in Patent Document 2, since a dynamic pressure groove region wider than the bearing surface is required, the size of the sintered bearing must be increased, leading to an increase in the size of the entire bearing unit. On the other hand, if the size of the sintered bearing is maintained, the area of the bearing surface must be reduced, resulting in a decrease in bearing rigidity.

本発明が解決すべき課題は、焼結軸受の内周面に形成される動圧溝領域の丘部のダレを防止し、軸受剛性を高めることにある。   The problem to be solved by the present invention is to prevent sagging of the hill portion of the dynamic pressure groove region formed on the inner peripheral surface of the sintered bearing and increase the bearing rigidity.

前記課題を解決するためになされた本発明は、焼結軸受と、前記焼結軸受の内周に挿入された軸部材と、前記焼結軸受の内周面と前記軸部材の外周面との間に形成されるラジアル軸受隙間の潤滑流体の動圧作用で前記軸部材を相対回転自在に支持するラジアル軸受部とを備えた流体動圧軸受装置であって、前記焼結軸受の内周面に、円周方向に対して傾斜した方向に延び、円周方向に所定間隔で並べられた複数の傾斜溝部と、前記複数の傾斜溝部の円周方向間に設けられ、前記傾斜溝部よりも内径側に盛り上がった複数の傾斜丘部とを有する動圧溝領域が軸方向に離隔した2箇所に形成され、前記2箇所の動圧溝領域の軸方向間に、前記傾斜丘部よりも大径な円筒面が形成され、前記軸部材の相対回転に伴って、各動圧溝領域の前記傾斜溝部及び前記傾斜丘部に沿って潤滑流体を流動させ、前記焼結軸受の内周面の前記円筒面の軸方向両端に、前記円筒面に隣接する傾斜丘部の、当該傾斜丘部に沿った潤滑流体の流動方向の上流側の端部を全周にわたって連結する第一の環状丘部を設け、前記傾斜溝部、前記傾斜丘部、及び前記第一の環状丘部を何れも型成形された面とし、前記軸部材に大径外周面及び小径外周面を設け、前記焼結軸受の動圧溝領域と前記軸部材の大径外周面との間に前記ラジアル軸受隙間を形成すると共に、前記焼結軸受の第一の環状丘部と前記軸部材の小径外周面とをラジアル方向で対向させたものである。 The present invention made in order to solve the above problems includes a sintered bearing, a shaft member inserted into the inner periphery of the sintered bearing, an inner peripheral surface of the sintered bearing, and an outer peripheral surface of the shaft member. A hydrodynamic bearing device including a radial bearing portion that supports the shaft member so as to be relatively rotatable by a hydrodynamic action of a lubricating fluid in a radial bearing gap formed therebetween, the inner circumferential surface of the sintered bearing A plurality of inclined groove portions extending in a direction inclined with respect to the circumferential direction and arranged at a predetermined interval in the circumferential direction, and provided between the plurality of inclined groove portions in the circumferential direction, and having an inner diameter larger than the inclined groove portion. A dynamic pressure groove region having a plurality of inclined hill portions raised to the side is formed at two locations separated in the axial direction, and has a larger diameter than the inclined hill portion between the two dynamic pressure groove regions in the axial direction. a cylindrical surface is formed, along with the relative rotation of the shaft member, the inclined groove respective dynamic groove region Along fine the inclined lands to dynamic flow of lubricating fluid, the axial ends of the cylindrical surface of the inner peripheral surface of the sintered bearing, the inclined land portions adjacent to the cylindrical surface, along the inclined lands A first annular hill portion that connects the upstream end in the flow direction of the lubricating fluid over the entire circumference , and the inclined groove portion, the inclined hill portion, and the first annular hill portion are all molded. A large-diameter outer peripheral surface and a small-diameter outer peripheral surface are provided on the shaft member, and the radial bearing gap is formed between each dynamic pressure groove region of the sintered bearing and the large-diameter outer peripheral surface of the shaft member. The first annular hill portion of the sintered bearing is opposed to the small-diameter outer peripheral surface of the shaft member in the radial direction.

この焼結軸受は、以下のような方法で製造することができる。すなわち、内周面に、円周方向に対して傾斜した方向に延び、円周方向に所定間隔で並べられた複数の傾斜溝部と、前記複数の傾斜溝部の円周方向間に設けられ、前記傾斜溝部よりも内径側に盛り上がった複数の傾斜丘部とを有する動圧溝領域が形成され、内周に挿入された軸部材の相対回転に伴って、前記傾斜溝部に沿って潤滑流体を軸方向一方側に流動させる焼結軸受の製造方法であって、焼結体の内周に成形ピンを挿入し、前記焼結体の内周面を成形ピンの外周面に設けられた成形型に押し付けることにより、前記焼結体の内周面に前記動圧溝領域を成形、前記成形型が、前記複数の傾斜溝部を成形する複数の傾斜凸部と、前記複数の傾斜丘部を成形する複数の傾斜凹部と、前記複数の傾斜凹部の軸方向他方側の端部を全周にわたって連結する環状凹部とを備えた方法で製造することができる。 This sintered bearing can be manufactured by the following method. That is, the inner circumferential surface is provided between a plurality of inclined groove portions extending in a direction inclined with respect to the circumferential direction and arranged at a predetermined interval in the circumferential direction, and between the plurality of inclined groove portions in the circumferential direction, A dynamic pressure groove region having a plurality of inclined hills raised on the inner diameter side of the inclined groove portion is formed, and the lubricating fluid is axially moved along the inclined groove portion with relative rotation of the shaft member inserted in the inner periphery. A method of manufacturing a sintered bearing that flows to one side in a direction , wherein a molding pin is inserted into the inner periphery of the sintered body, and the inner peripheral surface of the sintered body is formed into a molding die provided on the outer peripheral surface of the molding pin. by pressing, molding and molding the dynamic pressure generating groove region on the inner peripheral surface of the sintered body, wherein the mold comprises a plurality of ramps forming said plurality of inclined grooves, a plurality of inclined lands over a plurality of inclined recesses for the ends of the other axial side of said plurality of inclined recesses all around It can be prepared by a method and an annular recess for coupling.

このように、動圧溝領域を成形するための成形型に、複数の傾斜凹部の端部を全周にわたって連結する環状凹部を設けることで、傾斜凹部の端部が三方を囲まれた状態とはならない。従って、成形型を焼結体の内周面に押し付けた際、傾斜凹部の内部に焼結体の材料が入り込みやすくなり、傾斜凹部の内部が焼結体の材料で満たされる。これにより、傾斜丘部を端部まで所望の高さで成形することができるため、動圧溝領域の溝深さが端部まで十分に確保され、軸受剛性を高めることができる。   Thus, by providing an annular recess that connects the ends of the plurality of inclined recesses over the entire circumference in the molding die for forming the dynamic pressure groove region, the end of the inclined recess is surrounded on three sides; Must not. Therefore, when the mold is pressed against the inner peripheral surface of the sintered body, the material of the sintered body easily enters the inside of the inclined recess, and the inside of the inclined recess is filled with the material of the sintered body. Accordingly, since the inclined hill portion can be formed at a desired height to the end portion, the groove depth of the dynamic pressure groove region is sufficiently ensured to the end portion, and the bearing rigidity can be increased.

動圧溝領域の複数の傾斜溝部は、例えばヘリングボーン形状あるいはスパイラル形状に配列することができる。   The plurality of inclined groove portions in the dynamic pressure groove region can be arranged in a herringbone shape or a spiral shape, for example.

成形型の環状凹部の軸方向幅を大きくすれば、環状凹部の内部に焼結体の材料が入り込みやすくなるため、環状凹部と連続した傾斜凹部の端部において材料がより一層入り込みやすくなり、動圧溝領域の丘部の高さを端部まで確実に確保することができる。このような効果を得るためには、環状丘部の軸方向幅を、例えば傾斜丘部の延在方向と直交する方向の幅よりも大きくすればよい。   If the axial width of the annular recess of the mold is increased, the material of the sintered body can easily enter the inside of the annular recess, so that the material can more easily enter the end of the inclined recess that is continuous with the annular recess. The height of the hill portion of the pressure groove region can be reliably ensured up to the end. In order to obtain such an effect, the axial width of the annular hill portion may be made larger than, for example, the width in the direction orthogonal to the extending direction of the inclined hill portion.

上記のような焼結軸受と、焼結軸受の内周に挿入された軸部材と、焼結軸受の内周面と軸部材の外周面との間に形成されるラジアル軸受隙間の潤滑流体の動圧作用で軸部材を相対回転自在に支持するラジアル軸受部とを備えた流体動圧軸受装置は、動圧溝領域が精度良く形成されているため、高い軸受剛性を有する。   The above-mentioned sintered bearing, the shaft member inserted in the inner periphery of the sintered bearing, and the lubricating fluid in the radial bearing gap formed between the inner peripheral surface of the sintered bearing and the outer peripheral surface of the shaft member A fluid dynamic pressure bearing device including a radial bearing portion that supports a shaft member so as to be relatively rotatable by dynamic pressure action has high bearing rigidity because the dynamic pressure groove region is formed with high accuracy.

この流体動圧軸受装置は、例えば、軸部材に大径外周面及び小径外周面を設け、焼結軸受の動圧溝領域と軸部材の大径外周面との間にラジアル軸受隙間を形成する構成とすることができる。この場合、焼結軸受の環状丘部と軸部材の小径外周面とをラジアル方向で対向させれば、環状丘部と軸部材の外周面との間の隙間が小さくなることによるトルク増大を回避できる。   In this fluid dynamic pressure bearing device, for example, a shaft member is provided with a large-diameter outer peripheral surface and a small-diameter outer peripheral surface, and a radial bearing gap is formed between the dynamic pressure groove region of the sintered bearing and the large-diameter outer peripheral surface of the shaft member. It can be configured. In this case, if the annular hill portion of the sintered bearing and the small-diameter outer peripheral surface of the shaft member are opposed to each other in the radial direction, an increase in torque due to a decrease in the gap between the annular hill portion and the outer peripheral surface of the shaft member is avoided. it can.

以上のように、本発明によれば、焼結軸受の内周面に環状丘部を形成することで動圧溝領域の丘部のダレを防止できるため、軸受剛性を高めることができる。   As described above, according to the present invention, the formation of the annular hill portion on the inner peripheral surface of the sintered bearing can prevent the hill portion of the dynamic pressure groove region from sagging, and thus the bearing rigidity can be increased.

スピンドルモータの断面図である。It is sectional drawing of a spindle motor. 上記スピンドルモータに組み込まれた流体動圧軸受装置の断面図である。It is sectional drawing of the fluid dynamic pressure bearing apparatus integrated in the said spindle motor. 上記流体動圧軸受装置に組み込まれた本発明の一実施形態に係る焼結軸受としての軸受スリーブの断面図である。It is sectional drawing of the bearing sleeve as a sintered bearing which concerns on one Embodiment of this invention integrated in the said fluid dynamic pressure bearing apparatus. 図3の拡大図である。FIG. 4 is an enlarged view of FIG. 3. 上記軸受スリーブの下面図である。It is a bottom view of the said bearing sleeve. 上記流体動圧軸受装置のラジアル軸受隙間周辺を示す断面図である。It is sectional drawing which shows the radial bearing clearance periphery of the said fluid dynamic pressure bearing apparatus. 焼結軸受の成形に用いる成形ピンの正面図である。It is a front view of the shaping | molding pin used for shaping | molding of a sintered bearing. 上記成形ピンで焼結体の内周面に動圧溝領域を成形する様子を示す、図7のZ−Z線における断面図である。It is sectional drawing in the ZZ line | wire of FIG. 7 which shows a mode that a dynamic pressure groove area | region is shape | molded in the internal peripheral surface of a sintered compact with the said shaping | molding pin. 他の実施形態に係る軸受スリーブの断面図である。It is sectional drawing of the bearing sleeve which concerns on other embodiment. 他の実施形態に係る軸受スリーブの断面図である。It is sectional drawing of the bearing sleeve which concerns on other embodiment. 他の実施形態に係る軸受スリーブの断面図である。It is sectional drawing of the bearing sleeve which concerns on other embodiment. 従来の軸受スリーブの断面図である。It is sectional drawing of the conventional bearing sleeve. 図12の軸受スリーブの成形に用いる成形ピンの正面図である。FIG. 13 is a front view of a forming pin used for forming the bearing sleeve of FIG. 12. 上記成形ピンで焼結体の内周面に動圧溝を成形する様子を示す、図13のX−X線における断面図である。It is sectional drawing in the XX line of FIG. 13 which shows a mode that a dynamic pressure groove is shape | molded in the internal peripheral surface of a sintered compact with the said shaping | molding pin. 上記成形ピンで焼結体の内周面に動圧溝を成形する様子を示す、図13のY−Y線における断面図である。It is sectional drawing in the YY line | wire of FIG. 13 which shows a mode that a dynamic pressure groove is shape | molded in the internal peripheral surface of a sintered compact with the said shaping | molding pin.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、本発明の一実施形態に係る焼結軸受(軸受スリーブ8)を有する流体動圧軸受装置1が組み込まれたスピンドルモータを示す。このスピンドルモータは、例えば2.5インチHDDのディスク駆動装置に用いられ、軸部材2を回転自在に支持する流体動圧軸受装置1と、流体動圧軸受装置1が取り付けられたブラケット6と、半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はブラケット6に取り付けられ、ロータマグネット5はディスクハブ3に取り付けられる。ディスクハブ3には、ディスクDが所定の枚数(図示例では1枚)搭載される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、これにより軸部材2、ディスクハブ3、及びディスクDが一体となって回転する。   FIG. 1 shows a spindle motor in which a fluid dynamic bearing device 1 having a sintered bearing (bearing sleeve 8) according to an embodiment of the present invention is incorporated. This spindle motor is used in, for example, a 2.5-inch HDD disk drive device, and includes a fluid dynamic pressure bearing device 1 that rotatably supports a shaft member 2, a bracket 6 to which the fluid dynamic pressure bearing device 1 is attached, A stator coil 4 and a rotor magnet 5 are provided to face each other through a gap in the radial direction. The stator coil 4 is attached to the bracket 6, and the rotor magnet 5 is attached to the disk hub 3. A predetermined number (1 in the illustrated example) of disks D are mounted on the disk hub 3. When the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the shaft member 2, the disk hub 3, and the disk D are rotated together.

流体動圧軸受装置1は、図2に示すように、軸部材2と、内周に軸部材2が挿入された焼結軸受としての軸受スリーブ8と、内周面に軸受スリーブ8が固定された有底筒状のハウジング7と、ハウジング7の開口部に設けられたシール部材9とで構成される。尚、以下では、説明の便宜上、軸方向でハウジング7の開口側を上側、閉塞側を下側とする。   As shown in FIG. 2, the fluid dynamic bearing device 1 includes a shaft member 2, a bearing sleeve 8 as a sintered bearing in which the shaft member 2 is inserted on the inner periphery, and the bearing sleeve 8 fixed to the inner peripheral surface. The bottomed cylindrical housing 7 and a seal member 9 provided in the opening of the housing 7 are configured. In the following, for convenience of explanation, the opening side of the housing 7 in the axial direction is the upper side and the closing side is the lower side.

軸部材2は、軸部2aと、軸部2aの下端に設けられたフランジ部2bとを備え、例えばステンレス鋼等の溶製材で一体形成される。軸部2aは、円筒状の大径外周面2a1と、上方へ向けて漸次縮径したテーパ面2a2とを有する。図示例では、大径外周面2a1が軸方向に離隔した2箇所に設けられ、これらの軸方向間に、大径外周面2a1よりも小径な小径外周面2a3が設けられる。軸部2aの大径外周面2a1及び小径外周面2a3は軸受スリーブ8の内周面8aと径方向に対向し、テーパ面2a2はシール部材9の内周面9aと径方向に対向する。   The shaft member 2 includes a shaft portion 2a and a flange portion 2b provided at the lower end of the shaft portion 2a, and is integrally formed of a molten material such as stainless steel. The shaft portion 2a has a cylindrical large-diameter outer peripheral surface 2a1 and a tapered surface 2a2 that is gradually reduced in diameter upward. In the illustrated example, the large-diameter outer peripheral surface 2a1 is provided at two locations separated in the axial direction, and a small-diameter outer peripheral surface 2a3 having a smaller diameter than the large-diameter outer peripheral surface 2a1 is provided between these axial directions. The large-diameter outer peripheral surface 2a1 and the small-diameter outer peripheral surface 2a3 of the shaft portion 2a are opposed to the inner peripheral surface 8a of the bearing sleeve 8 in the radial direction, and the tapered surface 2a2 is opposed to the inner peripheral surface 9a of the seal member 9 in the radial direction.

軸受スリーブ8は、銅又は鉄あるいはこれらの双方を主成分とする焼結金属で、略円筒状に形成される。軸受スリーブ8の内周面8aには、ラジアル軸受隙間に面するラジアル軸受面が設けられ、本実施形態では図3に示すように、内周面8aの軸方向に離隔した2箇所にラジアル軸受面A1,A2が設けられる。   The bearing sleeve 8 is a sintered metal mainly composed of copper, iron, or both, and is formed in a substantially cylindrical shape. A radial bearing surface facing the radial bearing gap is provided on the inner peripheral surface 8a of the bearing sleeve 8, and in this embodiment, as shown in FIG. 3, the radial bearing is provided at two locations separated in the axial direction of the inner peripheral surface 8a. Surfaces A1 and A2 are provided.

ラジアル軸受面A1,A2には、それぞれラジアル軸受隙間の潤滑流体(本実施形態では潤滑油)に動圧作用を発生させる動圧溝領域が形成される。図示例では、円周方向に対して傾斜した方向に延び、円周方向に等間隔で並べられ、ヘリングボーン形状に配列された複数の傾斜溝部8a1,8a2と、複数の傾斜溝部8a1,8a2の円周方向間に設けられ、傾斜溝部8a1,8a2よりも内径側に盛り上がった複数の傾斜丘部8a3,8a4と、複数の傾斜溝部8a1,8a2の軸方向間に設けられ、複数の傾斜丘部8a3,8a4と面一に連続した環状の背部8a5とで、動圧溝領域が構成される。軸部材2の回転時には、上側の傾斜溝部8a1により潤滑油が下方に流動すると共に、下側の傾斜溝部8a2により潤滑油が上方に流動することにより、潤滑油が背部8a5に集められて潤滑油の圧力が高められる。尚、図示例では、上側のラジアル軸受面A1では、動圧溝領域が軸方向非対称に形成されており、具体的には、上側の傾斜溝部8a1の軸方向寸法が下側の傾斜溝部8a2の軸方向寸法よりも大きくなっている。下側のラジアル軸受面A2の動圧溝領域は軸方向対称に形成されている。   The radial bearing surfaces A1 and A2 are each formed with a dynamic pressure groove region for generating a dynamic pressure action on the lubricating fluid (lubricating oil in the present embodiment) in the radial bearing gap. In the illustrated example, a plurality of inclined groove portions 8a1, 8a2 that extend in a direction inclined with respect to the circumferential direction, are arranged at equal intervals in the circumferential direction, and are arranged in a herringbone shape, and a plurality of inclined groove portions 8a1, 8a2. A plurality of inclined hill portions provided between the circumferential directions and provided between the plurality of inclined hill portions 8a3, 8a4 and the plurality of inclined groove portions 8a1, 8a2 in an axial direction. The dynamic pressure groove region is configured by 8a3 and 8a4 and the annular back portion 8a5 which is flush with the surface. When the shaft member 2 rotates, the lubricating oil flows downward by the upper inclined groove portion 8a1, and the lubricating oil flows upward by the lower inclined groove portion 8a2, so that the lubricating oil is collected on the back portion 8a5 and lubricated. The pressure of is increased. In the illustrated example, in the upper radial bearing surface A1, the dynamic pressure groove region is formed to be asymmetric in the axial direction. Specifically, the axial dimension of the upper inclined groove portion 8a1 is the same as that of the lower inclined groove portion 8a2. It is larger than the axial dimension. The dynamic pressure groove region of the lower radial bearing surface A2 is formed symmetrically in the axial direction.

各ラジアル軸受面A1,A2の動圧溝領域の少なくとも軸方向一端側、本実施形態では各ラジアル軸受面A1,A2の上下両側には、環状丘部8a6,8a7が設けられる。環状丘部8a6は、各動圧溝領域の上側の傾斜丘部8a3の上端部を全周にわたって連結する。環状丘部8a7は、各動圧溝領域の下側の傾斜丘部8a4の下端部を全周にわたって連結する。図示例では、傾斜丘部8a3,8a4、背部8a5、及び環状丘部8a6,8a7が、同一円筒面上に連続して設けられる(これらをクロスハッチングで示す)。図4に示すように、各ラジアル軸受面A1,A2の上側に設けられた環状丘部8a6の軸方向幅W1は、これと連続する上側の傾斜丘部8a3の延在方向と直交する方向の幅W2よりも大きい(W1>W2)。同様に、各ラジアル軸受面A1,A2の下側に設けられた環状丘部8a7の軸方向幅は、これと連続する下側の傾斜丘部8a4の延在方向と直交する方向の幅よりも大きい(図示省略)。ラジアル軸受面A1の下側の環状丘部8a7とラジアル軸受面A2の上側の環状丘部8a6との軸方向間には、環状丘部8a6,8a7よりも大径な円筒面8a8が設けられる。   Annular hill portions 8a6 and 8a7 are provided on at least one axial end side of the dynamic pressure groove region of each radial bearing surface A1 and A2, in this embodiment, on both upper and lower sides of each radial bearing surface A1 and A2. The annular hill portion 8a6 connects the upper end portions of the inclined hill portions 8a3 on the upper side of each dynamic pressure groove region over the entire circumference. The annular hill portion 8a7 connects the lower end of the inclined hill portion 8a4 on the lower side of each dynamic pressure groove region over the entire circumference. In the illustrated example, inclined hill portions 8a3 and 8a4, a back portion 8a5, and annular hill portions 8a6 and 8a7 are continuously provided on the same cylindrical surface (these are indicated by cross-hatching). As shown in FIG. 4, the axial width W1 of the annular hill portion 8a6 provided on the upper side of each radial bearing surface A1, A2 is in a direction orthogonal to the extending direction of the upper inclined hill portion 8a3 continuous with the annular hill portion 8a6. It is larger than the width W2 (W1> W2). Similarly, the axial width of the annular hill portion 8a7 provided on the lower side of each radial bearing surface A1, A2 is larger than the width in the direction orthogonal to the extending direction of the lower inclined hill portion 8a4 that is continuous therewith. Large (not shown). Between the annular hill portion 8a7 on the lower side of the radial bearing surface A1 and the annular hill portion 8a6 on the upper side of the radial bearing surface A2, a cylindrical surface 8a8 having a larger diameter than the annular hill portions 8a6 and 8a7 is provided.

軸受スリーブ8の下側端面8cには、スラスト軸受隙間に面するスラスト軸受面が形成される。このスラスト軸受面には、スラスト軸受隙間に満たされた潤滑油に動圧作用を発生させる動圧溝領域が形成され、本実施形態では、図5に示すように、ポンプインタイプのスパイラル形状の動圧溝8c1が形成される(クロスハッチングは丘部)。軸受スリーブ8の外周面8dには、軸方向溝8d1が形成される。軸方向溝8d1の本数は任意であり、本実施形態では例えば3本の軸方向溝8d1が円周方向等間隔に配される。   A thrust bearing surface that faces the thrust bearing gap is formed on the lower end surface 8 c of the bearing sleeve 8. On this thrust bearing surface, a dynamic pressure groove region for generating a dynamic pressure action on the lubricating oil filled in the thrust bearing gap is formed. In this embodiment, as shown in FIG. 5, a pump-in type spiral shape is formed. A dynamic pressure groove 8c1 is formed (cross hatching is a hill). An axial groove 8 d 1 is formed on the outer peripheral surface 8 d of the bearing sleeve 8. The number of the axial grooves 8d1 is arbitrary, and in the present embodiment, for example, three axial grooves 8d1 are arranged at equal intervals in the circumferential direction.

ハウジング7は、内周面に軸受スリーブ8が固定された筒状の側部7aと、側部7aの下端を閉塞する底部7bとを一体に有する。ハウジング7の底部7bの上側端面7b1には、スラスト軸受隙間に面するスラスト軸受面が形成される。このスラスト軸受面には、スラスト軸受隙間に満たされた潤滑油に動圧作用を発生させるための動圧溝領域として、例えばスパイラル形状の動圧溝が形成される(図示省略)。   The housing 7 integrally has a cylindrical side portion 7a having a bearing sleeve 8 fixed to the inner peripheral surface and a bottom portion 7b that closes the lower end of the side portion 7a. A thrust bearing surface that faces the thrust bearing gap is formed on the upper end surface 7b1 of the bottom 7b of the housing 7. On the thrust bearing surface, for example, a spiral-shaped dynamic pressure groove (not shown) is formed as a dynamic pressure groove region for generating a dynamic pressure action on the lubricating oil filled in the thrust bearing gap.

シール部材9は、例えば樹脂材料や金属材料で環状に形成され、ハウジング7の側部7aの上端部内周に配設される。シール部材9の内周面9aは、軸部2aの外周に設けられたテーパ面2a2と径方向に対向し、これらの間に下方へ向けて径方向寸法を漸次縮小したシール空間Sが形成される。このシール空間Sの毛細管力により、潤滑油が軸受内部側に引き込まれ、油の漏れ出しが防止される。本実施形態では、軸部2a側にテーパ面2a2を形成しているため、シール空間Sは遠心力シールとしても機能する。シール部材9で密封されたハウジング7の内部空間に充満した潤滑油の油面は、シール空間Sの範囲内に維持される。すなわち、シール空間Sは、潤滑油の体積変化を吸収できる容積を有する。   The seal member 9 is formed in an annular shape with, for example, a resin material or a metal material, and is disposed on the inner periphery of the upper end portion of the side portion 7 a of the housing 7. The inner peripheral surface 9a of the seal member 9 is opposed to the tapered surface 2a2 provided on the outer periphery of the shaft portion 2a in the radial direction, and a seal space S in which the radial dimension is gradually reduced downward is formed therebetween. The Due to the capillary force of the seal space S, the lubricating oil is drawn into the inside of the bearing, and oil leakage is prevented. In this embodiment, since the taper surface 2a2 is formed on the shaft portion 2a side, the seal space S also functions as a centrifugal force seal. The oil level of the lubricating oil filled in the internal space of the housing 7 sealed with the seal member 9 is maintained within the range of the seal space S. That is, the seal space S has a volume that can absorb the volume change of the lubricating oil.

上記の部材を組み立てた後、軸受スリーブ8の内部気孔を含めたハウジング7の内部の空間に潤滑油を充満させることにより、図2に示す流体動圧軸受装置1が完成する。このとき、油面はシール空間Sの内部に保持される。   After assembling the above members, the fluid inside the housing 7 including the internal pores of the bearing sleeve 8 is filled with lubricating oil, whereby the fluid dynamic bearing device 1 shown in FIG. 2 is completed. At this time, the oil level is held inside the seal space S.

軸部材2が回転すると、軸受スリーブ8の内周面8aのラジアル軸受面A1,A2と軸部2aの大径外周面2a1との間にラジアル軸受隙間が形成される。そして、ラジアル軸受面A1,A2に形成された動圧溝領域によりラジアル軸受隙間に満たされた潤滑油の圧力が高められ、この圧力(動圧作用)により軸部材2をラジアル方向に回転自在に非接触支持するラジアル軸受部R1,R2が構成される。   When the shaft member 2 rotates, a radial bearing gap is formed between the radial bearing surfaces A1 and A2 of the inner peripheral surface 8a of the bearing sleeve 8 and the large-diameter outer peripheral surface 2a1 of the shaft portion 2a. Then, the pressure of the lubricating oil filled in the radial bearing gap is increased by the dynamic pressure groove regions formed on the radial bearing surfaces A1 and A2, and the shaft member 2 can be rotated in the radial direction by this pressure (dynamic pressure action). Radial bearing portions R1 and R2 that support non-contact are configured.

これと同時に、フランジ部2bの上側端面2b1と軸受スリーブ8の下側端面8cとの間、及び、フランジ部2bの下側端面2b2とハウジング7の底部7bの上側端面7b1との間にそれぞれスラスト軸受隙間が形成される。そして、軸受スリーブ8の下側端面8cの動圧溝8c1及びハウジング7の底部7bの上側端面7b1の動圧溝により各スラスト軸受隙間に満たされた潤滑油の圧力が高められ、この圧力(動圧作用)により軸部材2を両スラスト方向に回転自在に非接触支持するスラスト軸受部T1,T2が構成される。   At the same time, a thrust is formed between the upper end surface 2b1 of the flange portion 2b and the lower end surface 8c of the bearing sleeve 8, and between the lower end surface 2b2 of the flange portion 2b and the upper end surface 7b1 of the bottom portion 7b of the housing 7. A bearing gap is formed. The pressure of the lubricating oil filled in each thrust bearing gap is increased by the dynamic pressure groove 8c1 of the lower end surface 8c of the bearing sleeve 8 and the dynamic pressure groove of the upper end surface 7b1 of the bottom 7b of the housing 7, and this pressure (dynamic Thrust bearing portions T1 and T2 that support the shaft member 2 in a non-contact manner so as to be rotatable in both thrust directions are configured by the pressure action.

このとき、図6に示すように、軸受スリーブ8の内周面8aのうち、ラジアル軸受面A1,A2は軸部2aの大径外周面2a1とラジアル方向に対向し、ラジアル軸受面A1,A2の軸方向間の環状丘部8a6,8a7は軸部2aの小径外周面2a3(大径外周面2a1よりも小径な領域、軸方向両端のテーパ面を含む)とラジアル方向に対向する。これにより、環状丘部8a6,8a7と軸部2aの小径外周面2a3との径方向間に比較的大きな隙間が形成されるため、環状丘部8a6,8a7は軸受面として機能せず、環状丘部8a6,8a7を設けることによるトルクの増大を抑えることができる。尚、図6では、ラジアル軸受面A1,A2の動圧溝領域の溝深さや、軸部材2の大径外周面2a1と小径外周面2a3との直径差、あるいはラジアル軸受隙間を誇張して示している。実際には、ラジアル軸受面A1,A2の溝深さは2〜5μm程度、軸部材2の直径差は50〜100μm程度、ラジアル軸受隙間は10〜20μm程度に設定される。また、図示例では、ラジアル軸受面A1の上側に設けられた環状丘部8a6及びラジアル軸受面A2の下側に設けられた環状丘部8a7が、軸部材2の大径外周面2a1とラジアル方向に対向しているが、軸部材2のうち、これらの環状丘部8a6,8a7と対向する領域に、大径外周面2a1よりも小径な領域(例えば、小径円筒面やテーパ面)を設けてもよい。   At this time, as shown in FIG. 6, among the inner peripheral surface 8a of the bearing sleeve 8, the radial bearing surfaces A1 and A2 face the large-diameter outer peripheral surface 2a1 of the shaft portion 2a in the radial direction, and the radial bearing surfaces A1 and A2 The annular hill portions 8a6 and 8a7 between the axial directions are opposed to the small-diameter outer peripheral surface 2a3 of the shaft portion 2a (including a region having a smaller diameter than the large-diameter outer peripheral surface 2a1 and tapered surfaces at both axial ends) in the radial direction. As a result, a relatively large gap is formed between the annular hill portions 8a6 and 8a7 and the small-diameter outer peripheral surface 2a3 of the shaft portion 2a. Therefore, the annular hill portions 8a6 and 8a7 do not function as bearing surfaces. An increase in torque due to the provision of the portions 8a6 and 8a7 can be suppressed. 6 exaggerates the groove depth in the dynamic pressure groove region of the radial bearing surfaces A1 and A2, the diameter difference between the large diameter outer peripheral surface 2a1 and the small diameter outer peripheral surface 2a3 of the shaft member 2, or the radial bearing gap. ing. Actually, the groove depth of the radial bearing surfaces A1 and A2 is set to about 2 to 5 μm, the diameter difference of the shaft member 2 is set to about 50 to 100 μm, and the radial bearing gap is set to about 10 to 20 μm. In the illustrated example, the annular hill portion 8a6 provided on the upper side of the radial bearing surface A1 and the annular hill portion 8a7 provided on the lower side of the radial bearing surface A2 are formed in the radial direction with the large-diameter outer peripheral surface 2a1 of the shaft member 2. In the shaft member 2, a region (for example, a small-diameter cylindrical surface or a tapered surface) having a smaller diameter than the large-diameter outer peripheral surface 2a1 is provided in the region facing the annular hill portions 8a6 and 8a7. Also good.

また、軸受スリーブ8の外周面8dに形成された軸方向溝8d1により、潤滑油が流通可能な連通路が形成される。この連通路により、ハウジング7の内部に満たされた潤滑油に局部的な負圧が発生する事態を防止できる。特に本実施形態では、図3に示すように、軸受スリーブ8の内周面8aに形成された上側のラジアル軸受面A1の動圧溝領域が軸方向非対称な形状に形成されているため、軸部材2の回転に伴ってラジアル軸受隙間の潤滑油が下方に押し込まれ、上記の連通路を介して潤滑油が循環し、これにより局部的な負圧の発生を確実に防止できる。   The axial groove 8d1 formed in the outer peripheral surface 8d of the bearing sleeve 8 forms a communication path through which lubricating oil can flow. This communication path can prevent a local negative pressure from being generated in the lubricating oil filled in the housing 7. In particular, in this embodiment, as shown in FIG. 3, the dynamic pressure groove region of the upper radial bearing surface A1 formed on the inner peripheral surface 8a of the bearing sleeve 8 is formed in an axially asymmetric shape. As the member 2 rotates, the lubricating oil in the radial bearing gap is pushed downward, and the lubricating oil circulates through the communication path, so that local negative pressure can be reliably prevented.

上記の軸受スリーブ8は、金属粉末を圧縮成形して円筒状の圧粉体を形成する圧縮成形工程と、圧粉体を所定の温度で焼結して焼結体を得る焼結工程と、焼結体を所定の寸法精度にサイジングするサイジング工程と、焼結体の内周面及び下側端面に動圧溝領域を成形する溝成形工程とを順に経て製造される。以下、溝成形工程について詳しく説明する。   The bearing sleeve 8 includes a compression molding process in which a metal powder is compression molded to form a cylindrical green compact, a sintering process in which the green compact is sintered at a predetermined temperature to obtain a sintered body, The sintered body is manufactured through a sizing process for sizing the sintered body with a predetermined dimensional accuracy and a groove forming process for forming a dynamic pressure groove region on the inner peripheral surface and the lower end surface of the sintered body in order. Hereinafter, the groove forming step will be described in detail.

溝成形工程は、焼結体の内周に成形ピン20(図7参照)を挿入するステップと、焼結体の軸方向両端面を上パンチ及び下パンチで拘束するステップと、焼結体をダイの内周に圧入することにより、焼結体の内周面を成形ピン20の外周面の成形型に押し付けて、焼結体の内周面に動圧溝領域を成形するステップとを経て行われる。   The groove forming step includes a step of inserting a forming pin 20 (see FIG. 7) into the inner periphery of the sintered body, a step of restraining both end surfaces in the axial direction of the sintered body with an upper punch and a lower punch, By press-fitting into the inner periphery of the die, the inner peripheral surface of the sintered body is pressed against the molding die on the outer peripheral surface of the molding pin 20, and a dynamic pressure groove region is formed on the inner peripheral surface of the sintered body. Done.

成形ピン20の外周面には、図7に示すように、ラジアル軸受面A1を成形する成形型20aと、ラジアル軸受面A2を成形する成形型20bとが設けられる。成形型20aは、動圧溝領域の傾斜溝部8a1,8a2を成形する傾斜凸部20a1,20a2と、動圧溝領域の傾斜丘部8a3,8a4を成形する傾斜凹部20a3,20a4と、動圧溝領域の背部8a5を成形する円筒面状の背部成形面20a5と、環状丘部8a6,8a7を成形する環状凹部20a6,20a7とを有する。複数の傾斜凸部20a1,20a2は、円周方向に対して傾斜した方向に延び、円周方向に等間隔で並べられ、ヘリングボーン形状に配列される。複数の傾斜凹部20a3,20a4は、複数の傾斜凸部20a1の円周方向間に設けられ、傾斜凸部20a1よりも内径側に凹んでいる。複数の傾斜凹部20a3,20a4は、一端が背部成形面20a5で全周にわたって連結され、他端が環状凹部20a6,20a7で全周にわたって連結される。すなわち、傾斜凹部20a3,20a4、背部成形面20a5、及び、環状凹部20a6,20a7は、連続した同一円筒面状に形成され、この円筒面から複数の傾斜凸部20a1,20a2が外径側に突出している。   As shown in FIG. 7, a forming die 20a for forming the radial bearing surface A1 and a forming die 20b for forming the radial bearing surface A2 are provided on the outer peripheral surface of the forming pin 20. The mold 20a includes inclined convex portions 20a1 and 20a2 for forming the inclined groove portions 8a1 and 8a2 in the dynamic pressure groove region, inclined concave portions 20a3 and 20a4 for forming the inclined hill portions 8a3 and 8a4 in the dynamic pressure groove region, and the dynamic pressure groove. It has a cylindrical back molding surface 20a5 that molds the back portion 8a5 of the region, and annular recesses 20a6 and 20a7 that mold the annular hill portions 8a6 and 8a7. The plurality of inclined convex portions 20a1 and 20a2 extend in a direction inclined with respect to the circumferential direction, are arranged at equal intervals in the circumferential direction, and are arranged in a herringbone shape. The plurality of inclined concave portions 20a3 and 20a4 are provided between the plurality of inclined convex portions 20a1 in the circumferential direction, and are recessed closer to the inner diameter side than the inclined convex portions 20a1. One end of each of the plurality of inclined recesses 20a3 and 20a4 is connected over the entire circumference with the back molding surface 20a5, and the other end is connected over the entire periphery with the annular recesses 20a6 and 20a7. That is, the inclined concave portions 20a3 and 20a4, the back molding surface 20a5, and the annular concave portions 20a6 and 20a7 are formed in the same continuous cylindrical surface shape, and a plurality of inclined convex portions 20a1 and 20a2 protrude from the cylindrical surface to the outer diameter side. ing.

ラジアル軸受面A2を成形する成形型20bは、上側の傾斜凸部20a1及び傾斜凹部20a3の長さを除いて成形型20aと同様の構成であるため、上記と同一の符号を付して重複説明を省略する。また、成形型20aと成形型20bの軸方向間には、円筒面8a8を成形するための円筒成形面20a8が設けられる。円筒成形面20a8は、環状凹部20a6,20a7よりも大径となっている。   The molding die 20b for molding the radial bearing surface A2 has the same configuration as the molding die 20a except for the lengths of the upper inclined convex portion 20a1 and the inclined concave portion 20a3. Is omitted. A cylindrical molding surface 20a8 for molding the cylindrical surface 8a8 is provided between the molding die 20a and the molding die 20b in the axial direction. The cylindrical molding surface 20a8 has a larger diameter than the annular recesses 20a6 and 20a7.

上記のような成形ピン20を焼結体の内周に径方向隙間を介して挿入した状態で、焼結体をダイの内周に圧入すると、焼結体が内径向きに圧迫され、焼結体の内周面が成形ピン20の外周面に押し付けられる。これにより、成形型20a,20bの傾斜凸部20a1,20a2が焼結体の内周面にめり込んで傾斜溝部8a1,8a2が成形されると共に、円筒成形面20a8で焼結体の内周面に円筒面8a8が成形される。これと同時に、成形型20a,20bの傾斜凹部20a3,20a4、背部成形面20a5、及び環状凹部20a6,20a7に焼結体の材料が入り込んで傾斜丘部8a3,8a4、背部8a5、環状丘部8a6,8a7が成形される。   If the sintered body is pressed into the inner periphery of the die with the molding pin 20 as described above inserted into the inner periphery of the sintered body via a radial gap, the sintered body is pressed toward the inner diameter and sintered. The inner peripheral surface of the body is pressed against the outer peripheral surface of the forming pin 20. Thereby, the inclined convex portions 20a1 and 20a2 of the molds 20a and 20b are recessed into the inner peripheral surface of the sintered body to form the inclined groove portions 8a1 and 8a2, and the cylindrical formed surface 20a8 is formed on the inner peripheral surface of the sintered body. A cylindrical surface 8a8 is formed. At the same time, the sintered material enters the inclined recesses 20a3 and 20a4, the back molding surface 20a5, and the annular recesses 20a6 and 20a7 of the molds 20a and 20b, and the inclined hill portions 8a3 and 8a4, the back portion 8a5, and the annular hill portion 8a6. , 8a7 are formed.

このとき、図8に示すように、成形型20a(20b)の傾斜凹部20a3,20a4の先端(特に各成形型20a,20bの上下端側の先端)と環状凹部20a6,20a7とが面一に連続しているため、傾斜凹部の先端が三方を囲まれた従来の成形型(図13参照)と比べて、焼結体10の材料が傾斜凹部20a3,20a4の端部まで入り込みやすくなる。これにより、傾斜丘部8a3,8a4が端部まで精度よく成形され、ダレの発生による軸受剛性の低下を防止できる。また、図示のように、環状凹部20a6,20a7の壁面との摩擦により焼結体10の環状丘部8a6,8a7の端部にダレが生じる場合があるが、環状丘部8a6,8a7は軸受面として機能しないため、軸受剛性に影響はない。以上により、焼結体10の内周面にラジアル軸受面A1の動圧溝領域及びラジアル軸受面A2の動圧溝領域が精度良く成形される。これと同時に、下パンチ(図示省略)に設けた成形型を焼結体の下側端面に押し付けて、この面に動圧溝領域を成形し、軸受スリーブ8が完成する。   At this time, as shown in FIG. 8, the tips of the inclined recesses 20a3 and 20a4 of the mold 20a (20b) (particularly the tips on the upper and lower ends of the molds 20a and 20b) and the annular recesses 20a6 and 20a7 are flush with each other. Since it is continuous, it becomes easier for the material of the sintered body 10 to enter the ends of the inclined recesses 20a3 and 20a4 as compared with the conventional mold (see FIG. 13) in which the tip of the inclined recess is surrounded on three sides. Accordingly, the inclined hill portions 8a3 and 8a4 are accurately formed up to the end portions, and a decrease in bearing rigidity due to occurrence of sagging can be prevented. In addition, as shown in the figure, the end of the annular hills 8a6 and 8a7 of the sintered body 10 may be sag due to friction with the wall surfaces of the annular recesses 20a6 and 20a7, but the annular hills 8a6 and 8a7 are the bearing surfaces. Since it does not function as a bearing, the bearing rigidity is not affected. As described above, the dynamic pressure groove region of the radial bearing surface A1 and the dynamic pressure groove region of the radial bearing surface A2 are accurately formed on the inner peripheral surface of the sintered body 10. At the same time, a molding die provided on the lower punch (not shown) is pressed against the lower end surface of the sintered body to form a dynamic pressure groove region on this surface, and the bearing sleeve 8 is completed.

本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と同様の機能を有する箇所には同一の符号を付して重複説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, although other embodiment of this invention is described, the same code | symbol is attached | subjected to the location which has the same function as said embodiment, and duplication description is abbreviate | omitted.

上記の実施形態では、図3に示すように、上側のラジアル軸受面A1の下側に設けられた環状丘部8a7と、下側のラジアル軸受面A2の上側に設けられた環状丘部8a6との間に円筒面8a8が形成されているが、これに限らず、例えば図9に示すように円筒面8a8を省略し、上側のラジアル軸受面A1と下側のラジアル軸受面A2の軸方向間に共通の環状丘部8a9を設けてもよい。   In the above embodiment, as shown in FIG. 3, the annular hill portion 8a7 provided below the upper radial bearing surface A1, and the annular hill portion 8a6 provided above the lower radial bearing surface A2. However, the present invention is not limited to this. For example, as shown in FIG. 9, the cylindrical surface 8a8 is omitted and the axial direction between the upper radial bearing surface A1 and the lower radial bearing surface A2 is omitted. A common annular hill portion 8a9 may be provided.

また、上記の実施形態では、各ラジアル軸受面A1,A2の軸方向両端側に環状丘部8a6,8a7が設けられているが、これに限らず、例えば図10に示すように、各ラジアル軸受面A1,A2の軸方向一方の端部のみに環状丘部を設けてもよい。図示例では、上側のラジアル軸受面A1の下側に環状丘部8a7を設けると共に、当該ラジアル軸受面A1の上側の環状丘部を省略し、さらに、当該ラジアル軸受面A1の傾斜溝部8a1及び傾斜丘部8a3を内周面8aの上端に設けられたチャンファに達するまで延ばしている。同様に、下側のラジアル軸受面A2の上側に環状丘部8a6を設けると共に、当該ラジアル軸受面A2の下側の環状丘部を省略し、さらに、当該ラジアル軸受面A2の傾斜溝部8a2及び傾斜丘部8a4を内周面8aの下端に設けられたチャンファに達するまで延ばしている。このように、傾斜丘部8a3,8a4を軸受スリーブの円筒状内周面8aの端部まで延ばすことで、この傾斜丘部8a3,8a4を成形する成形型の傾斜凹部(図示省略)の端部が三方を囲まれた状態とならないため、傾斜丘部8a3,8a4を端部まで精度良く成形することができる。   Further, in the above embodiment, the annular hill portions 8a6 and 8a7 are provided on the both axial ends of the radial bearing surfaces A1 and A2, but the present invention is not limited to this. For example, as shown in FIG. You may provide an annular hill part only in one edge part of the axial direction of surface A1, A2. In the illustrated example, the annular hill portion 8a7 is provided below the upper radial bearing surface A1, the upper annular hill portion of the radial bearing surface A1 is omitted, and the inclined groove portion 8a1 and the inclined portion of the radial bearing surface A1 are further inclined. The hill part 8a3 is extended until it reaches the chamfer provided at the upper end of the inner peripheral surface 8a. Similarly, the annular hill portion 8a6 is provided on the upper side of the lower radial bearing surface A2, the lower annular hill portion is omitted from the radial bearing surface A2, and the inclined groove portion 8a2 of the radial bearing surface A2 and the inclined surface are inclined. The hill part 8a4 is extended until it reaches the chamfer provided at the lower end of the inner peripheral surface 8a. Thus, by extending the inclined hill portions 8a3, 8a4 to the end of the cylindrical inner peripheral surface 8a of the bearing sleeve, the end portions of the inclined concave portions (not shown) of the molding die for forming the inclined hill portions 8a3, 8a4 However, the inclined hill portions 8a3 and 8a4 can be accurately formed up to the end portions.

また、上記の実施形態では、傾斜溝部8a1,8a2の軸方向間に背部8a5を設けた場合を示したが、これに限らず、例えば図11に示すように背部を省略してもよい。この場合、各ラジアル軸受面A1,A2の上下の傾斜溝部8a1,8a2を連続したV字形状とすると共に、各ラジアル軸受面A1,A2の上下の傾斜丘部8a3,8a4を連続したV字形状とすることができる。   Moreover, although the case where the back part 8a5 was provided between the axial directions of inclination groove part 8a1 and 8a2 was shown in said embodiment, not only this but a back part may be abbreviate | omitted as shown, for example in FIG. In this case, the upper and lower inclined groove portions 8a1 and 8a2 of the radial bearing surfaces A1 and A2 have a continuous V shape, and the upper and lower inclined hill portions 8a3 and 8a4 of the radial bearing surfaces A1 and A2 have a continuous V shape. It can be.

また、上記の実施形態では、ラジアル軸受面A1,A2に形成される複数の傾斜溝部8a1,8a2をヘリングボーン形状に配列した場合を示したが、これに限らず、例えば複数の傾斜溝部8a1,8a2をスパイラル形状に配列してもよい(図示省略)。   In the above embodiment, the case where the plurality of inclined groove portions 8a1 and 8a2 formed on the radial bearing surfaces A1 and A2 are arranged in a herringbone shape is shown. 8a2 may be arranged in a spiral shape (not shown).

また、上記の実施形態では、上側のラジアル軸受面A1の動圧溝領域を軸方向非対称な形状とし、ラジアル軸受隙間の潤滑油を強制的に循環させる場合を示したが、このような強制的な循環が必要なければ、上側のラジアル軸受面A1の動圧溝領域を軸方向対称な形状としてもよい。   In the above embodiment, the dynamic pressure groove region of the upper radial bearing surface A1 has an asymmetric shape in the axial direction, and the lubricating oil in the radial bearing gap is forcibly circulated. If smooth circulation is not necessary, the dynamic pressure groove region of the upper radial bearing surface A1 may be shaped symmetrical in the axial direction.

また、上記の実施形態では、スラスト軸受面の動圧溝をスパイラル形状に配列した場合を示したが、これに限らず、動圧溝をヘリングボーン形状や放射状に配列してもよい。   In the above-described embodiment, the case where the dynamic pressure grooves on the thrust bearing surface are arranged in a spiral shape has been described. However, the present invention is not limited to this, and the dynamic pressure grooves may be arranged in a herringbone shape or a radial shape.

また、上記の実施形態では、潤滑流体が潤滑油である場合を示しているが、これに限らず、例えば磁性流体や空気等の流体を使用することも可能である。   In the above embodiment, the lubricating fluid is a lubricating oil. However, the present invention is not limited to this. For example, a fluid such as a magnetic fluid or air can be used.

1 流体動圧軸受装置
2 軸部材
2a 軸部
2a1 大径外周面
2a3 小径外周面
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
6 ブラケット
7 ハウジング
8 軸受スリーブ(焼結軸受)
8a1,8a2 傾斜溝部
8a3,8a4 傾斜丘部
8a5 背部
8a6,8a7 環状丘部
8a8 円筒面
9 シール部材
10 焼結体
20 成形ピン
20a,20b 成形型
20a1,20a2 傾斜凸部
20a3,20a4 傾斜凹部
20a5 背部成形面
20a6,20a7 環状凹部
20a8 円筒成形面
A1,A2 ラジアル軸受面
R1,R2 ラジアル軸受部
T1,T2 スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic pressure bearing apparatus 2 Shaft member 2a Shaft part 2a1 Large diameter outer peripheral surface 2a3 Small diameter outer peripheral surface 3 Disc hub 4 Stator coil 5 Rotor magnet 6 Bracket 7 Housing 8 Bearing sleeve (sintered bearing)
8a1, 8a2 Inclined groove portions 8a3, 8a4 Inclined hill portion 8a5 Back portion 8a6, 8a7 Annular hill portion 8a8 Cylindrical surface 9 Seal member 10 Sintered body 20 Molding pins 20a, 20b Molding die 20a1, 20a2 Inclined convex portion 20a3, 20a4 Inclined concave portion 20a5 Back portion Molding surface 20a6, 20a7 Annular recess 20a8 Cylindrical molding surface A1, A2 Radial bearing surface R1, R2 Radial bearing portion T1, T2 Thrust bearing portion S Seal space

Claims (6)

焼結軸受と、前記焼結軸受の内周に挿入された軸部材と、前記焼結軸受の内周面と前記軸部材の外周面との間に形成されるラジアル軸受隙間の潤滑流体の動圧作用で前記軸部材を相対回転自在に支持するラジアル軸受部とを備えた流体動圧軸受装置であって、
前記焼結軸受の内周面に、円周方向に対して傾斜した方向に延び、円周方向に所定間隔で並べられた複数の傾斜溝部と、前記複数の傾斜溝部の円周方向間に設けられ、前記傾斜溝部よりも内径側に盛り上がった複数の傾斜丘部とを有する動圧溝領域が軸方向に離隔した2箇所に形成され、前記2箇所の動圧溝領域の軸方向間に、前記傾斜丘部よりも大径な円筒面が形成され、
前記軸部材の相対回転に伴って、各動圧溝領域の前記傾斜溝部及び前記傾斜丘部に沿って潤滑流体を流動させ、
前記焼結軸受の内周面の前記円筒面の軸方向両端に、前記円筒面に隣接する傾斜丘部の、当該傾斜丘部に沿った潤滑流体の流動方向の上流側の端部を全周にわたって連結する第一の環状丘部を設け、
前記傾斜溝部、前記傾斜丘部、及び前記第一の環状丘部を何れも型成形された面とし、
前記軸部材に大径外周面及び小径外周面を設け、前記焼結軸受の動圧溝領域と前記軸部材の大径外周面との間に前記ラジアル軸受隙間を形成すると共に、前記焼結軸受の第一の環状丘部と前記軸部材の小径外周面とをラジアル方向で対向させた流体動圧軸受装置。
Lubrication fluid movement in a radial bearing gap formed between a sintered bearing, a shaft member inserted in the inner periphery of the sintered bearing, and an inner peripheral surface of the sintered bearing and an outer peripheral surface of the shaft member A fluid dynamic pressure bearing device including a radial bearing portion that supports the shaft member so as to be relatively rotatable by pressure,
Provided on the inner peripheral surface of the sintered bearing between a plurality of inclined groove portions extending in a direction inclined with respect to the circumferential direction and arranged at predetermined intervals in the circumferential direction, and between the plurality of inclined groove portions in the circumferential direction. The dynamic pressure groove region having a plurality of inclined hills raised to the inner diameter side than the inclined groove portion is formed at two locations separated in the axial direction, and between the axial directions of the two dynamic pressure groove regions, A cylindrical surface having a larger diameter than the inclined hill portion is formed,
With the relative rotation of said shaft member, to the dynamic flow of lubricating fluid along the inclined groove portion and the inclined lands of respective dynamic groove region,
At the both ends in the axial direction of the cylindrical surface of the inner peripheral surface of the sintered bearing, the end on the upstream side in the flow direction of the lubricating fluid along the inclined hill portion of the inclined hill portion adjacent to the cylindrical surface A first annular hill that connects over the
The inclined groove part, the inclined hill part, and the first annular hill part are all molded surfaces,
The shaft member is provided with a large-diameter outer peripheral surface and a small-diameter outer peripheral surface, and the radial bearing gap is formed between each dynamic pressure groove region of the sintered bearing and the large-diameter outer peripheral surface of the shaft member. A fluid dynamic bearing device in which a first annular hill portion of a bearing is opposed to a small-diameter outer peripheral surface of the shaft member in a radial direction.
各動圧溝領域において、前記円筒面に隣接する傾斜溝部及び傾斜丘部と、前記円筒面から離隔する側の傾斜溝部及び傾斜丘部とが、ヘリングボーン形状に配列された請求項1の流体動圧軸受装置。 2. The fluid according to claim 1 , wherein in each dynamic pressure groove region, the inclined groove portion and the inclined hill portion adjacent to the cylindrical surface and the inclined groove portion and the inclined hill portion on the side separated from the cylindrical surface are arranged in a herringbone shape. Hydrodynamic bearing device. 前記円筒面から離隔する側の傾斜丘部の軸方向外側の端部を全周にわたって連結する第二の環状丘部を設けた請求項2記載の流体動圧軸受装置。The fluid dynamic pressure bearing device according to claim 2, further comprising a second annular hill portion that connects the end portion on the axially outer side of the inclined hill portion on the side separated from the cylindrical surface over the entire circumference. 前記円筒面から離隔する側の傾斜溝部及び傾斜丘部の軸方向外側の端部が、前記焼結軸受の内周面の軸方向端部に設けられたチャンファに達している請求項2記載の流体動圧軸受装置。3. The axially outer end portion of the inclined groove portion and the inclined hill portion on the side separated from the cylindrical surface reaches a chamfer provided at an axial end portion of the inner peripheral surface of the sintered bearing. Fluid dynamic bearing device. 各動圧溝領域において、前記複数の傾斜溝部がスパイラル形状に配列された請求項1の流体動圧軸受装置。 The fluid dynamic pressure bearing device according to claim 1 , wherein the plurality of inclined groove portions are arranged in a spiral shape in each dynamic pressure groove region . 前記第一の環状丘部の軸方向幅が、前記傾斜丘部の延在方向と直交する方向の幅よりも大きい請求項1〜何れかの流体動圧軸受装置。 The fluid dynamic bearing device according to any one of claims 1 to 5 , wherein an axial width of the first annular hill portion is larger than a width in a direction orthogonal to an extending direction of the inclined hill portion.
JP2011041837A 2011-02-28 2011-02-28 Fluid dynamic bearing device Expired - Fee Related JP5762774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011041837A JP5762774B2 (en) 2011-02-28 2011-02-28 Fluid dynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011041837A JP5762774B2 (en) 2011-02-28 2011-02-28 Fluid dynamic bearing device

Publications (2)

Publication Number Publication Date
JP2012177456A JP2012177456A (en) 2012-09-13
JP5762774B2 true JP5762774B2 (en) 2015-08-12

Family

ID=46979419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011041837A Expired - Fee Related JP5762774B2 (en) 2011-02-28 2011-02-28 Fluid dynamic bearing device

Country Status (1)

Country Link
JP (1) JP5762774B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172384A (en) * 2014-03-11 2015-10-01 Ntn株式会社 Sintered bearing, fluid dynamic-pressure bearing device and motor having the bearing, and sintered bearing manufacturing method
JP6466105B2 (en) * 2014-09-01 2019-02-06 Ntn株式会社 Fluid dynamic bearing device and bearing member and shaft member used therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109250A (en) * 1996-06-20 1998-01-13 Sankyo Seiki Mfg Co Ltd Dynamic bearing device
JP3842499B2 (en) * 1999-10-27 2006-11-08 Ntn株式会社 Hydrodynamic bearing unit
JP2002276645A (en) * 2001-03-15 2002-09-25 Ntn Corp Dynamic pressure type bearing unit
JP4459669B2 (en) * 2004-03-16 2010-04-28 Ntn株式会社 Hydrodynamic bearing device

Also Published As

Publication number Publication date
JP2012177456A (en) 2012-09-13

Similar Documents

Publication Publication Date Title
KR20080013863A (en) Dynamic pressure bearing device
US8876385B2 (en) Bearing member and fluid dynamic bearing device using same
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
CN1807908B (en) Fluid lubrication bearing apparatus
WO2018037822A1 (en) Dynamic pressure bearing and method for manufacturing same
JP5762774B2 (en) Fluid dynamic bearing device
WO2012144288A1 (en) Fluid dynamic pressure bearing device
US7789565B2 (en) Fluid dynamic bearing apparatus
JP2010096200A (en) Fluid bearing device and its manufacturing method
JP2006112614A (en) Dynamic pressure bearing device
JP5726687B2 (en) Fluid dynamic bearing device
JP5606831B2 (en) Bearing member and manufacturing method thereof
JP2009228873A (en) Fluid bearing device
JP2006329391A (en) Dynamic pressure bearing arrangement
JP5819078B2 (en) Fluid dynamic bearing device
JP5784777B2 (en) Fluid dynamic bearing device
JP4745214B2 (en) Method for manufacturing hydrodynamic bearing device
JP2010091004A (en) Hydrodynamic pressure bearing device and manufacturing method therefor
JP4738831B2 (en) Hydrodynamic bearing device
JP5627996B2 (en) Housing for fluid dynamic pressure bearing device, method for manufacturing the same, and fluid dynamic pressure bearing device including the same
JP2011247281A (en) Bearing member and fluid dynamic bearing device using the same
JP2016180496A (en) Bearing member and manufacturing method thereof
JP2011112075A (en) Fluid dynamic pressure bearing device
JP5687104B2 (en) Axial fan motor
JP4675880B2 (en) Method for manufacturing fluid dynamic bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150610

R150 Certificate of patent or registration of utility model

Ref document number: 5762774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees