JP5759264B2 - Modified cross-section copper alloy sheet excellent in Ni plating characteristics and method for producing the same - Google Patents

Modified cross-section copper alloy sheet excellent in Ni plating characteristics and method for producing the same Download PDF

Info

Publication number
JP5759264B2
JP5759264B2 JP2011116311A JP2011116311A JP5759264B2 JP 5759264 B2 JP5759264 B2 JP 5759264B2 JP 2011116311 A JP2011116311 A JP 2011116311A JP 2011116311 A JP2011116311 A JP 2011116311A JP 5759264 B2 JP5759264 B2 JP 5759264B2
Authority
JP
Japan
Prior art keywords
copper alloy
rolling
roll
rough
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011116311A
Other languages
Japanese (ja)
Other versions
JP2012240117A (en
Inventor
熊谷 淳一
淳一 熊谷
俊緑 ▲すくも▼田
俊緑 ▲すくも▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2011116311A priority Critical patent/JP5759264B2/en
Publication of JP2012240117A publication Critical patent/JP2012240117A/en
Application granted granted Critical
Publication of JP5759264B2 publication Critical patent/JP5759264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Description

本発明は、Niめっき特性に優れた異形断面銅合金板およびその製造方法に関し、特に詳しくは、銅合金組成がFe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%を各々含有し、残部Cuおよび不可避的不純物からなるNiめっき特性の良好な異形断面銅合金板及びその製造方法に関する。   The present invention relates to a modified cross-section copper alloy plate excellent in Ni plating characteristics and a method for producing the same, and in particular, the copper alloy composition is Fe; 0.05 to 0.15 mass%, P; 0.015 to 0.050. The present invention relates to a deformed cross-section copper alloy sheet having good Ni plating characteristics, each of which contains, by mass, Zn and 0.01 to 0.20 mass%, and the balance Cu and inevitable impurities, and a method for producing the same.

厚肉部と薄肉部とが幅方向に並んだ異形断面銅合金板は、その後にプレス加工にて打抜きや曲げなどの加工が施され、端子材やリードフレーム材として使用されており、耐熱性、通電性、熱放散性、めっき特性が要求されている。
一般的に、この異形断面銅合金板は、銅合金鋳塊から板幅方向に一定の厚さを有する平板を製造する平板加工工程と、その平板を用いて板幅方向に厚さの異なる異形断面板を製造する異形加工工程により製造される。平板加工工程は、銅合金鋳塊の均熱、熱間圧延、冷間圧延、焼鈍、続いて必要に応じて行われる冷間圧延の各工程からなる。異形加工工程は、平板加工工程によって製造された平板を最終製品形状に加工するにあたり、必要とされる幅に切断した後に、粗冷間加工、焼鈍、仕上げ冷間加工、スリッタ加工、必要に応じて行われる矯正の各工程からなる。この場合、冷間加工の中間で焼鈍を行わず、仕上げ冷間加工後、焼鈍を行うこともある。また、異形加工工程における冷間加工は、異形ロールによる冷間圧延、或いは、異形金型による冷間圧延や鍛造などにより行われ、異なる加工方法が組み合わされることもある。
The deformed cross-section copper alloy plate with thick and thin parts aligned in the width direction is then stamped and bent by press working, and is used as a terminal material and lead frame material. Electrical conductivity, heat dissipation, and plating characteristics are required.
Generally, this modified cross-section copper alloy plate is produced by a flat plate processing step for producing a flat plate having a certain thickness in the plate width direction from a copper alloy ingot, and a variant having a different thickness in the plate width direction using the flat plate. Manufactured by a profile processing step for producing a cross-sectional plate. The flat plate processing step includes soaking of the copper alloy ingot, hot rolling, cold rolling, annealing, and then cold rolling performed as necessary. In the special shape processing process, after processing the flat plate produced by the flat plate processing step into the final product shape, it is cut to the required width, followed by rough cold working, annealing, finish cold working, slitter processing, as required It consists of each process of correction performed. In this case, annealing may not be performed in the middle of cold working, but may be performed after finishing cold working. Further, the cold working in the deforming process is performed by cold rolling using a deformed roll, or cold rolling or forging using a deformed die, and different processing methods may be combined.

特許文献1には、鋳塊から板厚方向に一定の厚さを有する平板を製造し、その平板を異形ロールにより冷間圧延して、板幅方向に厚さの異なる異形断面銅合金板を製造するに当たり、異形ロールによる冷間圧延の中間又は最終で一度も焼鈍を行わずに、高耐熱性を有し、かつ高導電性及び優れた曲げ加工性を有する異形断面銅合金板が開示されている。Ni:0.03〜0.5質量%、P:0.01〜0.2質量%を含有し、NiとPとの質量比であるNi/Pが2〜10であり、残部銅及び不可避不純物からなる銅合金を用いる。望ましくはSn:0.005〜0.5%又は/及びFe:0.005〜0.20%を含む。必要に応じてZn:0.005〜0.5%を含む。異形ロールによる冷間圧延において、薄肉部の冷間加工率は30〜90%とされる。   In Patent Document 1, a flat plate having a certain thickness in the plate thickness direction is manufactured from the ingot, and the flat plate is cold-rolled by a deformed roll to obtain a modified cross-section copper alloy plate having a different thickness in the plate width direction. In manufacturing, a deformed cross-section copper alloy sheet having high heat resistance, high conductivity, and excellent bending workability is disclosed without being annealed once in the middle or at the end of cold rolling with a deformed roll. ing. Ni: 0.03-0.5 mass%, P: 0.01-0.2 mass% is contained, Ni / P which is a mass ratio of Ni and P is 2-10, the remainder copper and unavoidable A copper alloy made of impurities is used. Desirably, it contains Sn: 0.005 to 0.5% or / and Fe: 0.005 to 0.20%. If necessary, it contains Zn: 0.005 to 0.5%. In the cold rolling with a deformed roll, the cold working rate of the thin portion is set to 30 to 90%.

特許文献2には、良好な曲げ加工性を備えるとともに、芯線圧着部や嵌合凸部等を簡単にかつ高強度に成形することが可能な端子用銅合金条材及びその製造方法が開示されている。端子を製作するための端子用銅合金条材であって、時効析出型銅合金で構成されるとともに、条材の長手方向に直交する断面において、板厚の厚い厚板部と、この厚板部よりも板厚の薄い薄板部とを備えており、厚板部の引張強度TS1と薄板部の引張強度TS2との比TS1/TS2が、1<TS1/TS2≦1.4の範囲となるように設定されている。   Patent Document 2 discloses a copper alloy strip for terminals and a method for manufacturing the same, which have good bending workability and can easily form a core crimping portion and a fitting convex portion with high strength. ing. A copper alloy strip for a terminal for manufacturing a terminal, which is composed of an aging precipitation type copper alloy, and a thick plate portion having a thick plate thickness in a cross section perpendicular to the longitudinal direction of the strip, and the thick plate And the ratio TS1 / TS2 between the tensile strength TS1 of the thick plate portion and the tensile strength TS2 of the thin plate portion is in the range of 1 <TS1 / TS2 ≦ 1.4. Is set to

特開2007−39735号公報JP 2007-39735 A 特開2009− 9887号公報JP 2009-9887 A

従来のCu−Fe−P系、Cu−Ni−Si系などの異形断面銅合金板は、端子材やリードフレーム材としての耐熱性や曲げ加工性が重要視されているが、表面に全面或いは部分めっき処理、特にNiめっき、が施されて使用される事が多く、厚肉部と薄肉部とで、ばらつきの少ない良好なめっき特性も要求されている。従来のCu−Fe−P系、Cu−Ni−Si系などの異形断面銅合金板では、製造方法に起因する厚肉部と薄肉部との金属組織の相違により、均質なNiめっき特性を得ることは難しかった。   Conventional Cu-Fe-P-based and Cu-Ni-Si-based deformed cross-section copper alloy plates are regarded as important in terms of heat resistance and bending workability as terminal materials and lead frame materials. It is often used after being subjected to partial plating treatment, particularly Ni plating, and good plating characteristics with little variation are required between the thick and thin portions. In conventional Cu-Fe-P-based and Cu-Ni-Si-based deformed cross-section copper alloy plates, uniform Ni plating characteristics are obtained due to the difference in metal structure between the thick and thin portions resulting from the manufacturing method. That was difficult.

本発明は、合金組成がFe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%を各々含有し、残部Cuおよび不可避的不純物からなるCu−Fe−P系の異形断面銅合金板であり、厚肉部と薄肉部とで均質な厚みの変動が少ないNiめっき特性を有する異形断面銅合金板及びその製造方法を提供する。   In the present invention, the alloy composition contains Fe; 0.05 to 0.15% by mass, P; 0.015 to 0.050% by mass and Zn; 0.01 to 0.20% by mass, respectively, and the balance Cu and An odd-shaped cross-section copper alloy plate made of inevitable impurities and having a Ni-plating characteristic with a uniform thickness variation between a thick-walled portion and a thin-walled portion, and a method for manufacturing the same provide.

本発明者らは、Cu−Fe−P系の異形断面銅合金板の結晶組織に着目して鋭意検討の結果、その厚肉部と薄肉部の後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定した、Brass方位密度の比と、Copper方位密度の比と、Goss方位密度の比とを各々最適範囲内に収めることにより、Niめっき特性が向上することを見出した。
また、この異形断面銅合金板を製造するには、粗圧延加工および仕上げ圧延加工を異形の溝ロールによる冷間圧延にて実施し、圧延前の平板状銅合金素材の幅をW1mmとし、異形断面銅合金板の幅をW2mmとしたとき、W2/W1が1.01〜1.2となるように粗圧延加工および仕上げ圧延加工することにより、上述の厚肉部と薄肉部のEBSD法にて測定したBrass方位密度の比とCopper方位密度の比とGoss方位密度の比とを最適範囲内に収められることを見出した。
As a result of diligent investigation focusing on the crystal structure of the Cu-Fe-P deformed cross-section copper alloy plate, the inventors have made a scanning electron microscope with a backscattered electron diffraction image system of the thick and thin portions. It was found that the Ni plating characteristics are improved by keeping the ratio of the Brass orientation density, the ratio of the Copper orientation density, and the ratio of the Goss orientation density measured by the EBSD method according to the above.
Further, in order to produce this deformed cross-section copper alloy sheet, rough rolling and finish rolling are performed by cold rolling with a deformed groove roll, and the width of the flat copper alloy material before rolling is set to W1 mm. When the width of the cross-section copper alloy plate is W2 mm, rough rolling and finish rolling are performed so that W2 / W1 is 1.01 to 1.2. It was found that the ratio of the Brass azimuth density, the ratio of the Copper azimuth density, and the ratio of the Goss azimuth density measured in the above could be within the optimum range.

即ち、本発明のNiめっき特性に優れた異形断面銅合金板は、厚肉部と薄肉部とが幅方向に並んだ異形断面銅合金板であり、Fe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%を各々含有し、残部Cuおよび不可避的不純物からなる組成を有し、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したときの前記厚肉部の測定値をT1、前記薄肉部の測定値をT2とするとき、Brass方位密度の比(T1/T2)が0.8〜2.0であり、Copper方位密度の比(T1/T2)が0.5〜1.2であり、Goss方位密度の比(T1/T2)が1.0〜2.5であることを特徴とする。
後方散乱電子回折像システム付の走査型電子顕微鏡によるBrass方位密度の比(T1/T2)が2.0を超える、或いは、Copper方位密度の比(T1/T2)が1.2を超える、或いは、Goss方位密度の比(T1/T2)が2.5を超えると、表面に施されるNiめっきの均質性が悪くなり、Brass方位密度の比(T1/T2)が0.8未満、或いは、Copper方位密度の比(T1/T2)が0.5未満、或いは、Goss方位密度の比(T1/T2)が1.0未満であると、効果が飽和して製造時の圧延コストが上昇する。
That is, the deformed cross-section copper alloy plate excellent in Ni plating characteristics of the present invention is a deformed cross-section copper alloy plate in which a thick portion and a thin portion are arranged in the width direction, Fe: 0.05 to 0.15 mass% , P; 0.015 to 0.050% by mass and Zn; 0.01 to 0.20% by mass, each having a composition consisting of the balance Cu and inevitable impurities, and having a backscattered electron diffraction image system When the measurement value of the thick part measured by the EBSD method using a scanning electron microscope is T1, and the measurement value of the thin part is T2, the ratio of the Brass orientation density (T1 / T2) is 0.8 to 2.0, the ratio of Copper orientation density (T1 / T2) is 0.5 to 1.2, and the ratio of Goss orientation density (T1 / T2) is 1.0 to 2.5. And
The ratio of Brass orientation density (T1 / T2) by a scanning electron microscope with a backscattered electron diffraction image system exceeds 2.0, or the ratio of Copper orientation density (T1 / T2) exceeds 1.2, or When the ratio of Goss orientation density (T1 / T2) exceeds 2.5, the uniformity of Ni plating applied to the surface deteriorates, and the ratio of Brass orientation density (T1 / T2) is less than 0.8, or If the ratio of Copper orientation density (T1 / T2) is less than 0.5 or the ratio of Goss orientation density (T1 / T2) is less than 1.0, the effect is saturated and the rolling cost during production increases. To do.

更に、本発明のNiめっき特性に優れた異形断面銅合金板は、Ni、Coからなる元素のうち少なくとも一種を0.01〜0.20質量%含有することを特徴とする。
これらの元素の添加は、更に耐熱性を向上させる役割を有する。添加量が0.01質量%未満では効果がなく、0.20質量%を超えると導電率を低下させる。
Furthermore, the odd-shaped cross-section copper alloy sheet excellent in Ni plating characteristics of the present invention is characterized by containing 0.01 to 0.20% by mass of at least one element selected from Ni and Co.
Addition of these elements has a role of further improving heat resistance. If the added amount is less than 0.01% by mass, there is no effect, and if it exceeds 0.20% by mass, the conductivity is lowered.

また、Niめっき特性に優れた異形断面銅合金板の製造方法は、粗厚肉部を形成するための粗圧延用小径ロール部および粗薄肉部を形成するための粗圧延用大径ロール部が軸線方向に並んで形成された粗圧延用段付きロールと、半径が軸線方向に沿って一定とされた粗圧延用平ロールとからなる粗圧延ロールにより、平板状銅合金素材を挟み込んで圧延加工して粗異形断面銅合金板を製造する粗圧延加工工程と、前記粗厚肉部を圧延して前記厚肉部を形成するための仕上げ圧延用小径ロール部および前記粗薄肉部を圧延して前記薄肉部を形成するための仕上げ圧延用大径ロール部が軸線方向に並んで形成された仕上げ圧延用段付きロールと、半径が軸線方向に沿って一定とされた仕上げ圧延用平ロールとからなる仕上げ圧延ロールにより、前記粗異形断面銅合金板を挟み込んで圧延加工して異形断面銅合金板を製造する仕上げ圧延加工工程とを有し、前記平板状銅合金素材の幅をW1mmとし、前記異形断面銅合金板の幅をW2mmとしたとき、W2/W1が1.01〜1.2となるように粗圧延加工および仕上げ圧延加工することを特徴とする。   Moreover, the manufacturing method of the irregular cross-section copper alloy plate excellent in Ni plating characteristics includes a small-diameter roll portion for rough rolling for forming a coarse-wall portion and a large-diameter roll portion for rough rolling for forming a coarse-thin portion. Rolling by sandwiching a flat copper alloy material with a rough rolling roll comprising a step roll for rough rolling formed side by side in the axial direction and a flat roll for rough rolling whose radius is constant along the axial direction. A rough rolling process step for producing a rough deformed cross-section copper alloy sheet, and rolling the coarse wall portion to roll the coarse wall portion to form the thick wall portion, and rolling the coarse and thin wall portion. A step-roll for finish rolling in which large-diameter roll portions for finish rolling for forming the thin portion are formed side by side in the axial direction, and a flat roll for finish rolling in which the radius is constant along the axial direction. By the finish rolling roll A finish rolling process for producing a deformed cross-section copper alloy plate by sandwiching a rough deformed cross-section copper alloy plate, the width of the flat copper alloy material is W1 mm, and the width of the deformed cross-section copper alloy plate When W is 2 mm, rough rolling and finish rolling are performed so that W2 / W1 is 1.01 to 1.2.

粗圧延加工と仕上げ圧延加工とを、大径ロール部が軸線方向に並んで形成された段付きロールと、半径が軸線方向に沿って一定とされた平ロールとからなる圧延ロールにより、素材を挟み込む、所謂、溝ロールによる異形加工方式、で実施し、そのW2/W1を1.01〜1.2とすることにより、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したときの前記厚肉部の測定値をT1、前記薄肉部の測定値をT2とするとき、Brass方位密度の比(T1/T2)が0.8〜2.0であり、Copper方位密度の比(T1/T2)が0.5〜1.2であり、Goss方位密度の比(T1/T2)が1.0〜2.5とすることができる。
W2/W1が1.2を超えると、Brass方位密度の比(T1/T2)、或いは、Copper方位密度の比(T1/T2)、或いは、Goss方位密度の比(T1/T2)が、各上限値を超え、厚肉部と薄肉部の金属組織の差が大きくなり、Niめっき特性が悪化を来たす。
W2/W1が1.01未満では、Brass方位密度の比(T1/T2)、或いは、Copper方位密度の比(T1/T2)、或いは、Goss方位密度の比(T1/T2)が、各下限値を下回り、Niめっき特性の悪化を来たす傾向が見られる。
また、W2/W1を1.01〜1.2の範囲内に収めるためには、仕上げ圧延加工において、圧延ロールと粗異形断面銅合金板との接触長さをLmmとし、接触角度をθ°としたとき、L/θの値が1.0〜5.0の範囲となるように圧延加工することが好ましい。
L/θの値が1.0未満では、W2/W1が1.2を超え易く、L/θの値が5.0を超えると、W2/W1が1.01〜1.2に収まり難くなる。
粗圧延加工、或いは、仕上げ圧延加工を、厚肉部となる凸部及び前記薄肉部となる凹部を形成するための成形面を有するダイと、ダイの成形面に対向する位置とダイの成形面からずれた位置との間でダイの成形面の長さ方向に沿って往復移動させられる押圧ロールとにより、押圧ロールがダイの成形面からずれた位置にあるときに、素材を長さ方向に間欠送りし、押圧ロールがダイの成形面に対向する位置にあるときに、押圧ロールとダイの成形面との間に素材を挟み込む、所謂、ダイ・ロールによる異形加工方式、で実施すると、幅方向の拡がりが大きくなり、W2/W1を1.01〜1.2の範囲内に収めることが非常に難しくなる。
また、粗粗圧延加工後に、調質のための焼鈍を施し、その後に仕上げ圧延加工を施しても良い。
Rough rolling and finish rolling are performed using a rolling roll consisting of a stepped roll having a large-diameter roll section aligned in the axial direction and a flat roll having a constant radius along the axial direction. Measurement is performed by an EBSD method using a scanning electron microscope with a backscattered electron diffraction image system, with a so-called grooved roll deforming method, and setting W2 / W1 to 1.01 to 1.2. When the measured value of the thick part is T1, and the measured value of the thin part is T2, the ratio of the Brass orientation density (T1 / T2) is 0.8 to 2.0, and the Copper orientation density is The ratio (T1 / T2) is 0.5 to 1.2, and the Goss orientation density ratio (T1 / T2) can be 1.0 to 2.5.
When W2 / W1 exceeds 1.2, the ratio of Brass orientation density (T1 / T2), the ratio of Copper orientation density (T1 / T2), or the ratio of Goss orientation density (T1 / T2) Exceeding the upper limit, the difference in the metal structure between the thick part and the thin part becomes large, and the Ni plating characteristics deteriorate.
When W2 / W1 is less than 1.01, the ratio of Brass orientation density (T1 / T2), the ratio of Copper orientation density (T1 / T2), or the ratio of Goss orientation density (T1 / T2) is the lower limit. There is a tendency that the Ni plating characteristics are deteriorated below the value.
In order to keep W2 / W1 within the range of 1.01 to 1.2, in the finish rolling process, the contact length between the rolling roll and the rough deformed cross-section copper alloy plate is Lmm, and the contact angle is θ °. Is preferably rolled so that the value of L / θ is in the range of 1.0 to 5.0.
When the value of L / θ is less than 1.0, W2 / W1 tends to exceed 1.2, and when the value of L / θ exceeds 5.0, W2 / W1 hardly falls within 1.01 to 1.2. Become.
A die having a forming surface for forming a convex portion that becomes a thick-walled portion and a concave portion that becomes the thin-walled portion, and a position facing the forming surface of the die and a forming surface of the die, for rough rolling or finish rolling When the pressing roll is in a position displaced from the die molding surface, the material is moved in the length direction by the pressing roll that is reciprocated along the length direction of the molding surface of the die. When the feed roll is intermittently fed, the material is sandwiched between the press roll and the die forming surface when the press roll is at the position facing the die forming surface. The spread of the direction becomes large, and it becomes very difficult to keep W2 / W1 within the range of 1.01 to 1.2.
Moreover, after rough rough rolling, annealing for tempering may be performed, and then finish rolling may be performed.

本発明により、合金組成がFe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%を各々含有し、残部Cuおよび不可避的不純物からなるCu−Fe−P系の異形断面銅合金板であり、厚肉部と薄肉部とで均質な厚みの変動が少ないNiめっき特性を有する異形断面銅合金板及びその製造方法を提供することができる。   According to the present invention, the alloy composition contains Fe; 0.05 to 0.15% by mass, P; 0.015 to 0.050% by mass and Zn; 0.01 to 0.20% by mass, respectively, with the balance Cu and An odd-shaped cross-section copper alloy plate made of inevitable impurities and having a Ni-plating characteristic with a uniform thickness variation between a thick-walled portion and a thin-walled portion, and a method for manufacturing the same Can be provided.

本発明の異形断面銅合金板の一実施形態について、平板状銅合金素材、粗異形断面銅合金板、異形断面銅合金板の製造工程順に示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an embodiment of a modified cross-section copper alloy plate according to the present invention in the order of manufacturing steps of a flat copper alloy material, a rough modified cross-section copper alloy plate, and a modified cross-section copper alloy plate. 粗圧延ロールにより平板状銅合金素材から粗異形断面銅合金板を製造している状態を示す斜視図である。It is a perspective view which shows the state which has manufactured the rough-shaped cross-section copper alloy board from the flat copper alloy raw material with the rough rolling roll. 仕上げ圧延ロールにより粗異形断面銅合金板から異形断面銅合金板を製造している状態を示す斜視図である。It is a perspective view which shows the state which has manufactured the irregular cross-section copper alloy plate from the rough irregular cross-section copper alloy plate with the finish rolling roll. 図3の仕上げ圧延ロールと粗銅合金異形断面板との接触長さLと接触角度θとの関係を示す模式図である。It is a schematic diagram which shows the relationship between the contact length L and the contact angle (theta) of the finish rolling roll of FIG. 3, and a rough copper alloy irregular cross-section board. 図4の寸法関係図である。FIG. 5 is a dimensional relationship diagram of FIG. 4.

図1〜図5を参照に、本発明の異形断面銅合金板及びその製造方法の一実施形態を説明する。
本発明のプレス打抜き加工性に優れた異形断面銅合金板1は、厚肉部2と薄肉部3とが幅方向に並んだW2の幅を有する異形断面銅合金板(図1参照)であり、図示例では、厚肉部2の両側に薄肉部3が配置され、厚肉部2と薄肉部3との間は、立ち上げ傾斜角度βの傾斜部4とされている。この異形断面銅合金板1は、Fe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%を各々含有し、残部Cuおよび不可避的不純物からなる組成を有し、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したときの厚肉部2の測定値をT1、薄肉部3の測定値をT2とするとき、Brass方位密度の比(T1/T2)が0.8〜2.0であり、Copper方位密度の比(T1/T2)が0.5〜1.2であり、Goss方位密度の比(T1/T2)が1.0〜2.5である。
また、異形断面銅合金板1は、Ni、Coからなる元素のうち少なくとも一種を0.01〜0.20質量%含有していても良い。これらの元素の添加は、更に耐熱性を向上させる役割を有する。添加量が0.01質量%未満では効果がなく、0.20質量%を超えると導電率を低下させる。
With reference to FIGS. 1-5, one Embodiment of the irregular cross-section copper alloy plate of this invention and its manufacturing method is described.
The modified cross-section copper alloy plate 1 excellent in press punching workability of the present invention is a modified cross-section copper alloy plate (see FIG. 1) having a width W2 in which a thick portion 2 and a thin portion 3 are arranged in the width direction. In the illustrated example, the thin portions 3 are disposed on both sides of the thick portion 2, and the inclined portion 4 having a rising inclination angle β is formed between the thick portion 2 and the thin portion 3. This modified cross-section copper alloy sheet 1 contains Fe; 0.05 to 0.15 mass%, P; 0.015 to 0.050 mass%, and Zn; 0.01 to 0.20 mass%, respectively, and the balance The measured value of the thick part 2 is T1 and the measured value of the thin part 3 when measured by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system. When T2, the ratio of Brass orientation density (T1 / T2) is 0.8 to 2.0, the ratio of Copper orientation density (T1 / T2) is 0.5 to 1.2, and Goss orientation density The ratio (T1 / T2) is 1.0 to 2.5.
Moreover, the irregular cross-section copper alloy plate 1 may contain 0.01 to 0.20 mass% of at least one of elements made of Ni and Co. Addition of these elements has a role of further improving heat resistance. If the added amount is less than 0.01% by mass, there is no effect, and if it exceeds 0.20% by mass, the conductivity is lowered.

後方散乱電子回折像システム付の走査型電子顕微鏡によるBrass方位密度の比(T1/T2)が2.0を超える、或いは、Copper方位密度の比(T1/T2)が1.2を超える、或いは、Goss方位密度の比(T1/T2)が2.5を超えると、表面に施されるNiめっきの均質性が悪くなり、Brass方位密度の比(T1/T2)が0.8未満、或いは、Copper方位密度の比(T1/T2)が0.5未満、或いは、Goss方位密度の比(T1/T2)が1.0未満であると、効果が飽和して製造時の圧延コストが上昇する。   The ratio of Brass orientation density (T1 / T2) by a scanning electron microscope with a backscattered electron diffraction image system exceeds 2.0, or the ratio of Copper orientation density (T1 / T2) exceeds 1.2, or When the ratio of Goss orientation density (T1 / T2) exceeds 2.5, the uniformity of Ni plating applied to the surface deteriorates, and the ratio of Brass orientation density (T1 / T2) is less than 0.8, or If the ratio of Copper orientation density (T1 / T2) is less than 0.5 or the ratio of Goss orientation density (T1 / T2) is less than 1.0, the effect is saturated and the rolling cost during production increases. To do.

EBSD法によるBrass方位密度、Copper方位密度、Goss方位密度は次のように測定した。
試料の測定領域を、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得て、電子線を試料表面に2次元で走査させ、ステップサイズ1.0μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が15°以上である境界を結晶粒界とみなして、試料表面の結晶粒の分布を求めた。そして、各結晶粒が、対象とするBrass方位(理想方位から15°以内)か、Copper方位(理想方位から15°以内)か、Goss方位(理想方位から15°以内)か否かを判定し、測定領域におけるBrass方位密度(結晶方位の面積率)、Copper方位密度(結晶方位の面積率)、Goss方位密度(結晶方位の面積率)を求めた。
The Brass orientation density, Copper orientation density, and Goss orientation density according to the EBSD method were measured as follows.
The measurement area of the sample is divided into hexagonal areas, and for each divided area, a Kikuchi pattern is obtained from the reflected electrons of the electron beam incident on the sample surface, and the electron beam is scanned two-dimensionally on the sample surface. , Measuring the orientation of all pixels within the measurement area range at a step size of 1.0 μm, and regarding the boundary where the orientation difference between adjacent pixels is 15 ° or more as the grain boundary, The distribution was determined. Then, it is determined whether each crystal grain is a target Brass orientation (within 15 ° from the ideal orientation), a Copper orientation (within 15 ° from the ideal orientation), or a Goss orientation (within 15 ° from the ideal orientation). Then, the Brass orientation density (area ratio of crystal orientation), Copper orientation density (area ratio of crystal orientation), and Goss orientation density (area ratio of crystal orientation) were determined in the measurement region.

次に、本発明の異形断面銅合金板の製造方法につき説明する。
先ず、Fe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%を各々含有し、残部Cuおよび不可避的不純物からなる組成を有する幅がW1である平板状銅合金素材10を用意する。
そして、図1に矢印の順に示すように、この平板条銅合金素材10を圧延して粗厚肉部12と粗薄肉部13とが幅方向に並んだ粗異形断面銅合金板11を形成する粗圧延加工工程と、この粗異形断面銅合金板11をさらに圧延する仕上げ圧延加工工程とにより、厚肉部2と薄肉部3とが幅方向に並んだ異形断面銅合金板1を製造する。
粗圧延加工工程では、図2に示すような粗圧延用段付きロール21と粗圧延用平ロール22とからなる粗圧延ロール23を備える溝ロール方式による冷間圧延にて、粗圧延加工して粗異形断面銅合金板11を得る。この方式では、粗圧延用段付きロール21は、粗厚肉部12を形成するための粗圧延用小径ロール部24及び粗薄肉部13を形成するための粗圧延用大径ロール部25が軸線方向に並んで形成されており、粗圧延用平ロール22は、半径が軸線方向に沿って一定とされている。そして、これら粗圧延用段付きロール21と粗圧延用平ロール22とからなる粗圧延ロール23により平板条銅合金素材10を挟みこんで圧延し、粗厚肉部12の両側に粗薄肉部13が配置され、粗厚肉部12と粗薄肉部13との間が立ち上げ傾斜角度β´の傾斜部14とされた粗異形断面銅合金板11を得る。
Next, the manufacturing method of the irregular cross-section copper alloy plate of this invention is demonstrated.
First, Fe; 0.05 to 0.15% by mass, P; 0.015 to 0.050% by mass and Zn; 0.01 to 0.20% by mass, respectively, with the balance being Cu and inevitable impurities A flat copper alloy material 10 having a composition width W1 is prepared.
Then, as shown in the order of the arrows in FIG. 1, the flat strip copper alloy material 10 is rolled to form a rough deformed cross-section copper alloy plate 11 in which the thick and thin portions 12 and 13 are aligned in the width direction. By the rough rolling process and the finish rolling process for further rolling the rough deformed cross-section copper alloy plate 11, the deformed cross-section copper alloy sheet 1 in which the thick part 2 and the thin part 3 are arranged in the width direction is manufactured.
In the rough rolling process, rough rolling is performed by cold rolling by a grooved roll system including a rough rolling roll 23 including a rough rolling stepped roll 21 and a rough rolling flat roll 22 as shown in FIG. A rough deformed cross-section copper alloy plate 11 is obtained. In this method, the rough rolling stepped roll 21 has a coarse rolling small diameter roll portion 24 for forming the coarse thick portion 12 and a rough rolling large diameter roll portion 25 for forming the coarse thin portion 13 as axes. The flat rolls 22 for rough rolling have a radius that is constant along the axial direction. Then, the flat strip copper alloy material 10 is sandwiched and rolled by the rough rolling roll 23 composed of the rough rolling stepped roll 21 and the rough rolling flat roll 22, and the rough thin portion 13 is formed on both sides of the thick portion 12. Is obtained, and a rough deformed cross-section copper alloy plate 11 is obtained in which a portion between the thick and thin portions 12 and 13 is formed as an inclined portion 14 having a rising inclination angle β ′.

次に、図1に矢印の順に示すように、この粗異形断面銅合金板11を仕上げ圧延加工工程により異形断面銅合金板1に形成する。
仕上げ圧延加工工程では、図3に示すような仕上げ圧延用段付きロール31と仕上げ圧延用平ロール32とからなる仕上げ圧延ロール33を備える溝ロール方式による冷間圧延にて、平板状銅合金素材10の幅をW1mmとし、異形断面銅合金板1の幅をW2mmとしたとき、W2/W1が1.01〜1.2となるように仕上げ圧延加工して異形断面銅合金板1を得る。この方式では、仕上げ圧延用段付きロール31は、厚肉部2を形成するための仕上げ圧延用小径ロール部34及び薄肉部3を形成するための仕上げ圧延用大径ロール部35が軸線方向に並んで形成されており、仕上げ圧延用平ロール32は、半径が軸線方向に沿って一定とされている。そして、これら仕上げ圧延用段付きロール31と仕上げ圧延用平ロール32とからなる仕上げ圧延ロール33により粗異形断面銅合金板111を挟みこんで仕上げ圧延し、厚肉部2の両側に薄肉部3が配置され、厚肉部2と薄肉部3との間が立ち上げ傾斜角度βの傾斜部4とされた異形断面銅合金板1を得る。
Next, as shown in the order of the arrows in FIG. 1, the rough deformed section copper alloy plate 11 is formed on the deformed section copper alloy sheet 1 by a finish rolling process.
In the finish rolling process, a flat copper alloy material is obtained by cold rolling by a grooved roll system including a finish rolling roll 33 comprising a step roll 31 for finishing rolling and a flat roll 32 for finishing rolling as shown in FIG. When the width of 10 is W1 mm and the width of the deformed cross-section copper alloy plate 1 is W2 mm, finish rolling is performed so that W2 / W1 is 1.01 to 1.2 to obtain the deformed cross-section copper alloy plate 1. In this method, the step roll 31 for finish rolling has a small diameter roll portion 34 for finish rolling for forming the thick portion 2 and a large diameter roll portion 35 for finish rolling for forming the thin portion 3 in the axial direction. The flat rolls 32 for finish rolling are formed side by side, and the radius is constant along the axial direction. Then, the finish rolling roll 33 composed of the step roll 31 for finish rolling and the flat roll 32 for finish rolling sandwiches the rough deformed cross-section copper alloy plate 111 and finish-rolls, and the thin portion 3 is formed on both sides of the thick portion 2. Is obtained, and a deformed cross-section copper alloy plate 1 is obtained in which a portion between the thick portion 2 and the thin portion 3 is a rising portion 4 having a rising inclination angle β.

この場合、W2/W1が1.2を超えると、Brass方位密度の比(T1/T2)、或いは、Copper方位密度の比(T1/T2)、或いは、Goss方位密度の比(T1/T2)が、各上限値を超え、厚肉部2と薄肉部3の金属組織の差が大きくなり、Niめっき特性が悪化を来たす。
W2/W1が1.01未満では、Brass方位密度の比(T1/T2)、或いは、Copper方位密度の比(T1/T2)、或いは、Goss方位密度の比(T1/T2)が、各下限値を下回り、Niめっき特性の悪化を来たす傾向が見られる。
また、仕上げ圧延ロール33と粗異形断面銅合金板11との接触長さをLmmとし、接触角度をθ°としたとき、L/θの値が1.0〜5.0の範囲となるように仕上げ圧延加工し、W2の幅を有する異形断面銅合金板1を製造する。
図4及び図5に示すように、接触長さLは、粗異形断面銅合金板11が仕上げ圧延ロール33と接触している距離であり、接触角度θは、粗異形断面銅合金板11の厚みをh、異形断面銅合金板1の厚みをhとしたときに、tanθ={(h−h)/2}/Lで表される。
L/θの値が1.0未満では、W2/W1が1.2を超え易く、L/θの値が5.0を超えると、W2/W1が1.01〜1.2の範囲に収まり難くなる。
厚肉部2と薄肉部3とは、仕上げ圧延加工の前の粗圧延加工においてほぼ外形が成形されており、仕上げ圧延加工工程においては、粗厚肉部12及び粗薄肉部13の表面を最終の形状に成形することになる。
また、粗圧延加工後に、調質のための焼鈍を施し、その後に仕上げ圧延加工を施しても良い。
In this case, when W2 / W1 exceeds 1.2, the ratio of Brass orientation density (T1 / T2), the ratio of Copper orientation density (T1 / T2), or the ratio of Goss orientation density (T1 / T2). However, each upper limit is exceeded, the difference of the metal structure of the thick part 2 and the thin part 3 becomes large, and Ni plating characteristic will deteriorate.
When W2 / W1 is less than 1.01, the ratio of Brass orientation density (T1 / T2), the ratio of Copper orientation density (T1 / T2), or the ratio of Goss orientation density (T1 / T2) is the lower limit. There is a tendency that the Ni plating characteristics are deteriorated below the value.
Further, when the contact length between the finish rolling roll 33 and the rough deformed cross-section copper alloy plate 11 is Lmm and the contact angle is θ °, the value of L / θ is in the range of 1.0 to 5.0. To produce a deformed cross-section copper alloy sheet 1 having a width of W2.
As shown in FIGS. 4 and 5, the contact length L is the distance at which the rough deformed cross-section copper alloy plate 11 is in contact with the finish rolling roll 33, and the contact angle θ is the rough deformed cross-section copper alloy plate 11. When the thickness is h 0 and the thickness of the modified cross-section copper alloy plate 1 is h 1 , tan θ = {(h 0 −h 1 ) / 2} / L.
When the value of L / θ is less than 1.0, W2 / W1 tends to exceed 1.2, and when the value of L / θ exceeds 5.0, W2 / W1 falls within the range of 1.01 to 1.2. It becomes difficult to fit.
The thick portion 2 and the thin portion 3 are substantially shaped in the rough rolling process before the finish rolling process. In the finish rolling process, the surfaces of the rough thick part 12 and the rough thin part 13 are finally formed. It will be formed into a shape.
Further, after rough rolling, annealing for tempering may be performed, and then finish rolling may be performed.

合金組成がFe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%を各々含有し、残部Cuおよび不可避的不純物からなる鋳塊に熱間圧延と冷間圧延を施し、厚さ2.0mm、幅600mmのコイルを製造し、スリッタラインに通して幅50mmの条材を作製した。
この条材を素材として、厚み2.0mm×幅50mm(W1)のコイルを、粗厚肉部を形成するための粗圧延用小径ロール部及び粗薄肉部を形成するための粗圧延用大径ロール部が軸線方向に並んで形成された粗圧延用段付きロールと、半径が軸線方向に沿って一定とされた粗圧延用平ロールとからなる粗圧延ロールにより、挟み込んで圧延加工して、幅W3が50mm、粗厚肉部の幅が20mm、粗薄肉部の厚さが0.2〜0.4mm、粗厚肉部の厚さが1.1〜1.35mm、粗厚肉部の立上傾斜角度β´が10°で、粗厚肉部の両側に粗薄肉部を有する粗異形断面銅合金板を連続的に作製した。
The alloy composition contains Fe; 0.05 to 0.15% by mass, P; 0.015 to 0.050% by mass and Zn; 0.01 to 0.20% by mass, respectively, from the remainder Cu and inevitable impurities The resulting ingot was subjected to hot rolling and cold rolling to produce a coil having a thickness of 2.0 mm and a width of 600 mm, and a strip material having a width of 50 mm was produced through a slitter line.
Using this strip as a raw material, a coil having a thickness of 2.0 mm × width 50 mm (W1), a coarse rolling small-diameter roll portion for forming a coarse-walled portion, and a coarse rolling large-diameter for forming a coarse-thinned portion. Rolled by a rough rolling roll consisting of a stepped roll for rough rolling formed with the roll part aligned in the axial direction and a flat roll for rough rolling whose radius is constant along the axial direction, The width W3 is 50 mm, the width of the coarse portion is 20 mm, the thickness of the coarse portion is 0.2 to 0.4 mm, the thickness of the coarse portion is 1.1 to 1.35 mm, A rough deformed cross-section copper alloy plate having a rising inclination angle β ′ of 10 ° and having coarse and thin portions on both sides of the thick and thick portion was continuously produced.

次に、この粗異形断面銅合金板を、表1に示すW2/W1、L/θにて、厚肉部を形成するための仕上げ圧延用小径ロール部及び薄肉部を形成するための仕上げ圧延用大径ロール部が軸線方向に並んで形成された仕上げ圧延用段付きロールと、半径が軸線方向に沿って一定とされた仕上げ圧延用平ロールとからなる仕上げ圧延ロールにより、挟み込んで圧延加工して、幅がW2mm、厚肉部の幅が23〜24mm、薄肉部の厚さが0.15〜0.32mm、厚肉部の厚さが1.0〜1.20mm、厚肉部の立上傾斜角度βが10°(水平面から80°)で、厚肉部の両側に薄肉部を有する図1に示す形状の実施例1〜8及び比較例1〜5の異形断面銅合金板を連続的に作製した。   Next, this rough deformed cross-section copper alloy sheet is subjected to finish rolling for forming a small diameter roll portion for finish rolling and a thin portion at W2 / W1 and L / θ shown in Table 1 for forming a thick portion. Rolling is performed by a finish rolling roll consisting of a step roll for finish rolling in which large-diameter roll parts are formed side by side in the axial direction and a flat roll for finish rolling whose radius is constant along the axial direction. The width is W2 mm, the width of the thick portion is 23 to 24 mm, the thickness of the thin portion is 0.15 to 0.32 mm, the thickness of the thick portion is 1.0 to 1.20 mm, The vertical cross-section copper alloy plates of Examples 1 to 8 and Comparative Examples 1 to 5 having the shape shown in FIG. 1 having a rising inclination angle β of 10 ° (80 ° from the horizontal plane) and thin portions on both sides of the thick portion. It was produced continuously.

実施例1〜8及び比較例1〜5の各異形断面銅合金板から試料を採取し、厚肉部と薄肉部を後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定し、Brass方位密度の比(T1/T2)、Copper方位密度の比(T1/T2)、Goss方位密度の比(T1/T2)を求めた。
Brass方位密度、Copper方位密度、Goss方位密度は次のように測定した。
試料の測定領域を、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得て、電子線を試料表面に2次元で走査させ、ステップサイズ1.0μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が15°以上である境界を結晶粒界とみなして、試料表面の結晶粒の分布を求めた。そして、各結晶粒が、対象とするBrass方位(理想方位から15°以内)か、Copper方位(理想方位から15°以内)か、Goss方位(理想方位から15°以内)か否かを判定し、測定領域におけるBrass方位密度(結晶方位の面積率)、Copper方位密度(結晶方位の面積率)、Goss方位密度(結晶方位の面積率)を求めた。
その結果を表1に示す。
Samples were taken from each of the irregular cross-section copper alloy plates of Examples 1 to 8 and Comparative Examples 1 to 5, and the thick and thin portions were measured by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system. The ratio of Brass orientation density (T1 / T2), the ratio of Copper orientation density (T1 / T2), and the ratio of Goss orientation density (T1 / T2) were determined.
The Brass orientation density, Copper orientation density, and Goss orientation density were measured as follows.
The measurement area of the sample is divided into hexagonal areas, and for each divided area, a Kikuchi pattern is obtained from the reflected electrons of the electron beam incident on the sample surface, and the electron beam is scanned two-dimensionally on the sample surface. , Measuring the orientation of all pixels within the measurement area range at a step size of 1.0 μm, and regarding the boundary where the orientation difference between adjacent pixels is 15 ° or more as the grain boundary, The distribution was determined. Then, it is determined whether each crystal grain is a target Brass orientation (within 15 ° from the ideal orientation), a Copper orientation (within 15 ° from the ideal orientation), or a Goss orientation (within 15 ° from the ideal orientation). Then, the Brass orientation density (area ratio of crystal orientation), Copper orientation density (area ratio of crystal orientation), and Goss orientation density (area ratio of crystal orientation) were determined in the measurement region.
The results are shown in Table 1.

Figure 0005759264
Figure 0005759264

次に、実施例1〜8及び比較例1〜5の長さ50mmの異形断面銅合金板に、表2に示す条件にて、1.50μm厚のNiめっきを施し、厚肉部、傾斜部、薄肉部でのNiめっきの厚さを測定した。
Niめっき膜厚の測定は、蛍光X線膜厚計を使用して連続的に測定し、その平均値を各部のめっき厚みとした。その結果を表3に示す。表3において、傾斜部1は二つの傾斜部のうちの一方、傾斜部2は他方を示す。薄肉部1も二つの薄肉部のうちの一方であり、薄肉部3は他方を示す。
Next, Ni plating with a thickness of 1.50 μm was applied to the irregular cross-section copper alloy plates of Examples 1-8 and Comparative Examples 1-5 having a length of 50 mm under the conditions shown in Table 2. The thickness of the Ni plating at the thin part was measured.
The Ni plating film thickness was measured continuously using a fluorescent X-ray film thickness meter, and the average value was defined as the plating thickness of each part. The results are shown in Table 3. In Table 3, the inclined portion 1 indicates one of the two inclined portions, and the inclined portion 2 indicates the other. The thin part 1 is also one of the two thin parts, and the thin part 3 shows the other.

Figure 0005759264
Figure 0005759264

Figure 0005759264
Figure 0005759264

これらの結果より、本発明の異形断面銅合金板は、厚肉部と薄肉部とで均質な厚みの変動が少ないNiめっきを得られることがわかる。   From these results, it can be seen that the deformed cross-section copper alloy sheet of the present invention can obtain Ni plating with little variation in thickness between the thick part and the thin part.

以上、本発明の実施形態であるめっき付銅条材の製造方法について説明したが、本発明はこの記載に限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。   As mentioned above, although the manufacturing method of the plated copper strip which is embodiment of this invention was demonstrated, this invention is not limited to this description, In the range which does not deviate from the technical idea of the invention, it can change suitably. is there.

1 異形断面銅合金板
2 厚肉部
3 薄肉部
10 平板状銅合金素材
11 粗異形断面銅合金板
12 粗厚肉部
13 粗薄肉部
21 粗圧延用段付きロール
22 粗圧延用平ロール
23 粗圧延ロール
24 粗圧延用小径ロール部
25 粗圧延用大径ロール部
31 仕上げ圧延用段付きロール
32 仕上げ圧延用平ロール
33 仕上げ圧延ロール
34 仕上げ圧延用小径ロール部
35 仕上げ圧延用大径ロール部
DESCRIPTION OF SYMBOLS 1 Profile cross-section copper alloy plate 2 Thick part 3 Thin part 10 Flat copper alloy material 11 Rough profile cross-section copper alloy sheet 12 Coarse thick part 13 Coarse thin part 21 Step roll for rough rolling 22 Flat roll for rough rolling 23 Coarse Rolling roll 24 Small diameter roll section for rough rolling 25 Large diameter roll section for rough rolling 31 Step roll for finishing rolling 32 Flat roll for finishing rolling 33 Finishing rolling roll 34 Small diameter rolling section for finishing rolling 35 Large diameter rolling section for finishing rolling

Claims (3)

厚肉部と薄肉部とが幅方向に並んだ異形断面銅合金板であり、Fe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%を各々含有し、残部Cuおよび不可避的不純物からなる組成を有し、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したときの前記厚肉部の測定値をT1、前記薄肉部の測定値をT2とするとき、Brass方位密度の比(T1/T2)が0.8〜2.0であり、Copper方位密度の比(T1/T2)が0.5〜1.2であり、Goss方位密度の比(T1/T2)が1.0〜2.5であることを特徴とするNiめっき特性に優れた異形断面銅合金板。   It is a modified cross-section copper alloy plate in which a thick part and a thin part are arranged in the width direction, Fe; 0.05 to 0.15 mass%, P; 0.015 to 0.050 mass% and Zn; 0.01 Each of which has a composition composed of the balance Cu and inevitable impurities, and each of the thick-walled portion measured by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system. When the measurement value is T1, and the measurement value of the thin portion is T2, the ratio of the Brass orientation density (T1 / T2) is 0.8 to 2.0, and the ratio of the Copper orientation density (T1 / T2) is 0. An odd-shaped cross-section copper alloy sheet excellent in Ni plating characteristics, characterized in that the ratio of Goss orientation density (T1 / T2) is 1.0 to 2.5. Ni、Coからなる元素のうち少なくとも一種を0.01〜0.20質量%含有することを特徴とする請求項1に記載のNiめっき特性に優れた異形断面銅合金板。   The deformed cross-section copper alloy sheet having excellent Ni plating characteristics according to claim 1, wherein at least one element selected from Ni and Co is contained in an amount of 0.01 to 0.20 mass%. 請求項1又は2に記載のNiめっき特性に優れた異形断面銅合金板の製造方法であって、粗厚肉部を形成するための粗圧延用小径ロール部および粗薄肉部を形成するための粗圧延用大径ロール部が軸線方向に並んで形成された粗圧延用段付きロールと、半径が軸線方向に沿って一定とされた粗圧延用平ロールとからなる粗圧延ロールにより、平板状銅合金素材を挟み込んで圧延加工して粗異形断面銅合金板を製造する粗圧延加工工程と、前記粗厚肉部を押圧して前記厚肉部を形成するための仕上げ圧延用小径ロール部および前記粗薄肉部を押圧して前記薄肉部を形成するための仕上げ圧延用大径ロール部が軸線方向に並んで形成された仕上げ圧延用段付きロールと、半径が軸線方向に沿って一定とされた仕上げ圧延用平ロールとからなる仕上げ圧延ロールにより、前記粗異形断面銅合金板を挟み込んで圧延加工して異形断面銅合金板を製造する仕上げ圧延加工工程とを有し、前記平板状銅合金素材の幅をW1mmとし、前記異形断面銅合金板の幅をW2mmとしたとき、W2/W1が1.01〜1.2となるように粗圧延加工および仕上げ圧延加工することを特徴とするNiめっき特性に優れた異形断面銅合金板の製造方法。 It is a manufacturing method of the unusual cross-section copper alloy plate excellent in the Ni plating characteristic of Claim 1 or 2, Comprising: For forming the small diameter roll part for rough rolling for forming a coarse wall part, and a coarse wall part A rough rolling roll consisting of a rough rolling stepped roll formed with large diameter roll portions aligned in the axial direction and a rough rolling flat roll having a constant radius along the axial direction. A rough rolling process for producing a rough deformed cross-section copper alloy sheet by sandwiching and rolling a copper alloy material, a small diameter roll section for finish rolling for pressing the rough thick section to form the thick section, and A step-roll for finishing rolling in which large-diameter roll portions for finish rolling for pressing the rough thin portion to form the thin portion are formed side by side in the axial direction, and the radius is constant along the axial direction. Finishing consisting of flat rolls for finishing rolling A rolling process for producing a deformed cross-section copper alloy sheet by sandwiching the rough deformed cross-section copper alloy sheet with a rolling roll, and making the width of the flat copper alloy material W1 mm, when the width of the copper alloy sheet and W2mm, irregular cross section copper W2 / W1 is excellent in N i plating characteristics you characterized by rough rolling and finishing rolling process such that 1.01 to 1.2 Manufacturing method of alloy plate.
JP2011116311A 2011-05-24 2011-05-24 Modified cross-section copper alloy sheet excellent in Ni plating characteristics and method for producing the same Active JP5759264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011116311A JP5759264B2 (en) 2011-05-24 2011-05-24 Modified cross-section copper alloy sheet excellent in Ni plating characteristics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011116311A JP5759264B2 (en) 2011-05-24 2011-05-24 Modified cross-section copper alloy sheet excellent in Ni plating characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012240117A JP2012240117A (en) 2012-12-10
JP5759264B2 true JP5759264B2 (en) 2015-08-05

Family

ID=47462353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011116311A Active JP5759264B2 (en) 2011-05-24 2011-05-24 Modified cross-section copper alloy sheet excellent in Ni plating characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP5759264B2 (en)

Also Published As

Publication number Publication date
JP2012240117A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
JP6154565B1 (en) Cu-Ni-Si-based copper alloy sheet and manufacturing method
JP6499159B2 (en) Copper alloy wire and method for producing the same
JP5916964B2 (en) Copper alloy sheet, connector, and method for producing copper alloy sheet
KR101613914B1 (en) Cu-Mg-P-BASED COPPER ALLOY SHEET HAVING EXCELLENT FATIGUE RESISTANCE CHARACTERISTIC AND METHOD OF PRODUCING THE SAME
JP5908796B2 (en) Cu-Mg-P-based copper alloy plate excellent in mechanical formability and method for producing the same
WO2008010378A1 (en) Copper alloy sheets for electrical/electronic part
TWI681825B (en) Heat radiating plate and method for producing same
CN107267804B (en) Copper alloy for electronic material
TWI582249B (en) Copper alloy sheet and method of manufacturing the same
JP2008024994A (en) Copper alloy plate for electrical/electronic component having excellent press blanking property
KR20160102989A (en) Copper alloy sheet material, connector, and production method for copper alloy sheet material
JP5833892B2 (en) Modified cross-section copper alloy sheet with low bending anisotropy and excellent stress relaxation resistance, and method for producing the same
JP6696770B2 (en) Copper alloy plate and connector
TWI607098B (en) Copper alloy plate and stamped product with copper alloy plate
JP5869288B2 (en) Modified cross-section copper alloy sheet with excellent bending workability and low anisotropy and method for producing the same
CN111971406B (en) Copper alloy sheet material, method for producing copper alloy sheet material, and connector using copper alloy sheet material
JP5623309B2 (en) Modified cross-section copper alloy sheet excellent in press workability and manufacturing method thereof
JP5759264B2 (en) Modified cross-section copper alloy sheet excellent in Ni plating characteristics and method for producing the same
EP3604574B1 (en) Copper alloy strip exhibiting improved dimensional accuracy after press-working
JP6879971B2 (en) Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material
JP6887399B2 (en) Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material
JP2019178391A (en) Copper alloy material, electronic component, electronic device, and manufacturing method of copper alloy material
KR20210117252A (en) Copper alloy plate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150605

R150 Certificate of patent or registration of utility model

Ref document number: 5759264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250