JP5758228B2 - Supported catalysts containing rhodium and gold - Google Patents

Supported catalysts containing rhodium and gold Download PDF

Info

Publication number
JP5758228B2
JP5758228B2 JP2011179345A JP2011179345A JP5758228B2 JP 5758228 B2 JP5758228 B2 JP 5758228B2 JP 2011179345 A JP2011179345 A JP 2011179345A JP 2011179345 A JP2011179345 A JP 2011179345A JP 5758228 B2 JP5758228 B2 JP 5758228B2
Authority
JP
Japan
Prior art keywords
rhodium
gold
catalyst
mass
mesoporous silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011179345A
Other languages
Japanese (ja)
Other versions
JP2013039543A (en
Inventor
満月男 小西
満月男 小西
敬三 友国
敬三 友国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Noguchi Inst
Original Assignee
Asahi Kasei Corp
Noguchi Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Noguchi Inst filed Critical Asahi Kasei Corp
Priority to JP2011179345A priority Critical patent/JP5758228B2/en
Publication of JP2013039543A publication Critical patent/JP2013039543A/en
Application granted granted Critical
Publication of JP5758228B2 publication Critical patent/JP5758228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、排ガス浄化用触媒に関し、特に金(Au)にロジウム(Rh)を添加することによって触媒活性が向上し、リーンバーン排ガスの300℃付近での窒素酸化物浄化(除去)特性に優れたロジウムを含む金触媒系担持触媒、及びその触媒を用いた排ガス浄化方法に関する。   The present invention relates to an exhaust gas purification catalyst, and in particular, by adding rhodium (Rh) to gold (Au), the catalytic activity is improved, and the nitrogen oxide purification (removal) characteristics of lean burn exhaust gas at around 300 ° C. are excellent. Further, the present invention relates to a gold catalyst-based supported catalyst containing rhodium and an exhaust gas purification method using the catalyst.

従来、自動車等の排ガス中浄化用触媒の触媒成分としては、白金、パラジウム、ロジウム等の貴金属が単独又は組み合わせて用いられており、通常、触媒担体に担持された構成とされている。最近では、ディーゼルエンジン排気における酸素が過剰な雰囲気(リーンバーン排ガスという)での窒素酸化物除去特性が重要となっている。しかし、既存の排気ガス浄化触媒では、その浄化に限界があり、この酸素過剰雰囲気における窒素酸化物の除去触媒の一つとして、超微粒子金触媒が挙げられる。例えば特許文献1及び特許文献2には、アルカリ土類金属化合物に超微粒子金の固定化、及び鉄の複合金属酸化物に微粒子金を固定化した触媒が共沈法によって製造されることが、それぞれ開示されている。また、特許文献3には、アルミナ、チタニア、酸化亜鉛及び酸化マグネシウムの1種以上からなる金属酸化物に微粒子金を固定した触媒が開示されている。更に特許文献4には、金と白金、パラジウム、銀、ニッケルから選ばれる1種又は2種以上の元素で構成される金合金触媒が開示されている。   Conventionally, noble metals such as platinum, palladium and rhodium are used alone or in combination as a catalyst component of an exhaust gas purifying catalyst for automobiles, and are usually configured to be supported on a catalyst carrier. Recently, nitrogen oxide removal characteristics in an oxygen-excess atmosphere (referred to as lean burn exhaust gas) in diesel engine exhaust have become important. However, the existing exhaust gas purification catalyst has a limit in purification, and an ultrafine gold catalyst can be cited as one of the nitrogen oxide removal catalysts in the oxygen-excess atmosphere. For example, Patent Document 1 and Patent Document 2 describe that a catalyst in which ultrafine gold is immobilized on an alkaline earth metal compound and fine gold is immobilized on a composite metal oxide of iron is produced by a coprecipitation method. Each is disclosed. Patent Document 3 discloses a catalyst in which fine gold is fixed to a metal oxide composed of one or more of alumina, titania, zinc oxide and magnesium oxide. Further, Patent Document 4 discloses a gold alloy catalyst composed of one or more elements selected from gold and platinum, palladium, silver, and nickel.

前記金触媒を用いたディーゼルエンジン排気ガス中の窒素酸化物の除去は還元剤としてプロピレンを用いて行われているが、実用的にはディーゼルエンジンの燃料である軽油を還元剤に用いることが好ましい。しかしながら軽油とプロピレンでは還元剤としての作用が異なり、従来の金触媒では軽油を還元剤として用いると十分な窒素酸化物の除去活性が得られないことがあった。   Removal of nitrogen oxides in diesel engine exhaust gas using the gold catalyst is carried out using propylene as a reducing agent, but it is preferable to use light oil, which is a diesel engine fuel, as the reducing agent in practice. . However, light oil and propylene have different actions as a reducing agent, and conventional gold catalysts sometimes fail to obtain sufficient nitrogen oxide removal activity when light oil is used as a reducing agent.

また、軽油を還元剤として用いる排ガス中窒素酸化物除去触媒としては、白金も知られているが、白金は、比較的低温での除去活性に優れるものの300℃付近での除去活性は、なお不十分なものであった。   As a catalyst for removing nitrogen oxides in exhaust gas using light oil as a reducing agent, platinum is also known. Although platinum is excellent in removal activity at a relatively low temperature, the removal activity near 300 ° C. is still poor. It was enough.

このため軽油を還元剤とし、300℃付近のリーンバーン排ガス中に含まれる窒素酸化物を高い浄化率で除去できる触媒の開発が望まれていた。   Therefore, it has been desired to develop a catalyst that uses light oil as a reducing agent and can remove nitrogen oxides contained in lean burn exhaust gas around 300 ° C. with a high purification rate.

特開昭64−83513号公報JP-A-64-83513 特開平4−281846号公報JP-A-4-28184 特開平7−96187号公報JP-A-7-96187 特開平10−216518号公報JP-A-10-216518

本発明の目的は、上記の事情に鑑み、例えばリーンバーン排ガス中に含まれる窒素酸化物の除去のための新規な触媒を提供し、その触媒を用いた排ガス浄化方法を提供することである。   In view of the above circumstances, an object of the present invention is to provide a novel catalyst for removing nitrogen oxides contained in, for example, lean burn exhaust gas, and to provide an exhaust gas purification method using the catalyst.

具体的には、従来困難であったリーンバーン排ガス中に含まれる窒素酸化物を例えば300℃付近で例えば軽油を還元剤として効果的に除去する触媒を提供し、その触媒を用いた排ガス中窒素酸化物の浄化(除去)方法を提供することである。   Specifically, the present invention provides a catalyst that effectively removes nitrogen oxides contained in lean burn exhaust gas, which has been difficult in the past, for example, at around 300 ° C., for example, using light oil as a reducing agent, and nitrogen in exhaust gas using the catalyst. It is to provide a method for purification (removal) of oxides.

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、驚くべきことに金を担持した触媒において金にロジウムを添加し、ケイ素を含む酸化物からなる担体に担持すると軽油を還元剤とした窒素酸化物の浄化(除去)活性が飛躍的に高まることを見いだし、この知見に基づいて本発明を完成させるに至った。   As a result of intensive research to solve the above problems, the present inventors surprisingly added rhodium to gold in a catalyst supporting gold, and light oil was supported when supported on a support made of an oxide containing silicon. It has been found that the purification (removal) activity of nitrogen oxides as a reducing agent has been dramatically increased, and the present invention has been completed based on this finding.

すなわち、本発明は、
(1)少なくともケイ素を含有する酸化物を含んでなる担体に、金及びロジウムを含んでなる金属触媒成分を担持した担持触媒であって、該金属触媒成分中の全金属に対して、金及びロジウムの合計が60質量%以上であることを特徴とする上記担持触媒、
(2)金に対するロジウムの原子比(Rh/Au)が0.1以上2未満であることを特徴とする上記(1)に記載の担持触媒、
(3)前記少なくともケイ素を含有する酸化物がシリカであることを特徴とする上記(1)又は(2)に記載の担持触媒。
(4)前記少なくともケイ素を含有する酸化物がメソポーラスシリカであることを特徴とする上記(1)〜(3)のいずれか一項に記載の担持触媒、
(5)酸素濃度が3%以上の排ガス中の窒素酸化物を除去する方法であって、還元剤として炭化水素を用い、上記(1)〜(4)のいずれか一項に記載の担持触媒を浄化触媒として用いることを特徴とする、上記排ガス中の窒素酸化物を除去する方法、
(6)前記炭化水素が炭素数6以上の炭化水素を含むことを特徴とする、上記(5)に記載の排ガス中の窒素酸化物を除去する方法、並びに
(7)前記炭化水素が軽油又はガソリンを含むことを特徴とする上記(5)又は(6)に記載の排ガス中の窒素酸化物を除去する方法に関する。
That is, the present invention
(1) A supported catalyst in which a metal catalyst component including gold and rhodium is supported on a support including an oxide containing at least silicon, wherein gold and The supported catalyst, wherein the total amount of rhodium is 60% by mass or more,
(2) The supported catalyst according to the above (1), wherein the atomic ratio of rhodium to gold (Rh / Au) is 0.1 or more and less than 2;
(3) The supported catalyst as described in (1) or (2) above, wherein the oxide containing at least silicon is silica.
(4) The supported catalyst according to any one of (1) to (3), wherein the at least silicon-containing oxide is mesoporous silica.
(5) A method for removing nitrogen oxides in exhaust gas having an oxygen concentration of 3% or more, wherein hydrocarbon is used as a reducing agent, and the supported catalyst according to any one of (1) to (4) above A method for removing nitrogen oxides in the exhaust gas, characterized in that
(6) The method for removing nitrogen oxides in exhaust gas according to (5) above, wherein the hydrocarbon contains a hydrocarbon having 6 or more carbon atoms, and (7) the hydrocarbon is light oil or The present invention relates to a method for removing nitrogen oxides in exhaust gas as described in (5) or (6) above, comprising gasoline.

本発明のロジウムを含む金触媒を用いた担持触媒は、従来達成できなかった軽油を還元剤とした300℃付近のリーンバーン排ガス中の窒素酸化物の浄化(除去)を極めて効率よく行うことができる等の優れた技術的効果を実現する。   The supported catalyst using a gold catalyst containing rhodium according to the present invention can purify (remove) nitrogen oxides in a lean burn exhaust gas around 300 ° C. using light oil, which could not be achieved in the past, very efficiently. Realize excellent technical effects.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

金属触媒成分
本発明中の金属触媒成分を構成するロジウムを含む金触媒の金に対するロジウムの原子比(Rh/Au)は、下限は0.1以上であり、好ましくは0.2以上、より好ましくは0.3以上であることが望ましい。原子比が0.1以上であると窒素酸化物の浄化(除去)活性が顕著に向上する。一方、原子比の上限は、通常2.0未満であり、好ましくは1.5以下、より好ましくは1.2以下である。原子比が2.0未満であると浄化活性の最大値を示す温度が300℃以下に抑えることができ、かつ、浄化活性も高い状態を維持できる。
Metal catalyst component The atomic ratio of rhodium to gold of the gold catalyst containing rhodium constituting the metal catalyst component in the present invention (Rh / Au) has a lower limit of 0.1 or more, preferably 0.2 or more, more preferably Is desirably 0.3 or more. When the atomic ratio is 0.1 or more, the purification (removal) activity of nitrogen oxides is remarkably improved. On the other hand, the upper limit of the atomic ratio is usually less than 2.0, preferably 1.5 or less, more preferably 1.2 or less. When the atomic ratio is less than 2.0, the temperature at which the maximum value of the purification activity can be suppressed to 300 ° C. or less, and the state in which the purification activity is high can be maintained.

金とロジウムは、少なくとも一部が固溶した合金であることが好ましい。金単独粒子と金とロジウムの固溶した合金粒子の混合物であってもよいし、ロジウム単独粒子と金とロジウムの固溶した合金粒子の混合物であってもよい。   Gold and rhodium are preferably an alloy in which at least a part thereof is in solid solution. It may be a mixture of gold single particles and alloy particles in which gold and rhodium are solid solution, or may be a mixture of rhodium single particles and alloy particles in which gold and rhodium are solid solution.

本発明のロジウムを含む金触媒は、CuKα線をX線源として用いたXRDにおいて、回折角(2θ)が39°付近にブロードなピークが現れることが好ましい。このピークは金の38.0°のピークと重なって現れることがある。ピーク位置はロジウムの量によって僅かに異なるが、例えば金に対するロジウムの原子比が1の時は、39.2°である。このピークは、金とロジウムの固溶した合金によるものであると考えられる。   In the gold catalyst containing rhodium of the present invention, it is preferable that a broad peak appears at a diffraction angle (2θ) of around 39 ° in XRD using CuKα ray as an X-ray source. This peak may appear overlapping the 38.0 ° peak of gold. The peak position is slightly different depending on the amount of rhodium. For example, when the atomic ratio of rhodium to gold is 1, it is 39.2 °. This peak is thought to be due to a solid solution alloy of gold and rhodium.

なお、本発明で例示する触媒の調製法を用いると金とロジウムの固溶した合金粒子の粒子径が5nm未満となり、XRD(X線回折)により格子定数を測定することができない場合があり、Au固容量を計算することが困難な場合がある。   If the catalyst preparation method exemplified in the present invention is used, the particle diameter of the alloy particles in which gold and rhodium are dissolved is less than 5 nm, and the lattice constant may not be measured by XRD (X-ray diffraction). It may be difficult to calculate the Au solid capacity.

金とロジウムの固溶した合金粒子の結晶子径は、5nm以下であることが好ましい。更に好ましくは3nm以下である。金とロジウムの固溶した合金粒子の結晶子径は、CuKα線をX線源として用いたXRDにおいて、回折角(2θ)が39°付近に現れるブロードなピークの回折線幅の広がりからScherrerの式を用いて算出することができる。   The crystallite diameter of the alloy particle in which gold and rhodium are dissolved is preferably 5 nm or less. More preferably, it is 3 nm or less. The crystallite size of the alloy particles in which gold and rhodium are solid-solubilized is determined by Scherrer's from the broad diffraction line width of a broad peak in which the diffraction angle (2θ) appears near 39 ° in XRD using CuKα rays as an X-ray source. It can be calculated using an equation.

本発明では長期間使用時の金とロジウムの合金粒子の安定性を高める目的などから金とロジウムに銅、銀、パラジウム、イリジウム、ルテニウム、白金からなる群より選ばれる1種以上の金属を加えて用いてもよい。これら1種を単独で用いてもよく、これらのうちの2種以上の金属の合金、又は物理的混合物を用いてもよい。これらの群から選ばれる1種以上の貴金属は、通常、金の0.001質量倍から0.5質量倍以下の範囲で用いる。好ましくは、0.002質量倍から0.25質量倍であり、更に好ましくは、0.01質量倍から0.1質量倍である。0.001質量倍以上であればこれらの貴金属の効果が好適に得られる。また、0.5質量倍以下で用いると金−ロジウム合金により窒素酸化物の浄化活性がかえって低下する現象が抑制でき、好ましい。   In the present invention, one or more metals selected from the group consisting of copper, silver, palladium, iridium, ruthenium and platinum are added to gold and rhodium for the purpose of improving the stability of the alloy particles of gold and rhodium during long-term use. May be used. One of these may be used alone, or an alloy or physical mixture of two or more of these may be used. One or more kinds of noble metals selected from these groups are usually used in the range of 0.001 to 0.5 mass times that of gold. Preferably, it is 0.002 times by mass to 0.25 times by mass, and more preferably 0.01 times by mass to 0.1 times by mass. If it is 0.001 mass times or more, the effect of these noble metals is suitably obtained. Moreover, when it is used at 0.5 mass times or less, a phenomenon in which the purification activity of nitrogen oxide is reduced by the gold-rhodium alloy can be suppressed, which is preferable.

本発明で用いられる金属触媒成分の主金属である金とロジウムに異なる機能をもつ助触媒的成分を添加することによってシナジー効果による触媒性能の向上をはかることもできる。このような成分として、例えば、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、バリウム、スカンジウム、イットリウム、チタン、ジルコニウム、ハフニウム、ニオブ、タンタル、モリブデン、タングステン、ランタン、セリウム、バリウム、及びこれらの化合物を挙げることができる。   By adding a promoter component having different functions to gold and rhodium which are main metals of the metal catalyst component used in the present invention, the catalyst performance can be improved by a synergistic effect. Examples of such components include chromium, manganese, iron, cobalt, nickel, copper, zinc, barium, scandium, yttrium, titanium, zirconium, hafnium, niobium, tantalum, molybdenum, tungsten, lanthanum, cerium, barium, and these. Can be mentioned.

これらの中で、不動態化膜になるクロム、鉄、コバルト、ニッケル、還元剤の吸着力が比較的高い銅、中程度の酸化力をもつ酸化セリウムと三二酸化マンガン、SOx被毒防止に有効な銅−亜鉛、鉄−クロム、酸化モリブデン、などは好ましい。この成分の添加量は、通常、金質量の0.01質量倍から0.5質量倍程度である。
金とロジウムに加えて上記の貴金属や助触媒的成分として金属を添加する場合において金属触媒成分中に含有される全金属に対する金とロジウムの合計が60質量%以上であることが必要である。好ましくは80質量%以上である。更に好ましくは90質量%以上である。なお、上限は100質量%である。
Among these, chromium, iron, cobalt, nickel, which is a passivating film, copper with a relatively high adsorptive power of reducing agents, cerium oxide and manganese dioxide with moderate oxidizing power, effective in preventing SOx poisoning Copper-zinc, iron-chromium, molybdenum oxide, and the like are preferable. The amount of this component added is usually about 0.01 to 0.5 times the mass of gold.
In addition to gold and rhodium, when the above-mentioned noble metal or a metal is added as a promoter component, the sum of gold and rhodium with respect to all metals contained in the metal catalyst component needs to be 60% by mass or more. Preferably it is 80 mass% or more. More preferably, it is 90 mass% or more. The upper limit is 100% by mass.

本発明で用いられる金属触媒成分を構成するロジウムを含む金触媒は、担体に担持されている。金とロジウムの担体に対する担持濃度は、特に限定されないが、0.01質量%以上30質量%以下が好ましい。更に好ましくは、0.1質量%以上20質量%以下である。30質量%以上を担持することも可能であるが、担持濃度が過剰になると反応にほとんど寄与しない金とロジウムが増えるので30質量%以下が好ましい。また、十分な触媒活性を得るには0.01質量%以上が好ましい。   The gold catalyst containing rhodium constituting the metal catalyst component used in the present invention is supported on a carrier. The supporting concentration of gold and rhodium on the carrier is not particularly limited, but is preferably 0.01% by mass or more and 30% by mass or less. More preferably, it is 0.1 mass% or more and 20 mass% or less. Although it is possible to carry 30% by mass or more, gold and rhodium that hardly contribute to the reaction increase when the carrying concentration is excessive, and therefore 30% by mass or less is preferable. Moreover, 0.01 mass% or more is preferable in order to obtain sufficient catalyst activity.

担体
担体は、特に限定されないが金とロジウムを高分散で担持するために50m/g以上の比表面積を持つことが好ましい。比表面積が50m/g以上であると金とロジウムの分散性が良好になり、結晶子径が小さくなり十分な窒素酸化物浄化活性が得られることから好ましい。また、好ましくは比表面積が2000m/g以下である。比表面積が2000m/g以下であると担体の構造上の強度が十分保たれることにより触媒調製時に担体が破壊されることがないので好ましい。
The carrier is not particularly limited, but preferably has a specific surface area of 50 m 2 / g or more in order to carry gold and rhodium with high dispersion. A specific surface area of 50 m 2 / g or more is preferable because the dispersibility of gold and rhodium is improved, the crystallite size is reduced, and sufficient nitrogen oxide purification activity is obtained. Moreover, the specific surface area is preferably 2000 m 2 / g or less. A specific surface area of 2000 m 2 / g or less is preferable because the support is not destroyed during catalyst preparation because the structural strength of the support is sufficiently maintained.

担体は、少なくともケイ素を含有する酸化物である。少なくともケイ素を含有する酸化物としては、シリカ、メソポーラスシリカ、シリカ−アルミナ、ゼオライトや、シリカとチタニア、ジルコニア、酸化ランタン、イットリア、セリア等との複合酸化物を用いることができる。この中でもシリカ、メソポーラスシリカが特に好ましく、更にメソポーラスシリカが高い浄化活性を得ることができる点から好ましい。   The support is an oxide containing at least silicon. Examples of the oxide containing at least silicon include silica, mesoporous silica, silica-alumina, zeolite, and composite oxides of silica and titania, zirconia, lanthanum oxide, yttria, ceria, and the like. Among these, silica and mesoporous silica are particularly preferable, and mesoporous silica is more preferable because high purification activity can be obtained.

これらの少なくともケイ素を含有する酸化物の平均粒子径は、0.05μm〜5mmであると好ましく、より好ましくは0.05μm〜30μmである。さらに好ましくは0.05〜10μmである。   The average particle diameter of these oxides containing at least silicon is preferably 0.05 μm to 5 mm, more preferably 0.05 μm to 30 μm. More preferably, it is 0.05-10 micrometers.

なお、ここでの平均粒子径は、レーザー回折・散乱式粒度分析計(例えば、Microtrac社製、製品名「MT3000」)により粒度分布(一定粒度区間内にある粒子の割合)を測定し、その全体積を100%として粒度分布の累積を求め、累積が50%になる点の粒径、すなわち、累積平均径(中心径、Median径)をいう。   In addition, the average particle diameter here measured the particle size distribution (ratio of the particle | grains in a fixed particle size area) with a laser diffraction and scattering type particle size analyzer (for example, product name "MT3000" manufactured by Microtrac), The accumulation of the particle size distribution is obtained by setting the total volume as 100%, and the particle diameter at the point where the accumulation reaches 50%, that is, the accumulated average diameter (center diameter, median diameter).

担体として直径2nm以上50nm以下の細孔を持つメソポーラスシリカを用いることにより、メソポーラスシリカの細孔に金とロジウムを担持し、その細孔径を制御することで金とロジウムの好ましい粒径範囲を選択することができること、また、金とロジウムを細孔内に担持することによって金とロジウムの凝集を抑制し、金とロジウムの金属粒子の均一高分散を図れること、などの優れた効果がある。細孔の直径が50nm以下であれば、金とロジウムの凝集を有効に抑制することができるため好ましい。   By using mesoporous silica having pores with a diameter of 2 nm or more and 50 nm or less as a support, gold and rhodium are supported in the pores of mesoporous silica and the preferred particle size range of gold and rhodium is selected by controlling the pore diameter. In addition, there are excellent effects such as that gold and rhodium are supported in the pores to suppress aggregation of gold and rhodium and uniform and high dispersion of metal particles of gold and rhodium can be achieved. A pore diameter of 50 nm or less is preferable because aggregation of gold and rhodium can be effectively suppressed.

メソポーラスシリカの細孔の大部分は、通常、直径が2nm以上50nm以下の範囲にあり、好ましくは2nm以上20nm以下の範囲にあり、より好ましくは2nm以上10nm以下の範囲にある。ここでいう細孔の大部分とは、2nm以上50nm以下の細孔が占める細孔容積が全細孔容積の60%以上であることをいう。細孔径が2nm未満であっても触媒金属の担持は可能であるが不純物等による汚染の影響を考えると2nm以上が好ましい。50nmを越えると分散担持された触媒が水熱高温条件などによる熱凝集によって巨大粒子に成長し、窒素酸化物の浄化活性が低下しやすくなるおそれがあるので50nm以下が好ましい。
なお、ここでの細孔径は、吸脱着の気体として窒素を用いた窒素吸着法によって測定される値であり、BJH法によって求められる1nm以上200nm以下の範囲の細孔分布(微分分布表示)で示される。
Most of the pores of mesoporous silica usually have a diameter in the range of 2 nm to 50 nm, preferably in the range of 2 nm to 20 nm, and more preferably in the range of 2 nm to 10 nm. As used herein, the majority of pores means that the pore volume occupied by pores of 2 nm or more and 50 nm or less is 60% or more of the total pore volume. Even if the pore diameter is less than 2 nm, the catalyst metal can be supported, but in view of the influence of contamination by impurities or the like, 2 nm or more is preferable. If it exceeds 50 nm, the dispersion-supported catalyst grows into giant particles due to thermal aggregation under hydrothermal high temperature conditions and the like, and the purification activity of nitrogen oxides tends to decrease, so 50 nm or less is preferable.
In addition, the pore diameter here is a value measured by a nitrogen adsorption method using nitrogen as an adsorption / desorption gas, and is a pore distribution (differential distribution display) in a range of 1 nm to 200 nm obtained by the BJH method. Indicated.

また、メソポーラスシリカの比表面積は、100m/g以上であることが好ましい。より好ましくは200m/g以上2000m/g以下、さらに好ましくは、300m/g以上1600m/g以下である。比表面積が100m/gより小さいと金とロジウムを均一高分散に担持することが困難になる。また、2000m/gを超えるとメソポーラスシリカの強度が十分保てなくなり好ましくない。なお、ここでの比表面積は、吸脱着の気体として窒素を用いたBET窒素吸着法によって測定される値である。 The specific surface area of mesoporous silica is preferably 100 m 2 / g or more. More preferably 200 meters 2 / g or more 2000 m 2 / g or less, still more preferably not more than 300 meters 2 / g or more 1600 m 2 / g. When the specific surface area is less than 100 m 2 / g, it becomes difficult to carry gold and rhodium uniformly and highly dispersed. Moreover, when it exceeds 2000 m < 2 > / g, the intensity | strength of mesoporous silica cannot fully be maintained, but it is not preferable. Here, the specific surface area is a value measured by a BET nitrogen adsorption method using nitrogen as an adsorption / desorption gas.

このようなメソポーラスシリカとしては、MCM−41、SBA−15、SBA−2、SBA−11、AMS−9、KSW−2、MCM−50、HMS、MSU−1、MSU−2、MSU−3などを用いることができるが、これらには限定されない。   Examples of such mesoporous silica include MCM-41, SBA-15, SBA-2, SBA-11, AMS-9, KSW-2, MCM-50, HMS, MSU-1, MSU-2, MSU-3, etc. However, it is not limited to these.

これらのメソポーラスシリカの中でも非晶質メソポーラスシリカが好ましい。   Among these mesoporous silicas, amorphous mesoporous silica is preferable.

一般に、多孔性材料に存在する空孔は小角X線回折法によって観測することができ、また、TEMによって直接観察することができる。メソ領域の大きさ(2nm〜50nm)の空孔は、横軸に回折角2θ、縦軸にX線回折強度をとったとき、通常、回折角2θが数度以内の領域でブロードな回折ピークを示す。空孔が多孔性材料の細孔であり、それがある程度の長距離範囲において規則正しく配列している場合には、上記回折角の領域において、一般に、結晶性物質に観測されるような複数本の回折ピークが観測され、そのパターンから、細孔配列の帰属が特定できる。また、この材料をTEM(透過型電子顕微鏡)観察すると細孔が秩序よく配列している像を観測することができる。このような規則配列した細孔を有する結晶性メソポーラス材料の例が二次元六方構造を持つMCM−41である。   In general, vacancies existing in a porous material can be observed by a small-angle X-ray diffraction method, or directly by a TEM. Voids with a meso-region size (2 nm to 50 nm) generally have a broad diffraction peak when the horizontal axis represents the diffraction angle 2θ and the vertical axis represents the X-ray diffraction intensity. Indicates. When the vacancies are pores of a porous material and are regularly arranged in a certain long distance range, in the region of the diffraction angle, a plurality of cavities generally observed in a crystalline substance are used. A diffraction peak is observed, and the assignment of the pore arrangement can be specified from the pattern. Further, when this material is observed with a TEM (transmission electron microscope), an image in which pores are arranged in an orderly manner can be observed. An example of a crystalline mesoporous material having such regularly arranged pores is MCM-41 having a two-dimensional hexagonal structure.

本発明における非晶質メソポーラスシリカとは、細孔に起因する1本の小角X線回折ピークを持ち、TEM観察によって細孔配列の秩序性がまったく観測されないメソポーラスシリカのことである。   The amorphous mesoporous silica in the present invention is mesoporous silica that has one small angle X-ray diffraction peak due to pores and in which no order of pore arrangement is observed by TEM observation.

非晶質メソポーラスシリカとしては、細孔構造として虫食い様(ワームホール状)構造を持つHMS、MSU−1、MSU−2、MSU−3などがあり、これらの構造を持つメソポーラスシリカを用いることができる。これらの中でもHMS構造のメソポーラスシリカが比表面積が大きく、熱的安定性にも優れることから好ましい。   As the amorphous mesoporous silica, there are HMS, MSU-1, MSU-2, MSU-3, etc. having a worm-eat-like (wormhole-like) structure as the pore structure, and mesoporous silica having these structures is used. it can. Among these, mesoporous silica having an HMS structure is preferable because of its large specific surface area and excellent thermal stability.

なお、本発明で好ましく用いる非晶質のメソポーラスシリカは、金とロジウムの高温における熱安定性を高めることができることから必要に応じて、構成元素の一部としてランタノイド族を含む3族元素、13族元素、5族元素、及び6族元素からなる群から選ばれた少なくとも一種類の元素を導入してもよい。   Note that the amorphous mesoporous silica preferably used in the present invention can improve the thermal stability of gold and rhodium at high temperatures, and therefore, if necessary, a group 3 element containing a lanthanoid group as a part of the constituent elements, 13 At least one element selected from the group consisting of group elements, group 5 elements, and group 6 elements may be introduced.

3族元素では、スカンジウム、イットリウム、ランタン、セリウム、サマリウム、ガドリニウムが好ましく、13族元素ではホウ素が好ましく、5族ではニオブ、及びタンタルが好ましく、6族ではクロム、モリブデン、及びタングステンが好ましい。中でも、ホウ素、タングステン、ニオブ、及びセリウムが更に好ましく、これらの元素を導入する効果の持続性の面からはタングステン、及びセリウムが特に好ましい。   Among group 3 elements, scandium, yttrium, lanthanum, cerium, samarium, and gadolinium are preferable, group 13 elements are preferably boron, group 5 is preferably niobium and tantalum, and group 6 is preferably chromium, molybdenum, and tungsten. Among these, boron, tungsten, niobium, and cerium are more preferable, and tungsten and cerium are particularly preferable from the viewpoint of sustaining the effect of introducing these elements.

これらの元素の導入量は非晶質メソポーラスシリカを構成する酸化ケイ素に対して1〜20モル%が好ましく、より好ましくは1〜10モル%である。   The amount of these elements introduced is preferably 1 to 20 mol%, more preferably 1 to 10 mol%, based on the silicon oxide constituting the amorphous mesoporous silica.

本発明において好ましい担体として用いるメソポーラスシリカの製造法は特に限定するものでなく、従来の方法である界面活性剤のミセルをテンプレートとして用いるゾル−ゲル法を応用することによって製造することができる。メソポーラスシリカの前駆物質には、通常、金属アルコキシドを用いる。例えばテトラメトキシシラン、テトラエトキシシラン、テトラ−i−プロポキシシラン、テトラ−n−プロポキシシラン、テトラ−i−ブトキシシラン、テトラ−n−ブトキシシラン、テトラ−sec−ブトキシシラン、テトラ−t−ブトキシシラン等のアルコキシドを用いることができる。また、水ガラス、コロイド状シリカ、煙状シリカ(フュームドシリカ)を原料としてもよい。   The method for producing mesoporous silica used as a preferred carrier in the present invention is not particularly limited, and can be produced by applying a sol-gel method using a surfactant micelle as a template, which is a conventional method. A metal alkoxide is usually used as a precursor of mesoporous silica. For example, tetramethoxysilane, tetraethoxysilane, tetra-i-propoxysilane, tetra-n-propoxysilane, tetra-i-butoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-t-butoxysilane Etc. can be used. Further, water glass, colloidal silica, or smoked silica (fumed silica) may be used as a raw material.

ミセル形成の界面活性剤の種類と塩基性、酸性、中性の合成条件がメソポーラスシリカの構造を決定する上で重要である。例えば、炭素数8〜22の長鎖の4級アンモニウム塩(例:セチルトリメチルアンモニウムブロマイドCTAB)を塩基性又は酸性条件で用いることにより種々の結晶性メソポーラスシリカが得られ、ポリエチレングリコール−ポリプロピレングリコール共重合体、ポリエチレングリコールアルキルエーテル、ポリエチレングリコール脂肪酸エステル等の非イオン性界面活性剤を酸性条件で用いることによっても結晶性のメソポーラスシリカを得ることができる。また、炭素数8〜22の長鎖のアルキルアミン(例:ドデシルアミン)やアルキルジアミンを中性〜弱塩基性条件で用いると非晶性のメソポーラスシリカを得ることができる。長鎖のアルキルアミンN−オキシド、長鎖のスルホン酸塩等も界面活性剤として用いることができる。   The type of micelle-forming surfactant and basic, acidic, and neutral synthesis conditions are important in determining the structure of mesoporous silica. For example, various crystalline mesoporous silicas can be obtained by using a long-chain quaternary ammonium salt having 8 to 22 carbon atoms (eg, cetyltrimethylammonium bromide CTAB) under basic or acidic conditions. Crystalline mesoporous silica can also be obtained by using a nonionic surfactant such as a polymer, polyethylene glycol alkyl ether or polyethylene glycol fatty acid ester under acidic conditions. Moreover, amorphous mesoporous silica can be obtained when long-chain alkylamines having 8 to 22 carbon atoms (eg, dodecylamine) or alkyldiamines are used under neutral to weakly basic conditions. Long chain alkylamine N-oxides, long chain sulfonates, and the like can also be used as surfactants.

溶媒としては、通常、水、アルコール類、ジオールの1種以上が用いられるが、水を含んだ溶媒を用いることが好ましい。   As the solvent, one or more of water, alcohols and diols are usually used, but it is preferable to use a solvent containing water.

メソポーラスシリカの合成反応系に金属への配位能を有する化合物を少量添加すると合成反応系の安定性を著しく高めることができる。このような安定剤としては、アセチルアセトン、テトラメチレンジアミン、エチレンジアミン四酢酸、ピリジン、ピコリンなどの金属配位能を有する化合物が好ましい。   If a small amount of a compound having a coordination ability to metal is added to the synthesis reaction system of mesoporous silica, the stability of the synthesis reaction system can be remarkably improved. As such a stabilizer, compounds having metal coordination ability such as acetylacetone, tetramethylenediamine, ethylenediaminetetraacetic acid, pyridine, and picoline are preferable.

前駆物質、界面活性剤、溶媒及び安定剤からなる合成反応系の組成は、前駆物質/溶媒のモル比が、通常0.01〜0.60、好ましくは0.02〜0.50、前駆物質/界面活性剤のモル比が、通常1〜30、好ましくは1〜10、溶媒/界面活性剤のモル比が、通常1〜1000、好ましくは5〜500、安定化剤/前駆物質のモル比が、通常0.01〜1.0、好ましくは0.2〜0.6である。反応温度は、通常20〜180℃、好ましくは20〜100℃の範囲である。反応時間は、通常5〜100時間、好ましくは10〜50時間の範囲である。   The composition of the synthesis reaction system consisting of the precursor, surfactant, solvent and stabilizer has a precursor / solvent molar ratio of usually 0.01 to 0.60, preferably 0.02 to 0.50. / Surfactant molar ratio is usually 1-30, preferably 1-10, solvent / surfactant molar ratio is usually 1-1000, preferably 5-500, stabilizer / precursor molar ratio. Is usually 0.01 to 1.0, preferably 0.2 to 0.6. The reaction temperature is usually 20 to 180 ° C, preferably 20 to 100 ° C. The reaction time is usually in the range of 5 to 100 hours, preferably 10 to 50 hours.

合成反応生成物は通常、濾過により分離し、十分に水洗、乾燥後、500〜1000℃の焼成によってテンプレートを熱分解除去し、メソポーラスシリカを得ることができる。必要に応じて、焼成前に界面活性剤をアルコールなどで抽出してもよい。   The synthetic reaction product is usually separated by filtration, sufficiently washed with water, dried, and then thermally decomposed and removed by baking at 500 to 1000 ° C. to obtain mesoporous silica. If necessary, the surfactant may be extracted with alcohol or the like before firing.

なお、3族元素、5族元素、6族元素、及び/又は13族元素を非晶質メソポーラスシリカのケイ素に変えて導入する場合は、メソポーラスシリカの前駆物質にこれらの元素のアルコキシド、アセチルアセトナート等を適当量加えて、上記メソポーラスシリカの製造法と同様の方法によって製造することができる。   In addition, when a group 3 element, a group 5 element, a group 6 element, and / or a group 13 element are introduced in place of silicon of amorphous mesoporous silica, the alkoxide or acetylacetate of these elements is added to the precursor of mesoporous silica. It can be produced by a method similar to the method for producing mesoporous silica by adding an appropriate amount of natto and the like.

担持触媒の製造
上記担体に金とロジウムを担持する方法は、公知のものであってもよく、特に制限されるものではないが、例えば、吸着法、イオン交換法、浸せき法、共沈法、乾固法、プラズマ法などが例示される。
Production of supported catalyst The method for supporting gold and rhodium on the carrier may be a known one, and is not particularly limited. For example, an adsorption method, an ion exchange method, an immersion method, a coprecipitation method, Examples include a drying method and a plasma method.

例えば、酸化物を触媒原料の水などの溶媒に溶解した溶液に浸漬した後、濾過、乾燥し、必要に応じて溶媒により洗浄を行い、還元剤で還元処理することによって製造することができる。   For example, it can be produced by immersing the oxide in a solution of the catalyst raw material in a solvent such as water, followed by filtration, drying, washing with a solvent if necessary, and reduction treatment with a reducing agent.

金の触媒原料としては、例えば、HAuCl・4HO、AuCl・xHO、AuBr・xHO、AuI・xHO、AuNaCl・2HO、NHAuCl、[μ-ビス(ジフェニルホスフィノ)メタン]ジクロロ二金(III),クロロトリエチルホスフィン金(I)、クロロトリメチルホスフィン金(I)、クロロトリフェニルホスフィン金(I)、ブロモ(トリフェニルホスフィン)金(I)、Au(CO)Clクロロカルボニル金(I)、ジメチル(アセチルアセトナート)金(III)、酢酸金(III)、シアン化金(I)、シアン化金(I)ナトリウム、水酸化金(III)、テトラブロモ金酸(III)水素水和物、メチル(トリフェニルホスフィン)金(I)、ジシアノ金(I)酸カリウム、テトラブロモ金(III)酸カリウム、テトラクロロ金(III)酸カリウム水和物、テトラブロモ金酸(III)ナトリウム水和物、テトラクロロ金(III)酸ナトリウム二水和物、トリクロロピリジン金(III)等を用いることができる。 Examples of the gold catalyst raw material include HAuCl 4 · 4H 2 O, AuCl 3 · xH 2 O, AuBr 3 · xH 2 O, AuI 3 · xH 2 O, AuNaCl 4 · 2H 2 O, NH 4 AuCl 4 , [ μ-bis (diphenylphosphino) methane] dichlorodigold (III), chlorotriethylphosphinegold (I), chlorotrimethylphosphinegold (I), chlorotriphenylphosphinegold (I), bromo (triphenylphosphine) gold ( I), Au (CO) Cl chlorocarbonyl gold (I), dimethyl (acetylacetonate) gold (III), gold acetate (III), gold cyanide (I), gold cyanide (I) sodium, gold hydroxide (III), tetrabromoauric acid (III) hydrogen hydrate, methyl (triphenylphosphine) gold (I), potassium dicyanogold (I), potassium tetrabromogold (III), potassium tetrachloroaurate (III) Hydrate, tetrabromogold Acid (III) sodium hydrate, tetrachlorogold (III) sodium dihydrate, trichloropyridine gold (III) and the like can be used.

また、ロジウムの触媒原料としては、例えば、RhCl、Rh(NO・xHO、アセチルアセトナトビス(シクロオクテン)ロジウム(I)、アセチルアセトナトビス(エチレン)ロジウム(I)、(アセチルアセトナト)カルボニル(トリフェニルホスフィン)ロジウム(I)、(アセチルアセトナト)(η-シクロオクタ-1,5-ジエン)ロジウム(I)、アセチルアセトナト(1,5-シクロオクタジエン)ロジウム(I)、(アセチルアセトナト)ジカルボニルロジウム(I)、(アセチルアセトナト)(ノルボルナジエン)ロジウム(I)、アクアペンタクロロロジウム(III)酸アンモニウム、ヘキサクロロロジウム(III)酸アンモニウムn水和物、ブロモトリス(トリフェニルホスフィン)ロジウム(I)、ジカルボニルアセチルアセトナトロジウム(I)、ヘキサクロロロジウム(III)酸カリウム、ヘキサニトリトロジウム(III)酸カリウム、酢酸ロジウム水和物、酢酸ロジウム(II)二量体、アセチルアセトナトロジウム(III)、臭化ロジウム(III)二水和物、塩化ロジウム(III)無水、塩化ロジウム(III)水和物、よう化ロジウム(III)、硝酸ロジウム(III)溶液、オクタン酸ロジウムダイマー、2,4-ペンタンジオン酸ロジウム(III)、硫酸ロジウム(III)、ヘキサクロロロジウム酸(III)ナトリウム水和物等を用いることができる。 Examples of rhodium catalyst raw materials include RhCl 3 , Rh (NO 3 ) 3 × H 2 O, acetylacetonatobis (cyclooctene) rhodium (I), acetylacetonatobis (ethylene) rhodium (I), (Acetylacetonato) carbonyl (triphenylphosphine) rhodium (I), (acetylacetonato) (η-cycloocta-1,5-diene) rhodium (I), acetylacetonato (1,5-cyclooctadiene) rhodium (I), (acetylacetonato) dicarbonylrhodium (I), (acetylacetonato) (norbornadiene) rhodium (I), aquapentachlororhodium (III) ammonium, hexachlororhodium (III) ammonium n hydrate Bromotris (triphenylphosphine) rhodium (I), dicarbonylacetylacetonatodium (I), potassium hexachlororhodium (III), Potassium nitritrodium (III), rhodium acetate hydrate, rhodium acetate (II) dimer, acetylacetonatodium (III), rhodium (III) bromide dihydrate, rhodium (III) chloride anhydrous, Rhodium (III) chloride hydrate, rhodium (III) iodide, rhodium (III) nitrate solution, rhodium octanoate dimer, rhodium (III) 2,4-pentandionate, rhodium (III) sulfate, hexachlororhodate ( III) Sodium hydrate and the like can be used.

金に必要に応じて更に添加する、イリジウム、レニウム、白金といった金属の原料としては、例えば、塩化物、臭化物、ヨウ化物などのハロゲン化物、又は硝酸塩、硫酸塩、水酸化物、あるいは、上記金属を含む各種の錯体(例えば、カルボニル錯体、アセチルアセトナート錯体、アンミン錯体、ヒドリド錯体)、及びかかる錯体から誘導される化合物が挙げられる。これらの金属の化合物は1種を単独で又は2種以上を混合して用いられる。金とロジウム原料に上記添加する金属の原料を混合して同様にして担体上に担持することができる。   As a raw material of a metal such as iridium, rhenium, or platinum that is further added to gold as required, for example, halides such as chloride, bromide, iodide, or nitrates, sulfates, hydroxides, or the above metals (For example, carbonyl complexes, acetylacetonate complexes, ammine complexes, hydride complexes) and compounds derived from such complexes. These metal compounds are used alone or in combination of two or more. The gold and rhodium raw materials can be mixed with the metal raw material to be added and supported on the carrier in the same manner.

本発明の担持触媒は、上記金とロジウムの化合物を担体に担持した後に還元処理を行うことにより得られる金属金と金属ロジウムを含むことが好ましい。金とロジウムの化合物の還元法としては、一般的な還元法、例えば、水素や一酸化炭素などによる接触還元法、又は、ホルマリン、水素化ホウ素ナトリウム、水素化ホウ素カリウム、ヒドラジン、アスコルビン酸、ギ酸、アルコールなどによる化学還元法が挙げられる。還元は、それぞれの還元剤について知られている通常の条件で行なえばよい。例えば、水素還元は、ヘリウムなどの不活性ガスで希釈した水素ガス気流下にサンプルを置き、通常、50〜600℃、好ましくは100〜500℃で数時間処理することによって行なうことができる。その還元温度が50℃以上であると還元に時間がかかり過ぎず、600℃以下であると金とロジウムの凝集が抑制でき、触媒の活性に悪影響を及ぼしにくくなる傾向にある。なお、還元は気相で行っても液相で行ってもよいが、好ましくは気相還元である。また、水素化ホウ素ナトリウムによる化学還元法の場合、還元温度は100℃以下であることが好ましく、10℃〜60℃であることがより好ましい。これらの還元処理後、必要に応じて、不活性ガス気流下500〜1000℃で数時間熱処理を行ってもよい。   The supported catalyst of the present invention preferably contains metallic gold and metallic rhodium obtained by carrying out a reduction treatment after supporting the above gold and rhodium compound on a carrier. As a reduction method of the gold and rhodium compound, a general reduction method, for example, catalytic reduction method using hydrogen or carbon monoxide, or formalin, sodium borohydride, potassium borohydride, hydrazine, ascorbic acid, formic acid And chemical reduction using alcohol or the like. The reduction may be performed under normal conditions known for each reducing agent. For example, hydrogen reduction can be performed by placing a sample in a hydrogen gas stream diluted with an inert gas such as helium and treating the sample at 50 to 600 ° C., preferably 100 to 500 ° C. for several hours. When the reduction temperature is 50 ° C. or higher, the reduction does not take too much time, and when it is 600 ° C. or lower, aggregation of gold and rhodium can be suppressed, and the activity of the catalyst tends not to be adversely affected. The reduction may be performed in a gas phase or a liquid phase, but is preferably a gas phase reduction. In the case of the chemical reduction method using sodium borohydride, the reduction temperature is preferably 100 ° C. or lower, more preferably 10 ° C. to 60 ° C. After these reduction treatments, heat treatment may be performed at 500 to 1000 ° C. for several hours under an inert gas stream as necessary.

窒素酸化物の除去(排ガスの浄化)
本発明のロジウムを含む金触媒を担持した担持触媒は、リーンバーン排ガス中の窒素酸化物を除去するに際し、特に還元剤として軽油を用いる場合に顕著な効果を奏するが、還元剤として軽油以外の炭化水素を用いても効果を奏するので、軽油以外の還元剤として使用可能な炭化水素について説明する。
Removal of nitrogen oxides (purification of exhaust gas)
The supported catalyst supporting the gold catalyst containing rhodium of the present invention has a remarkable effect when removing nitrogen oxides in lean burn exhaust gas, particularly when light oil is used as the reducing agent. Since hydrocarbons are also effective, hydrocarbons that can be used as a reducing agent other than light oil will be described.

好ましくは、炭素数6以上の炭化水素を用いることが好ましい。炭素数6以上の炭化水素の例としては、ガソリン、重油等がある。還元剤を用いる量は、排ガス中の窒素酸化物の濃度に対して還元剤の炭素の量に換算した濃度で1当量から100倍量が好ましい。より好ましくは2倍量から50倍量である。ここで還元剤の炭素の量に換算するとは、例えば還元剤に軽油を200ppm用いた場合、軽油の平均炭素数は16であるので炭素の量に換算した濃度としては、3200ppmである。濃度が1当量以上であると窒素酸化物を十分除去することが容易である。また、100倍量以下であると窒素酸化物の還元に用いられない還元剤の量が少なく、酸素によって燃焼して触媒層の温度上昇を引き起こすことが抑制されるので好ましい。   Preferably, a hydrocarbon having 6 or more carbon atoms is used. Examples of hydrocarbons having 6 or more carbon atoms include gasoline and heavy oil. The amount of the reducing agent used is preferably 1 equivalent to 100 times the concentration in terms of the amount of carbon in the reducing agent with respect to the concentration of nitrogen oxides in the exhaust gas. More preferably, the amount is 2 to 50 times. Here, when converted to the amount of carbon of the reducing agent, for example, when 200 ppm of light oil is used as the reducing agent, the average carbon number of the light oil is 16, so the concentration converted to the amount of carbon is 3200 ppm. When the concentration is 1 equivalent or more, it is easy to sufficiently remove nitrogen oxides. Moreover, it is preferable that the amount is 100 times or less because the amount of the reducing agent that is not used for the reduction of nitrogen oxides is small, and combustion with oxygen is suppressed from causing an increase in the temperature of the catalyst layer.

本発明において還元剤として用い得る軽油は、ディーゼルエンジンの燃料としても使用されることから還元剤としての専用のタンクを設ける必要がない点においても好ましい。   The light oil that can be used as a reducing agent in the present invention is also preferable in that it does not need to be provided with a dedicated tank as a reducing agent because it is used as a fuel for a diesel engine.

本発明のロジウムを含む金触媒を担持した担持触媒を用いてリーンバーン排ガス中の窒素酸化物を除去するに際し、本発明の担持触媒をハニカム形状の支持体上に保持して用いることもできる。ハニカム形状の支持体としては、例えば、断面が網目状で、軸方向に平行に互いに薄い壁によって仕切られたガス流路を設けている成形体を用いることができる。成形体の外形は、特に限定するものではないが、通常は、円柱形である。材質としては、コージェライト(2MgO・2Al・5SiO)などのセラミックでもよいし、例えば金属組成がFe75%、Cr20%、Al5%である金属製のものを用いることもできる。 When removing the nitrogen oxide in the lean burn exhaust gas using the supported catalyst supporting the gold catalyst containing rhodium of the present invention, the supported catalyst of the present invention can also be used while being supported on a honeycomb-shaped support. As the honeycomb-shaped support, for example, a molded body having a mesh cross section and provided with gas flow paths partitioned by thin walls in parallel to the axial direction can be used. Although the external shape of a molded object is not specifically limited, Usually, it is a cylindrical shape. The material may be a ceramic such as cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 ), for example, a metal having a metal composition of Fe 75%, Cr 20%, Al 5% may be used.

本発明のロジウムを含む金触媒を担持した担持触媒をハニカム形状の支持体上に保持する保持量は、3質量%以上30質量%以下が好ましい。30質量%以下ではモノリス成形体表面に保持された触媒の厚みが過大ではなく、内部に存在する触媒へのガス拡散が十分であることから30質量%以下が好ましい。また、十分なNOx浄化(除去)性能を引き出す上で3質量%以上が好ましい。金とロジウムの合計の支持体上への保持濃度は、0.03質量%以上4質量%以下が好ましい。触媒をハニカム形状の支持体上に保持する方法としては、通常の方法に準じて行えばよい。例えば、触媒とバインダーとしてのコロイダルシリカを、通常、1:(0.01〜0.2)の質量割合で混合した混合物をつくり、これを水分散することによって通常5〜50質量%のスラリーを調整した後、該スラリーに支持体を浸漬してハニカム形状の支持体のガス流路の内壁にスラリーを付着させ、乾燥後、窒素、ヘリウム、アルゴンなどの不活性雰囲気下500〜1000℃で数時間熱処理することによって製造することがきる。   The holding amount for holding the supported catalyst carrying the gold catalyst containing rhodium of the present invention on the honeycomb-shaped support is preferably 3% by mass or more and 30% by mass or less. If it is 30% by mass or less, the thickness of the catalyst held on the surface of the monolith molded body is not excessive, and gas diffusion to the catalyst existing inside is sufficient. Further, 3% by mass or more is preferable in order to bring out sufficient NOx purification (removal) performance. The retention concentration of gold and rhodium on the support is preferably 0.03% by mass or more and 4% by mass or less. A method for holding the catalyst on the honeycomb-shaped support may be performed in accordance with a normal method. For example, a mixture in which a catalyst and colloidal silica as a binder are usually mixed at a mass ratio of 1: (0.01 to 0.2) is prepared, and a slurry of usually 5 to 50% by mass is obtained by water dispersion. After the adjustment, the support is immersed in the slurry to adhere the slurry to the inner wall of the gas flow path of the honeycomb-shaped support, and after drying, several times at 500 to 1000 ° C. in an inert atmosphere such as nitrogen, helium, and argon. It can be manufactured by heat treatment for a long time.

コロイダルシリカ以外のバインダーとしては、メチルセルロース、アクリル樹脂、ポリエチレングリコール、フェノール樹脂、クレゾール樹脂などを適宜用いることもできる。   As a binder other than colloidal silica, methyl cellulose, acrylic resin, polyethylene glycol, phenol resin, cresol resin, or the like can be used as appropriate.

本発明について、以下の実施例を参照しながら、より具体的に説明する。   The present invention will be described more specifically with reference to the following examples.

(評価方法)
実施例中の小角X線回折パターン及び粉末X線回折パターンは理学電機社製RINT2000型X線回折装置によって測定した。
(Evaluation method)
Small-angle X-ray diffraction patterns and powder X-ray diffraction patterns in the examples were measured with a RINT2000 X-ray diffraction apparatus manufactured by Rigaku Corporation.

担体の細孔は日立製作所製H−9000UHR型透過型電子顕微鏡を用いて直接観察した。金とロジウムの固溶体の結晶子径は、粉末X線回折パターンの39°付近のピークの半値幅をScherrerの式に代入して算出した。   The pores of the carrier were directly observed using an H-9000UHR transmission electron microscope manufactured by Hitachi. The crystallite size of the solid solution of gold and rhodium was calculated by substituting the half width of the peak near 39 ° of the powder X-ray diffraction pattern into the Scherrer equation.

比表面積及び細孔分布は、脱吸着の気体として窒素を用い、カルロエルバ社製ソープトマチック1800型装置を用いて測定した。比表面積はBET法によって求めた。細孔分布は1〜200nmの範囲を測定した。製造したメソポーラスシリカは指数関数的に左肩上がりの分布における特定の細孔直径の位置にピークを示した。このピークを与える細孔直径を細孔径とした。   The specific surface area and pore distribution were measured using a Sorpmatic 1800 type apparatus manufactured by Carlo Elba, using nitrogen as the desorption gas. The specific surface area was determined by the BET method. The pore distribution was measured in the range of 1 to 200 nm. The produced mesoporous silica showed a peak at a specific pore diameter in an exponentially increasing distribution. The pore diameter giving this peak was defined as the pore diameter.

自動車排NOxのモデルガスとして、ヘリウム希釈一酸化窒素、酸素、及び還元性ガス(軽油又はプロピレン)を用いた。
一酸化窒素の処理率は、減圧式化学発光法NOx分析計(日本サーモ株式会社製造:モデル42i−HL及び46C−H)によって処理後のガスに含まれる一酸化窒素を測定し、以下の式(1)によって算出した。
処理率 = [1−(反応後のガスの吸光度/反応前のガスの吸光度)]×100 (%) − (1)
Helium-diluted nitric oxide, oxygen, and reducing gas (light oil or propylene) were used as model gases for automobile exhaust NOx.
The treatment rate of nitric oxide was measured by measuring nitrogen monoxide contained in the treated gas with a reduced pressure chemiluminescence NOx analyzer (manufactured by Nippon Thermo Co., Ltd .: models 42i-HL and 46C-H). Calculated according to (1).
Treatment rate = [1- (absorbance of gas after reaction / absorbance of gas before reaction)] × 100 (%) − (1)

(担体の合成)
[参考例1]結晶性メソポーラスシリカの合成
結晶性メソポーラスシリカMCM−41は、米国特許第5,143,707号明細書における実施例21の方法に従って合成した。得られたMCM−41の比表面積は1450m/g、細孔径は2.5nmであった。平均粒子径は、8μmであった。小角X線回折パターンは4本の回折ピークを示し、それぞれの面間隔(d値)は3.2nm(strong)、1.8nm(weak)、1.6nm(weak)、及び、1.2nm(very weak)であった。
(Carrier synthesis)
Reference Example 1 Synthesis of crystalline mesoporous silica Crystalline mesoporous silica MCM-41 was synthesized according to the method of Example 21 in US Pat. No. 5,143,707. The obtained MCM-41 had a specific surface area of 1450 m 2 / g and a pore diameter of 2.5 nm. The average particle size was 8 μm. The small-angle X-ray diffraction pattern shows four diffraction peaks, and the interplanar spacing (d value) is 3.2 nm (strong), 1.8 nm (weak), 1.6 nm (weak), and 1.2 nm ( very weak).

[参考例2]非晶性メソポーラスシリカの合成
蒸留水300g、エタノール240g、及びドデシルアミン30gを均一溶液とした。この溶液に撹拌下でテトラエチルオルトシリケート125g加えて25℃で22時間撹拌した。生成物を濾過、水洗、風乾した後、空気下550℃で5時間焼成した。
[Reference Example 2] Synthesis of amorphous mesoporous silica 300 g of distilled water, 240 g of ethanol, and 30 g of dodecylamine were used as a uniform solution. 125 g of tetraethylorthosilicate was added to this solution with stirring, and the mixture was stirred at 25 ° C. for 22 hours. The product was filtered, washed with water and air-dried and then calcined at 550 ° C. for 5 hours under air.

得られたメソポーラスシリカの小角X線回折は、2θ角が2.72度(d=3.25nm)の所に1本のブロードな回折ピークを示した。   The small angle X-ray diffraction of the obtained mesoporous silica showed one broad diffraction peak at a 2θ angle of 2.72 degrees (d = 3.25 nm).

また、透過型電気顕微鏡観察の結果、細孔の配列に規則性は観測されず、無秩序に分散している状態であることが確認された。   Further, as a result of observation with a transmission electric microscope, regularity was not observed in the pore arrangement, and it was confirmed that the pores were randomly dispersed.

これらの結果から、製造したメソポーラスシリカは非晶性であることが確認された。また、細孔分布及び比表面積測定の結果、約3.2nmの位置に細孔ピークがあり、比表面積が933m/g、細孔容積が1.35cm/g、2〜50nmの細孔が占める容積は1.34cm/gであった。また、平均粒子径は、5μmであった。 From these results, it was confirmed that the produced mesoporous silica was amorphous. Moreover, as a result of pore distribution and specific surface area measurement, there was a pore peak at a position of about 3.2 nm, a specific surface area of 933 m 2 / g, a pore volume of 1.35 cm 3 / g, and a pore of 2 to 50 nm. The volume occupied by was 1.34 cm 3 / g. The average particle size was 5 μm.

(担持触媒の合成)
[実施例1]2質量%Au−Rh(Rh/Au=0.3(原子比、以下同じ))/シリカ触媒の合成
比表面積290m/g(日揮触媒化成株式会社製)のシリカ10gに0.418gの塩化金(III)酸四水和物[HAuCl・4HO]と0.313gの10質量%のロジウムを含む硝酸ロジウム[Rh(NO]の硝酸水溶液を20gの蒸留水に溶解した水溶液を加え、撹拌混合した後に蒸発乾固し、120℃で3時間真空乾燥を行った。この試料を石英管に入れヘリウム希釈水素ガス(10%v/v)気流下400℃で3時間還元し、金の含有量が約2質量%のAu−Rh(Rh/Au=0.3)/シリカ触媒を合成した。担持された金−ロジウム合金の平均結晶子径は、約2.5nmであった。
(Synthesis of supported catalyst)
Example 1 2 wt% Au-Rh (Rh / Au = 0.3 ( atomic ratio, hereinafter the same)) silica 10g of / synthetic specific surface area of the silica catalyst 290 m 2 / g (manufactured by JGC Catalysts and Chemicals Ltd.) 20 g of nitric acid aqueous solution of 0.418 g of rhodium nitrate [Rh (NO 3 ) 3 ] containing 0.418 g of gold chloride (III) acid tetrahydrate [HAuCl 4 .4H 2 O] and 0.313 g of 10% by mass of rhodium An aqueous solution dissolved in distilled water was added, mixed with stirring, evaporated to dryness, and vacuum dried at 120 ° C. for 3 hours. This sample was placed in a quartz tube and reduced at 400 ° C. for 3 hours under a helium-diluted hydrogen gas (10% v / v) stream. Au—Rh (Rh / Au = 0.3) with a gold content of about 2% by mass. / Silica catalyst was synthesized. The average crystallite diameter of the supported gold-rhodium alloy was about 2.5 nm.

[実施例2]2質量%Au−Rh(Rh/Au=0.3)/MCM−41触媒の合成
実施例1のシリカに代えて参考例1で合成した比表面積1450m/gの結晶質メソポーラスシリカMCM−41の10gを用いた以外は、実施例1と同様にして金含有量が約2質量%のAu−Rh(Rh/Au=0.3)/MCM−41触媒を合成した。担持された金−ロジウム合金の平均結晶子径は、約2.6nmであった。
[Example 2] Synthesis of 2% by mass Au-Rh (Rh / Au = 0.3) / MCM-41 catalyst Crystalline with a specific surface area of 1450 m 2 / g synthesized in Reference Example 1 instead of silica in Example 1 An Au—Rh (Rh / Au = 0.3) / MCM-41 catalyst having a gold content of about 2 mass% was synthesized in the same manner as in Example 1 except that 10 g of mesoporous silica MCM-41 was used. The average crystallite diameter of the supported gold-rhodium alloy was about 2.6 nm.

[実施例3]2質量%Au−Rh(Rh/Au=0.3)/非晶質メソポーラスシリカ触媒の合成
実施例1のシリカに代えて参考例2で合成した非晶質メソポーラスシリカ10gを用いた以外は、実施例1と同様にして金含有量が約2質量%のAu−Rh(Rh/Au=0.3)/非晶質メソポーラスシリカ触媒を合成した。担持された金−ロジウム合金の平均結晶子径は、約2.7nmであった。
Example 3 Synthesis of 2% by mass Au—Rh (Rh / Au = 0.3) / amorphous mesoporous silica catalyst 10 g of amorphous mesoporous silica synthesized in Reference Example 2 instead of the silica of Example 1 An Au—Rh (Rh / Au = 0.3) / amorphous mesoporous silica catalyst having a gold content of about 2% by mass was synthesized in the same manner as in Example 1 except that it was used. The average crystallite diameter of the supported gold-rhodium alloy was about 2.7 nm.

[比較例1]2質量%Au−Rh(Rh/Au=0.3)/アルミナ触媒の合成
実施例1のシリカに代えて比表面積170m/g(日揮触媒化成株式会社製)のアルミナ10gを用いた以外は、実施例1と同様にして金含有量が約2質量%のAu−Rh(Rh/Au=0.3)/アルミナ触媒を合成した。担持された金−ロジウム合金の平均結晶子径は、約3.0nmであった。
[Comparative Example 1] Synthesis of 2% by mass Au-Rh (Rh / Au = 0.3) / alumina catalyst 10 g of alumina having a specific surface area of 170 m 2 / g (manufactured by JGC Catalysts and Chemicals Co., Ltd.) instead of silica of Example 1 An Au—Rh (Rh / Au = 0.3) / alumina catalyst having a gold content of about 2% by mass was synthesized in the same manner as in Example 1 except that was used. The average crystallite diameter of the supported gold-rhodium alloy was about 3.0 nm.

[実施例4]10質量%Au−Rh(Rh/Au=0.05)/非晶質メソポーラスシリカ触媒の合成
参考例2の非晶質メソポーラスシリカ10gに2.091gの塩化金(III)酸四水和物[HAuCl・4HO]と0.261gの10質量%のロジウムを含む硝酸ロジウム[Rh(NO]の硝酸水溶液を20gの蒸留水に溶解した水溶液を加え、撹拌混合した後に蒸発乾固し、120℃で3時間真空乾燥を行った。この試料を石英管に入れヘリウム希釈水素ガス(10%v/v)気流下400℃で3時間還元し、金の含有量が約10質量%のAu−Rh(Rh/Au=0.05)/非晶質メソポーラスシリカ触媒を合成した。担持された金−ロジウム合金の平均結晶子径は、約6.3nmであった。
[Example 4] Synthesis of 10% by mass Au-Rh (Rh / Au = 0.05) / amorphous mesoporous silica catalyst 2.091 g of gold (III) chloride chloride in 10 g of amorphous mesoporous silica of Reference Example 2 Add an aqueous solution of tetrahydrate [HAuCl 4 · 4H 2 O] and 0.261 g of rhodium nitrate [Rh (NO 3 ) 3 ] containing 10% by mass of rhodium dissolved in 20 g of distilled water and stir After mixing, the mixture was evaporated to dryness and vacuum dried at 120 ° C. for 3 hours. This sample was put into a quartz tube and reduced at 400 ° C. for 3 hours under a helium-diluted hydrogen gas (10% v / v) stream, and Au—Rh (Rh / Au = 0.05) with a gold content of about 10% by mass. / Amorphous mesoporous silica catalyst was synthesized. The average crystallite diameter of the supported gold-rhodium alloy was about 6.3 nm.

[実施例5]10質量%Au−Rh(Rh/Au=0.1)/非晶質メソポーラスシリカ触媒の合成
実施例4において10質量%のロジウムを含む硝酸ロジウム[Rh(NO]の硝酸水溶液の量を0.522gに変えた以外は、実施例4と同様にして約10質量%のAu−Rh(Rh/Au=0.1)/非晶質メソポーラスシリカ触媒を合成した。担持された金−ロジウム合金の平均結晶子径は、約5.4nmであった。
Example 5 Synthesis of 10% by mass Au—Rh (Rh / Au = 0.1) / amorphous mesoporous silica catalyst In Example 4, rhodium nitrate containing 10% by mass rhodium [Rh (NO 3 ) 3 ] Except that the amount of the nitric acid aqueous solution was changed to 0.522 g, an about 10 mass% Au—Rh (Rh / Au = 0.1) / amorphous mesoporous silica catalyst was synthesized in the same manner as in Example 4. The average crystallite diameter of the supported gold-rhodium alloy was about 5.4 nm.

[実施例6]10質量%Au−Rh(Rh/Au=0.3)/非晶質メソポーラスシリカ触媒の合成
実施例4において10質量%のロジウムを含む硝酸ロジウム[Rh(NO]の硝酸水溶液の量を1.567gに変えた以外は、実施例4と同様にして約10質量%のAu−Rh(Rh/Au=0.3)/非晶質メソポーラスシリカ触媒を合成した。担持された金−ロジウム合金の平均結晶子径は、約2.5nmであった。
[Example 6] 10 wt% Au-Rh (Rh / Au = 0.3) / Synthesis Example 4 of amorphous mesoporous silica catalysts 10 wt% of rhodium nitrate containing rhodium [Rh (NO 3) 3] Except that the amount of the nitric acid aqueous solution was changed to 1.567 g, an about 10% by mass Au—Rh (Rh / Au = 0.3) / amorphous mesoporous silica catalyst was synthesized in the same manner as in Example 4. The average crystallite diameter of the supported gold-rhodium alloy was about 2.5 nm.

[実施例7]10質量%Au−Rh(Rh/Au=0.5)/非晶質メソポーラスシリカ触媒の合成
実施例4において10質量%のロジウムを含む硝酸ロジウム[Rh(NO]の硝酸水溶液の量を2.612gに変えた以外は、実施例4と同様にして約10質量%のAu−Rh(Rh/Au=0.5)/非晶質メソポーラスシリカ触媒を合成した。担持された金−ロジウム合金の平均結晶子径は、約2.3nmであった。
[Example 7] Synthesis of 10% by mass Au-Rh (Rh / Au = 0.5) / amorphous mesoporous silica catalyst In Example 4, rhodium nitrate containing 10% by mass rhodium [Rh (NO 3 ) 3 ] Except that the amount of the nitric acid aqueous solution was changed to 2.612 g, an Au-Rh (Rh / Au = 0.5) / amorphous mesoporous silica catalyst of about 10% by mass was synthesized in the same manner as in Example 4. The average crystallite diameter of the supported gold-rhodium alloy was about 2.3 nm.

[実施例8]10質量%Au−Rh(Rh/Au=1.0)/非晶質メソポーラスシリカ触媒の合成
実施例4において10質量%のロジウムを含む硝酸ロジウム[Rh(NO]の硝酸水溶液の量を5.225gに変えた以外は、実施例4と同様にして約10質量%のAu−Rh(Rh/Au=1.0)/非晶質メソポーラスシリカ触媒を合成した。担持された金−ロジウム合金の平均結晶子径は、約2.1nmであった。
[Example 8] Synthesis of 10% by mass Au-Rh (Rh / Au = 1.0) / amorphous mesoporous silica catalyst In Example 4, rhodium nitrate containing 10% by mass rhodium [Rh (NO 3 ) 3 ] Except that the amount of the nitric acid aqueous solution was changed to 5.225 g, about 10% by mass of Au—Rh (Rh / Au = 1.0) / amorphous mesoporous silica catalyst was synthesized in the same manner as in Example 4. The average crystallite diameter of the supported gold-rhodium alloy was about 2.1 nm.

[実施例9]10質量%Au−Rh(Rh/Au=1.8)/非晶質メソポーラスシリカ触媒の合成
実施例4において10質量%のロジウムを含む硝酸ロジウム[Rh(NO]の硝酸水溶液の量を9.405gに変えた以外は、実施例4と同様にして約10質量%のAu−Rh(Rh/Au=1.8)/非晶質メソポーラスシリカ触媒を合成した。担持された金−ロジウム合金の平均結晶子径は、約3.5nmであった。
[Example 9] Synthesis of 10% by mass Au-Rh (Rh / Au = 1.8) / amorphous mesoporous silica catalyst In Example 4, rhodium nitrate containing 10% by mass rhodium [Rh (NO 3 ) 3 ] Except that the amount of the nitric acid aqueous solution was changed to 9.405 g, an Au-Rh (Rh / Au = 1.8) / amorphous mesoporous silica catalyst of about 10% by mass was synthesized in the same manner as in Example 4. The average crystallite diameter of the supported gold-rhodium alloy was about 3.5 nm.

[実施例10]10質量%Au−Rh(Rh/Au=2.0)/非晶質メソポーラスシリカ触媒の合成
実施例4において10質量%のロジウムを含む硝酸ロジウム[Rh(NO]の硝酸水溶液の量を10.449gに変えた以外は、実施例4と同様にして約10質量%のAu−Rh(Rh/Au=2.0)/非晶質メソポーラスシリカ触媒を合成した。担持された金−ロジウム合金の平均結晶子径は、約6.0nmであった。
Example 10 10 wt% Au-Rh (Rh / Au = 2.0) / Synthesis Example 4 of amorphous mesoporous silica catalysts 10 wt% of rhodium nitrate containing rhodium [Rh (NO 3) 3] Except that the amount of the nitric acid aqueous solution was changed to 10.449 g, an Au-Rh (Rh / Au = 2.0) / amorphous mesoporous silica catalyst of about 10% by mass was synthesized in the same manner as in Example 4. The average crystallite size of the supported gold-rhodium alloy was about 6.0 nm.

なお、実施例1から実施例10及び比較例1で合成した触媒は、金属触媒成分中に含有される金属は金とロジウムのみであり、全金属触媒成分中の金とロジウムの合計は100質量%である。   In the catalysts synthesized in Examples 1 to 10 and Comparative Example 1, the metals contained in the metal catalyst component are only gold and rhodium, and the total of gold and rhodium in all metal catalyst components is 100 mass. %.

[比較例2]10質量%Au/非晶質メソポーラスシリカ触媒の合成
実施例4において10質量%のロジウムを含む硝酸ロジウム[Rh(NO]の硝酸水溶液を全く用いなかった以外は、実施例4と同様にして約10質量%のAu/非晶質メソポーラスシリカ触媒を合成した。
[Comparative Example 2] The aqueous solution of nitric acid rhodium nitrate [Rh (NO 3) 3] containing the 10 wt% Au / Synthesis Example 4 of amorphous mesoporous silica catalyst 10 mass% of rhodium except for not used at all, About 10% by mass of Au / amorphous mesoporous silica catalyst was synthesized in the same manner as in Example 4.

[比較例3]10質量%Rh/非晶質メソポーラスシリカ触媒の合成
参考例の非晶質メソポーラスシリカ10gに10質量%のロジウムを含む硝酸ロジウム[Rh(NO]の硝酸水溶液の10gを20gの蒸留水に溶解した水溶液を加え、実施例4と同様にして10質量%Rh/非晶質メソポーラスシリカ触媒を合成した。
[Comparative Example 3] Synthesis of 10% by mass Rh / amorphous mesoporous silica catalyst An aqueous nitric acid solution of rhodium nitrate [Rh (NO 3 ) 3 ] containing 10% by mass of rhodium in 10 g of amorphous mesoporous silica of Reference Example 2 An aqueous solution in which 10 g was dissolved in 20 g of distilled water was added, and a 10 mass% Rh / amorphous mesoporous silica catalyst was synthesized in the same manner as in Example 4.

[比較例4]10質量%Au−Pd(Pd/Au=0.3)/非晶質メソポーラスシリカ触媒の合成
実施例4の10質量%のロジウムを含む硝酸ロジウム[Rh(NO]の硝酸水溶液に代えて、硝酸パラジウム[Pd(NO]0.351gを用いた以外は、実施例4と同様にして10質量%Au−Pd(Pd/Au=0.3)/非晶質メソポーラスシリカ触媒を合成した。
[Comparative Example 4] 10 wt% Au-Pd (Pd / Au = 0.3) / rhodium nitrate containing 10% by weight of rhodium of Example 4 of an amorphous mesoporous silica catalyst [Rh (NO 3) 3] 10% by mass Au—Pd (Pd / Au = 0.3) / non-use in the same manner as in Example 4 except that 0.351 g of palladium nitrate [Pd (NO 3 ) 2 ] was used instead of the nitric acid aqueous solution. A crystalline mesoporous silica catalyst was synthesized.

[比較例5]10質量%Au−Fe(Fe/Au=0.3)/非晶質メソポーラスシリカ触媒の合成
実施例4の10質量%のロジウムを含む硝酸ロジウム[Rh(NO]の硝酸水溶液に代えて、硝酸鉄(III)九水和物[Fe(NO・9HO]0.615gを用いた以外は、実施例4と同様にして10質量%Au−Fe(Fe/Au=0.3)/非晶質メソポーラスシリカ触媒を合成した。
[Comparative Example 5] 10 wt% Au-Fe (Fe / Au = 0.3) / rhodium nitrate containing 10% by weight of rhodium of Example 4 of an amorphous mesoporous silica catalyst [Rh (NO 3) 3] 10 mass% Au—Fe in the same manner as in Example 4 except that 0.615 g of iron (III) nitrate nonahydrate [Fe (NO 3 ) 3 · 9H 2 O] was used instead of the nitric acid aqueous solution. A (Fe / Au = 0.3) / amorphous mesoporous silica catalyst was synthesized.

[比較例6]10質量%Au−Sn(Sn/Au=0.3)/非晶質メソポーラスシリカ触媒の合成
実施例4の10質量%のロジウムを含む硝酸ロジウム[Rh(NO]の硝酸水溶液に代えて、塩化錫(II)二水和物[SnCl・2HO]0.344gを用いた以外は、実施例4と同様にして10質量%Au−Sn(Sn/Au=0.3)/非晶質メソポーラスシリカ触媒を合成した。
[Comparative Example 6] 10 wt% Au-Sn (Sn / Au = 0.3) / rhodium nitrate containing 10% by weight of rhodium of Example 4 of an amorphous mesoporous silica catalyst [Rh (NO 3) 3] 10 mass% Au—Sn (Sn / Au) in the same manner as in Example 4 except that 0.344 g of tin (II) chloride dihydrate [SnCl 2 .2H 2 O] was used instead of the nitric acid aqueous solution. = 0.3) / amorphous mesoporous silica catalyst was synthesized.

(担持触媒の評価)
[実施例11〜20、比較例7〜12]
還元剤として軽油を用いたリーンバーンNOx処理
それぞれ、実施例1〜10、及び比較例1〜6で合成した触媒を用いて、還元剤として軽油を用い、リーンバーン排ガスを模した模擬ガス中の一酸化窒素の浄化(除去)処理を行った。
(Evaluation of supported catalyst)
[Examples 11 to 20, Comparative Examples 7 to 12]
Lean burn NOx treatment using light oil as a reducing agent Each of the catalysts synthesized in Examples 1 to 10 and Comparative Examples 1 to 6, using light oil as a reducing agent, in simulated gas imitating lean burn exhaust gas Nitric oxide was purified (removed).

触媒は、用いる触媒中の金の質量が8mgとなる量の触媒を秤量し、2mlの海砂に分散して反応管に充填した。被処理ガスの成分モル濃度は、ヘリウムで濃度調整した一酸化窒素250ppm、酸素10%、水蒸気10%、及び軽油200ppmとした。反応管へ導入した混合ガスの流量を毎分1L、処理温度を200℃〜400℃とした。排ガス中のNOxの濃度をオンラインで測定しNOx処理率を求めた。
結果を表1に示した。
The catalyst was weighed in an amount of 8 mg of gold in the catalyst used, dispersed in 2 ml of sea sand, and filled into a reaction tube. The component molar concentration of the gas to be treated was 250 ppm of nitric oxide adjusted with helium, 10% of oxygen, 10% of water vapor, and 200 ppm of light oil. The flow rate of the mixed gas introduced into the reaction tube was 1 L / min, and the treatment temperature was 200 ° C to 400 ° C. The concentration of NOx in the exhaust gas was measured online to determine the NOx treatment rate.
The results are shown in Table 1.

表1から、本発明のRhを含む金触媒は、270℃から300℃付近において窒素酸化物の高い浄化(除去)活性を持つことが明らかである。

Figure 0005758228
From Table 1, it is clear that the gold catalyst containing Rh of the present invention has a high purifying (removing) activity of nitrogen oxides around 270 ° C. to 300 ° C.
Figure 0005758228

[実施例21]
還元剤としてプロピレンを用いたリーンバーンNOx処理
実施例8で合成した触媒を用いて、還元剤としてプロピレンを用い、リーンバーン排ガスを模した模擬ガス中の一酸化窒素の浄化(除去)処理を行った。
[Example 21]
Lean burn NOx treatment using propylene as the reducing agent Using the catalyst synthesized in Example 8, using the propylene as the reducing agent, purification (removal) treatment of nitrogen monoxide in the simulated gas simulating lean burn exhaust gas It was.

触媒は、用いる金の質量が8mgとなる量の触媒を秤量し、2mlの海砂に分散して反応管に充填した。被処理ガスの成分モル濃度は、ヘリウムで濃度調整した一酸化窒素250ppm、酸素10%、水蒸気10%、及びプロピレン800ppmとした。反応管へ導入した混合ガスの流量を毎分1L、処理温度を200℃〜400℃とした。排ガス中のNOxの濃度をオンラインで測定しNOx処理率を求めた。
結果を表2に示した。
The catalyst was weighed in an amount of 8 mg of gold to be used, dispersed in 2 ml of sea sand, and filled into a reaction tube. The component molar concentration of the gas to be treated was 250 ppm of nitric oxide adjusted with helium, 10% of oxygen, 10% of water vapor, and 800 ppm of propylene. The flow rate of the mixed gas introduced into the reaction tube was 1 L / min, and the treatment temperature was 200 ° C to 400 ° C. The concentration of NOx in the exhaust gas was measured online to determine the NOx treatment rate.
The results are shown in Table 2.

表2から、還元剤として軽油を用いた時の方が270℃から300℃付近において窒素酸化物のより高い浄化(除去)活性が得られることが明らかである。

Figure 0005758228
From Table 2, it is clear that higher purification (removal) activity of nitrogen oxides can be obtained in the vicinity of 270 ° C. to 300 ° C. when light oil is used as the reducing agent.
Figure 0005758228

本発明のロジウムを含む金触媒を担持した担持触媒は、ディーゼル車、リーンバーンガソリンエンジン車などの排ガス中のNOxを除去する浄化用触媒として有用である。   The supported catalyst carrying the gold catalyst containing rhodium of the present invention is useful as a purification catalyst for removing NOx in exhaust gas from diesel vehicles, lean burn gasoline engine vehicles and the like.

Claims (6)

少なくともケイ素を含有する酸化物を含んでなる担体に、金及びロジウムを含んでなる金属触媒成分を担持した担持触媒であって、該金属触媒成分中の全金属に対して、金及びロジウムの合計が60質量%以上であり、かつ、
該少なくともケイ素を含有する酸化物がシリカであることを特徴とする、上記担持触媒。
A supported catalyst in which a metal catalyst component comprising gold and rhodium is supported on a support comprising an oxide containing at least silicon, the sum of gold and rhodium with respect to all metals in the metal catalyst component der is, and but 60 mass% or more,
Oxide containing the at least silicon and wherein the silica der Rukoto, the supported catalyst.
金に対するロジウムの原子比(Rh/Au)が0.1以上2未満であることを特徴とする請求項1に記載の担持触媒。   The supported catalyst according to claim 1, wherein the atomic ratio of rhodium to gold (Rh / Au) is 0.1 or more and less than 2. 前記少なくともケイ素を含有する酸化物がメソポーラスシリカであることを特徴とする請求項1又は2に記載の担持触媒。 The supported catalyst according to claim 1 or 2 , wherein the oxide containing at least silicon is mesoporous silica. 酸素濃度が3%以上の排ガス中の窒素酸化物を除去する方法であって、還元剤として炭化水素を用い、請求項1〜のいずれか一項に記載の担持触媒を浄化触媒として用いることを特徴とする、上記排ガス中の窒素酸化物を除去する方法。 A method for removing nitrogen oxides in exhaust gas having an oxygen concentration of 3% or more, wherein a hydrocarbon is used as a reducing agent, and the supported catalyst according to any one of claims 1 to 3 is used as a purification catalyst. A method for removing nitrogen oxides in the exhaust gas, wherein 前記炭化水素が、炭素数6以上の炭化水素を含むことを特徴とする、請求項に記載の排ガス中の窒素酸化物を除去する方法。 The method for removing nitrogen oxides in exhaust gas according to claim 4 , wherein the hydrocarbon includes a hydrocarbon having 6 or more carbon atoms. 前記炭化水素が軽油又はガソリンを含むことを特徴とする請求項又はに記載の排ガス中の窒素酸化物を除去する方法。 6. The method for removing nitrogen oxides in exhaust gas according to claim 4 or 5 , wherein the hydrocarbon contains light oil or gasoline.
JP2011179345A 2011-08-19 2011-08-19 Supported catalysts containing rhodium and gold Expired - Fee Related JP5758228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011179345A JP5758228B2 (en) 2011-08-19 2011-08-19 Supported catalysts containing rhodium and gold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179345A JP5758228B2 (en) 2011-08-19 2011-08-19 Supported catalysts containing rhodium and gold

Publications (2)

Publication Number Publication Date
JP2013039543A JP2013039543A (en) 2013-02-28
JP5758228B2 true JP5758228B2 (en) 2015-08-05

Family

ID=47888456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179345A Expired - Fee Related JP5758228B2 (en) 2011-08-19 2011-08-19 Supported catalysts containing rhodium and gold

Country Status (1)

Country Link
JP (1) JP5758228B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10370304B2 (en) 2012-11-29 2019-08-06 Corning Incorporated Fused silica based cellular structures
JP6737435B2 (en) * 2015-02-28 2020-08-12 国立大学法人京都大学 Method for producing fine particles carrying a noble metal solid solution
JP6689077B2 (en) * 2015-12-25 2020-04-28 太陽化学株式会社 Ethylene decomposer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067640A (en) * 1992-06-30 1994-01-18 Mitsui Mining Co Ltd Treatment of nitrous oxide containing gas
KR100284936B1 (en) * 1998-12-31 2001-04-02 김충섭 Method for producing a catalytically active noble metal-supported zeolite denitrification catalyst
DE10037165A1 (en) * 2000-07-20 2002-02-21 Inst Angewandte Chemie Berlin Catalyst for the removal of hydrocarbon traces from gas streams
JP5030343B2 (en) * 2001-08-31 2012-09-19 三菱重工業株式会社 Exhaust gas purification apparatus and exhaust gas treatment method
JP5116377B2 (en) * 2007-06-22 2013-01-09 旭化成株式会社 Exhaust NOx purification method
JP2010203328A (en) * 2009-03-04 2010-09-16 Babcock Hitachi Kk Exhaust emission control device for thermal engine, exhaust emission control method and nox elimination catalyst

Also Published As

Publication number Publication date
JP2013039543A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
JP2005270738A (en) Catalyst, exhaust gas cleaning catalyst and method for producing catalyst
EP1832345A1 (en) Catalyst for exhaust gas purification
JP5708767B1 (en) Exhaust gas purification catalyst and method for producing the same
JP5612050B2 (en) Method for producing metal particle supported catalyst
JP5758228B2 (en) Supported catalysts containing rhodium and gold
JP4063807B2 (en) Exhaust gas purification catalyst
JP2006305406A (en) CATALYST FOR REMOVING NOx IN EXHAUST GAS
JP4895858B2 (en) New exhaust gas purification method
JP5116377B2 (en) Exhaust NOx purification method
JP5515635B2 (en) Noble metal-supported silicon carbide particles, production method thereof, catalyst containing the same, and production method thereof
JP4749093B2 (en) NOx purification catalyst carrier
JP2006297348A (en) Catalyst for clarifying exhaust gas
JP5788298B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst using the same, and production method thereof
WO2023063353A1 (en) Catalyst
JP5025148B2 (en) Exhaust gas purification catalyst
JP2008215253A (en) NOx EMISSION CONTROL METHOD AND NOx EMISSION CONTROL DEVICE
JP6050703B2 (en) Exhaust gas purification catalyst
JP2011177647A (en) Compound monolithic catalyst for nox removal in lean burn automobile exhaust gas
JP5112966B2 (en) Lean burn exhaust gas purification catalyst
JP2011092852A (en) Composite monolithic catalyst for cleaning exhaust gas
JP4823100B2 (en) New exhaust gas purification catalyst
JP2007209866A (en) Honeycomb catalyst for exhaust gas purification
JP5036300B2 (en) Automobile exhaust NOx purification catalyst and exhaust NOx purification method
JP4753613B2 (en) NOx purification catalyst
JP4712406B2 (en) NOx purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150603

R150 Certificate of patent or registration of utility model

Ref document number: 5758228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees