WO2016136956A1 - Method of producing fine particles supporting noble metal solid solution - Google Patents

Method of producing fine particles supporting noble metal solid solution Download PDF

Info

Publication number
WO2016136956A1
WO2016136956A1 PCT/JP2016/055865 JP2016055865W WO2016136956A1 WO 2016136956 A1 WO2016136956 A1 WO 2016136956A1 JP 2016055865 W JP2016055865 W JP 2016055865W WO 2016136956 A1 WO2016136956 A1 WO 2016136956A1
Authority
WO
WIPO (PCT)
Prior art keywords
noble metal
solid solution
carrier
fine particles
supported
Prior art date
Application number
PCT/JP2016/055865
Other languages
French (fr)
Japanese (ja)
Inventor
康平 草田
北川 宏
池田 泰之
丸子 智弘
竹内 正史
Original Assignee
国立大学法人京都大学
株式会社フルヤ金属
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 株式会社フルヤ金属 filed Critical 国立大学法人京都大学
Priority to JP2017502516A priority Critical patent/JP6737435B2/en
Publication of WO2016136956A1 publication Critical patent/WO2016136956A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation

Definitions

  • the present invention relates to a method for producing noble metal solid solution-supported fine particles.
  • Precious metals are used for high-performance catalysts such as automobile exhaust gas treatment, hydrogenation, or plating, but they are low in production and expensive. For this reason, the technique which can reduce the usage-amount of a noble metal is calculated
  • a catalyst in which a noble metal is supported on a carrier is prepared by, for example, immersing the carrier in a solution of a noble metal salt or complex and calcining it.
  • the catalyst is supported on two or more kinds of noble metal salt or complex solutions that are phase-separated from each other.
  • the fine metal particles that are formed form a stable structure in the cooling process, so two or more kinds of noble metals that undergo phase separation in the alloy phase diagram are supported on the support in a state of phase separation.
  • a synergistic effect of these noble metal elements as a solid solution alloy cannot be expected.
  • Patent Document 1 discloses solid solution type alloy fine particles such as AgRh and AuRh, but these fine particles are not supported on a carrier.
  • Patent Document 2 discloses a catalyst using PdRu solid solution type alloy fine particles, but this catalyst is not supported on a carrier.
  • An object of the present invention is to provide a method for producing fine particles having a noble metal solid solution supported on a carrier in a high yield.
  • the present invention provides the following method for producing noble metal solid solution-supported fine particles.
  • Item 1 Adding a solution containing a compound of two kinds of noble metals that phase separate from each other and a support to the reducing liquid, wherein the two kinds of noble metals are Pd and Ru, Ag and Rh, Au and Rh, PdRu A method for producing noble metal solid solution-supported fine particles obtained by supporting a solid solution of AgRh or AuRh on a carrier.
  • Item 3. The method for producing fine noble metal solid solution-supported fine particles according to Item 1 or 2, wherein the reducing liquid is selected from the group consisting of a solution of glycols, glycerin, polyglycerin, alkylene glycol monoalkyl ether, and metal hydride.
  • Item 4. Item 4. The method for producing noble metal solid solution-supported fine particles according to any one of Items 1 to 3, wherein the solid solution noble metal alloy particles supported on the carrier have an average particle diameter of 1 to 100 nm. Item 5.
  • the precious metal compound and the carrier are mixed in a solvent, the filtered carrier is dried or evaporated to dryness, and the dry carrier having the precious metal ions attached to the surface is directly or dispersed in a solvent and added to the reducing liquid. 5.
  • the fine particles produced by the method of the present invention are a particularly preferable material as a catalyst.
  • the fine particles have an electronic state different from the conventional composite catalyst in which two or more kinds of noble metals that are phase-separated from each other form a solid solution. It can be expected to have no properties.
  • the fine particles of the present invention are preferable because they can support an expensive noble metal solid solution on a carrier in a high yield without containing a surface-protecting agent.
  • the catalyst produced by the method of the present invention is expected to be useful as an exhaust gas catalyst for automobiles and a catalyst in the chemical field (monomer synthesis, decomposition of harmful substances, deodorization, etc.).
  • Example 2 shows a TEM (Transmission Electron Microscopy) image of the fine particles obtained in Example 1.
  • the left figure is a 100,000 (100K) magnified image, and the right figure is a 50,000 (50K) magnified image.
  • STEM-EDX Sccanning Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy
  • the left figure is the HAADF-STEM (High-Angle-Annular-Dark-Field-Scanning-Transmission-Electron-Microscopy) image
  • the right figure is the result of EDXS (Energy-Dispersive-X-ray Spectroscopy) element mapping.
  • the fine particles of the present invention have been demonstrated to support a noble metal solid solution on a carrier.
  • fine-particles obtained by the comparative example 1 is shown.
  • the amount of noble metal supported on the fine particles obtained in Example 1 and Comparative Example 1 is shown.
  • the fine particles obtained in the present invention are fine particles in which a solid solution of PdRu, AgRh, or AuRh, which is a combination of two kinds of noble metals that are phase-separated from each other, is supported on a carrier.
  • the “solid solution” means that two kinds of noble metals PdRu, AgRh, or AuRh are mixed at the atomic level.
  • “Mixed at the atomic level” means that, in one aspect, each element is present randomly in element mapping by STEM (Scanning Transmission Electron Microscopy) having a spatial resolution of 0.105 nm. Then, a single peak pattern is confirmed in XRD (X-ray diffraction).
  • PdRu 5 to 95 mol%: 95 to 5 mol%; preferably 10 to 90 mol%: 90 to 10 mol%; more preferably 15 to 85 mol%: 85 to 15 mol%.
  • the average particle size of the noble metal solid solution particles (PdRu particles, AgRh particles or AuRh particles) supported on the carrier is about 1 to 100 nm, preferably about 1 to 50 nm, more preferably about 1 to 10 nm, and more preferably It is about 1-6 nm. A small average particle size is preferable because the catalyst performance is high.
  • the average particle size of the carrier is about 10 nm to 100 ⁇ m, preferably about 15 nm to 10 ⁇ m, more preferably about 20 nm to 1000 nm, and further preferably about 25 nm to 500 ⁇ m. Setting the average particle size of the support within the above range is preferable from the viewpoint of the ratio of the noble metal solid solution and from the viewpoint of sufficiently bonding the solid solution to the support. If the average particle size of the support is too large, the ratio of the noble metal solid solution tends to decrease, and if the average particle size of the support is too small, it tends to be difficult to bond a sufficient solid solution.
  • the carrier is alumina (eg, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina; preferably ⁇ -alumina), zirconia, titania, ceria, silica, silica alumina, calcia, magnesia, ceria zirconia, lantana, lantana Composite oxide containing one or more of alumina, tin oxide, tungsten oxide, aluminosilicate, aluminophosphate, borosilicate, phosphotungstic acid, hydroxyapatite, hydrotalcite, perovskite, cordierite and mullite, silicon Examples thereof include carbide, activated carbon, carbon black, acetylene black, carbon nanotube, and carbon nanohorn.
  • the carrier may contain one or more of these.
  • the amount of the carrier is preferably about 15 to 30 kg, more preferably about 50 to 3 kg per 0.1 mol of the total precious metal compound of Pd and Ru, Ag and Rh, or Au and Rh.
  • the ratio of the solid solution in the fine particles of the present invention is about 0.1 to 60% by mass, preferably about 0.5 to 50%, more preferably about 1 to 30%, and the ratio of the carrier is about 99.9 to 40% by mass, preferably Is about 99.5 to 50%, more preferably about 99 to 70%. Since the preferable ratio of a solid solution changes with uses, it adjusts according to a use.
  • the average particle size of the entire fine particles in which the noble metal solid solution particles and the carrier particles are combined depends on the size of the carrier, for example, about 10 nm to 100 ⁇ m, preferably about 15 nm to 10 ⁇ m, more preferably about 20 nm to 1000 nm, and still more preferably. Is about 25 nm to 500 nm.
  • the average particle diameter of the particles can be measured (confirmed) by a micrograph such as TEM.
  • the shape of the noble metal solid solution-supported fine particles, carrier particles, and solid solution particles of the present invention is not particularly limited, and may be any shape such as a spherical shape, an ellipsoidal shape, a rod shape, a columnar shape, or a flake shape.
  • noble metal solid solution particles alloy nanoparticles
  • two or more kinds of noble metal compounds are dissolved in a solvent, and carrier particles are dispersed in this solution. Regardless of the order of addition of the carrier and the noble metal compound to the solvent, either can be added first.
  • a solution containing two or more kinds of noble metal compounds and a carrier can be added to the reducing liquid, and preferably added to the reducing liquid little by little. Addition in small amounts can employ any method such as adding the solution in small portions, spraying, dropping, or injecting into the reducing liquid over time at a constant rate using a syringe, tube, or the like.
  • the solution of the noble metal compound in which the carrier is dispersed is added all at once, the bonding ratio between the carrier and the solid solution tends to decrease, and the solid solution not supported on the carrier tends to increase, but a large amount of reducing liquid is used.
  • the ratio of the solid solution not supported on the carrier can be reduced.
  • the mixed liquid of the solution and the reducing liquid can be appropriately stirred, shaken, sonicated, or the like. Stirring, shaking, and sonication can be performed before and / or after addition.
  • the noble metal compound is not particularly limited as long as it can be dissolved in a solvent and can supply a noble metal ion (including a complex) into the solution, and examples thereof include noble metal salts and noble metal complexes.
  • the present inventor adsorbs noble metal ions or noble metal complexes on the support surface in a solution (dispersion) in which two or more kinds of noble metal compounds are dissolved and the carrier is dispersed. It exists in the vicinity of the carrier and is considered to be combined with the carrier as a solid solution at the same time as the noble metal is reduced. Since two or more kinds of noble metal salts are present on the surface of the support at random, it is considered that the noble metal binds to the support as a solid solution without phase separation when it is reduced as it is.
  • noble metal compounds Two or more kinds are dissolved in a solvent, and (i) the solution to which the carrier is added is filtered and dried as necessary, or (ii) the solvent is evaporated and dried without filtration, and the noble metal compound (noble metal) It is also possible to adsorb or bind ions or noble metal complexes) to the support surface and disperse them in the solvent again, or to add the noble metal ions / complex-adsorbed support to the reducing liquid in the solid state.
  • the carrier is mixed with the solvent by heating, stirring, shaking, sonication, or degassing under reduced pressure in the solvent, or bubbles on the surface of the carrier are removed to adsorb as much of the noble metal ion or noble metal complex as possible.
  • the amount of adsorption of the noble metal ion or the noble metal complex can be increased by adding a carrier to a solution containing two or more kinds of noble metal compounds and heating, stirring, shaking, ultrasonic treatment, or degassing under reduced pressure.
  • small amount means a liquid containing a noble metal compound and a carrier at such an amount / rate that the noble metal ions added to the reducing liquid are rapidly reduced and bonded as a solid solution to the carrier. Although it is not particularly limited, for example, in the examples, it is slowly added over about 10 to 30 minutes.
  • the reaction in which the noble metal ions added to the reducing liquid are rapidly reduced and bonded to the support as a solid solution is considered to proceed rapidly, but the overall reaction time is the time required for addition and, if necessary, even after addition.
  • the total time for stirring, shaking or sonication to be performed can be about 10 minutes to 2 hours, but it is not limited to more than this.
  • the noble metal compound is dissolved in a solvent, and the carrier is dispersed in the solution.
  • the reducing liquid can be entirely composed of a liquid reducing agent (in this case, the reducing liquid can also serve as a solvent), or a solid reducing agent can be dissolved in the solvent.
  • Solvents include water, alcohol (methanol, ethanol, isopropanol, etc.), polyols (ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, glycerin, etc.), polyethers (polyethylene glycol, etc.), acetonitrile, acetone, dimethyl Polar solvents such as formamide, dimethyl sulfoxide, N-methylpyrrolidone can be used.
  • Water is a preferred salt for dissolving the noble metal compound.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the noble metal compound is preferably water-soluble.
  • Preferred noble metal compounds include organic acid salts such as sulfates, nitrates, and acetates, carbonates, halides (fluorides, chlorides, bromides, iodides), perchlorates, hydroxides, complexes, and the like. Halides, nitrates and complexes can be preferably used.
  • the valence of the noble metal in the noble metal compound can be any of bivalent, trivalent, and tetravalent.
  • Preferred noble metal compounds include the following: Au compounds: eg AuCl 3 , HAuCl 4 , K [AuCl 4 ], Na [AuCl 4 ], K [Au (CN) 2 ], K [Au (CN) 4 ] etc .; Rh compounds: eg Rh (NO 3 ) 2 , Rh (NO 3 ) 3 , RhCl 2 , RhCl 3 , Rh (CH 3 COO) 3 , Rh (CH 3 COO) 2 etc .; Ru compounds: eg RuCl 2 , RuCl 3 , Ru (acac) 3 (acac is Acetylacetone), Ru (CH 3 COO) x (x represents a number from 2 to 3), etc .; Pd compounds: for example H 2 PdCl 4 or alkali metal salts thereof, PdCl 2 , PdSO 4, Pd (NO 3 ) 2 etc .; Ag compounds: for example AgNO 3 , Ag (CH 3 COO) etc .
  • the reducing liquid can contain the above solvent.
  • the heating temperature of the reducing liquid is preferably not higher than the boiling point of the reducing liquid, for example, about 100 to 260 ° C., preferably 150 to 250 ° C., more preferably about 200 to 240 ° C. It is preferable to carry out the production method of the present invention so that the temperature of the reducing liquid becomes the reaction temperature. For example, by adding a solution containing two or more kinds of noble metal compounds and a carrier to the reducing liquid little by little, the influence of the temperature of the solution containing two or more kinds of noble metal compounds and a carrier on the temperature of the reducing liquid is reduced.
  • a solution containing two or more kinds of noble metal compounds and a carrier can be used at room temperature, and can be used by heating at a temperature of the reducing liquid or lower.
  • the concentration of two or more kinds of noble metal compounds in the solution can be about 0.001 to 1 mol / L, preferably about 0.025 to 0.1 mol / L.
  • the concentration of the two or more kinds of noble metal compounds in the solution is preferably within the above range from the viewpoint of supporting efficiency on the carrier. If the concentration of the noble metal compound is too high, the loading efficiency on the carrier tends to be reduced.
  • reducing liquids examples include glycols (glycol compounds) such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol; polyglycerins such as glycerin, diglycerin, triglycerin, and decaglycerin; ethylene glycol monomethyl ether, Alkylene glycol monoalkyl ethers such as ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether; amines such as butylamine (amine compounds), and metal hydrides such as NaBH 4 , LiBH 4 , LiAlH 4 etc.
  • dissolved in is mentioned.
  • the noble metal reduction reaction proceeds advantageously even if the temperature of the solution is about room temperature to about 60 ° C.
  • the reducing liquid is a glycol (glycol compound) such as ethylene glycol.
  • the reducing liquid can be used in an amount of 1 equivalent or more, preferably 2 equivalents or more, more preferably 3 equivalents or more with respect to the noble metal compound in terms of a reducing agent component.
  • the reducing liquid can be used in an excess amount, preferably a large excess.
  • noble metal solid solution-supported fine particles obtained by supporting a solid solution of PdRu, AgRh or AuRh on a carrier can be obtained.
  • the method of taking out the catalyst as a powder after preparation is not particularly limited, and examples thereof include centrifugation, filtration, sedimentation, reprecipitation, and separation with a powder separator (cyclone).
  • Example 1 Add K 2 PdCl 4 (0.048 mmol), RuCl 3 ⁇ nH 2 O (0.048 mmol) and ⁇ -Al 2 O 3 (990 mg) to 10 ml of water at room temperature, and add K 2 PdCl 4 and RuCl 3 by sonication. Dissolved to prepare a noble metal compound solution (I) containing a carrier.
  • Triethylene glycol (TEG, 100 ml) was heated and stirred to 204 ° C. in a 300 ml beaker, and the solution (I) was slowly added dropwise to the TEG stirring solution over 15 minutes, and the mixture was stirred for 15 minutes after completion of the dropwise addition.
  • the obtained reaction solution was cooled to room temperature and then centrifuged at 7000 rpm to obtain noble metal solid solution-supported fine particles comprising PdRu solid solution supported on ⁇ -Al 2 O 3 .
  • the obtained PdRu solid solution-supported fine particles were subjected to TEM (Transmission Electron Microscopy) imaging and STEM-EDX (Scanning Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy) mapping.
  • the results are shown in Figs.
  • FIG. 1 shows that noble metal is supported on the carrier.
  • FIG. 2 shows that Pd and Ru are mutually melted. It was confirmed that the fine particles of the present invention were those in which PdRu solid solution-supported fine particles (average particle size 3.8 ⁇ 1.2 nm) were supported on a carrier ( ⁇ -alumina).
  • ⁇ -Al 2 O 3 (990 mg) was added to triethylene glycol (TEG, 100 ml), and the mixture was heated and stirred to 204 ° C. in a 300 ml beaker, and the above solution (II) was added to this TEG + ⁇ -Al 2 O 3 stirring solution. The solution was slowly added dropwise over a period of 15 minutes and stirred for 15 minutes after the completion of the addition. The obtained reaction solution was cooled to room temperature and then centrifuged at 7000 rpm to obtain PdRu solid solution-supported fine particles in which the PdRu solid solution was supported on ⁇ -Al 2 O 3 .
  • the obtained PdRu solid solution-supported ⁇ -alumina fine particles were subjected to TEM image shooting and STEM-EDX mapping. The results are shown in Figure 3.
  • the fine particles of Comparative Example 1 were those in which PdRu solid solution-supported fine particles (average particle size 4.1 ⁇ 1.0 nm) were supported on a carrier ( ⁇ -alumina), but the amount supported was small.
  • Test example 1 The supported amount of the PdRu solid solution in the fine particles obtained in Example 1 and Comparative Example 1 was quantitatively calculated by setting ⁇ -Al 2 O 3 as a balance component. The results are shown in FIG. Quantification was performed using a trend X-ray analysis (XRF) method.
  • XRF trend X-ray analysis
  • Example 1 had about twice as much PdRu loading as the fine particles obtained in Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

This method for high-yield production of fine particles comprising a carrier supporting a noble metal solid solution involves a step in which a solution containing a carrier and compounds of two types of noble metals that phase-separate from each other is added to a reductive liquid, wherein the carrier supports a solid solution of PdRu, AgRh or AuRh, where the two types of noble metals are Pd and Ru, Ag and Rh, or Au and Rh.

Description

貴金属固溶体担持微粒子の製造方法Method for producing noble metal solid solution-supported fine particles
 [関連出願の相互参照]
 本出願は、2015年2月28日に出願された、日本国特許出願第2015-039680号明細書(その開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。
[Cross-reference of related applications]
This application claims priority based on Japanese Patent Application No. 2015-039680 filed on Feb. 28, 2015, the entire disclosure of which is incorporated herein by reference.
 本発明は、貴金属固溶体担持微粒子の製造方法に関する。 The present invention relates to a method for producing noble metal solid solution-supported fine particles.
 貴金属は自動車排ガス処理、水素化などの高機能触媒、あるいはメッキなどに使用されているが、産出量が少なく高価である。このため、貴金属の使用量を低減しうる技術が求められている。 Precious metals are used for high-performance catalysts such as automobile exhaust gas treatment, hydrogenation, or plating, but they are low in production and expensive. For this reason, the technique which can reduce the usage-amount of a noble metal is calculated | required.
 貴金属を担体に担持した触媒は、例えば担体を貴金属の塩もしくは錯体の溶液に浸漬し、焼成することで作製されていたが、互いに相分離する2種以上の貴金属の塩もしくは錯体溶液に担体を浸漬して焼成すると、生成される金属微粒子は冷却過程において安定構造を形成するため、合金状態図において相分離する2種以上の貴金属は相分離した状態で担体に担持されることになるので、これら貴金属元素の固溶体合金としての相乗効果は期待できない。 A catalyst in which a noble metal is supported on a carrier is prepared by, for example, immersing the carrier in a solution of a noble metal salt or complex and calcining it. The catalyst is supported on two or more kinds of noble metal salt or complex solutions that are phase-separated from each other. When immersed and fired, the fine metal particles that are formed form a stable structure in the cooling process, so two or more kinds of noble metals that undergo phase separation in the alloy phase diagram are supported on the support in a state of phase separation. A synergistic effect of these noble metal elements as a solid solution alloy cannot be expected.
 特許文献1は、AgRh、AuRhなどの固溶体型合金微粒子を開示しているが、この微粒子は担体に担持したものではない。 Patent Document 1 discloses solid solution type alloy fine particles such as AgRh and AuRh, but these fine particles are not supported on a carrier.
 特許文献2は、PdRu固溶体型合金微粒子を用いた触媒を開示しているが、この触媒は担体に担持したものではない。 Patent Document 2 discloses a catalyst using PdRu solid solution type alloy fine particles, but this catalyst is not supported on a carrier.
WO2010/122811号WO2010 / 122811 WO2014/045570号WO2014 / 045570
 本発明は、担体に貴金属固溶体を担持した微粒子を高収率で製造する方法を提供することを目的とする。 An object of the present invention is to provide a method for producing fine particles having a noble metal solid solution supported on a carrier in a high yield.
 本発明は、以下の貴金属固溶体担持微粒子の製造方法を提供するものである。
項1. 互いに相分離する2種の貴金属の化合物と担体を含む溶液を還元性液体に添加する工程を含み、前記2種の貴金属がPdとRu、AgとRh、AuとRhのいずれかである、PdRu、AgRh又はAuRhの固溶体を担体に担持してなる、貴金属固溶体担持微粒子の製造方法。
項2. 担体がアルミナ、ジルコニア、チタニア、セリア、シリカ、シリカアルミナ、カルシア、マグネシア、セリアジルコニア、ランタナ、ランタナアルミナ、酸化スズ、酸化タングステン、アルミノシリケート、アルミノホスフェート、ボロシリケート、リンタングステン酸、ヒドロキシアパタイト、ハイドロタルサイト、ペロブスカイト、コージェライト及びムライトの1種又はこれらの2種以上を含む複合酸化物、シリコンカーバイド、活性炭、カーボンブラック、アセチレンブラック、カーボンナノチューブ及びカーボンナノホーンからなる群から選ばれる、項1に記載の貴金属固溶体担持微粒子の製造方法。
項3. 還元性液体が、グリコール類、グリセリン、ポリグリセリン、アルキレングリコールモノアルキルエーテル及び金属水素化物の溶液からなる群から選ばれる、項1又は2に記載の貴金属固溶体担持微粒子の製造方法。
項4. 担体に担持された固溶体貴金属合金粒子の平均粒径が1~100 nmである、項1~3のいずれか1項に記載の貴金属固溶体担持微粒子の製造方法。
項5. 貴金属化合物と担体を溶媒中で混合し、濾過した担体を乾燥、或いは蒸発乾燥し、貴金属イオンが表面に付着した乾燥担体を直接もしくは溶媒に分散させて還元性液体に添加することを特徴とする、項1~4のいずれか1項に記載の貴金属固溶体担持微粒子の製造方法。
項6. 貴金属化合物と担体を溶媒中で混合し、超音波処理又は脱気処理により担体表面の気泡を除去する工程をさらに含む、項5に記載の貴金属固溶体担持微粒子の製造方法。
The present invention provides the following method for producing noble metal solid solution-supported fine particles.
Item 1. Adding a solution containing a compound of two kinds of noble metals that phase separate from each other and a support to the reducing liquid, wherein the two kinds of noble metals are Pd and Ru, Ag and Rh, Au and Rh, PdRu A method for producing noble metal solid solution-supported fine particles obtained by supporting a solid solution of AgRh or AuRh on a carrier.
Item 2. Supports alumina, zirconia, titania, ceria, silica, silica alumina, calcia, magnesia, ceria zirconia, lantana, lantana alumina, tin oxide, tungsten oxide, aluminosilicate, aluminophosphate, borosilicate, phosphotungstic acid, hydroxyapatite, hydro Item 1 is selected from the group consisting of one or more of talcite, perovskite, cordierite, and mullite, a composite oxide containing two or more of these, silicon carbide, activated carbon, carbon black, acetylene black, carbon nanotube, and carbon nanohorn. The manufacturing method of the noble metal solid solution carrying | support fine particle of description.
Item 3. Item 3. The method for producing fine noble metal solid solution-supported fine particles according to Item 1 or 2, wherein the reducing liquid is selected from the group consisting of a solution of glycols, glycerin, polyglycerin, alkylene glycol monoalkyl ether, and metal hydride.
Item 4. Item 4. The method for producing noble metal solid solution-supported fine particles according to any one of Items 1 to 3, wherein the solid solution noble metal alloy particles supported on the carrier have an average particle diameter of 1 to 100 nm.
Item 5. The precious metal compound and the carrier are mixed in a solvent, the filtered carrier is dried or evaporated to dryness, and the dry carrier having the precious metal ions attached to the surface is directly or dispersed in a solvent and added to the reducing liquid. 5. The method for producing noble metal solid solution-supported fine particles according to any one of items 1 to 4.
Item 6. Item 6. The method for producing noble metal solid solution-supported fine particles according to Item 5, further comprising the step of mixing the noble metal compound and the carrier in a solvent and removing bubbles on the surface of the carrier by ultrasonic treatment or deaeration treatment.
 本発明の方法で製造される微粒子は触媒として特に好ましい材料である。この微粒子は、互いに相分離する2種以上の貴金属が固溶体を形成しているため、従来の2種以上の相分離する貴金属が分離した複合触媒とは異なる電子状態を有し、これまでにはない性質を有することが期待できる。 The fine particles produced by the method of the present invention are a particularly preferable material as a catalyst. The fine particles have an electronic state different from the conventional composite catalyst in which two or more kinds of noble metals that are phase-separated from each other form a solid solution. It can be expected to have no properties.
 本発明の微粒子は、高価な貴金属の固溶体を、表面を被覆する保護剤を含まずに高収率で担体に担持できるので、好ましい。 The fine particles of the present invention are preferable because they can support an expensive noble metal solid solution on a carrier in a high yield without containing a surface-protecting agent.
 本発明の方法で製造される触媒は、自動車の排ガス用触媒、化学分野の触媒(モノマー合成、有害物の分解、脱臭など)として有用であると期待される。 The catalyst produced by the method of the present invention is expected to be useful as an exhaust gas catalyst for automobiles and a catalyst in the chemical field (monomer synthesis, decomposition of harmful substances, deodorization, etc.).
実施例1で得られた微粒子のTEM(Transmission Electron Microscopy)像を示す。左図は100,000(100K)倍拡大像であり、右図は50,000(50K)倍拡大像である。2 shows a TEM (Transmission Electron Microscopy) image of the fine particles obtained in Example 1. The left figure is a 100,000 (100K) magnified image, and the right figure is a 50,000 (50K) magnified image. 実施例1で得られた微粒子のSTEM-EDX(Scanning Transmission Electron Microscopy-Energy Dispersive X-ray spectroscopy)マッピングの結果を示す。左図はHAADF-STEM(High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy)像であり、右図はEDXS(Energy Dispersive X-ray Spectroscopy)元素マッピングの結果である。本発明の微粒子は、貴金属の固溶体が担体に担持されていることが実証された。The result of STEM-EDX (Scanning Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy) mapping of the fine particles obtained in Example 1 is shown. The left figure is the HAADF-STEM (High-Angle-Annular-Dark-Field-Scanning-Transmission-Electron-Microscopy) image, and the right figure is the result of EDXS (Energy-Dispersive-X-ray Spectroscopy) element mapping. The fine particles of the present invention have been demonstrated to support a noble metal solid solution on a carrier. 比較例1で得られた微粒子のTEM像を示す。The TEM image of the microparticles | fine-particles obtained by the comparative example 1 is shown. 実施例1と比較例1で得られた微粒子に担持された貴金属の量を示す。The amount of noble metal supported on the fine particles obtained in Example 1 and Comparative Example 1 is shown.
 本発明で得られる微粒子は、互いに相分離する2種の貴金属の組み合わせであるPdRu、AgRh又はAuRhの固溶体を担体に担持した微粒子である。 The fine particles obtained in the present invention are fine particles in which a solid solution of PdRu, AgRh, or AuRh, which is a combination of two kinds of noble metals that are phase-separated from each other, is supported on a carrier.
 本明細書において、「固溶体」とは、PdRu、AgRh又はAuRhの2種の貴金属が原子レベルで混合されていることをいう。「原子レベルで混合されている」とは、1つの観点では、0.105nmの空間分解能を持つSTEM(Scanning Transmission Electron Microscopy)による元素マッピングにおいて各元素がランダムに存在することである、他の観点では、XRD(X‐ray diffraction)において単一のピークパターンが確認されることである。 In this specification, the “solid solution” means that two kinds of noble metals PdRu, AgRh, or AuRh are mixed at the atomic level. “Mixed at the atomic level” means that, in one aspect, each element is present randomly in element mapping by STEM (Scanning Transmission Electron Microscopy) having a spatial resolution of 0.105 nm. Then, a single peak pattern is confirmed in XRD (X-ray diffraction).
 本発明の微粒子において、固溶体は2種の貴金属(PdRu、AgRh又はAuRh)を以下の比率で含む:
Pd:Ru=5~95モル%:95~5モル%;好ましくは10~90モル%:90~10モル%;より好ましくは15~85モル%:85~15モル%、
Ag:Rh=5~95モル%:95~5モル%;好ましくは10~90モル%:90~10モル%;より好ましくは15~85モル%:85~15モル%、
Au:Rh=5~95モル%:95~5モル%;好ましくは10~90モル%:90~10モル%;より好ましくは15~85モル%:85~15モル%。
In the fine particles of the present invention, the solid solution contains two kinds of noble metals (PdRu, AgRh or AuRh) in the following ratios:
Pd: Ru = 5 to 95 mol%: 95 to 5 mol%; preferably 10 to 90 mol%: 90 to 10 mol%; more preferably 15 to 85 mol%: 85 to 15 mol%,
Ag: Rh = 5 to 95 mol%: 95 to 5 mol%; preferably 10 to 90 mol%: 90 to 10 mol%; more preferably 15 to 85 mol%: 85 to 15 mol%,
Au: Rh = 5 to 95 mol%: 95 to 5 mol%; preferably 10 to 90 mol%: 90 to 10 mol%; more preferably 15 to 85 mol%: 85 to 15 mol%.
 担体に担持される貴金属固溶体粒子(PdRu粒子、AgRh粒子又はAuRh粒子)の平均粒径は、1~100 nm程度、好ましくは1~50 nm程度、より好ましくは1~10 nm程度、さらに好ましくは1~6 nm程度である。平均粒径が小さいと触媒性能が高くなるために好ましい。 The average particle size of the noble metal solid solution particles (PdRu particles, AgRh particles or AuRh particles) supported on the carrier is about 1 to 100 nm, preferably about 1 to 50 nm, more preferably about 1 to 10 nm, and more preferably It is about 1-6 nm. A small average particle size is preferable because the catalyst performance is high.
 担体の平均粒径は、10nm~100μm程度、好ましくは15nm~10μm程度、より好ましくは20nm~1000nm程度、さらに好ましくは25nm~500 nm程度である。担体の平均粒径を上記の範囲とすることは、貴金属固溶体の比率の観点及び固溶体を十分に担体に結合する観点から好ましい。担体の平均粒径が大きすぎると貴金属固溶体の比率が低下する傾向があり、担体の平均粒径が小さすぎると十分な固溶体を結合するのが難しくなる傾向がある。 The average particle size of the carrier is about 10 nm to 100 μm, preferably about 15 nm to 10 μm, more preferably about 20 nm to 1000 nm, and further preferably about 25 nm to 500 μm. Setting the average particle size of the support within the above range is preferable from the viewpoint of the ratio of the noble metal solid solution and from the viewpoint of sufficiently bonding the solid solution to the support. If the average particle size of the support is too large, the ratio of the noble metal solid solution tends to decrease, and if the average particle size of the support is too small, it tends to be difficult to bond a sufficient solid solution.
 担体としては、担体がアルミナ(例えば、α-アルミナ、β-アルミナ、γ-アルミナ;好ましくはγ-アルミナ)、ジルコニア、チタニア、セリア、シリカ、シリカアルミナ、カルシア、マグネシア、セリアジルコニア、ランタナ、ランタナアルミナ、酸化スズ、酸化タングステン、アルミノシリケート、アルミノホスフェート、ボロシリケート、リンタングステン酸、ヒドロキシアパタイト、ハイドロタルサイト、ペロブスカイト、コージェライト及びムライトの1種又はこれらの2種以上を含む複合酸化物、シリコンカーバイド、活性炭、カーボンブラック、アセチレンブラック、カーボンナノチューブ並びにカーボンナノホーンなどが挙げられる。担体は、これらを1種又は2種以上含み得る。 As the carrier, the carrier is alumina (eg, α-alumina, β-alumina, γ-alumina; preferably γ-alumina), zirconia, titania, ceria, silica, silica alumina, calcia, magnesia, ceria zirconia, lantana, lantana Composite oxide containing one or more of alumina, tin oxide, tungsten oxide, aluminosilicate, aluminophosphate, borosilicate, phosphotungstic acid, hydroxyapatite, hydrotalcite, perovskite, cordierite and mullite, silicon Examples thereof include carbide, activated carbon, carbon black, acetylene black, carbon nanotube, and carbon nanohorn. The carrier may contain one or more of these.
 担体の配合量は、PdとRu、AgとRh、或いは、AuとRhの貴金属化合物の合計0.1モルあたり好ましくは15g~30kg程度、より好ましくは50g~3kg程度である。 The amount of the carrier is preferably about 15 to 30 kg, more preferably about 50 to 3 kg per 0.1 mol of the total precious metal compound of Pd and Ru, Ag and Rh, or Au and Rh.
 本発明の微粒子における固溶体の比率は質量で0.1~60%程度、好ましくは0.5~50%程度、より好ましくは1~30%程度であり、担体の比率は、質量で99.9~40%程度、好ましくは99.5~50%程度、より好ましくは99~70%程度である。固溶体の好ましい比率は用途によって異なるので、用途に合わせて調整する。 The ratio of the solid solution in the fine particles of the present invention is about 0.1 to 60% by mass, preferably about 0.5 to 50%, more preferably about 1 to 30%, and the ratio of the carrier is about 99.9 to 40% by mass, preferably Is about 99.5 to 50%, more preferably about 99 to 70%. Since the preferable ratio of a solid solution changes with uses, it adjusts according to a use.
 貴金属固溶体粒子と担体粒子が複合化した微粒子全体の平均粒径は、担体の大きさに依存し、例えば10nm~100 μm程度、好ましくは15nm~10μm程度、より好ましくは20nm~1000nm程度、さらに好ましくは25nm~500 nm程度である。 The average particle size of the entire fine particles in which the noble metal solid solution particles and the carrier particles are combined depends on the size of the carrier, for example, about 10 nm to 100 μm, preferably about 15 nm to 10 μm, more preferably about 20 nm to 1000 nm, and still more preferably. Is about 25 nm to 500 nm.
 粒子の平均粒径は、TEMなどの顕微鏡写真により測定(確認)することができる。本発明の貴金属固溶体担持微粒子、担体粒子、固溶体粒子の形状は特に限定されず、球状、楕円体状、ロッド状、柱状、リン片状など任意の形状であることができる。 The average particle diameter of the particles can be measured (confirmed) by a micrograph such as TEM. The shape of the noble metal solid solution-supported fine particles, carrier particles, and solid solution particles of the present invention is not particularly limited, and may be any shape such as a spherical shape, an ellipsoidal shape, a rod shape, a columnar shape, or a flake shape.
 本発明の貴金属固溶体粒子(合金ナノ粒子)の製造方法において、2種以上の貴金属化合物を溶媒に溶解し、この溶液に担体粒子を分散させる。担体と貴金属化合物の溶媒への添加順序は問わず、いずれを先に加えることもできる。2種以上の貴金属化合物と担体を含む溶液は、還元性液体に添加し、好ましくは少量ずつ還元性液体に添加することができる。少量ずつの添加は、溶液を分割して少しずつ加える、噴霧、滴下、或いは注射器、チューブなどを用いて一定速度で時間をかけて還元性液体に注入するなどの任意の方法を採用できる。担体が分散した貴金属化合物の溶液は、一度に全部加えると、担体と固溶体の結合割合が低下し、担体に担持されていない固溶体が増加する傾向にあるが、還元性液体を大量に使用するなどの反応条件を適切に選択することで、担体に担持されていない固溶体の比率を低減することができる。2種の貴金属の化合物と担体を含む溶液を還元性液体に添加する際に、溶液と還元性液体との混合液体を、適宜撹拌、振盪、超音波処理などをすることができる。撹拌、振盪、超音波処理は、添加前及び/又は後にも、行うことができる。 In the method for producing noble metal solid solution particles (alloy nanoparticles) of the present invention, two or more kinds of noble metal compounds are dissolved in a solvent, and carrier particles are dispersed in this solution. Regardless of the order of addition of the carrier and the noble metal compound to the solvent, either can be added first. A solution containing two or more kinds of noble metal compounds and a carrier can be added to the reducing liquid, and preferably added to the reducing liquid little by little. Addition in small amounts can employ any method such as adding the solution in small portions, spraying, dropping, or injecting into the reducing liquid over time at a constant rate using a syringe, tube, or the like. When the solution of the noble metal compound in which the carrier is dispersed is added all at once, the bonding ratio between the carrier and the solid solution tends to decrease, and the solid solution not supported on the carrier tends to increase, but a large amount of reducing liquid is used. By appropriately selecting the reaction conditions, the ratio of the solid solution not supported on the carrier can be reduced. When a solution containing two kinds of noble metal compounds and a carrier is added to the reducing liquid, the mixed liquid of the solution and the reducing liquid can be appropriately stirred, shaken, sonicated, or the like. Stirring, shaking, and sonication can be performed before and / or after addition.
 貴金属化合物は、溶媒に溶解して貴金属イオン(錯体を含む)を溶液中に供給できるものであれば特に限定されず、例えば貴金属塩、貴金属錯体が挙げられる。理論に拘束されることを望むものではないが、本発明者は、2種以上の貴金属化合物を溶解し担体を分散させた溶液(分散液)において、貴金属イオンもしくは貴金属錯体が担体表面に吸着されるか担体の近傍に存在し、貴金属が還元されると同時に固溶体として担体と結合すると考えている。2種以上の貴金属塩はランダムに担体表面に存在するので、そのままの状態で還元されると貴金属が相分離することなく固溶体として担体と結合すると考えられる。 The noble metal compound is not particularly limited as long as it can be dissolved in a solvent and can supply a noble metal ion (including a complex) into the solution, and examples thereof include noble metal salts and noble metal complexes. Although not wishing to be bound by theory, the present inventor adsorbs noble metal ions or noble metal complexes on the support surface in a solution (dispersion) in which two or more kinds of noble metal compounds are dissolved and the carrier is dispersed. It exists in the vicinity of the carrier and is considered to be combined with the carrier as a solid solution at the same time as the noble metal is reduced. Since two or more kinds of noble metal salts are present on the surface of the support at random, it is considered that the noble metal binds to the support as a solid solution without phase separation when it is reduced as it is.
 2種以上の貴金属化合物を溶媒に溶解し、(i)担体を加えた溶液を濾過し、必要に応じて乾燥、或いは(ii)濾過をすることなく溶媒を蒸発乾燥させて、貴金属化合物(貴金属イオンもしくは貴金属錯体)を担体表面に吸着もしくは結合させ、それを再度溶媒に分散させて、或いは貴金属イオン/錯体を吸着した担体を固体状態で還元性液体に加えることもできる。また、担体は溶媒中で加熱、撹拌、振盪、超音波処理、もしくは減圧下の脱気などにより溶媒となじませ、又は担体表面の気泡を除去して貴金属イオンもしくは貴金属錯体ができるだけ多く吸着されるように前処理することもできる。或いは、2種以上の貴金属化合物を含む溶液に担体を加えて加熱、撹拌、振盪、超音波処理、又は減圧下の脱気などにより貴金属イオンもしくは貴金属錯体の吸着量を多くすることもできる。 Two or more kinds of noble metal compounds are dissolved in a solvent, and (i) the solution to which the carrier is added is filtered and dried as necessary, or (ii) the solvent is evaporated and dried without filtration, and the noble metal compound (noble metal) It is also possible to adsorb or bind ions or noble metal complexes) to the support surface and disperse them in the solvent again, or to add the noble metal ions / complex-adsorbed support to the reducing liquid in the solid state. In addition, the carrier is mixed with the solvent by heating, stirring, shaking, sonication, or degassing under reduced pressure in the solvent, or bubbles on the surface of the carrier are removed to adsorb as much of the noble metal ion or noble metal complex as possible. It can also be pre-processed. Alternatively, the amount of adsorption of the noble metal ion or the noble metal complex can be increased by adding a carrier to a solution containing two or more kinds of noble metal compounds and heating, stirring, shaking, ultrasonic treatment, or degassing under reduced pressure.
 本明細書において、「少量ずつ」とは、還元性液体に加えられた貴金属イオンが速やかに還元されて担体に固溶体として結合する程度の量/速度で貴金属化合物と担体を含む液を還元性液体に添加することを意味し、特に限定されないが、例えば実施例では10~30分間程度かけてゆっくり添加している。 In the present specification, “small amount” means a liquid containing a noble metal compound and a carrier at such an amount / rate that the noble metal ions added to the reducing liquid are rapidly reduced and bonded as a solid solution to the carrier. Although it is not particularly limited, for example, in the examples, it is slowly added over about 10 to 30 minutes.
 還元性液体に加えられた貴金属イオンが速やかに還元されて担体に固溶体として結合する反応は速やかに進むと考えられるが、全体としての反応時間は、添加に要する時間及び必要に応じて添加後も行う撹拌、振盪又は超音波処理の合計時間である。例えば10分~2時間程度とすることができるが、これ以上とすることも制限されない。 The reaction in which the noble metal ions added to the reducing liquid are rapidly reduced and bonded to the support as a solid solution is considered to proceed rapidly, but the overall reaction time is the time required for addition and, if necessary, even after addition. The total time for stirring, shaking or sonication to be performed. For example, it can be about 10 minutes to 2 hours, but it is not limited to more than this.
 貴金属イオンもしくは貴金属錯体が表面に吸着した担体を還元性液体に加えると遊離の貴金属イオンもしくは錯体はほとんど或いは全く存在しないので、貴金属固溶体はほぼ全て担体に担持される。貴金属イオンもしくは貴金属錯体が表面に吸着した担体を濾過及び乾燥することで貴金属イオンもしくは錯体と担体との結合を強固にし、再度貴金属化合物の溶液にこの貴金属吸着担体を加えてより多くの貴金属イオンもしくは錯体を吸着させる操作を1回もしくは2回以上繰り返し、担体に吸着する貴金属イオンもしくは錯体の量を多くすることで、担体に担持される貴金属固溶体の量(担体に対する貴金属固溶体の比率)を増大させることができる。 When a carrier having a noble metal ion or noble metal complex adsorbed on the surface is added to the reducing liquid, there is little or no free noble metal ion or complex, so that almost all the noble metal solid solution is supported on the carrier. By filtering and drying the carrier on which the noble metal ions or the noble metal complex is adsorbed, the bond between the noble metal ion or complex and the carrier is strengthened, and this noble metal adsorbing carrier is added again to the solution of the noble metal compound to add more noble metal ions Increase the amount of noble metal solid solution supported on the carrier (ratio of noble metal solid solution to the carrier) by increasing the amount of noble metal ions or complexes adsorbed on the carrier by repeating the operation of adsorbing the complex once or twice or more. be able to.
 貴金属化合物は溶媒に溶解され、担体はその溶液に分散される。還元性液体は、全部が液体の還元剤から構成されていることもでき(この場合、還元性液体は溶媒を兼ねることができる)、固体の還元剤を溶媒に溶解されていることもできる。 The noble metal compound is dissolved in a solvent, and the carrier is dispersed in the solution. The reducing liquid can be entirely composed of a liquid reducing agent (in this case, the reducing liquid can also serve as a solvent), or a solid reducing agent can be dissolved in the solvent.
 溶媒としては、水、アルコール(メタノール、エタノール、イソプロパノールなど)、ポリオール類(エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレンングリコール、グリセリンなど)、ポリエーテル類(ポリエチレングリコールなど)、アセトニトリル、アセトン、ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドンなどの極性溶媒が使用できる。水が貴金属化合物を溶解するための好ましい塩である。溶媒は、1種単独で又は2種以上を組み合わせて使用することができる。貴金属化合物は、水溶性のものが好ましい。好ましい貴金属化合物としては、硫酸塩、硝酸塩、酢酸塩などの有機酸塩、炭酸塩、ハロゲン化物(フッ化物、塩化物、臭化物、ヨウ化物)、過塩素酸塩、水酸化物、錯体などが挙げられ、ハロゲン化物、硝酸塩、錯体が好ましく使用できる。貴金属化合物における貴金属の価数は、2価、3価、4価のいずれであることができる。好ましい貴金属化合物としては、以下のものが挙げられる:
Au化合物:例えばAuCl3、HAuCl4、K[AuCl4]、Na[AuCl4]、K[Au(CN)2]、K[Au(CN)4]など;Rh化合物:例えばRh(NO3)2、Rh(NO3)3、RhCl2、RhCl3、Rh(CH3COO)3、Rh(CH3COO)2など;Ru化合物:例えばRuCl2、RuCl3、Ru(acac)3 (acacはアセチルアセトンである)、Ru(CH3COO)x (xは2~3の数を示す)など;
Pd化合物:例えばH2PdCl4又はそのアルカリ金属塩、PdCl2、PdSO4、Pd(NO3)2など;Ag化合物:例えばAgNO3、Ag(CH3COO)など;
 好ましい実施形態において、本発明の貴金属固溶体担持微粒子は、2種以上の貴金属化合物を溶媒に溶解して担体を加えた溶液を好ましくは撹拌、振盪もしくは超音波を加えながら還元性液体に加え、加熱して還元反応を進行させることで、得ることができる。還元性液体は、貴金属化合物と担体を含む溶液を加える前に所定の温度に加熱しておくことが好ましい。
Solvents include water, alcohol (methanol, ethanol, isopropanol, etc.), polyols (ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, glycerin, etc.), polyethers (polyethylene glycol, etc.), acetonitrile, acetone, dimethyl Polar solvents such as formamide, dimethyl sulfoxide, N-methylpyrrolidone can be used. Water is a preferred salt for dissolving the noble metal compound. A solvent can be used individually by 1 type or in combination of 2 or more types. The noble metal compound is preferably water-soluble. Preferred noble metal compounds include organic acid salts such as sulfates, nitrates, and acetates, carbonates, halides (fluorides, chlorides, bromides, iodides), perchlorates, hydroxides, complexes, and the like. Halides, nitrates and complexes can be preferably used. The valence of the noble metal in the noble metal compound can be any of bivalent, trivalent, and tetravalent. Preferred noble metal compounds include the following:
Au compounds: eg AuCl 3 , HAuCl 4 , K [AuCl 4 ], Na [AuCl 4 ], K [Au (CN) 2 ], K [Au (CN) 4 ] etc .; Rh compounds: eg Rh (NO 3 ) 2 , Rh (NO 3 ) 3 , RhCl 2 , RhCl 3 , Rh (CH 3 COO) 3 , Rh (CH 3 COO) 2 etc .; Ru compounds: eg RuCl 2 , RuCl 3 , Ru (acac) 3 (acac is Acetylacetone), Ru (CH 3 COO) x (x represents a number from 2 to 3), etc .;
Pd compounds: for example H 2 PdCl 4 or alkali metal salts thereof, PdCl 2 , PdSO 4, Pd (NO 3 ) 2 etc .; Ag compounds: for example AgNO 3 , Ag (CH 3 COO) etc .;
In a preferred embodiment, the noble metal solid solution-supported fine particles of the present invention are prepared by adding a solution prepared by dissolving two or more kinds of noble metal compounds in a solvent and adding a carrier to a reducing liquid, preferably while stirring, shaking or applying ultrasonic waves, and heating. It can be obtained by advancing the reduction reaction. The reducing liquid is preferably heated to a predetermined temperature before adding the solution containing the noble metal compound and the carrier.
 還元性液体は、上記の溶媒を含むことができる。 The reducing liquid can contain the above solvent.
 還元性液体の加熱温度は、還元性液体の沸点以下であることが好ましく、例えば100~260℃程度、好ましくは150~250℃、より好ましくは200~240℃程度である。還元性液体の温度が反応温度となるようように本発明の製造方法を実施することが好ましい。例えば、2種以上の貴金属化合物と担体を含む溶液を少量ずつ還元性液体に添加することで、還元性液体の温度に対する2種以上の貴金属化合物と担体を含む溶液の温度の影響は少なくなる。 The heating temperature of the reducing liquid is preferably not higher than the boiling point of the reducing liquid, for example, about 100 to 260 ° C., preferably 150 to 250 ° C., more preferably about 200 to 240 ° C. It is preferable to carry out the production method of the present invention so that the temperature of the reducing liquid becomes the reaction temperature. For example, by adding a solution containing two or more kinds of noble metal compounds and a carrier to the reducing liquid little by little, the influence of the temperature of the solution containing two or more kinds of noble metal compounds and a carrier on the temperature of the reducing liquid is reduced.
 2種以上の貴金属化合物と担体を含む溶液は、室温で使用することができ、還元性液体の温度又はそれ以下の温度で加熱して使用することもできる。 A solution containing two or more kinds of noble metal compounds and a carrier can be used at room temperature, and can be used by heating at a temperature of the reducing liquid or lower.
 2種以上の貴金属化合物の溶液中の濃度としては、0.001~1 mol/L程度、好ましくは0.025~0.1 mol/L 程度とすることができる。2種以上の貴金属化合物の溶液中の濃度を上記の範囲とすることは、担体への担持効率の観点で好ましい。貴金属化合物の濃度が濃すぎると担体への担持効率が低下する傾向がある。 The concentration of two or more kinds of noble metal compounds in the solution can be about 0.001 to 1 mol / L, preferably about 0.025 to 0.1 mol / L. The concentration of the two or more kinds of noble metal compounds in the solution is preferably within the above range from the viewpoint of supporting efficiency on the carrier. If the concentration of the noble metal compound is too high, the loading efficiency on the carrier tends to be reduced.
 還元性液体としては、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等のグリコール類(グリコール化合物);グリセリン、ジグリセリン、トリグリセリン、デカグリセリンなどのポリグリセリン;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなどのアルキレングリコールモノアルキルエーテル;ブチルアミンなどのアミン類(アミン化合物)、及びNaBH4、LiBH4、LiAlH4などの金属水素化物を上記アルコールなどに溶解した溶液が挙げられる。NaBH4、LiBH4、LiAlH4などの金属水素化物の溶液を還元性液体として用いる場合、溶液の温度は室温~60℃程度の温度であっても貴金属の還元反応は有利に進行する。本発明の好ましい態様の一つにおいて、還元性液体はエチレングリコールなどのグリコール類(グリコール化合物)である。 Examples of reducing liquids include glycols (glycol compounds) such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol; polyglycerins such as glycerin, diglycerin, triglycerin, and decaglycerin; ethylene glycol monomethyl ether, Alkylene glycol monoalkyl ethers such as ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether; amines such as butylamine (amine compounds), and metal hydrides such as NaBH 4 , LiBH 4 , LiAlH 4 etc. The solution which melt | dissolved in is mentioned. When a metal hydride solution such as NaBH 4 , LiBH 4 , or LiAlH 4 is used as the reducing liquid, the noble metal reduction reaction proceeds advantageously even if the temperature of the solution is about room temperature to about 60 ° C. In one preferred embodiment of the present invention, the reducing liquid is a glycol (glycol compound) such as ethylene glycol.
 還元性液体は、還元剤成分換算で、貴金属化合物に対して1当量以上、好ましくは2当量以上、さらに好ましくは3当量以上使用することができる。還元性液体は、全部が液体の還元剤から構成されている場合は、過剰量、好ましくは大過剰使用することができる。    The reducing liquid can be used in an amount of 1 equivalent or more, preferably 2 equivalents or more, more preferably 3 equivalents or more with respect to the noble metal compound in terms of a reducing agent component. When the reducing liquid is entirely composed of a liquid reducing agent, it can be used in an excess amount, preferably a large excess. *
 かくして、PdRu、AgRh又はAuRhの固溶体を担体に担持してなる、貴金属固溶体担持微粒子を取得することができる。 Thus, noble metal solid solution-supported fine particles obtained by supporting a solid solution of PdRu, AgRh or AuRh on a carrier can be obtained.
 調製後、粉体として触媒を取り出す方法は、特に限定されないが、例えば遠心分離、濾過、沈降、再沈殿、粉体分離器(サイクロン)による分離等が挙げられる。 The method of taking out the catalyst as a powder after preparation is not particularly limited, and examples thereof include centrifugation, filtration, sedimentation, reprecipitation, and separation with a powder separator (cyclone).
 以下、本発明を実施例に基づきより詳細に説明するが、本発明がこれら実施例に限定されないことはいうまでもない。 Hereinafter, although the present invention will be described in more detail based on examples, it is needless to say that the present invention is not limited to these examples.
実施例1
 10mlの水にK2PdCl4(0.048mmol)、RuCl3・nH2O (0.048mmol)、γ-Al2O3(990mg)を室温で加え、超音波処理によりK2PdCl4とRuCl3を溶解し、担体を含む貴金属化合物溶液(I)を調製した。
Example 1
Add K 2 PdCl 4 (0.048 mmol), RuCl 3 · nH 2 O (0.048 mmol) and γ-Al 2 O 3 (990 mg) to 10 ml of water at room temperature, and add K 2 PdCl 4 and RuCl 3 by sonication. Dissolved to prepare a noble metal compound solution (I) containing a carrier.
 トリエチレングリコール(TEG、100ml)を300mlのビーカー中で204℃まで加熱撹拌し、このTEG撹拌液に上記溶液(I)を15分間かけてゆっくり滴下し、滴下終了後15分間撹拌した。得られた反応液を室温まで冷却後、7000rpmで遠心分離を行い、PdRu固溶体をγ-Al2O3に担持してなる、貴金属固溶体担持微粒子を得た。 Triethylene glycol (TEG, 100 ml) was heated and stirred to 204 ° C. in a 300 ml beaker, and the solution (I) was slowly added dropwise to the TEG stirring solution over 15 minutes, and the mixture was stirred for 15 minutes after completion of the dropwise addition. The obtained reaction solution was cooled to room temperature and then centrifuged at 7000 rpm to obtain noble metal solid solution-supported fine particles comprising PdRu solid solution supported on γ-Al 2 O 3 .
 得られたPdRu固溶体担持微粒子について、TEM(Transmission Electron Microscopy)像の撮影とSTEM-EDX(Scanning Transmission Electron Microscopy-Energy Dispersive X-ray spectroscopy)マッピングを行った。結果を図1,2に示す。図1より、貴金属が担体に担持されていることが分かる。図2より、PdとRuとが互いに溶け合っていることが分かる。本発明の微粒子は、担体(γ-アルミナ)にPdRu固溶体担持微粒子(平均粒径3.8±1.2nm)が担持したものであることが確認された。 The obtained PdRu solid solution-supported fine particles were subjected to TEM (Transmission Electron Microscopy) imaging and STEM-EDX (Scanning Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy) mapping. The results are shown in Figs. FIG. 1 shows that noble metal is supported on the carrier. FIG. 2 shows that Pd and Ru are mutually melted. It was confirmed that the fine particles of the present invention were those in which PdRu solid solution-supported fine particles (average particle size 3.8 ± 1.2 nm) were supported on a carrier (γ-alumina).
比較例1
 10mlの水にK2PdCl4(0.048mmol)、RuCl3・nH2O(0.048mmol)を室温で加え、超音波処理によりK2PdCl4とRuCl3を溶解し、貴金属化合物溶液(II)を調製した。
Comparative Example 1
Of water 10ml K 2 PdCl 4 (0.048mmol) , RuCl 3 · nH added 2 O a (0.048 mmol) at room temperature, by sonication to dissolve the K 2 PdCl 4 and RuCl 3, the noble metal compound solution (II) Prepared.
 トリエチレングリコール(TEG、100ml)にγ-Al2O3(990mg)を加え、300mlのビーカー中で204℃まで加熱撹拌し、このTEG+γ-Al2O3撹拌液に上記溶液(II)を15分間かけてゆっくり滴下し、滴下終了後15分間撹拌した。得られた反応液を室温まで冷却後、7000rpmで遠心分離を行い、PdRu固溶体をγ-Al2O3に担持してなる、PdRu固溶体担持微粒子を得た。 Γ-Al 2 O 3 (990 mg) was added to triethylene glycol (TEG, 100 ml), and the mixture was heated and stirred to 204 ° C. in a 300 ml beaker, and the above solution (II) was added to this TEG + γ-Al 2 O 3 stirring solution. The solution was slowly added dropwise over a period of 15 minutes and stirred for 15 minutes after the completion of the addition. The obtained reaction solution was cooled to room temperature and then centrifuged at 7000 rpm to obtain PdRu solid solution-supported fine particles in which the PdRu solid solution was supported on γ-Al 2 O 3 .
 得られたPdRu固溶体担持γ-アルミナ微粒子について、TEM像の撮影とSTEM-EDXマッピングを行った。結果を図3に示す。比較例1の微粒子は、担体(γ-アルミナ)にPdRu固溶体担持微粒子(平均粒径4.1±1.0nm)を担持したものであったが、その担持量は少ないものであった。 The obtained PdRu solid solution-supported γ-alumina fine particles were subjected to TEM image shooting and STEM-EDX mapping. The results are shown in Figure 3. The fine particles of Comparative Example 1 were those in which PdRu solid solution-supported fine particles (average particle size 4.1 ± 1.0 nm) were supported on a carrier (γ-alumina), but the amount supported was small.
試験例1
 実施例1と比較例1で得られた微粒子におけるPdRu固溶体の担持量を、γ-Al2O3をバランス成分に設定して定量計算した。結果を図4に示す。定量は傾向X線分析(XRF)法を用いて行った。
Test example 1
The supported amount of the PdRu solid solution in the fine particles obtained in Example 1 and Comparative Example 1 was quantitatively calculated by setting γ-Al 2 O 3 as a balance component. The results are shown in FIG. Quantification was performed using a trend X-ray analysis (XRF) method.
 図4の結果から、実施例1で得られた微粒子は、比較例1で得られた微粒子と比較して約2倍PdRuの担持量が多いことが明らかになった。 From the results of FIG. 4, it was revealed that the fine particles obtained in Example 1 had about twice as much PdRu loading as the fine particles obtained in Comparative Example 1.

Claims (6)

  1.  互いに相分離する2種の貴金属の化合物と担体を含む溶液を還元性液体に添加する工程を含み、前記2種の貴金属がPdとRu、AgとRh、AuとRhのいずれかである、PdRu、AgRh又はAuRhの固溶体を担体に担持してなる、貴金属固溶体担持微粒子の製造方法。 Adding a solution containing a compound of two kinds of noble metals that phase separate from each other and a support to the reducing liquid, wherein the two kinds of noble metals are Pd and Ru, Ag and Rh, Au and Rh, PdRu A method for producing noble metal solid solution-supported fine particles obtained by supporting a solid solution of AgRh or AuRh on a carrier.
  2.  担体がアルミナ、ジルコニア、チタニア、セリア、シリカ、シリカアルミナ、カルシア、マグネシア、セリアジルコニア、ランタナ、ランタナアルミナ、酸化スズ、酸化タングステン、アルミノシリケート、アルミノホスフェート、ボロシリケート、リンタングステン酸、ヒドロキシアパタイト、ハイドロタルサイト、ペロブスカイト、コージェライト及びムライトの1種又はこれらの2種以上を含む複合酸化物、シリコンカーバイド、活性炭、カーボンブラック、アセチレンブラック、カーボンナノチューブ並びにカーボンナノホーンからなる群から選ばれる、請求項1に記載の貴金属固溶体担持微粒子の製造方法。 Supports alumina, zirconia, titania, ceria, silica, silica alumina, calcia, magnesia, ceria zirconia, lantana, lantana alumina, tin oxide, tungsten oxide, aluminosilicate, aluminophosphate, borosilicate, phosphotungstic acid, hydroxyapatite, hydro 2. One type selected from the group consisting of talcite, perovskite, cordierite and mullite, or a composite oxide containing two or more thereof, silicon carbide, activated carbon, carbon black, acetylene black, carbon nanotube, and carbon nanohorn. The manufacturing method of the noble metal solid solution carrying | support microparticles | fine-particles of description.
  3.  還元性液体が、グリコール類、グリセリン、ポリグリセリン、アルキレングリコールモノアルキルエーテル及び金属水素化物の溶液からなる群から選ばれる、請求項1又は2に記載の貴金属固溶体担持微粒子の製造方法。 3. The method for producing noble metal solid solution-supported fine particles according to claim 1, wherein the reducing liquid is selected from the group consisting of a solution of glycols, glycerin, polyglycerin, alkylene glycol monoalkyl ether, and metal hydride.
  4.  担体に担持された固溶体貴金属合金粒子の平均粒径が1~100 nmである、請求項1~3のいずれか1項に記載の貴金属固溶体担持微粒子の製造方法。 The method for producing noble metal solid solution-supported fine particles according to any one of claims 1 to 3, wherein the average particle diameter of the solid solution noble metal alloy particles supported on the carrier is 1 to 100 nm.
  5.  貴金属化合物と担体を溶媒中で混合し、濾過した担体を乾燥、或いは蒸発乾燥し、貴金属イオンが表面に付着した乾燥担体を直接もしくは溶媒に分散させて還元性液体に添加することを特徴とする、請求項1~4のいずれか1項に記載の貴金属固溶体担持微粒子の製造方法。 The precious metal compound and the carrier are mixed in a solvent, the filtered carrier is dried or evaporated to dryness, and the dry carrier having the precious metal ions attached to the surface is directly or dispersed in a solvent and added to the reducing liquid. The method for producing noble metal solid solution-supported fine particles according to any one of claims 1 to 4.
  6.  貴金属化合物と担体を溶媒中で混合し、超音波処理又は脱気処理により担体表面の気泡を除去する工程をさらに含む、請求項5に記載の貴金属固溶体担持微粒子の製造方法。 The method for producing noble metal solid solution-supported fine particles according to claim 5, further comprising a step of mixing the noble metal compound and the carrier in a solvent and removing bubbles on the surface of the carrier by ultrasonic treatment or degassing treatment.
PCT/JP2016/055865 2015-02-28 2016-02-26 Method of producing fine particles supporting noble metal solid solution WO2016136956A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017502516A JP6737435B2 (en) 2015-02-28 2016-02-26 Method for producing fine particles carrying a noble metal solid solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015039680 2015-02-28
JP2015-039680 2015-02-28

Publications (1)

Publication Number Publication Date
WO2016136956A1 true WO2016136956A1 (en) 2016-09-01

Family

ID=56788991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055865 WO2016136956A1 (en) 2015-02-28 2016-02-26 Method of producing fine particles supporting noble metal solid solution

Country Status (2)

Country Link
JP (1) JP6737435B2 (en)
WO (1) WO2016136956A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203108A (en) * 2015-04-24 2016-12-08 国立大学法人大阪大学 Silver-cerium oxide complex catalyst carried on alkaline carrier, and production method thereof
JP2019030827A (en) * 2017-08-04 2019-02-28 独立行政法人国立高等専門学校機構 Catalyst using palladium-ruthenium composite fine particle, and method of producing the same
WO2020262121A1 (en) * 2019-06-26 2020-12-30 株式会社フルヤ金属 Supported catalyst synthesis device and fine particle synthesis device
CN113233569A (en) * 2021-04-17 2021-08-10 北京化工大学 Method for quickly removing manganese ions in wastewater and application of manganese-containing product in precious metal recovery
WO2024095872A1 (en) * 2022-11-01 2024-05-10 住友化学株式会社 Method for producing c2-3 alcohol

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085614A (en) * 1996-09-18 1998-04-07 Unitika Ltd Production of metal carrying catalyst
JP2007050388A (en) * 2005-08-19 2007-03-01 Tohoku Univ Alloy-deposited carrier, method for manufacturing the same, oxidation catalyst containing the same and method for producing oxidative addition product
JP2007069159A (en) * 2005-09-08 2007-03-22 Japan Advanced Institute Of Science & Technology Hokuriku Production method of metal-organic substance composite catalyst
JP2007197591A (en) * 2006-01-27 2007-08-09 Tokyo Metropolitan Univ Polymer material with gold fine particle attached to surface, and method for producing the same
JP2009220017A (en) * 2008-03-17 2009-10-01 Tokyo Metropolitan Univ Method of dispersing and fixing gold fine particle on carrier, and material obtained by this method
JP2010221082A (en) * 2009-03-19 2010-10-07 Asahi Kasei Chemicals Corp Supported body of noble metal, and method of producing carboxylate ester using the same as catalyst
JP2012200660A (en) * 2011-03-25 2012-10-22 National Institute For Materials Science Metal catalyst structure and method for producing the same
JP2012239980A (en) * 2011-05-19 2012-12-10 Toyota Motor Corp Exhaust gas cleaning catalyst and method for producing the same
JP2013039543A (en) * 2011-08-19 2013-02-28 Asahi Kasei Corp Supported catalyst containing rhodium and gold
JP2014140800A (en) * 2013-01-22 2014-08-07 Nippon Shokubai Co Ltd Catalyst for wastewater treatment and method for wastewater treatment using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085614A (en) * 1996-09-18 1998-04-07 Unitika Ltd Production of metal carrying catalyst
JP2007050388A (en) * 2005-08-19 2007-03-01 Tohoku Univ Alloy-deposited carrier, method for manufacturing the same, oxidation catalyst containing the same and method for producing oxidative addition product
JP2007069159A (en) * 2005-09-08 2007-03-22 Japan Advanced Institute Of Science & Technology Hokuriku Production method of metal-organic substance composite catalyst
JP2007197591A (en) * 2006-01-27 2007-08-09 Tokyo Metropolitan Univ Polymer material with gold fine particle attached to surface, and method for producing the same
JP2009220017A (en) * 2008-03-17 2009-10-01 Tokyo Metropolitan Univ Method of dispersing and fixing gold fine particle on carrier, and material obtained by this method
JP2010221082A (en) * 2009-03-19 2010-10-07 Asahi Kasei Chemicals Corp Supported body of noble metal, and method of producing carboxylate ester using the same as catalyst
JP2012200660A (en) * 2011-03-25 2012-10-22 National Institute For Materials Science Metal catalyst structure and method for producing the same
JP2012239980A (en) * 2011-05-19 2012-12-10 Toyota Motor Corp Exhaust gas cleaning catalyst and method for producing the same
JP2013039543A (en) * 2011-08-19 2013-02-28 Asahi Kasei Corp Supported catalyst containing rhodium and gold
JP2014140800A (en) * 2013-01-22 2014-08-07 Nippon Shokubai Co Ltd Catalyst for wastewater treatment and method for wastewater treatment using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELIZABETH R. ESSINGER-HILEMAN ET AL.: "Aqueous room- temperature synthesis of Au-Rh, Au-Pt, Pt-Rh, and Pd-Rh alloy nanoparticles: fully tunable compositions within the miscibility gaps", JOURNAL OF MATERIALS CHEMISTRY, vol. 21, no. 31, January 2011 (2011-01-01), pages 11599 - 11604, XP055132899 *
LIMEI SUN ET AL.: "Pd-Ru/C as the electrocatalyst for hydrogen peroxide reduction", JOURNAL OF APPLIED ELECTROCHEMISTRY, vol. 38, no. 10, 14 May 2008 (2008-05-14), pages 1415 - 1419, XP019606310 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203108A (en) * 2015-04-24 2016-12-08 国立大学法人大阪大学 Silver-cerium oxide complex catalyst carried on alkaline carrier, and production method thereof
JP2019030827A (en) * 2017-08-04 2019-02-28 独立行政法人国立高等専門学校機構 Catalyst using palladium-ruthenium composite fine particle, and method of producing the same
JP7017730B2 (en) 2017-08-04 2022-02-09 学校法人福岡工業大学 Method for manufacturing a catalyst using palladium-ruthenium composite fine particles
WO2020262121A1 (en) * 2019-06-26 2020-12-30 株式会社フルヤ金属 Supported catalyst synthesis device and fine particle synthesis device
CN114051431A (en) * 2019-06-26 2022-02-15 株式会社古屋金属 Supported catalyst synthesis apparatus and fine particle synthesis apparatus
CN113233569A (en) * 2021-04-17 2021-08-10 北京化工大学 Method for quickly removing manganese ions in wastewater and application of manganese-containing product in precious metal recovery
WO2024095872A1 (en) * 2022-11-01 2024-05-10 住友化学株式会社 Method for producing c2-3 alcohol

Also Published As

Publication number Publication date
JP6737435B2 (en) 2020-08-12
JPWO2016136956A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6737435B2 (en) Method for producing fine particles carrying a noble metal solid solution
Dong et al. Metal organic framework derived magnetic porous carbon composite supported gold and palladium nanoparticles as highly efficient and recyclable catalysts for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol
RU2730496C2 (en) Rhodium-containing catalysts for treating automotive exhausts
Taghavimoghaddam et al. Preparation and characterization of mesoporous silica supported cobalt oxide as a catalyst for the oxidation of cyclohexanol
Zhang et al. Gold nanoparticle decorated ceria nanotubes with significantly high catalytic activity for the reduction of nitrophenol and mechanism study
JP6017777B2 (en) Method for producing catalyst composition for ammonia production and method for producing ammonia
El-Hankari et al. Surfactant-assisted ZnO processing as a versatile route to ZIF composites and hollow architectures with enhanced dye adsorption
JP2012096234A (en) Carrier carrying metal-containing colloidal particle and method of producing the same
JPWO2014083772A1 (en) Method for producing metal nanoparticle composite and metal nanoparticle composite produced by the method
Wu et al. Pt-embedded-CeO 2 hollow spheres for enhancing CO oxidation performance
WO2012120711A1 (en) Metal particles, catalyst for exhaust gas purification containing same, and production method therefor
WO2016052058A1 (en) Separation method and separation apparatus
Imura et al. Surface clean gold nanoflower obtained by complete removal of capping agents: an active catalyst for alcohol oxidation
JP5840475B2 (en) Porous oxide-coated particles, supported catalyst, and production method thereof
JP4296908B2 (en) Catalyst body and method for producing the same
CN111992206A (en) Ultra-dispersed noble metal heterogeneous catalyst and application thereof
JP2018141235A (en) Method for producing solid-solution alloy particulate
JP2013027869A (en) Method for manufacturing metal particle carrying catalyst
RU2496574C1 (en) Catalyst for hydrofining diesel fractions
JPWO2014119766A1 (en) Selective hydrogenation catalyst, method for producing selective hydrogenation catalyst, and selective hydrogenation method
Hamaloğlu et al. Monodisperse-porous cerium oxide microspheres as a new support with appreciable catalytic activity for a composite catalyst in benzyl alcohol oxidation
JP2017001037A (en) Catalyst composition for manufacturing ammonia, manufacturing method of catalyst composition for manufacturing ammonia and ammonia manufacturing method
CN113164938A (en) Catalyst structure, method for producing same, and method for producing hydrocarbon using same
JP5310885B2 (en) Method for producing base metal catalyst for exhaust gas purification
JP5758228B2 (en) Supported catalysts containing rhodium and gold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502516

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755700

Country of ref document: EP

Kind code of ref document: A1