JP5757222B2 - Submersion method for reactor containment - Google Patents

Submersion method for reactor containment Download PDF

Info

Publication number
JP5757222B2
JP5757222B2 JP2011256580A JP2011256580A JP5757222B2 JP 5757222 B2 JP5757222 B2 JP 5757222B2 JP 2011256580 A JP2011256580 A JP 2011256580A JP 2011256580 A JP2011256580 A JP 2011256580A JP 5757222 B2 JP5757222 B2 JP 5757222B2
Authority
JP
Japan
Prior art keywords
chamber
water
suppression chamber
vent pipe
containment vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011256580A
Other languages
Japanese (ja)
Other versions
JP2013108956A (en
Inventor
英輝 川畑
英輝 川畑
昂史 藤田
昂史 藤田
岩田 圭司
圭司 岩田
康雄 肱岡
康雄 肱岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011256580A priority Critical patent/JP5757222B2/en
Publication of JP2013108956A publication Critical patent/JP2013108956A/en
Application granted granted Critical
Publication of JP5757222B2 publication Critical patent/JP5757222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

本発明は、原子炉格納容器の冠水方法に関するものである。   The present invention relates to a method for flooding a containment vessel.

原子炉圧力容器やその中の核燃料が損傷または溶融する過酷事故が生じた際、これらを補修したり、除去したりする作業が必要となる。このような状態のとき、原子炉格納容器の内部は極めて高い放射線量となっている。つまり、原子炉圧力容器や原子炉格納容器へ接近する作業は容易でない。このため、原子炉格納容器を冠水させ、放射線量を低減させた上で作業を行うことが想定される。   When a severe accident occurs that damages or melts the reactor pressure vessel or the nuclear fuel in it, it is necessary to repair or remove them. In such a state, the inside of the reactor containment vessel has a very high radiation dose. In other words, it is not easy to access the reactor pressure vessel or the reactor containment vessel. For this reason, it is assumed that the reactor containment vessel is submerged and the work is performed after reducing the radiation dose.

MARK−IやMARK−I改良型と呼ばれる沸騰水型原子炉(例えば特許文献1参照)では、原子炉格納容器が、原子炉圧力容器を収納するドライウェルと、内部にプールが形成されるサプレッションチェンバと、ドライウェルとサプレッションチェンバとを接続するベント管とを備えている。このような沸騰水型原子炉で、上述のような過酷事故が生じた場合には、原子炉格納容器を冠水させて作業を行うことになる。   In a boiling water reactor called MARK-I or an improved MARK-I (see, for example, Patent Document 1), a containment vessel includes a dry well that houses a reactor pressure vessel, and a suppression in which a pool is formed. The chamber includes a vent pipe connecting the dry well and the suppression chamber. When such a severe accident occurs in such a boiling water reactor, the reactor containment vessel is submerged for operation.

特開平4−348299号公報JP-A-4-348299

しかしながら、サプレッションチェンバやベント管の一部が破損している場合には、ドライウェルに注水を行っても、供給された水がサプレッションチェンバやベント管の破損箇所を介して原子炉格納容器の外部に漏出する。このため、原子炉格納容器を冠水させることが難しい場合がある。   However, if a part of the suppression chamber or vent pipe is damaged, the supplied water will not be discharged from the reactor containment vessel via the damaged part of the suppression chamber or vent pipe even if water is poured into the dry well. To leak. For this reason, it may be difficult to flood the reactor containment vessel.

破損箇所の状態を詳しく分析、特定することができれば、破損箇所のみを補修することで漏水を防止することができる。しかしながら、放射線量が高いなかで、このような破損部分の状態を広範囲に亘って詳しく分析、特定することは難しい。
また、サプレッションチェンバが収納されているトーラス室を全てコンクリート等の止水材で塞ぐことによって、破損箇所を特定することなく、水の漏出を防ぐことも考えられる。しかしながら、このような場合には、大量のコンクリートが必要となる。これらのコンクリートは、放射性物質に汚染されるため、原子炉格納容器の冠水中から補修、核燃料の除去作業が完了した後まで、適切な処理を行う必要がある。つまり、トーラス室を全てコンクリート等の止水材で塞いだ場合には、大量の放射性廃棄物が生じることになる。
If the state of the damaged part can be analyzed and specified in detail, water leakage can be prevented by repairing only the damaged part. However, it is difficult to analyze and specify the state of such a damaged portion in detail over a wide range under a high radiation dose.
It is also conceivable to prevent leakage of water without specifying a damaged part by closing all the torus chambers in which the suppression chambers are stored with a water-stopping material such as concrete. However, in such a case, a large amount of concrete is required. Since these concretes are contaminated with radioactive materials, it is necessary to perform appropriate treatment from the flooding of the reactor containment vessel to after the repair and nuclear fuel removal operations are completed. That is, when all the torus chambers are closed with a water-stopping material such as concrete, a large amount of radioactive waste is generated.

本発明は、上述する問題点に鑑みてなされたもので、サプレッションチェンバ及びベント管の少なくともいずれかに破損箇所が存在する可能性が高い原子炉格納容器の冠水方法であって、原子炉格納容器の冠水に必要となる止水材や水の量を出来る限り抑えつつ原子炉格納容器を冠水させることを目的とする。   The present invention has been made in view of the above-described problems, and is a method for flooding a reactor containment vessel in which at least one of a suppression chamber and a vent pipe is likely to have a damaged portion, and the reactor containment vessel The purpose is to submerge the reactor containment vessel while minimizing the amount of water-stopping material and water required for flooding.

本発明は、上記課題を解決するための手段として、以下の構成を採用する。   The present invention adopts the following configuration as means for solving the above-described problems.

第1の発明は、原子炉圧力容器を収納するドライウェルと、当該ドライウェルの周囲に設けられるサプレッションチェンバと、上記ドライウェルと上記サプレッションチェンバとを接続するベント管とを有し、上記サプレッションチェンバまたは上記ベント管のいずれかに漏水の原因となる破損箇所を有する原子炉格納容器の冠水方法であって、上記ベント管に止水材を供給する止水材供給経路を確保できるかを判断する経路判断工程と、上記経路判断工程にて上記止水材供給経路を確保できると判断した場合に、上記ベント管内に上記止水材を充填するベント管閉塞工程とを有し、上記ベント管閉塞工程の後に、上記原子炉格納容器に水を供給する水供給工程を行うという構成を採用する。   1st invention has a dry well which accommodates a reactor pressure vessel, a suppression chamber provided in the circumference of the dry well, and a vent pipe which connects the dry well and the suppression chamber, The suppression chamber Alternatively, it is a flooding method for a containment vessel having a damaged portion that causes water leakage in any one of the vent pipes, and it is determined whether a water stopping material supply path for supplying the water stopping material to the vent pipe can be secured. And a vent pipe closing step for filling the water stop material into the vent pipe when it is determined that the water stop material supply path can be secured in the path determination step. A configuration is adopted in which a water supply step of supplying water to the reactor containment vessel is performed after the step.

第2の発明は、上記第1の発明において、上記ベント管の下方に上記サプレッションチェンバの内部空間と上記ベント管とを接続するダウンカマが設けられており、上記経路判断工程にて上記止水材供給経路を確保できないと判断した場合に、上記サプレッションチェンバ内に上記止水材を充填できるかの判断を行う充填確認工程と、上記充填確認工程にて上記サプレッションチェンバ内に上記止水材を充填できると判断した場合に、上記ダウンカマの開口が閉塞されるまで上記止水材を上記サプレッションチェンバに充填するダウンカマ閉塞工程とを有し、上記ダウンカマ閉塞工程の後に上記水供給工程を行うという構成を採用する。   According to a second invention, in the first invention, a downcomer is provided below the vent pipe to connect the internal space of the suppression chamber and the vent pipe. When it is determined that the supply path cannot be secured, a filling confirmation step for determining whether the water stop material can be filled in the suppression chamber, and the water stop material is filled in the suppression chamber in the filling confirmation step. A downcomer blockage step of filling the suppression chamber with the water-stopping material until the downcoma opening is closed, and the water supply step is performed after the downcoma blockage step. adopt.

第3の発明は、上記第2の発明において、上記サプレッションチェンバが設置されるトーラス室が設けられており、上記充填確認工程にて上記サプレッションチェンバ内に上記止水材を充填できないと判断した場合に、上記トーラス室に上記サプレッションチェンバと上記ベント管との接続部位の高さまで上記止水材を充填するトーラス室閉鎖工程を有し、上記トーラス室閉鎖工程の後に上記水供給工程を行うという構成を採用する。   A third invention is the above-mentioned second invention, wherein a torus chamber in which the suppression chamber is installed is provided, and it is determined in the filling confirmation step that the water stop material cannot be filled in the suppression chamber. The torus chamber has a torus chamber closing step for filling the water stop material to the height of the connection portion between the suppression chamber and the vent pipe, and the water supply step is performed after the torus chamber closing step. Is adopted.

第4の発明は、上記第3の発明において、上記サプレッションチェンバと上記ベント管とを接続する真空破壊装置とが設けられており、上記真空破壊装置に破損箇所が確認された場合に、上記トーラス室閉鎖工程にて上記真空破壊装置の破損箇所の高さまで上記止水材を充填するという構成を採用する。   A fourth invention is the above-mentioned third invention, wherein a vacuum breaker for connecting the suppression chamber and the vent pipe is provided, and when the damaged part is confirmed in the vacuum breaker, the torus The structure which fills the said water stop material to the height of the broken location of the said vacuum breaker in a chamber closing process is employ | adopted.

第1の発明によれば、ベント管に止水材を供給する止水材供給経路を確保できる場合に、ベント管に止水材を充填することによってベント管を閉塞する。このように全て(8本)のベント管が止水材により閉塞することによって、原子炉格納容器を冠水させるときにベント管を介して水が流れ出ることを防止することができる。このような第1の発明によれば、止水材の量は、ベント管内に供給される分のみとなり、トーラス室の全てに止水材を充填する場合と比較して極めて少なくすることができる。また、第1の発明によれば、ベント管が閉塞されていることから、サプレッションチェンバに水を溜めることなくドライウェルを冠水させることができ、原子炉格納容器を全て水で満たす場合よりも水の量を低減させることができる。
したがって、第1の発明によれば、サプレッションチェンバまたはベント管のいずれかに破損箇所が存在する可能性が高い原子炉格納容器の冠水方法であって、原子炉格納容器の冠水に必要となる止水材や水の量を出来る限り抑えつつ原子炉格納容器を冠水させることができる。
According to the first aspect of the present invention, when the water stop material supply path for supplying the water stop material to the vent pipe can be secured, the vent pipe is closed by filling the vent pipe with the water stop material. In this way, all (eight) vent pipes are blocked by the water stop material, so that it is possible to prevent water from flowing out through the vent pipe when the reactor containment vessel is submerged. According to the first invention as described above, the amount of the water stop material is only the amount supplied into the vent pipe, and can be extremely reduced as compared with the case where the water stop material is filled in the entire torus chamber. . In addition, according to the first invention, since the vent pipe is closed, the dry well can be submerged without accumulating water in the suppression chamber, and the water can be filled more than when the reactor containment vessel is completely filled with water. The amount of can be reduced.
Therefore, according to the first aspect of the present invention, there is provided a method for flooding a containment vessel in which there is a high possibility that a damaged portion is present in either the suppression chamber or the vent pipe, and is necessary for flooding the reactor containment vessel. The containment vessel can be submerged while suppressing the amount of water and water as much as possible.

また、第2の発明によれば、上記止水材供給経路を確保できないが、サプレッションチェンバ内に止水材を充填できる場合に、ベント管の下方に接続されるダウンカマの開口が閉塞されるまでサプレッションチェンバ内に止水材を供給してダウンカマの開口を閉塞する。このように、サプレッションチェンバの内部空間とベント管とを接続するダウンカマの開口が閉塞されることによって、原子炉格納容器を冠水させるときにベント管を介してサプレッションチェンバ内に水が流れ込むことを防止することができる。このような第2の発明によれば、止水材の量は、サプレッションチェンバの底部からダウンカマの開口が閉塞される高さとなるまでの分となり、トーラス室を止水材で塞ぐ場合と比較して少なくすることができる。また、第2の発明によれば、ダウンカマの開口が閉塞されていることからサプレッションチェンバに水を溜めることなくドライウェルを冠水させることができ、原子炉格納容器を全て水で満たす場合よりも水の量を低減させることができる。
したがって、第2の発明によれば、サプレッションチェンバに破損箇所が存在する場合であって、その場所を特定し、補修せずとも原子炉格納容器を冠水させることができる方法であって、原子炉格納容器の冠水に必要となる止水材や水の量を出来る限り抑えつつ原子炉格納容器を冠水させることができる。
Further, according to the second invention, although the water stop material supply path cannot be secured, when the water stop material can be filled in the suppression chamber, the opening of the downcomer connected below the vent pipe is blocked. A water stop material is supplied into the suppression chamber to close the downcomer opening. In this way, the opening of the downcomer that connects the internal space of the suppression chamber and the vent pipe is blocked, thereby preventing water from flowing into the suppression chamber via the vent pipe when the reactor containment vessel is submerged. can do. According to the second aspect of the invention, the amount of the water-stopping material is the amount from the bottom of the suppression chamber to the height at which the opening of the downcomer is closed, compared with the case where the torus chamber is closed with the water-stopping material. Can be reduced. Further, according to the second invention, since the opening of the downcomer is closed, the dry well can be submerged without accumulating water in the suppression chamber, and the water can be filled more than when the reactor containment vessel is completely filled with water. The amount of can be reduced.
Therefore, according to the second aspect of the present invention, there is a method in which a damaged portion is present in the suppression chamber, the location can be specified, and the reactor containment vessel can be submerged without repair. The reactor containment vessel can be flooded while suppressing the amount of water-stopping material and water necessary for flooding the containment vessel as much as possible.

また、第3の発明によれば、上記止水材供給経路を確保できず、さらにサプレッションチェンバ内に止水材を充填できない場合に、サプレッションチェンバが設置されるトーラス室に止水材を充填してトーラス室を閉鎖する。このようにトーラス室が閉鎖されることによって、ベント管に破損があった場合も、原子炉格納容器を冠水させるときに水がサプレッションチェンバ外部に漏れだすことを防止することができる。このような第3の発明によれば、止水材の量は、ベント管とサプレッションチェンバとの接続部位を埋設する高さまでの分となり、トーラス室の全てを止水材で塞ぐ場合と比較して少なくすることができる。   Further, according to the third invention, when the water stop material supply path cannot be secured and the water stop material cannot be filled in the suppression chamber, the water stop material is filled in the torus chamber where the suppression chamber is installed. Close the torus room. By closing the torus chamber in this way, it is possible to prevent water from leaking out of the suppression chamber when the reactor containment vessel is submerged even when the vent pipe is damaged. According to the third aspect of the invention, the amount of the water-stopping material is a height up to the height at which the connection portion between the vent pipe and the suppression chamber is embedded, and compared with the case where the entire torus chamber is closed with the water-stopping material. Can be reduced.

また、第4の発明によれば、ベント管とサプレッションチェンバとの接続部位よりも上方に配置される真空破壊装置に破損がある場合であっても、原子炉格納容器を冠水させるときに水がサプレッションチェンバ外部に漏れだすことを防止することができる。このような第4の発明によれば、止水材の量は、真空破壊装置の破損箇所を埋設する高さまでの分となり、トーラス室の全てを止水材で塞ぐ場合と比較して少なくすることができる。   Further, according to the fourth aspect of the invention, even when the vacuum breaker disposed above the connection portion between the vent pipe and the suppression chamber is damaged, when the reactor containment vessel is submerged, It is possible to prevent leakage to the outside of the suppression chamber. According to such 4th invention, the quantity of a water stop material becomes a part to the height which embeds the damage location of a vacuum breaker, and decreases compared with the case where all the torus chambers are plugged up with a water stop material. be able to.

本発明の第1実施形態である原子炉格納容器の冠水方法にて冠水される原子炉格納容器を備える沸騰水型原子炉の概略構成を示す縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view showing a schematic configuration of a boiling water reactor including a reactor containment vessel that is submerged by a method of flooding a reactor containment vessel according to a first embodiment of the present invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 本発明の一実施形態である原子炉格納容器の冠水方法を説明するためのフローチャートである。It is a flowchart for demonstrating the flooding method of the reactor containment vessel which is one Embodiment of this invention. 本発明の第1実施形態である原子炉格納容器の冠水方法において、サプレッションチェンバに充填材を供給する工程を説明するためのフローチャートである。It is a flowchart for demonstrating the process of supplying a filler to a suppression chamber in the flooding method of the reactor containment vessel which is 1st Embodiment of this invention. 本発明の第1実施形態である原子炉格納容器の冠水方法を説明するための模式図である。It is a schematic diagram for demonstrating the flooding method of the nuclear reactor containment vessel which is 1st Embodiment of this invention. 本発明の第1実施形態である原子炉格納容器の冠水方法を説明するための模式図である。It is a schematic diagram for demonstrating the flooding method of the nuclear reactor containment vessel which is 1st Embodiment of this invention. 本発明の第1実施形態である原子炉格納容器の冠水方法を説明するための模式図である。It is a schematic diagram for demonstrating the flooding method of the nuclear reactor containment vessel which is 1st Embodiment of this invention. 本発明の第1実施形態である原子炉格納容器の冠水方法を説明するための模式図である。It is a schematic diagram for demonstrating the flooding method of the nuclear reactor containment vessel which is 1st Embodiment of this invention. 本発明の第1実施形態である原子炉格納容器の冠水方法を説明するための模式図である。It is a schematic diagram for demonstrating the flooding method of the nuclear reactor containment vessel which is 1st Embodiment of this invention. 本発明の第1実施形態である原子炉格納容器の冠水方法を説明するための模式図である。It is a schematic diagram for demonstrating the flooding method of the nuclear reactor containment vessel which is 1st Embodiment of this invention. 本発明の第2実施形態である原子炉格納容器の冠水方法において、サプレッションチェンバに充填材を供給する工程を説明するためのフローチャートである。It is a flowchart for demonstrating the process of supplying a filler to a suppression chamber in the flooding method of the reactor containment vessel which is 2nd Embodiment of this invention.

以下、図面を参照して、本発明に係る原子炉格納容器の冠水方法の一実施形態について説明する。なお、以下の図面において、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。また、以下の説明においては、本発明を沸騰水型原子炉の1つであるMARK−I型の原子炉格納容器を冠水させる方法に適用した例について説明する。なお、本発明は、MARK−I型に限られず、MARK−I改良型の原子炉格納容器を冠水させる方法に適用することも可能である。   Hereinafter, an embodiment of a method for flooding a containment vessel according to the present invention will be described with reference to the drawings. In the following drawings, the scale of each member is appropriately changed in order to make each member a recognizable size. Moreover, in the following description, the example which applied this invention to the method of flooding the MARK-I type | mold reactor containment vessel which is one of the boiling water reactors is demonstrated. The present invention is not limited to the MARK-I type, and can be applied to a method of flooding a MARK-I modified reactor containment vessel.

(第1実施形態)
まず先に、MARK−I型の沸騰水型原子炉1について説明する。図1は、MARK−I型の沸騰水型原子炉1の概略構成を示す縦断面図である。また、図2は、図1のA−A断面図である。なお、図2においては、後述の原子炉建屋2は省略されている。図1に示すように、MARK−I型の沸騰水型原子炉1は、原子炉建屋2と、原子炉格納容器3と、ベントヘッダ4と、ダウンカマ5と、支持部6と、原子炉圧力容器7と、不図示の炉心を備えている。
(First embodiment)
First, the MARK-I type boiling water reactor 1 will be described. FIG. 1 is a longitudinal sectional view showing a schematic configuration of a MARK-I type boiling water reactor 1. FIG. 2 is a cross-sectional view taken along the line AA in FIG. In FIG. 2, a reactor building 2 described later is omitted. As shown in FIG. 1, the MARK-I type boiling water reactor 1 includes a reactor building 2, a reactor containment vessel 3, a vent header 4, a downcomer 5, a support 6, and a reactor pressure. A container 7 and a core (not shown) are provided.

原子炉建屋2は、原子炉格納容器3と、ベントヘッダ4と、ダウンカマ5と、支持部6と、原子炉圧力容器7と、不図示の炉心とを収納する建屋であり、鉄筋コンクリートにより形成されている。この原子炉建屋2の下部には、後述する原子炉格納容器3のサプレッションチェンバ3bを設置するためのトーラス室2aが設けられている。なお、図示していないが、原子炉建屋2には、他に非常用炉心冷却系ポンプ、浄化設備、燃料プール、機器仮置きプール、非常用ガス処理系設備等が収納されている。   The reactor building 2 is a building that houses a reactor containment vessel 3, a vent header 4, a downcomer 5, a support portion 6, a reactor pressure vessel 7, and a core (not shown), and is formed of reinforced concrete. ing. A torus chamber 2a for installing a suppression chamber 3b of a reactor containment vessel 3 to be described later is provided at the lower part of the reactor building 2. Although not shown, the reactor building 2 also stores an emergency core cooling system pump, a purification facility, a fuel pool, an equipment temporary storage pool, an emergency gas processing system facility, and the like.

原子炉格納容器3は、原子炉圧力容器を収容するドライウェル3aと、ドライウェル3aの周囲に設けられるサプレッションチェンバ3bと、ドライウェル3aとサプレッションチェンバ3bとを接続するベント管3cとから構成されている。   The reactor containment vessel 3 includes a dry well 3a that accommodates the reactor pressure vessel, a suppression chamber 3b that is provided around the dry well 3a, and a vent pipe 3c that connects the dry well 3a and the suppression chamber 3b. ing.

ドライウェル3aは、丸底フラスコ形状とされた鋼鉄製の容器であり、原子炉建屋2の内壁内に設置されている。サプレッションチェンバ3bは、断面形状が図1に示すように円形であり、平面視形状が図2に示すように多角形の環状形状とされた鋼鉄製の容器である。なお、過酷事故によりサプレッションチェンバ3bに破損が生じていなければ、このサプレッションチェンバ3bの内部には水が貯留されてプールが形成されている。ベント管3cは、ドライウェル3aとサプレッションチェンバ3bとの間に設けられており、ドライウェル3aに蒸気が漏れ出したときに蒸気をサプレッションチェンバ3bに導く鋼鉄製の管である。このベント管3cは、図2に示すように、8本設けられている。各ベント管3cは、等間隔で配列されている。   The dry well 3 a is a steel container having a round bottom flask shape, and is installed in the inner wall of the reactor building 2. The suppression chamber 3b is a steel container whose cross-sectional shape is circular as shown in FIG. 1 and whose plan view shape is a polygonal annular shape as shown in FIG. If the suppression chamber 3b is not damaged due to a severe accident, water is stored inside the suppression chamber 3b to form a pool. The vent pipe 3c is provided between the dry well 3a and the suppression chamber 3b, and is a steel pipe that guides the steam to the suppression chamber 3b when the steam leaks into the dry well 3a. As shown in FIG. 2, eight vent pipes 3c are provided. The vent pipes 3c are arranged at equal intervals.

ベントヘッダ4は、サプレッションチェンバ3bの内部にサプレッションチェンバ3bと同心円状に配置される環状の管である。このベントヘッダ4は、全てのベント管3cの先端に接続されている。   The vent header 4 is an annular tube disposed concentrically with the suppression chamber 3b inside the suppression chamber 3b. The vent header 4 is connected to the tips of all the vent pipes 3c.

ダウンカマ5は、ベント管3cに接続されたベントヘッダ4に取り付けられている。このダウンカマ5は、逆U字形状の管部材であり、下方に向く両端に開口5aが設けられ、頂部がベントヘッダ4と接続されている。なお、サプレッションチェンバ3bの内部にプールが形成されている場合には、このプールの水面下にダウンカマ5の開口5aが配置される。このダウンカマ5を介して、サプレッションチェンバ3bの内部空間とベント管3cとが接続されている。このようなダウンカマ5は、図2に示すように、ベントヘッダ4に沿って等間隔で複数設けられている。   The downcomer 5 is attached to the vent header 4 connected to the vent pipe 3c. The downcomer 5 is an inverted U-shaped tube member, and has openings 5 a at both ends facing downward, and the top is connected to the vent header 4. In addition, when the pool is formed in the inside of the suppression chamber 3b, the opening 5a of the downcomer 5 is arrange | positioned under the water surface of this pool. Via the downcomer 5, the internal space of the suppression chamber 3b and the vent pipe 3c are connected. As shown in FIG. 2, a plurality of such downcomers 5 are provided along the vent header 4 at equal intervals.

支持部6は、ドライウェル3aの底部に設けられた鉄筋コンクリート部材であり、原子炉圧力容器7を支持する。原子炉圧力容器7は、支持部6上に固定されてドライウェル3aの内部に配置されている。この原子炉圧力容器7は、鋼鉄製の容器であり、内部に炉心を収納している。不図示の炉心は、核燃料や制御棒によって構成されており、原子炉圧力容器7の内部で支持されている。   The support 6 is a reinforced concrete member provided at the bottom of the dry well 3 a and supports the reactor pressure vessel 7. The reactor pressure vessel 7 is fixed on the support portion 6 and disposed inside the dry well 3a. The reactor pressure vessel 7 is a steel vessel and houses a reactor core therein. The core (not shown) is constituted by nuclear fuel and control rods, and is supported inside the reactor pressure vessel 7.

次に、本実施形態の原子炉格納容器3の冠水方法について図3のフローチャートを参照しながら、説明する。なお、本実施形態の原子炉格納容器3の冠水方法は、過酷事故が生じたことによってベント管3cまたはサプレッションチェンバ3bに破損が生じている状態から、ドライウェル3aの内部を水で満たすために行う。また、本実施形態の原子炉格納容器3の冠水方法を開始する時点で、原子炉圧力容器7に対して冷却水が連続的に供給されており、供給した冷却水の一部が少なくともドライウェル3a及びサプレッションチェンバ3bに溜まっているものとする。また、本実施形態の原子炉格納容器3の冠水方法を開始する時点では、原子炉圧力容器7に対する冷却水の供給が継続されているものとする。また、原子炉圧力容器7からは冷却水が漏れる状態であるものとする。   Next, the flooding method of the reactor containment vessel 3 of this embodiment will be described with reference to the flowchart of FIG. In addition, the flooding method of the containment vessel 3 of the present embodiment is for filling the interior of the dry well 3a with water from a state in which the vent pipe 3c or the suppression chamber 3b is damaged due to a severe accident. Do. Moreover, at the time of starting the flooding method for the reactor containment vessel 3 of the present embodiment, the cooling water is continuously supplied to the reactor pressure vessel 7, and at least a part of the supplied cooling water is at least dry well. 3a and the suppression chamber 3b. Further, it is assumed that the supply of cooling water to the reactor pressure vessel 7 is continued at the time when the flooding method for the reactor containment vessel 3 of the present embodiment is started. Further, it is assumed that cooling water leaks from the reactor pressure vessel 7.

まず、図3に示すように、ベント管内充填材注入工法が可能であるかの判断を行う(ステップS1)。上述のように原子炉建屋2の内部には、非常用炉心冷却系ポンプ、浄化設備、燃料プール、機器仮置きプール、非常用ガス処理系設備等の様々な機器が設置されている。このため、ベント管内充填材注入工法が可能であるかの判断を行うときには、これらの機器を避けて、全てのベント管3cに対して充填材(止水材)を供給するための充填材供給経路(図5(b)に示す供給配管21)が確保できるかを判断する。そして、充填材供給経路が確保できる場合にはベント管内充填材注入工法が可能であると判断する。なお、このようなステップS1は、ベント管3cに図5(b)に示すような充填材11(止水材)を供給する充填材供給経路(止水材供給経路)を確保できるかを判断する工程であり、本発明における経路判断工程に相当する。   First, as shown in FIG. 3, it is determined whether or not the filling material injection method in the vent pipe is possible (step S1). As described above, various devices such as an emergency core cooling system pump, a purification facility, a fuel pool, an equipment temporary storage pool, and an emergency gas processing system facility are installed in the reactor building 2. For this reason, when judging whether the filling material injection method in the vent pipe is possible, avoiding these devices, supplying the filling material for supplying the filling material (water-stopping material) to all the vent pipes 3c. It is determined whether a route (supply pipe 21 shown in FIG. 5B) can be secured. Then, when the filler supply path can be secured, it is determined that the filling material injection method in the vent pipe is possible. Note that such a step S1 determines whether or not a filler supply path (water stop material supply path) for supplying the filler 11 (water stop material) as shown in FIG. 5B to the vent pipe 3c can be secured. And corresponds to the route determination step in the present invention.

ステップS1にて、ベント管内充填材注入工法が可能であると判断した場合には、ベント管3cに充填材11を注入する(ステップS2)。このステップS2では、例えば、図5(a)の模式図に示すように、原子炉建屋2の内部に設けられると共にトーラス室2aの上階に位置する部屋(以下、上階室2bと称する)から、各ベント管3cに対して、バックアップ材10の供給配管20を通し、ベント管3cにバックアップ材10を配置する。このバックアップ材10は、充填材11が流れ出ることを防止するためのものである。続いて、図5(b)に示すように、上階室2bから、各ベント管3cに対して、充填材11の供給配管21(充填材供給経路)を通し、バックアップ材10よりもドライウェル3a側に充填材11を注入する。この充填材11としては、例えば、コンクリート等の一定時間経過後に固化する止水材や、高分子ゲルや水ガラス等からなる止水材を用いることができる。   If it is determined in step S1 that the filling material injection method in the vent pipe is possible, the filling material 11 is injected into the vent pipe 3c (step S2). In this step S2, for example, as shown in the schematic diagram of FIG. 5 (a), a room that is provided in the reactor building 2 and is located on the upper floor of the torus room 2a (hereinafter referred to as the upper floor room 2b). Therefore, the backup material 10 is arranged in the vent pipe 3c through the supply pipe 20 of the backup material 10 with respect to each vent pipe 3c. This backup material 10 is for preventing the filler 11 from flowing out. Subsequently, as shown in FIG. 5 (b), the supply pipe 21 (filler supply path) of the filler 11 is passed from the upper floor chamber 2 b to each vent pipe 3 c, and is drywelled more than the backup material 10. Filler 11 is injected into the 3a side. As the filler 11, for example, a water-stopping material that solidifies after elapse of a certain time, such as concrete, or a water-stopping material made of polymer gel, water glass, or the like can be used.

そして、全てのベント管3c内に充填材11が充填されることによって、ベント管3cが閉塞する。なお、このようなステップS2は、ステップS1で充填材供給経路(供給配管21)を確保できると判断した場合に、ベント管3c内に充填材11を充填する工程であり、本発明におけるベント管閉塞工程に相当する。このように全てのベント管3cが閉塞されることによって、原子炉格納容器3を水で満たす(ステップS8)を行うことができる。   And all the vent pipes 3c are filled with the filler 11, whereby the vent pipes 3c are closed. Note that such step S2 is a step of filling the filler 11 into the vent pipe 3c when it is determined in step S1 that the filler supply path (supply pipe 21) can be secured. This corresponds to the closing process. By closing all the vent pipes 3c in this manner, the reactor containment vessel 3 can be filled with water (step S8).

また、ステップS1にて、ベント管充填材注入工法ができないと判断した場合には、サプレッションチェンバ3b内に、ダウンカマ5の下端(すなわち開口5a)まで充填材11が可能であるかの判断を行う(ステップS3)。このステップS3では、例えば、図6(a)に示すように、ドライウェル3aとサプレッションチェンバ3bに対して水位計31,32を設置する。その後、図6(b)に示すように、上階室2bからトーラス室2aを介してベント管3c近傍に穿孔を形成し、この穿孔からベント管3cの外部を遠隔操作が可能なCCDカメラ等で撮影し、ベント管3cあるいはベント管3cとドライウェル3aとの接続部に破損箇所があるかの確認を行う。なお、必要に応じて、トーラス室2aの排水経路23を形成する。   If it is determined in step S1 that the vent pipe filling material injection method cannot be performed, it is determined whether the filling material 11 is possible in the suppression chamber 3b up to the lower end of the downcomer 5 (that is, the opening 5a). (Step S3). In this step S3, for example, as shown in FIG. 6A, the water level gauges 31 and 32 are installed for the dry well 3a and the suppression chamber 3b. Thereafter, as shown in FIG. 6B, a perforation is formed in the vicinity of the vent pipe 3c from the upper floor chamber 2b via the torus chamber 2a, and a CCD camera or the like capable of remotely operating the outside of the vent pipe 3c from this perforation. And confirm whether there is a broken portion in the vent pipe 3c or the connection portion between the vent pipe 3c and the dry well 3a. In addition, the drainage path 23 of the torus chamber 2a is formed as needed.

そして、ベント管3cあるいはベント管3cとドライウェル3aとの接続部に破損箇所がない場合には、ダウンカマ5の下端まで充填材11が充填可能であると判断する。また、ベント管3cあるいはベント管3cとドライウェル3aとの接続部に破損箇所がある場合には、ダウンカマ5の下端まで充填材11が充填できないと判断する。   If there is no breakage in the vent pipe 3c or the connection portion between the vent pipe 3c and the dry well 3a, it is determined that the filler 11 can be filled up to the lower end of the downcomer 5. Further, if there is a broken portion at the connection portion between the vent pipe 3c or the vent pipe 3c and the dry well 3a, it is determined that the filler 11 cannot be filled up to the lower end of the downcomer 5.

ステップS3で、サプレッションチェンバ3b内に、ダウンカマ5の下端まで充填材11が充填可能であると判断した場合には、サプレッションチェンバ3bの下部に充填材11がリークする箇所があるかの確認を行う(ステップS4)。この確認は、例えば、上述の遠隔操作が可能なCCDカメラ等で撮影することによって行う。サプレッションチェンバ3bの下部にリーク箇所があると確認された場合には、この場合であっても充填材11を継続して充填し続けることでダウンカマ5の下端まで充填材11が充填可能であるかを判断する(ステップS5)。破損箇所の高さまでトーラス室2aにおける密閉性が確保されているのであれば、サプレッションチェンバ3bの下部に破損がある場合であっても、ダウンカマ5の下端まで充填材11が充填可能となる。このため、例えば、トーラス室2aにおける密閉性を確認することによって充填材11を継続して充填可能であるかを判断する。   When it is determined in step S3 that the filler 11 can be filled up to the lower end of the downcomer 5 in the suppression chamber 3b, it is confirmed whether there is a portion where the filler 11 leaks in the lower part of the suppression chamber 3b. (Step S4). This confirmation is performed by, for example, photographing with the above-described CCD camera or the like that can be operated remotely. If it is confirmed that there is a leak point in the lower part of the suppression chamber 3b, can the filler 11 be filled to the lower end of the downcomer 5 by continuing to fill the filler 11 even in this case? Is determined (step S5). If the sealing property in the torus chamber 2a is ensured up to the height of the damaged portion, the filler 11 can be filled up to the lower end of the downcomer 5 even if the lower portion of the suppression chamber 3b is damaged. For this reason, for example, it is determined whether the filler 11 can be continuously filled by confirming the sealing property in the torus chamber 2a.

これらのステップS3〜ステップS5によって、最終的にサプレッションチェンバ3b内に充填材11を充填できるかの判断を行う。つまり、このようなステップS3〜ステップS5は、ステップS1でベント管充填材注入工法ができないと判断した場合、サプレッションチェンバ3b内に充填材11を充填できるかの判断を行う工程であり、本発明の充填確認工程に相当する。   By these step S3 to step S5, it is determined whether or not the filler 11 can be finally filled in the suppression chamber 3b. That is, such steps S3 to S5 are steps for determining whether or not the filler 11 can be filled into the suppression chamber 3b when it is determined in step S1 that the vent pipe filler injection method cannot be performed. This corresponds to the filling confirmation process.

サプレッションチェンバ3b内に充填材11を充填できると判断した場合(すなわち、ステップS3でダウンカマ5の下端まで充填材11を充填可能と判断した場合、ステップS4でサプレッションチェンバ3bの下部に充填材11がリークする箇所がないと判断した場合、あるいはステップS5で継続して充填材11を充填することが可能であると判断した場合)には、ダウンカマ5の下端を越える高さまで充填材11を充填する(ステップS6)。   When it is determined that the filler 11 can be filled into the suppression chamber 3b (that is, when it is determined that the filler 11 can be filled up to the lower end of the downcomer 5 in step S3, the filler 11 is placed below the suppression chamber 3b in step S4. When it is determined that there is no leaking portion, or when it is determined that the filler 11 can be continuously filled in step S5), the filler 11 is filled to a height exceeding the lower end of the downcomer 5. (Step S6).

ここで、ダウンカマ5の下端まで充填材11を充填する手順について、図4のフローチャート及び図7,8を参照して説明する。なお、ここでは、ステップS3でダウンカマ5の下端まで充填材11を充填可能と判断した場合を例にして説明する。   Here, the procedure for filling the filler 11 to the lower end of the downcomer 5 will be described with reference to the flowchart of FIG. 4 and FIGS. Here, the case where it is determined in step S3 that the filler 11 can be filled up to the lower end of the downcomer 5 will be described as an example.

まず、図7(a)に示すように、サプレッションチェンバ3bと原子炉圧力容器7とを含む水の循環経路24を形成する(ステップS11)。この循環経路24途中には、放射性物質を除去する浄化装置25と、水を冷却する熱交換器26とを設置する。また、上述の水位計31,32も設置する。
続いて、サプレッションチェンバ3bとトーラス室2aの除染が必要かを判断する(ステップS12)。ここで除染が必要と判断した場合には、トーラス室2a内及びサプレッションチェンバ3bから水を排出するための排水経路27と、トーラス室2a内及びサプレッションチェンバ3b内の除染を行うための除染経路28を形成する(図7(b)及び図8(a)参照)。
そして、図7(b)に示すように、循環経路24での水の循環を停止した状態で排水経路27を用いてサプレッションチェンバ3b内の水を排水する(ステップS13)。このとき、外部浄化系から原子炉圧力容器7へ注水できる循環経路を形成して注水し、ドライウェル3a内の水位を冷却水がベント管3cに流れ込まない水位とする。さらに、図8(a)に示すように、除染経路28を用いて、例えば高圧スプレイによってトーラス室2a及びサプレッションチェンバ3b内の除染を行う(ステップS14)。このとき、循環経路24をサプレッションチェンバ3bからドライウェル30の下部に接続しなおして水の循環を再開すると共に、より高い位置の水位が計測できるように水位計31の接続状態を変更する。なお、トーラス室2a及びサプレッションチェンバ3b内の除染によって生じた排水は、排水経路27を介して外部に排水される。
First, as shown in FIG. 7A, a water circulation path 24 including the suppression chamber 3b and the reactor pressure vessel 7 is formed (step S11). In the middle of the circulation path 24, a purifier 25 for removing radioactive substances and a heat exchanger 26 for cooling water are installed. Moreover, the above-mentioned water level gauges 31 and 32 are also installed.
Subsequently, it is determined whether decontamination of the suppression chamber 3b and the torus chamber 2a is necessary (step S12). If it is determined that decontamination is necessary, the drainage path 27 for discharging water from the torus chamber 2a and the suppression chamber 3b and the decontamination for performing decontamination within the torus chamber 2a and the suppression chamber 3b. The dyeing path 28 is formed (see FIGS. 7B and 8A).
And as shown in FIG.7 (b), the water in the suppression chamber 3b is drained using the drainage path 27 in the state which stopped the circulation of the water in the circulation path 24 (step S13). At this time, a circulation path capable of pouring water from the external purification system to the reactor pressure vessel 7 is formed and water is poured, and the water level in the dry well 3a is set to a level at which the cooling water does not flow into the vent pipe 3c. Further, as shown in FIG. 8A, using the decontamination path 28, the torus chamber 2a and the suppression chamber 3b are decontaminated, for example, by high pressure spraying (step S14). At this time, the circulation path 24 is connected to the lower part of the dry well 30 from the suppression chamber 3b to restart the water circulation, and the connection state of the water level gauge 31 is changed so that a higher water level can be measured. In addition, the waste water generated by the decontamination in the torus chamber 2a and the suppression chamber 3b is drained to the outside through the drain path 27.

続いて、サプレッションチェンバ3b内に充填材11を充填する(ステップS15)。ここでは、図8(b)に示すように、除染経路28に換えて充填材供給経路29を形成し、充填材供給経路29から充填材11をサプレッションチェンバ3b内に供給する。そして、ダウンカマ5の開口5aを超えるまで充填材11の供給を継続する。なお、サプレッションチェンバ3b内に水が残存する可能性があるため、排水経路27を用いた排水を継続する。これによって、ダウンカマ5の開口5aが閉塞される。   Subsequently, the filler 11 is filled into the suppression chamber 3b (step S15). Here, as shown in FIG. 8B, a filler supply path 29 is formed instead of the decontamination path 28, and the filler 11 is supplied from the filler supply path 29 into the suppression chamber 3b. And supply of the filler 11 is continued until it exceeds the opening 5a of the downcomer 5. In addition, since water may remain in the suppression chamber 3b, the drainage using the drainage path 27 is continued. As a result, the opening 5a of the downcomer 5 is closed.

なお、ステップS12において、除染が必要ないと判断した場合には、充填材11が水中で使用可能であるかについて判断する(ステップS16)。ここで、水中で使用可能とは、水中に充填材11を供給することによって止水が可能であるということを意味する。そして、充填材11が水中で使用できないと判断した場合には、サプレッションチェンバ3b(必要に応じてトーラス室2a)の排水(ステップS17)を行った後、ステップ15を行って充填材11を充填する。   If it is determined in step S12 that decontamination is not necessary, it is determined whether the filler 11 can be used in water (step S16). Here, being usable in water means that water can be stopped by supplying the filler 11 into water. If it is determined that the filler 11 cannot be used in the water, the suppression chamber 3b (if necessary, the torus chamber 2a) is drained (step S17), and then the step 11 is performed to fill the filler 11. To do.

また、ステップS16で充填材11が水中で使用できると判断した場合には、サプレッションチェンバ3bの排水を行うことなくサプレッションチェンバ3bにおいて充填材11の充填を行う(ステップS19)。その後、サプレッションチェンバ3b内の水がなくなるまで排水を繰り返す(ステップS19及びステップS20)。   When it is determined in step S16 that the filler 11 can be used in water, the filler 11 is filled in the suppression chamber 3b without draining the suppression chamber 3b (step S19). Thereafter, the drainage is repeated until there is no water in the suppression chamber 3b (step S19 and step S20).

図3に戻り、サプレッションチェンバ3b内に充填材11を充填できないと判断した場合(すなわち、ステップS3でダウンカマ5の下端まで充填材11を充填できないと判断した場合、あるいはステップS5で継続して充填材11を充填することができないと判断した場合)には、トーラス室2aに対して充填材11を充填する(ステップS7)。ここでは、図9(a)に示すように、少なくともベント管3cとサプレッションチェンバ3bとの接続部が埋設されるまで(本実施形態ではサプレッションチェンバ3bが全て埋設されるまで)充填材11を充填する。ここでは、充填材11の充填量は、トーラス室2aの天井に到達しない量としている。なお、このようなステップS7は、サプレッションチェンバ3b内に充填材11を充填できないと判断した場合に、トーラス室2aにサプレッションチェンバ3bとベント管3cとの接続部位の高さまで充填材11を充填する工程であり、本発明のトーラス室閉鎖工程に相当する。   Returning to FIG. 3, when it is determined that the filler 11 cannot be filled into the suppression chamber 3b (that is, when it is determined in step S3 that the filler 11 cannot be filled up to the lower end of the downcomer 5, or the filling is continued in step S5). If it is determined that the material 11 cannot be filled), the torus chamber 2a is filled with the filler 11 (step S7). Here, as shown in FIG. 9A, the filling material 11 is filled until at least the connection portion between the vent pipe 3c and the suppression chamber 3b is buried (in the present embodiment, all of the suppression chamber 3b is buried). To do. Here, the filling amount of the filler 11 is set so as not to reach the ceiling of the torus chamber 2a. In step S7, when it is determined that the filling material 11 cannot be filled into the suppression chamber 3b, the filling material 11 is filled in the torus chamber 2a up to the height of the connection portion between the suppression chamber 3b and the vent pipe 3c. This process corresponds to the torus chamber closing process of the present invention.

なお、図9(b)に示すように、サプレッションチェンバ3bとベント管3cとを接続する真空破壊装置8が、サプレッションチェンバ3bとベント管3cとの接続部位よりも上方に配置されている場合には、真空破壊装置8に破損があるか否かの確認を行う。そして、真空破壊装置8に破損があると判断した場合には、真空破壊装置8の破損箇所が埋設される高さまで充填材11をトーラス室2aに充填する。ここでも、充填材11の充填量は、トーラス室2aの天井に到達しない量とする。   In addition, as shown in FIG.9 (b), when the vacuum breaker 8 which connects the suppression chamber 3b and the vent pipe 3c is arrange | positioned upwards rather than the connection site | part of the suppression chamber 3b and the vent pipe 3c. Confirms whether or not the vacuum breaker 8 is damaged. When it is determined that the vacuum breaker 8 is damaged, the torus chamber 2a is filled with the filler 11 up to a height at which the damaged portion of the vacuum breaker 8 is buried. Here again, the filling amount of the filler 11 is set so as not to reach the ceiling of the torus chamber 2a.

そして、ステップS2(ベント管内3cへの充填材11の充填)、ステップS6(ダウンカマ5の下端を越える高さまでの充填材11の充填)あるいはステップS7(トーラス室2aへの充填材11の充填)が完了すると、原子炉格納容器3のドライウェル3aを水で満たす(ステップS8)。例えば、図8(b)に示す状態からドライウェル3aの内部を水で満たす場合には、図10(a)に示すように外部から原子炉圧力容器7への冷却水の供給量を継続し、ドライウェル3aが冠水したら外部から原子炉圧力容器7への冷却水の供給を停止して循環経路24にて水を循環させる。このようなステップS8は、原子炉格納容器3を冠水させるために当該原子炉格納容器3に水を供給する工程であり、本発明の水供給工程に相当する。   Then, step S2 (filling of the filler 11 into the vent pipe 3c), step S6 (filling of the filler 11 to a height exceeding the lower end of the downcomer 5) or step S7 (filling of the filler 11 into the torus chamber 2a). Is completed, the dry well 3a of the reactor containment vessel 3 is filled with water (step S8). For example, when the interior of the dry well 3a is filled with water from the state shown in FIG. 8B, the amount of cooling water supplied from the outside to the reactor pressure vessel 7 is continued as shown in FIG. 10A. When the dry well 3 a is submerged, the cooling water supply from the outside to the reactor pressure vessel 7 is stopped and the water is circulated through the circulation path 24. Such step S8 is a step of supplying water to the reactor containment vessel 3 in order to flood the reactor containment vessel 3, and corresponds to the water supply step of the present invention.

以上のような本実施形態の原子炉格納容器3の冠水方法によれば、ベント管3cに充填材11を供給する充填材供給経路(供給配管21)を確保できる場合に、ベント管3cに充填材11を充填することによってベント管3cを閉塞する。このようにベント管3cが充填材11により閉塞することによって、原子炉格納容器3を冠水させるときにベント管3cを介して水が流れ出ることを防止することができる。このような本実施形態の原子炉格納容器3の冠水方法によれば、充填材11の量は、ベント管3c内に供給される分のみとなり、トーラス室2aを全て充填材11で充填する場合と比較して極めて少なくすることができる。また、本実施形態の原子炉格納容器3の冠水方法によれば、ベント管3cが閉塞されていることから、サプレッションチェンバ3bに水を溜めることなくドライウェル3aを冠水させることができ、原子炉格納容器3を全て水で満たす場合よりも水の量を低減させることができる。
したがって、本実施形態の原子炉格納容器3の冠水方法によれば、原子炉格納容器3の冠水に必要となる充填材11や水の量を出来る限り抑えつつ原子炉格納容器3を冠水させることができる。
According to the flooding method of the reactor containment vessel 3 of the present embodiment as described above, when the filler supply path (supply pipe 21) for supplying the filler 11 to the vent pipe 3c can be secured, the vent pipe 3c is filled. By filling the material 11, the vent pipe 3c is closed. Thus, when the vent pipe 3c is blocked by the filler 11, it is possible to prevent water from flowing out through the vent pipe 3c when the reactor containment vessel 3 is submerged. According to the flooding method of the reactor containment vessel 3 of this embodiment, the amount of the filler 11 is only the amount supplied into the vent pipe 3c, and the torus chamber 2a is completely filled with the filler 11. It can be very little compared with. Moreover, according to the flooding method of the reactor containment vessel 3 of this embodiment, since the vent pipe 3c is closed, the dry well 3a can be flooded without accumulating water in the suppression chamber 3b. The amount of water can be reduced as compared with the case where the storage container 3 is entirely filled with water.
Therefore, according to the flooding method of the reactor containment vessel 3 of the present embodiment, the reactor containment vessel 3 is flooded while suppressing the amount of the filler 11 and water necessary for the flooding of the reactor containment vessel 3 as much as possible. Can do.

また、本実施形態の原子炉格納容器3の冠水方法によれば、ダウンカマ5を含むベント系に対して上記充填材供給経路(供給配管21)を確保できないが、漏水の原因となる破損箇所がサプレッションチェンバ3bと限定され、さらにサプレッションチェンバ3b内に充填材11を充填できる場合に、ベント管3cの下方に接続されるダウンカマ5の開口5aが閉塞されるまでサプレッションチェンバ3b内に充填材11を供給してダウンカマ5の開口5aを閉塞する。このように、サプレッションチェンバ3bの内部空間とベント管3cとを接続するダウンカマ5の開口5aが閉塞されることによって、原子炉格納容器3を冠水させるときにベント管3cを介してサプレッションチェンバ3b内に水が流れ込むことを防止することができる。このような本実施形態の原子炉格納容器3の冠水方法によれば、充填材11の量は、サプレッションチェンバ3bの底部からダウンカマ5の開口5aが閉塞される高さとなるまでの分となり、トーラス室2aを全て充填材11で充填する場合と比較して極めて少なくすることができる。また、本実施形態の原子炉格納容器3の冠水方法によれば、ダウンカマ5の開口5aが閉塞されていることからサプレッションチェンバ3bに水を溜めることなくドライウェル3aを冠水させることができ、原子炉格納容器3を全て水で満たす場合よりも水の量を低減させることができる。
したがって、本実施形態の原子炉格納容器3の冠水方法によれば、原子炉格納容器の冠水に必要となる充填材11や水の量を出来る限り抑えつつ原子炉格納容器3を冠水させることができる。また、サプレッションチェンバ3bに破損箇所が存在する場合であっても、その場所を特定し、補修せずとも原子炉格納容器3を冠水させることができる。
Moreover, according to the flooding method of the reactor containment vessel 3 of this embodiment, although the said filler supply path (supply piping 21) cannot be ensured with respect to the vent system containing the downcomer 5, the damaged location which becomes a cause of water leakage exists. When the filler 11 is limited to the suppression chamber 3b, and the filler 11 can be filled in the suppression chamber 3b, the filler 11 is placed in the suppression chamber 3b until the opening 5a of the downcomer 5 connected below the vent pipe 3c is closed. The opening 5a of the downcomer 5 is closed by supplying. As described above, the opening 5a of the downcomer 5 that connects the internal space of the suppression chamber 3b and the vent pipe 3c is closed, so that when the reactor containment vessel 3 is submerged, the inside of the suppression chamber 3b is passed through the vent pipe 3c. Water can be prevented from flowing into the water. According to the flooding method of the containment vessel 3 of this embodiment, the amount of the filler 11 is the amount from the bottom of the suppression chamber 3b to the height at which the opening 5a of the downcomer 5 is closed, and the torus. Compared to the case where all the chambers 2a are filled with the filler 11, the number of the chambers 2a can be extremely reduced. Further, according to the method of flooding the containment vessel 3 of the present embodiment, since the opening 5a of the downcomer 5 is closed, the dry well 3a can be flooded without accumulating water in the suppression chamber 3b. The amount of water can be reduced as compared with the case where all of the reactor containment vessel 3 is filled with water.
Therefore, according to the flooding method for the reactor containment vessel 3 of the present embodiment, the reactor containment vessel 3 can be flooded while suppressing the amount of the filler 11 and water necessary for flooding the reactor containment vessel as much as possible. it can. Even if there is a damaged portion in the suppression chamber 3b, the reactor containment vessel 3 can be flooded without specifying the location and repairing.

また、本実施形態の原子炉格納容器3の冠水方法によれば、充填材供給経路(供給配管21)を確保できず、さらにサプレッションチェンバ3b内に充填材11を充填できない場合に、サプレッションチェンバ3bが設置されるトーラス室2aに充填材11を充填してトーラス室2aを閉鎖する。このようにトーラス室2aが閉鎖されることによって、ベント管3cに破損があった場合も、原子炉格納容器3を冠水させるときに水がサプレッションチェンバ3bの外部に漏れだすことを防止することができる。このような本実施形態の原子炉格納容器3の冠水方法によれば、充填材11の量は、ベント管3cとサプレッションチェンバ3bとの接続部位を埋設する高さまでの分となり、トーラス室2aの全てを充填材11で塞ぐ場合と比較して極めて少なくすることができる。   Moreover, according to the flooding method of the reactor containment vessel 3 of the present embodiment, when the filler supply path (supply pipe 21) cannot be secured and the filler 11 cannot be filled in the suppression chamber 3b, the suppression chamber 3b. The torus chamber 2a is filled with the filler 11 and the torus chamber 2a is closed. By closing the torus chamber 2a in this way, even when the vent pipe 3c is damaged, it is possible to prevent water from leaking outside the suppression chamber 3b when the reactor containment vessel 3 is submerged. it can. According to the flooding method of the reactor containment vessel 3 of this embodiment, the amount of the filler 11 is the amount up to the height at which the connection portion between the vent pipe 3c and the suppression chamber 3b is embedded, and the torus chamber 2a Compared with the case where all are filled with the filler 11, the amount can be extremely reduced.

また、本実施形態の原子炉格納容器3の冠水方法によれば、ベント管3cとサプレッションチェンバ3bとの接続部位よりも上方に配置される真空破壊装置8に破損がある場合であっても、原子炉格納容器3を冠水させるときに水がサプレッションチェンバ3b外部に漏れだすことを防止することができる。このような本実施形態の原子炉各の容器3の冠水方法によれば、充填材11の量は、真空破壊装置8の破損箇所を埋設する高さまでの分となり、トーラス室2aの全てを充填材11で塞ぐ場合と比較して極めて少なくすることができる。   Moreover, according to the flooding method of the reactor containment vessel 3 of the present embodiment, even if the vacuum breaker 8 disposed above the connection portion between the vent pipe 3c and the suppression chamber 3b is damaged, When the reactor containment vessel 3 is submerged, it is possible to prevent water from leaking outside the suppression chamber 3b. According to such a flooding method for each vessel 3 of the reactor according to the present embodiment, the amount of the filler 11 is up to the height at which the damaged portion of the vacuum breaker 8 is buried, and the torus chamber 2a is filled. Compared with the case of closing with the material 11, it can be extremely reduced.

(第2実施形態)
次に、本発明の第2実施形態について説明する。なお、本実施形態の説明において、上記第1実施形態と同様の部分については、その説明を省略あるいは簡略化する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. In the description of the present embodiment, the description of the same parts as those of the first embodiment is omitted or simplified.

図11は、本実施形態の原子炉格納容器3の冠水方法を説明するためのフローチャートである。この図に示すように、ステップS1〜ステップS3、ステップS7及びステップS8は、上記第1実施形態と同様である。   FIG. 11 is a flowchart for explaining the method of flooding the reactor containment vessel 3 of this embodiment. As shown in this figure, Step S1 to Step S3, Step S7 and Step S8 are the same as those in the first embodiment.

本実施形態の原子炉格納容器3の冠水方法では、ステップS3において、ダウンカマ5の下端まで充填材11を充填可能と判断した場合に、サプレッションチェンバ3bの容積に基づいて算出した量の充填材11をサプレッションチェンバ3b内に供給する(ステップS30)。つまり、サプレッションチェンバ3bの下部に破損がないことを前提として、充填材11がダウンカマ5の下端を越える供給量を算出し、この算出した供給量の充填材11をサプレッションチェンバ3bに供給する。   In the flooding method for the containment vessel 3 of the present embodiment, when it is determined in step S3 that the filler 11 can be filled up to the lower end of the downcomer 5, the amount of filler 11 calculated based on the volume of the suppression chamber 3b is calculated. Is supplied into the suppression chamber 3b (step S30). That is, on the assumption that the lower part of the suppression chamber 3b is not damaged, the supply amount of the filler 11 exceeding the lower end of the downcomer 5 is calculated, and the calculated supply amount of the filler 11 is supplied to the suppression chamber 3b.

続いて、ダウンカマ5の下端まで充填材11が到達しているかを確認する(ステップS31)。ここでは、例えば、遠隔操作が可能なCCDカメラによって確認を行う。なお、充填材11が均一に拡がっていない可能性を考慮し、複数の箇所にてCCDカメラにて確認を行うことが望ましい。その結果、ダウンカマ5の下端に充填材11が到達していれば、ステップS8に移行して原子炉格納容器3内を水で満たす。   Subsequently, it is confirmed whether or not the filler 11 has reached the lower end of the downcomer 5 (step S31). Here, for example, confirmation is performed by a CCD camera that can be remotely operated. In consideration of the possibility that the filler 11 has not spread evenly, it is desirable to check with a CCD camera at a plurality of locations. As a result, if the filler 11 has reached the lower end of the downcomer 5, the process proceeds to step S8 to fill the reactor containment vessel 3 with water.

一方、ステップS21において、ダウンカマ5の下端に充填材11が到達していなければ、サプレッションチェンバ3bの下部に破損があると推定される。このため、サプレッションチェンバ3bの容積とトーラス室2aの容積とに基づいてダウンカマ5の下端に到達する供給量を算出し、この算出した供給量の充填材11をサプレッションチェンバ3b(トーラス室2aも含む)に供給する(ステップS32)。なお、ステップS32での実際の供給量は、ステップS30で算出した量との差分となる。   On the other hand, if the filler 11 has not reached the lower end of the downcomer 5 in step S21, it is estimated that the lower portion of the suppression chamber 3b is damaged. Therefore, the supply amount reaching the lower end of the downcomer 5 is calculated based on the volume of the suppression chamber 3b and the volume of the torus chamber 2a, and the filler 11 of this calculated supply amount is added to the suppression chamber 3b (including the torus chamber 2a). (Step S32). Note that the actual supply amount in step S32 is a difference from the amount calculated in step S30.

続いて、ダウンカマ5の下端まで充填材11が到達しているかを確認する(ステップS33)。ここでは、例えば、遠隔操作が可能なCCDカメラによって確認を行う。なお、充填材11が均一に拡がっていない可能性を考慮し、複数の箇所にてCCDカメラにて確認を行うことが望ましい。その結果、ダウンカマ5の下端に充填材11が到達していれば、ステップS8に移行して原子炉格納容器3内を水で満たす。   Then, it is confirmed whether the filler 11 has reached the lower end of the downcomer 5 (step S33). Here, for example, confirmation is performed by a CCD camera that can be remotely operated. In consideration of the possibility that the filler 11 has not spread evenly, it is desirable to check with a CCD camera at a plurality of locations. As a result, if the filler 11 has reached the lower end of the downcomer 5, the process proceeds to step S8 to fill the reactor containment vessel 3 with water.

一方、ステップS23において、ダウンカマ5の下端に充填材11が到達していなければ、何らかの原因によって、ダウンカマ5の下端まで充填材11が充填可能な状態ではないと判断し、ステップS7に移行してトーラス室2aに充填材11を充填する。つまり、ステップS23において、ダウンカマ5の下端に充填材11が到達していなければ、ステップS3の判断を否定してステップS7に移行する。   On the other hand, if the filler 11 does not reach the lower end of the downcomer 5 in step S23, it is determined that the filler 11 cannot be filled up to the lower end of the downcomer 5 for some reason, and the process proceeds to step S7. The torus chamber 2a is filled with the filler 11. That is, if the filler 11 has not reached the lower end of the downcomer 5 in step S23, the determination in step S3 is denied and the process proceeds to step S7.

このような本実施形態の原子炉格納容器3の冠水方法によれば、ステップS30〜ステップS33において実際にサプレッションチェンバ3bに充填材11を供給して、サプレッションチェンバ3bに充填材11を溜められるかを判断している。このため、事前にサプレッションチェンバ3bの下部が破損しているか否かの確認(上記第1実施形態のステップS4)を行う必要がなくなる。   According to the flooding method of the reactor containment vessel 3 of this embodiment, can the filler 11 be actually supplied to the suppression chamber 3b in steps S30 to S33 and the filler 11 can be stored in the suppression chamber 3b? Judging. For this reason, it is not necessary to confirm beforehand whether or not the lower portion of the suppression chamber 3b is damaged (step S4 in the first embodiment).

なお、本実施形態の原子炉格納容器3の冠水方法では、ステップS3、ステップ30〜ステップS33によって、サプレッションチェンバ3b内に充填材11を充填できるか判断とすると共に、条件によってダウンカマ5の開口5aの閉塞が行われる。つまり、本実施形態の原子炉格納容器3の冠水方法では、ステップS3、ステップ30〜ステップS33が、本発明の充填確認工程とダウンカマ閉塞工程とに相当する。   In the flooding method for the reactor containment vessel 3 according to the present embodiment, it is determined whether or not the filler 11 can be filled in the suppression chamber 3b through Step S3 and Step 30 to Step S33, and the opening 5a of the downcomer 5 depending on conditions. Blocking is performed. That is, in the flooding method for the reactor containment vessel 3 of the present embodiment, Step S3 and Steps 30 to S33 correspond to the filling confirmation process and the downcomer blockage process of the present invention.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は、上記実施形態に限定されないことは言うまでもない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の趣旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the said embodiment. Various shapes, combinations, and the like of the constituent members shown in the above-described embodiments are examples, and various modifications can be made based on design requirements and the like without departing from the spirit of the present invention.

1……MARK−I型の沸騰水型原子炉、2……原子炉建屋、2a……トーラス室、2b……上階室、3……原子炉格納容器、3a……ドライウェル、3b……サプレッションチェンバ、3c……ベント管、4……ベントヘッダ、5……ダウンカマ、6……支持部、7……原子炉圧力容器、10……バックアップ材、11……充填材、21……供給配管(充填材供給経路)   1 ... MARK-I type boiling water reactor, 2 ... reactor building, 2a ... torus room, 2b ... upper floor room, 3 ... reactor containment vessel, 3a ... dry well, 3b ... ... suppression chamber, 3c ... vent pipe, 4 ... vent header, 5 ... downcomer, 6 ... support, 7 ... reactor pressure vessel, 10 ... backup material, 11 ... filler, 21 ... Supply piping (filler supply route)

Claims (4)

原子炉圧力容器を収納するドライウェルと、当該ドライウェルの周囲に設けられるサプレッションチェンバと、前記ドライウェルと前記サプレッションチェンバとを接続するベント管とを有し、前記サプレッションチェンバ及び前記ベント管の少なくともいずれかに漏水の原因となる破損箇所を有する原子炉格納容器の冠水方法であって、
前記ベント管に止水材を供給する止水材供給経路を確保できるかを判断する経路判断工程と、
前記経路判断工程にて前記止水材供給経路を確保できると判断した場合に、前記ベント管内に前記止水材を充填するベント管閉塞工程とを有し、
前記ベント管閉塞工程の後に、前記原子炉格納容器に水を供給する水供給工程を行い、
前記経路判断工程では、前記サプレッションチェンバが配置されるトーラス室の上方に位置する上階室と前記トーラス室の内部に位置する前記ベント管の途中部位とを繋ぐ経路に前記止水材の供給経路と干渉し且つ撤去不可能な機器がないときに前記止水材供給経路を確保できると判断される
ことを特徴とする原子炉格納容器の冠水方法。
A dry well that houses the reactor pressure vessel, a suppression chamber provided around the dry well, and a vent pipe that connects the dry well and the suppression chamber, at least of the suppression chamber and the vent pipe A method of flooding a reactor containment vessel having a damaged part that causes water leakage in either
A path determination step for determining whether a waterstop material supply path for supplying the waterstop material to the vent pipe can be secured;
A vent pipe closing step of filling the water stop material in the vent pipe when it is determined that the water stop material supply path can be secured in the path determination step;
After the vent duct obstruction process, we have lines for supplying water supplying step water to the reactor container,
In the route determination step, the water-stop material supply route is connected to a route connecting an upper floor chamber located above the torus chamber in which the suppression chamber is disposed and a midway portion of the vent pipe located inside the torus chamber. A method of flooding a containment vessel characterized in that it is determined that the water-stopping material supply path can be secured when there is no equipment that interferes with and cannot be removed .
前記ベント管の下方に接続されると共に前記サプレッションチェンバの内部空間と前記ベント管とを接続するダウンカマが設けられており、
前記経路判断工程にて前記止水材供給経路を確保できないと判断した場合に、前記サプレッションチェンバ内に前記止水材を充填できるかの判断を行う充填確認工程と、
前記充填確認工程にて前記サプレッションチェンバ内に前記止水材を充填できると判断した場合に、前記ダウンカマの開口が閉塞されるまで前記止水材を前記サプレッションチェンバに充填するダウンカマ閉塞工程と
を有し、
前記ダウンカマ閉塞工程の後に前記水供給工程を行い、
前記充填確認工程では、
前記ベント管と前記ドライウェルとの接続部に破損箇所があるかを撮影により確認し、前記破損箇所がない場合で且つ前記サプレッションチェンバの下部に充填材がリークする破損箇所があるかを撮影により確認して当該リークする破損箇所がない場合に、前記サプレッションチェンバ内に前記止水材を充填できると判断する
ことを特徴とする請求項1記載の原子炉格納容器の冠水方法。
A downcomer is provided that is connected to the lower side of the vent pipe and connects the inner space of the suppression chamber and the vent pipe,
A filling confirmation step for determining whether or not the water stop material can be filled in the suppression chamber when it is determined that the water stop material supply route cannot be secured in the route determination step;
A downcomer blockage step of filling the suppression chamber with the waterstop material until the downcomer opening is closed when it is determined in the filling confirmation step that the waterstop material can be filled into the suppression chamber. And
There line the water supplying step after the downcomer blocking step,
In the filling confirmation step,
Check if there is a damaged part in the connection part between the vent pipe and the dry well by photographing, and if there is no damaged part and if there is a damaged part where the filler leaks in the lower part of the suppression chamber, 2. The method of submerging a reactor containment vessel according to claim 1 , wherein it is determined that the water stop material can be filled in the suppression chamber when there is no damaged portion that leaks .
前記サプレッションチェンバが設置されるトーラス室が設けられており、
前記充填確認工程にて前記サプレッションチェンバ内に前記止水材を充填できないと判断した場合に、前記トーラス室に前記サプレッションチェンバと前記ベント管との接続部位の高さまで前記止水材を充填するトーラス室閉鎖工程を有し、
前記トーラス室閉鎖工程の後に前記水供給工程を行う
ことを特徴とする請求項2記載の原子炉格納容器の冠水方法。
A torus chamber is provided in which the suppression chamber is installed;
A torus that fills the torus chamber with the water stop material up to the height of the connection portion between the suppression chamber and the vent pipe when it is determined that the water stop material cannot be filled into the suppression chamber in the filling confirmation step. A chamber closing process,
The method for flooding a containment vessel according to claim 2, wherein the water supply step is performed after the torus chamber closing step.
前記サプレッションチェンバと前記ベント管とを接続する真空破壊装置とが設けられており、
前記真空破壊装置に破損箇所が確認された場合に、前記トーラス室閉鎖工程にて前記真空破壊装置の破損箇所の高さまで前記止水材を充填する
ことを特徴とする請求項3記載の原子炉格納容器の冠水方法。
A vacuum breaker for connecting the suppression chamber and the vent pipe is provided,
4. The nuclear reactor according to claim 3, wherein when a breakage point is confirmed in the vacuum breaker, the waterstop material is filled up to a height of the breakage point of the vacuum breaker in the torus chamber closing step. Containment container flooding method.
JP2011256580A 2011-11-24 2011-11-24 Submersion method for reactor containment Active JP5757222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011256580A JP5757222B2 (en) 2011-11-24 2011-11-24 Submersion method for reactor containment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011256580A JP5757222B2 (en) 2011-11-24 2011-11-24 Submersion method for reactor containment

Publications (2)

Publication Number Publication Date
JP2013108956A JP2013108956A (en) 2013-06-06
JP5757222B2 true JP5757222B2 (en) 2015-07-29

Family

ID=48705836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011256580A Active JP5757222B2 (en) 2011-11-24 2011-11-24 Submersion method for reactor containment

Country Status (1)

Country Link
JP (1) JP5757222B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6233917B2 (en) * 2013-06-18 2017-11-22 株式会社太平洋コンサルタント Sealing material for water leakage part of damaged container and sealing method using the same
JP6186980B2 (en) * 2013-07-23 2017-08-30 株式会社Ihi Water stop device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337298A (en) * 1986-08-01 1988-02-17 株式会社東芝 Method of inspecting reactor container pressure suppressing chamber and structure thereof
JPH07117596B2 (en) * 1986-09-19 1995-12-18 株式会社日立製作所 Natural heat dissipation type containment
JPH05232281A (en) * 1992-02-25 1993-09-07 Toshiba Corp Reactor container
JP3975027B2 (en) * 1999-04-30 2007-09-12 株式会社Ihi Suppression chamber ventilation method
JP4049149B2 (en) * 2004-11-18 2008-02-20 株式会社Ihi How to replace vent tube bellows in reactor containment

Also Published As

Publication number Publication date
JP2013108956A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
JP5757222B2 (en) Submersion method for reactor containment
TWI632560B (en) Operating floor confinement and nuclear plant
JP4276808B2 (en) Equipment for carrying out nuclear power plant equipment
JP3196318U (en) Reactor decommissioning support facility
JP2014178142A (en) Reactor containment vessel cooling system and cooling method
JP2007510919A (en) Apparatus and method for conditioning nuclear fuel assemblies having double confinement barriers
JP6056284B2 (en) Reactor removal method
CA2894799C (en) Method and device for drainage and detection of leakage
JP6491814B2 (en) Method for preventing expansion of pollution at power plant dismantling and internal investigation method at power plant dismantling
JP6178249B2 (en) Vent filter system equipment
JP6582573B2 (en) Nuclear power plant and method for damping nuclear power plant
JP6238074B2 (en) Water stoppage method for underwater leakage
JP2016061012A (en) Submersion prevention structure of quake-free building
CN103733266A (en) Apparatus for treating molten atomic reactor fuel rod using vertical cavity
EP2500907B1 (en) Method of constructing a nuclear reactor module
JP6186980B2 (en) Water stop device
RU2106026C1 (en) Shielding system for water-moderated reactor containment
JP2017040588A (en) Nuclear reactor facility
JP2010120688A (en) Aging fire fighting water tank provided with water leakage prevention
KR20230172148A (en) Long-term cooling recovery equipment after nuclear power plant cooling water accident and operation method thereof
JP2014199217A (en) Filter vent building
WO2019049305A1 (en) Drain water reservoir inside nuclear reactor containment vessel and construction method for drain water reservoir
JP3554691B2 (en) Floor drain equipment for radiation handling facilities
JP6368513B2 (en) Water filling method in reactor pressure vessel in nuclear power plant
JP2017075898A (en) Emergency water storage apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140507

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R151 Written notification of patent or utility model registration

Ref document number: 5757222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250