JP2017040588A - Nuclear reactor facility - Google Patents

Nuclear reactor facility Download PDF

Info

Publication number
JP2017040588A
JP2017040588A JP2015163137A JP2015163137A JP2017040588A JP 2017040588 A JP2017040588 A JP 2017040588A JP 2015163137 A JP2015163137 A JP 2015163137A JP 2015163137 A JP2015163137 A JP 2015163137A JP 2017040588 A JP2017040588 A JP 2017040588A
Authority
JP
Japan
Prior art keywords
core
reactor
cover
core catcher
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015163137A
Other languages
Japanese (ja)
Inventor
直矢 亀井
Naoya Kamei
直矢 亀井
一義 青木
Kazuyoshi Aoki
一義 青木
靖己 北島
Yasuki Kitajima
靖己 北島
三男 小室
Mitsuo Komuro
三男 小室
崚 鈴木
Shun Suzuki
崚 鈴木
佳朗 西岡
Yoshiaki Nishioka
佳朗 西岡
智久 栗田
Tomohisa Kurita
智久 栗田
将士 中根
Masashi NAKANE
将士 中根
中丸 幹英
Mikihide Nakamaru
幹英 中丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015163137A priority Critical patent/JP2017040588A/en
Publication of JP2017040588A publication Critical patent/JP2017040588A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to detect water leakage using a drain sump even when a core catcher is installed in a containment.SOLUTION: According to an embodiment, a nuclear reactor facility comprises: a core catcher 21 disposed below a reactor pressure vessel within a containment and holding a core molten substance during a core meltdown accident; a water filling pipe supplying cooling water for cooling the core molten substance within the core catcher 21 during the core meltdown accident; a drain sump 20 disposed below the core catcher 21 within the containment and storing leak water leaking from the reactor pressure vessel at normal time; a core catcher cover 22 disposed to cover an upper portion of the core catcher 21 below the reactor pressure vessel within the containment and having a cover through hole 43 formed to pass through the core catcher cover in a vertical direction; and a drain pipe 40 for communicating the cover through hole 43 with the drain sump 20 within the containment.SELECTED DRAWING: Figure 2

Description

この発明の実施形態は、コアキャッチャとドレンサンプを備えた原子炉設備に関する。   Embodiments described herein relate generally to a nuclear reactor facility including a core catcher and a drain sump.

通常の水冷却型原子炉では、原子炉圧力容器内への給水の停止や、原子炉圧力容器に接続された配管の破断などにより冷却水が喪失すると、原子炉水位が低下し炉心が露出して冷却が不十分になる可能性がある。このような場合を想定して、水位低下の信号により自動的に原子炉は非常停止され、非常用炉心冷却装置(ECCS)による冷却材の注入によって炉心を冠水させて冷却し、炉心溶融事故を未然に防ぐようになっている。   In a normal water-cooled nuclear reactor, if cooling water is lost due to the stoppage of water supply to the reactor pressure vessel or the breakage of piping connected to the reactor pressure vessel, the reactor water level drops and the core is exposed. Cooling may be insufficient. Assuming such a case, the reactor is automatically shut down in response to a water level lowering signal, and the core is submerged and cooled by injecting coolant using an emergency core cooling system (ECCS), and a core melting accident is performed. It is designed to prevent it.

しかしながら、極めて低い確率ではあるが、上記非常用炉心冷却装置が作動せず、かつ、その他の炉心への注水装置も利用できない事態も想定され得る。このような場合、原子炉水位の低下により炉心は露出し、十分な冷却が行われなくなり、原子炉停止後も発生し続ける崩壊熱によって燃料棒温度が上昇し、最終的には炉心溶融に至ることが考えられる。   However, although the probability is very low, it can be assumed that the emergency core cooling device does not operate and water injection devices for other cores cannot be used. In such a case, the core is exposed due to a decrease in the reactor water level, and sufficient cooling is not performed, and the fuel rod temperature rises due to decay heat that continues to occur after the reactor shuts down, eventually leading to core melting. It is possible.

このような事態に至った場合、高温の炉心溶融物が原子炉圧力容器下部に溶け落ち、さらに原子炉圧力容器底部を溶融貫通して、原子炉格納容器内の床上に落下するに至る。炉心溶融物は原子炉格納容器床に張られたコンクリートを加熱し、接触面が高温状態になるとコンクリートと反応し、二酸化炭素、水素等の非凝縮性ガスを大量に発生させるとともにコンクリートを溶融浸食する。発生した非凝縮性ガスは原子炉格納容器内の圧力を高め、原子炉格納容器を破損させる可能性があり、また、コンクリートの溶融浸食により原子炉格納容器のバウンダリを破損させたり、原子炉格納容器の構造強度を低下させたりする可能性がある。結果的に、炉心溶融物とコンクリートの反応が継続すると原子炉格納容器の破損に至り、原子炉格納容器内の放射性物質が外部環境へ放出する恐れがある。   When such a situation occurs, the high-temperature core melt melts into the lower part of the reactor pressure vessel, and further melts and penetrates the bottom of the reactor pressure vessel and falls onto the floor in the reactor containment vessel. The core melt heats the concrete stretched on the reactor containment floor, reacts with the concrete when the contact surface reaches a high temperature, generates a large amount of noncondensable gases such as carbon dioxide and hydrogen, and melts and erodes the concrete. To do. The generated non-condensable gas increases the pressure in the containment vessel and may damage the containment vessel. Also, the boundary of the containment vessel may be damaged by melting and erosion of concrete. The structural strength of the container may be reduced. As a result, if the reaction between the core melt and concrete continues, the reactor containment vessel will be damaged, and radioactive materials in the reactor containment vessel may be released to the external environment.

ところで、通常運転時の原子炉圧力容器からの漏水(ドレン)を原子炉格納容器の底部に設けたドレンサンプに導いて、ドレンサンプ内の検出器によって漏水を検知することが行われている。このような原子炉設備で、ドレンサンプに炉心溶融物が侵入すると、炉心溶融物の体積に比して炉心溶融物の上面の面積が小さいため、仮に、注水配管で原子炉格納容器の下部に注水したとしても、炉心溶融物の温度が低下せず、ドレンサンプ底部の侵食が継続する恐れがある。   By the way, water leakage (drain) from a reactor pressure vessel during normal operation is guided to a drain sump provided at the bottom of the reactor containment vessel, and the water leak is detected by a detector in the drain sump. In such a reactor facility, if the core melt enters the drain sump, the area of the upper surface of the core melt is small compared to the volume of the core melt. Even if it does, there is a possibility that the temperature of the core melt does not decrease and erosion of the drain sump bottom continues.

また、炉心溶融物が原子炉圧力容器の底部を突き破って落下する事象の進展を防止する対策として、原子炉格納容器下部にコアキャッチャを設置する場合がある。コアキャッチャは、原子炉圧力容器底部を溶融貫通して落下した炉心溶融物を受け止め、保持する機能を持つ。炉心溶融物から発生する崩壊熱は、コアキャッチャ内で受け止められた溶融炉心堆積物の上面からの水による冷却と、コアキャッチャ下部に設けられた冷却流路において、水と蒸気の密度差を駆動力として形成される水の自然循環により除熱される。   In addition, a core catcher may be installed in the lower part of the reactor containment vessel as a countermeasure for preventing the progress of an event in which the core melt falls through the bottom of the reactor pressure vessel. The core catcher has a function of receiving and holding the core melt that has melted and dropped through the bottom of the reactor pressure vessel. The decay heat generated from the core melt drives the water-steam density difference in the cooling channel provided at the bottom of the core catcher and the cooling by the water from the upper surface of the molten core deposit received in the core catcher. Heat is removed by natural circulation of water formed as force.

コアキャッチャは、事故時の落下物による破損を防ぐためのカバーを設けることが検討されている。しかし、前述の通り、原子炉格納容器下部にはドレンサンプが在る。コアキャッチャを設置した場合にも通常運転時はドレンサンプへと漏水が流出することが必要である。   It has been considered that the core catcher is provided with a cover for preventing damage caused by falling objects in the event of an accident. However, as described above, there is a drain sump at the bottom of the reactor containment vessel. Even when a core catcher is installed, it is necessary that water leaks to the drain sump during normal operation.

コアキャッチャとドレンサンプの漏水検出機能とを共存させるためにコアキャッチャ上部に漏水検知床を設ける方法がある(特許文献1)。この構造であれば、コアキャッチャの上部で漏水を検知することが可能となる。なお、既設の原子炉においてコアキャッチャおよびコアキャッチャカバーを設けるためには、設置スペース確保のためにペデスタルコンクリートの一部を削る必要があると考えられる。   In order to make the core catcher and the water leak detection function of the drain sump coexist, there is a method of providing a water leak detection floor above the core catcher (Patent Document 1). With this structure, it is possible to detect water leakage at the upper part of the core catcher. In addition, in order to provide a core catcher and a core catcher cover in an existing nuclear reactor, it is considered that a part of the pedestal concrete needs to be cut to secure an installation space.

特開2009−145135号公報JP 2009-145135 A

公知技術として、漏水検査床を設けることで、ドレンサンプに要求される漏水検知機能を維持しながら、炉心溶融事故時に炉心溶融物をコアキャッチャにより冷却・保持する機能を有しているものがある。しかし、地震が発生した際の故障や床の破損による機能喪失、漏水検出実績が無いことによる信頼性の不足といった懸念がある。また、既設の原子炉では、原子炉格納容器下部のスペースが狭く干渉物が存在するため、コアキャッチャ上部に設置する床としては可能な限り薄く物量の少ないものが良い。   As a known technique, there is one having a function of cooling and holding a core melt by a core catcher in a core melting accident while maintaining a water leak detection function required for a drain sump by providing a water leak inspection floor. However, there are concerns such as failure due to earthquakes, loss of function due to floor damage, and lack of reliability due to lack of water leakage detection results. Further, in existing reactors, the space below the reactor containment vessel is narrow and there are interferences, so the floor installed on the core catcher should be as thin as possible and have a small amount of material.

本発明の実施形態は、上記事情に鑑みてなされたものであって、その目的は、原子炉格納容器内にコアキャッチャを設置した際でもドレンサンプを用いた漏水検出を可能とすることにある。   The embodiment of the present invention has been made in view of the above circumstances, and an object of the present invention is to enable water leak detection using a drain sump even when a core catcher is installed in a nuclear reactor containment vessel.

実施形態に係る原子炉設備は、上記目的を達成するために、炉心を収容する原子炉圧力容器と、前記原子炉圧力容器を格納する原子炉格納容器と、前記原子炉格納容器内で前記原子炉圧力容器の下方に配置されて炉心溶融事故時に炉心溶融物を保持するコアキャッチャと、前記原子炉格納容器内で前記コアキャッチャの下方に配置されて通常時に前記原子炉圧力容器からの漏水を溜めるドレンサンプと、前記原子炉圧力容器の下方で前記コアキャッチャの上方を覆うように配置されて上下方向に貫通するカバー貫通孔が形成されたコアキャッチャカバーと、前記カバー貫通孔と前記ドレンサンプとを連通する排水管と、を有することを特徴とする。   In order to achieve the above object, a nuclear reactor facility according to an embodiment includes a nuclear reactor pressure vessel that accommodates a core, a nuclear reactor containment vessel that contains the nuclear reactor pressure vessel, and the atomic reactor within the nuclear reactor containment vessel. A core catcher that is disposed below the reactor pressure vessel and holds the core melt in the event of a core melting accident, and is disposed below the core catcher in the reactor containment vessel and normally leaks water from the reactor pressure vessel. A drain sump to be stored; a core catcher cover which is disposed so as to cover the upper side of the core catcher below the reactor pressure vessel and has a through-hole penetrating vertically; the cover through-hole and the drain sump; And a drain pipe communicating therewith.

本発明の実施形態によれば、原子炉格納容器内にコアキャッチャを設置した際でもドレンサンプを用いた漏水検出を行うことができる。   According to the embodiment of the present invention, water leakage detection using a drain sump can be performed even when a core catcher is installed in a nuclear reactor containment vessel.

本発明の第1の実施形態に係る原子炉設備の全体立断面図である。1 is an overall vertical sectional view of a nuclear reactor facility according to a first embodiment of the present invention. 図1の原子炉設備の要部立断面図である。FIG. 2 is a vertical sectional view of main parts of the nuclear reactor facility of FIG. 1. 図2の排水管の部分斜視図である。FIG. 3 is a partial perspective view of the drain pipe of FIG. 2. 本発明の第2の実施形態に係る原子炉設備の排水管を構成する部分排水管部材の斜視図である。It is a perspective view of the partial drainage pipe member which comprises the drainage pipe of the nuclear reactor installation which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る原子炉設備の排水管の部分断面斜視図である。It is a fragmentary sectional perspective view of the drain pipe of the nuclear reactor installation which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る原子炉設備の排水管の部分断面斜視図である。It is a fragmentary sectional perspective view of the drain pipe of the nuclear reactor equipment which concerns on the 4th Embodiment of this invention.

以下、本発明に係る原子炉設備の実施形態について、図面を参照して説明する。ここで、互いに同一または類似の部分には共通の符号を付して、重複説明は省略する。   Hereinafter, an embodiment of a nuclear reactor facility according to the present invention will be described with reference to the drawings. Here, the same or similar parts are denoted by common reference numerals, and redundant description is omitted.

[第1の実施形態]
図1は、本発明の第1の実施形態に係る原子炉設備の全体立断面図である。図2は、図1の原子炉設備の要部立断面図である。図3は、図2の排水管の部分斜視図である。
[First Embodiment]
FIG. 1 is an overall vertical sectional view of a nuclear reactor facility according to a first embodiment of the present invention. FIG. 2 is a sectional view of a principal part of the nuclear reactor facility of FIG. FIG. 3 is a partial perspective view of the drain pipe of FIG.

この実施形態に係る原子炉設備は、沸騰水型原子力発電所であって、原子炉圧力容器10内に炉心11が収容されている。原子炉圧力容器10は原子炉格納容器12内に配置されている。原子炉格納容器12内空間は、原子炉圧力容器10を収容するドライウェル13と、圧力抑制プール14を収容するウェットウェル15を含む。ドライウェル13と圧力抑制プール14はベント管16で連絡している。   The reactor facility according to this embodiment is a boiling water nuclear power plant, and a reactor core 11 is accommodated in a reactor pressure vessel 10. The reactor pressure vessel 10 is disposed in the reactor containment vessel 12. The internal space of the reactor containment vessel 12 includes a dry well 13 that accommodates the reactor pressure vessel 10 and a wet well 15 that accommodates the pressure suppression pool 14. The dry well 13 and the pressure suppression pool 14 communicate with each other through a vent pipe 16.

原子炉圧力容器10は、コンクリート製で上部が開放された円筒状のペデスタル17によって支持されている。ペデスタル17の底部はコンクリート製のペデスタル底部18が形成されている。ドライウェル13のうち、ペデスタル17に囲まれて、原子炉圧力容器10の下方、かつペデスタル底部18の上方の空間をペデスタル空間19と呼ぶ。ペデスタル17の周りを囲んでウェットウェル15が形成されている。   The reactor pressure vessel 10 is supported by a cylindrical pedestal 17 made of concrete and having an open top. A pedestal bottom 18 made of concrete is formed at the bottom of the pedestal 17. In the dry well 13, a space surrounded by the pedestal 17 and below the reactor pressure vessel 10 and above the pedestal bottom 18 is referred to as a pedestal space 19. A wet well 15 is formed around the pedestal 17.

ペデスタル底部18の一部は掘り込まれてドレンサンプ20が形成されている。ドレンサンプ20内には、図示しない漏水検出のための検出器が配置されている。   A part of the pedestal bottom 18 is dug to form a drain sump 20. In the drain sump 20, a detector for detecting water leakage (not shown) is arranged.

ペデスタル底部18の上にコアキャッチャ21が配置されている。コアキャッチャ21の上面を覆うように、コアキャッチャカバー22が配置されている。   A core catcher 21 is disposed on the pedestal bottom 18. A core catcher cover 22 is disposed so as to cover the upper surface of the core catcher 21.

事故時に原子炉格納容器12の外側からコアキャッチャカバー22の上方に冷却水を供給するための注水配管23が設けられ、注水配管23の途中でペデスタル空間19内に注水弁24が設けられている。   In the event of an accident, a water injection pipe 23 for supplying cooling water from outside the reactor containment vessel 12 to above the core catcher cover 22 is provided, and a water injection valve 24 is provided in the pedestal space 19 in the middle of the water injection pipe 23. .

コアキャッチャ21は、炉心溶融事故時に、原子炉圧力容器10の底部を突き破って落下する炉心溶融物を保持し、冷却できる構造となっている。コアキャッチャ21は、炉心溶融物の熱で溶融しない耐熱材で構成され、上方に向かって開口する炉心溶融物受け部30と、炉心溶融物受け部30の下方および外側に形成されて冷却水が流れる冷却水流路31とを有する。炉心溶融物受け部30の上面は中央が低く、外周に向かって高くなるように傾斜している。コアキャッチャ21の外周壁32は、ペデスタル17の内周に沿って延びる円筒状である。   The core catcher 21 has a structure that can hold and cool the core melt falling through the bottom of the reactor pressure vessel 10 in the event of a core melting accident. The core catcher 21 is made of a heat-resistant material that is not melted by the heat of the core melt. The core catcher 21 is formed at the core melt receiver 30 that opens upward, and below and outside the core melt receiver 30, and cooling water And a flowing cooling water channel 31. The upper surface of the core melt receiving part 30 has a low center and is inclined so as to increase toward the outer periphery. The outer peripheral wall 32 of the core catcher 21 has a cylindrical shape extending along the inner periphery of the pedestal 17.

冷却水流路31内の冷却水(水蒸気を含む)は、図2の矢印Aに示すように、コアキャッチャ21の外周壁32に沿って外周部33から下降し、その後にコアキャッチャ21の底部34に沿って底部中央35に流れ、底部中央35から上昇して、炉心溶融物受け部30の傾斜面に沿ってその下を外側に向かいつつ上昇する。さらに、炉心溶融物受け部30の外周に沿って上昇し、コアキャッチャ21の上端まで上昇した後に、再度外周部33を下降する。   The cooling water (including water vapor) in the cooling water flow path 31 descends from the outer peripheral portion 33 along the outer peripheral wall 32 of the core catcher 21 as shown by an arrow A in FIG. To the bottom center 35, rising from the bottom center 35, and rising toward the outside along the inclined surface of the core melt receiver 30. Furthermore, it rises along the outer periphery of the core melt receiving part 30, rises to the upper end of the core catcher 21, and then descends the outer peripheral part 33 again.

コアキャッチャ21の水平方向中央に上下方向に延びる排水管40が配置されている。排水管40の下端はペデスタル底部18によって支持されている。コアキャッチャカバー22は、水平に広がる円板状である。コアキャッチャカバー22の荷重は、コアキャッチャ21の外周壁32の上端で支持されるとともに、排水管40でもその一部が支持されている。   A drain pipe 40 extending in the vertical direction is disposed at the center in the horizontal direction of the core catcher 21. The lower end of the drain pipe 40 is supported by the pedestal bottom 18. The core catcher cover 22 has a disk shape extending horizontally. The load of the core catcher cover 22 is supported by the upper end of the outer peripheral wall 32 of the core catcher 21, and a part of the load is also supported by the drain pipe 40.

コアキャッチャカバー22が排水管40の上端と接する部分には、上下に延びるカバー貫通孔43が形成され、カバー貫通孔43の下端が排水管40の上端に通じている。排水管40はコアキャッチャ21の水平方向中央を上下方向に貫通している。排水管40の下端の近くで、側面に下端部流通孔44が形成され、コアキャッチャ21の底部の下方でドレンサンプ20に達する底部流路45が形成されている。すなわち、コアキャッチャカバー22の上方からカバー貫通孔43を経て、排水管40を通り、さらに底部流路45を経てドレンサンプ20に至る排水経路が形成される。   A cover through hole 43 extending vertically is formed at a portion where the core catcher cover 22 contacts the upper end of the drain pipe 40, and the lower end of the cover through hole 43 communicates with the upper end of the drain pipe 40. The drain pipe 40 penetrates the horizontal center of the core catcher 21 in the vertical direction. Near the lower end of the drain pipe 40, a lower end flow hole 44 is formed on the side surface, and a bottom channel 45 reaching the drain sump 20 is formed below the bottom of the core catcher 21. That is, a drainage path is formed from above the core catcher cover 22 through the cover through hole 43, through the drainage pipe 40, and further through the bottom channel 45 to the drain sump 20.

排水管40は、図3に示すように二重管構造であり、内管41と、内管41の外側に配置されて強度を補強する被覆管42とからなる。内管41は、たとえば、ZrOやAlなどの高融点セラミックスからなる。被覆管42は、たとえば、ステンレス鋼や炭素鋼などの金属製である。排水管40は、横断面形状が、円のほか、楕円や四角形などでもよい。内管41内に流路46が形成されている。 As shown in FIG. 3, the drain pipe 40 has a double pipe structure, and includes an inner pipe 41 and a cladding pipe 42 that is disposed outside the inner pipe 41 and reinforces its strength. The inner tube 41 is made of a high melting point ceramic such as ZrO 2 or Al 2 O 3 , for example. The cladding tube 42 is made of a metal such as stainless steel or carbon steel. The drain pipe 40 may have an elliptical shape, a rectangular shape, or the like in addition to a circle. A flow path 46 is formed in the inner tube 41.

排水管40の構造の他の例として、内管41をステンレス鋼や炭素鋼などの金属製とし、被覆管42を高融点セラミックス製としてもよい。さらに、排水管40を二重管構造としなくても、耐熱性と構造強度が十分であれば、均質材料の配管としてもよい。   As another example of the structure of the drain pipe 40, the inner pipe 41 may be made of a metal such as stainless steel or carbon steel, and the cladding pipe 42 may be made of a high melting point ceramic. Further, even if the drain pipe 40 does not have a double pipe structure, it may be a pipe made of a homogeneous material as long as the heat resistance and the structural strength are sufficient.

本実施形態の構成を用いれば、原子炉格納容器12床に存在するペデスタル底部18のコンクリート内にドレンサンプ20が存在する原子炉にコアキャッチャ21を設置する場合でも、既存の原子炉と同様に、通常運転時に、漏水をドレンサンプ20へ排出することができる。また、排水管40の内径を適切に設計することで、過酷事故時に炉心溶融物が浸入してきた際に排水管40内の流路46内を流れる過程で炉心溶融物を固化させることができる。また、排水管40をZrOで製作した際は、過酷事故時に高温の炉心溶融物に直接接触しても容易に浸食されないため、排水管40が破損して破損部から炉心溶融物が流入し、ドレンサンプ20へ排出されることを防ぐ効果を持つ。さらに、排水管40を支柱として用いることで、コアキャッチャ21およびコアキャッチャカバー22の構造強度を増加させることができる。 If the configuration of the present embodiment is used, even when the core catcher 21 is installed in a nuclear reactor in which the drain sump 20 is present in the concrete of the pedestal bottom 18 existing on the floor of the reactor containment vessel 12, as in the existing nuclear reactor, During normal operation, water leakage can be discharged to the drain sump 20. In addition, by appropriately designing the inner diameter of the drain pipe 40, the core melt can be solidified in the process of flowing through the flow path 46 in the drain pipe 40 when the core melt has infiltrated in a severe accident. In addition, when the drain pipe 40 is made of ZrO 2 , even if it is in direct contact with the hot core melt at the time of a severe accident, it is not easily eroded, so the drain pipe 40 breaks and the core melt flows from the damaged part. , Has the effect of preventing discharge to the drain sump 20. Furthermore, the structural strength of the core catcher 21 and the core catcher cover 22 can be increased by using the drain pipe 40 as a support.

図2に示すように、炉心溶融物受け部30の上面とコアキャッチャカバー22の下面の間に、複数の支柱70が配置されている。支柱70は、炉心溶融事故時に炉心溶融物の熱によって溶融しない耐熱材からなる。支柱70はコアキャッチャカバー22の荷重の一部を支持し、その荷重を炉心溶融物受け部30に伝える。これにより、コアキャッチャカバー22がさらに確実に支持される。   As shown in FIG. 2, a plurality of struts 70 are arranged between the upper surface of the core melt receiver 30 and the lower surface of the core catcher cover 22. The strut 70 is made of a heat-resistant material that is not melted by the heat of the core melt in the event of a core melting accident. The column 70 supports a part of the load of the core catcher cover 22 and transmits the load to the core melt receiver 30. Thereby, the core catcher cover 22 is supported more reliably.

なお、排水管40に、中性子吸収剤(図示せず)を塗布したり、または排水管40の内管41または被覆管42に中性子吸収剤を混入させたりしてもよい。これにより、炉心溶融物がコアキャッチャ21に保持された後に、発生が懸念される核燃料成分の再臨界を防止する効果が得られる。   Note that a neutron absorber (not shown) may be applied to the drain pipe 40, or a neutron absorber may be mixed into the inner tube 41 or the cladding tube 42 of the drain tube 40. Thereby, after the core melt is held by the core catcher 21, an effect of preventing the recriticality of the nuclear fuel component which is feared to be generated can be obtained.

なお、図1および図2に示す例では、コアキャッチャ21の水平方向ほぼ中央に排水管40を配置するものとしたが、排水管40をコアキャッチャ21の外周近くに配置してもよい。   In the example shown in FIGS. 1 and 2, the drain pipe 40 is disposed approximately at the center in the horizontal direction of the core catcher 21. However, the drain pipe 40 may be disposed near the outer periphery of the core catcher 21.

[第2の実施形態]
図4は、本発明の第2の実施形態に係る原子炉設備の排水管を構成する部分排水管部材の斜視図である。
[Second Embodiment]
FIG. 4 is a perspective view of a partial drainage pipe member constituting a drainage pipe of a nuclear reactor facility according to the second embodiment of the present invention.

この第2の実施形態では、排水管40(図2参照)は、長手方向に分割された複数の部分排水管部材50が互いに連結されて構成されている。その他の構成は第1の実施形態と同様である。   In the second embodiment, the drain pipe 40 (see FIG. 2) is configured by connecting a plurality of partial drain pipe members 50 divided in the longitudinal direction. Other configurations are the same as those of the first embodiment.

図4に示すように、部分排水管部材50の軸方向の第1の端部(上端)に雄ネジ51が形成され、第1の端部の反対側の第2の端部(下端)に雌ネジ52が形成されている。複数の部分排水管部材50の雄ネジ51と雌ネジ52を互いにねじ込むことにより、第1の実施形態の排水管40と同様の排水管40が形成される。各部分排水管部材50は、第1の実施形態における排水管40と同様の二重管構造であってもよい。   As shown in FIG. 4, a male screw 51 is formed at the first end (upper end) in the axial direction of the partial drainage pipe member 50, and at the second end (lower end) opposite to the first end. A female screw 52 is formed. By draining the male screw 51 and the female screw 52 of the plurality of partial drainage pipe members 50 to each other, the drainage pipe 40 similar to the drainage pipe 40 of the first embodiment is formed. Each partial drainage pipe member 50 may have a double pipe structure similar to the drainage pipe 40 in the first embodiment.

この実施形態の変形例として、雄ネジ51と雌ネジ52を互いにねじ込む構造に代えて、凸部と凹部とを互いにはめ合わせる構造も可能である。すなわち、部分排水管部材50の軸方向の第1の端部で軸方向に突出する凸部を設け、部分排水管部材50の軸方向の第2の端部で軸方向にくぼんだ凹部を設けて、これらの凸部と凹部とを互いにはめ合わせればよい。   As a modification of this embodiment, instead of a structure in which the male screw 51 and the female screw 52 are screwed together, a structure in which the convex portion and the concave portion are fitted to each other is also possible. That is, a convex portion protruding in the axial direction is provided at the first end portion in the axial direction of the partial drainage pipe member 50, and a concave portion recessed in the axial direction is provided at the second end portion in the axial direction of the partial drainage pipe member 50. Thus, these convex portions and concave portions may be fitted to each other.

また、部分排水管部材50として、図4に示す直管構造のほか、エルボ型やT字型の部分排水管部材(図示せず)を用いることもでき、それにより、排水管40として、分岐部、合流部、曲がり部など種々の構造を実現できる。   Further, as the partial drainage pipe member 50, an elbow type or T-shaped partial drainage pipe member (not shown) can be used in addition to the straight pipe structure shown in FIG. Various structures, such as a part, a merge part, and a bent part, can be realized.

本実施形態の構成を用いれば、第1の実施形態と同様に、通常運転時には漏水をドレンサンプ20へと排出し、過酷事故時には溶融炉心のドレンサンプ20への流入を阻止することが可能であり、しかも、今まで通りドレンサンプ20に漏水検出機能を持たせることが可能となる。   If the configuration of the present embodiment is used, similarly to the first embodiment, it is possible to discharge water leakage to the drain sump 20 during normal operation and to prevent the molten core from flowing into the drain sump 20 during severe accidents. Moreover, the drain sump 20 can be provided with a water leakage detection function as before.

また、既設の原子炉などの搬入スペースが限られる場合であっても、排水管40を構成する部品を、排水管40設置位置に容易に人力で搬入することができる。これにより、現地での工事期間を短縮することができる。また、一部にL字型の部分排水管部材を使用することで干渉物を避けることや、エルボ型の部分排水管部材を用いることにより、適切な接続先へと排水管40を導き接続することができる。また、T字型の部分排水管部材を使用して他の部分排水管部材と接続した場合は、構造強度を高める効果もある。   Moreover, even if the carrying-in space of an existing nuclear reactor etc. is restricted, the components which comprise the drainage pipe 40 can be easily carried in manually by the drainage pipe 40 installation position. As a result, the construction period at the site can be shortened. In addition, by using an L-shaped partial drainage pipe member in part, avoiding interference and by using an elbow-type partial drainage pipe member, the drainage pipe 40 is guided and connected to an appropriate connection destination. be able to. In addition, when a T-shaped partial drain pipe member is used and connected to another partial drain pipe member, there is an effect of increasing the structural strength.

[第3の実施形態]
図5は、本発明の第3の実施形態に係る原子炉設備の排水管の部分断面斜視図である。この実施形態は第1の実施形態の変形であって、排水管40の流路46内の途中に耐熱材からなる網60が固定されている。また、排水管40の流路46内の上端から網60までの間に、耐熱材からなる複数の障害部材61が配置されている。障害部材61は、たとえば砂利であって、網60を通過しない程度の大きさである。網60および障害部材61は、炉心溶融事故時に炉心溶融物に接したときに炉心溶融物の熱によって溶融しない程度の耐熱性を持つ。
[Third Embodiment]
FIG. 5 is a partial cross-sectional perspective view of a drain pipe of a nuclear reactor facility according to a third embodiment of the present invention. This embodiment is a modification of the first embodiment, and a net 60 made of a heat-resistant material is fixed midway in the flow path 46 of the drain pipe 40. A plurality of obstacle members 61 made of a heat-resistant material are disposed between the upper end in the flow path 46 of the drain pipe 40 and the net 60. The obstruction member 61 is, for example, gravel and has a size that does not pass through the net 60. The mesh 60 and the obstruction member 61 have heat resistance to such an extent that they do not melt due to the heat of the core melt when in contact with the core melt at the time of the core melting accident.

本実施形態の構成によれば、過酷事故時に排水管40の流路46入口から炉心溶融物が浸入した場合に、圧力損失が大きい流路構造であるために、炉心溶融物の進出速度が遅くなり、炉心溶融物が固化するまでに要する距離を短くする効果を持つ。特に、排水管40の流路46上部入口から炉心溶融物が浸入した場合の固化距離を短くできるため、ドレンサンプ20へ炉心溶融物が流出するリスクを低減させる効果が得られる。   According to the configuration of the present embodiment, when the core melt enters from the flow path 46 inlet of the drain pipe 40 in a severe accident, since the pressure loss is large, the advance speed of the core melt is slow. Therefore, it has the effect of shortening the distance required for the core melt to solidify. In particular, since the solidification distance when the core melt enters from the upper entrance of the flow path 46 of the drain pipe 40 can be shortened, an effect of reducing the risk of the core melt flowing out to the drain sump 20 can be obtained.

[第4の実施形態]
図6は、本発明の第4の実施形態に係る原子炉設備の排水管の部分断面斜視図である。この実施形態は第1の実施形態の変形であって、排水管40の下部に縮流部65が形成されている。縮流部65の流路は、縮流部65より上方の流路46よりも流路面積が小さくなっていて、縮流部65の上端で流路面積が急に縮小している。この縮流部65は、図2に示すコアキャッチャ21の底部中央35内に位置する。
[Fourth Embodiment]
FIG. 6 is a partial cross-sectional perspective view of a drain pipe of a nuclear reactor facility according to a fourth embodiment of the present invention. This embodiment is a modification of the first embodiment, and a reduced flow portion 65 is formed in the lower part of the drain pipe 40. The flow path of the flow reducing portion 65 has a smaller flow area than the flow path 46 above the flow reducing portion 65, and the flow path area is rapidly reduced at the upper end of the reduced flow portion 65. The contracted portion 65 is located in the bottom center 35 of the core catcher 21 shown in FIG.

なお、縮流部65の内面に、内側の流路に向かって突出するたとえば金属製のリブ(図示せず)を嵌め込んだ構造としてもよい。このリブによって縮流部65での冷却が促進される。   In addition, it is good also as a structure where the metal rib (not shown) which protrudes toward an inner flow path was engage | inserted in the inner surface of the flow reduction part 65, for example. Cooling at the contracted flow portion 65 is promoted by this rib.

この実施形態によれば、過酷事故時に、排水管40内の流路46内を炉心溶融物が縮流部65まで流入した場合に、ここでの圧力損失が大きいために、浸入速度を低下させることができる。また、炉心溶融事故時には底部中央35(図2)に冷却水が存在するため、縮流部65に浸入してきた炉心溶融物に対する除熱性能が高まり、炉心溶融物が固化するまでに要する距離を短くする効果を持つ。さらに、縮流部65の周囲に金属リブなどの伝熱促進構造物を設けることで冷却効果を高め、炉心溶融物の固化距離を短くすることができる。これにより、炉心溶融物がドレンサンプ20へ流れ込むリスクを低減させる効果が得られる。   According to this embodiment, when the core melt flows into the contracted portion 65 in the flow path 46 in the drain pipe 40 at the time of a severe accident, the pressure loss here is large, so that the infiltration rate is reduced. be able to. Further, since cooling water exists in the bottom center 35 (FIG. 2) at the time of the core melting accident, the heat removal performance with respect to the core melt that has entered the reduced flow portion 65 is improved, and the distance required for the core melt to solidify is increased. Has the effect of shortening. Furthermore, by providing a heat transfer promoting structure such as a metal rib around the contracted flow portion 65, the cooling effect can be enhanced and the solidification distance of the core melt can be shortened. Thereby, the effect of reducing the risk that the core melt flows into the drain sump 20 is obtained.

[他の実施形態]
上記の各実施形態の特徴を種々に組み合わせることもできる。たとえば、第2の実施形態として説明した複数の部分排水管部材50を長手方向に互いに接合する構造は、第3または第4の実施形態の構成でも採用できる。また、排水管40の構造として、上流側は第3の実施形態の構造とし、下流側は第4の実施形態の構造としてもよい。
[Other Embodiments]
The features of the above embodiments can be combined in various ways. For example, the structure in which the plurality of partial drainage pipe members 50 described as the second embodiment are joined to each other in the longitudinal direction can also be adopted in the configuration of the third or fourth embodiment. Further, as the structure of the drain pipe 40, the upstream side may have the structure of the third embodiment, and the downstream side may have the structure of the fourth embodiment.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

10…原子炉圧力容器、11…炉心、12…原子炉格納容器、13…ドライウェル、14…圧力抑制プール、15…ウェットウェル、16…ベント管、17…ペデスタル、18…ペデスタル底部、19…ペデスタル空間、20…ドレンサンプ、21…コアキャッチャ、22…コアキャッチャカバー、23…注水配管、24…注水弁、30…炉心溶融物受け部、31…冷却水流路、32…外周壁、33…外周部、34…底部、35…底部中央、40…排水管、41…内管、42…被覆管、43…カバー貫通孔、44…下端部流通孔、45…底部流路、46…流路、50…部分排水管部材、51…雄ネジ、52…雌ネジ、60…網、61…障害部材、65…縮流部、70…支柱 DESCRIPTION OF SYMBOLS 10 ... Reactor pressure vessel, 11 ... Core, 12 ... Reactor containment vessel, 13 ... Dry well, 14 ... Pressure suppression pool, 15 ... Wet well, 16 ... Vent pipe, 17 ... Pedestal, 18 ... Pedestal bottom, 19 ... Pedestal space, 20 ... Drain sump, 21 ... Core catcher, 22 ... Core catcher cover, 23 ... Water injection pipe, 24 ... Water injection valve, 30 ... Core melt receiver, 31 ... Cooling water flow path, 32 ... Outer wall, 33 ... Outer periphery 34, bottom part, 35 ... bottom center, 40 ... drain pipe, 41 ... inner pipe, 42 ... cladding pipe, 43 ... cover through-hole, 44 ... bottom end flow hole, 45 ... bottom channel, 46 ... channel, 50 ... Partial drainage pipe member, 51 ... Male screw, 52 ... Female screw, 60 ... Net, 61 ... Obstruction member, 65 ... Constriction part, 70 ... Post

Claims (5)

炉心を収容する原子炉圧力容器と、
前記原子炉圧力容器を格納する原子炉格納容器と、
前記原子炉格納容器内で前記原子炉圧力容器の下方に配置されて炉心溶融事故時に炉心溶融物を保持するコアキャッチャと、
前記原子炉格納容器内で前記コアキャッチャの下方に配置されて通常時に前記原子炉圧力容器からの漏水を溜めるドレンサンプと、
前記原子炉圧力容器の下方で前記コアキャッチャの上方を覆うように配置されて上下方向に貫通するカバー貫通孔が形成されたコアキャッチャカバーと、
前記カバー貫通孔と前記ドレンサンプとを連通する排水管と、
を有することを特徴とする原子炉設備。
A reactor pressure vessel containing the reactor core;
A reactor containment vessel for housing the reactor pressure vessel;
A core catcher that is disposed under the reactor pressure vessel in the reactor containment vessel and holds the core melt in the event of a core melting accident;
A drain sump that is disposed below the core catcher in the reactor containment vessel and normally collects water leaked from the reactor pressure vessel;
A core catcher cover which is arranged so as to cover the upper side of the core catcher below the reactor pressure vessel and has a cover through hole penetrating in the vertical direction;
A drain pipe communicating the cover through hole and the drain sump;
A nuclear reactor facility characterized by comprising:
前記排水管は、内管と、前記内管の外側を覆う被覆管と、を具備し、前記内管および前記被覆管の一方がセラミックス製であり、他方が金属製であること、を特徴とする請求項1または請求項2に記載の原子炉設備。   The drain pipe includes an inner pipe and a cladding pipe that covers the outer side of the inner pipe, and one of the inner pipe and the cladding pipe is made of ceramics, and the other is made of metal. The nuclear reactor facility according to claim 1 or 2, wherein: 前記排水管内に配置され、耐熱材からなる複数の障害部材をさらに有すること、を特徴とする請求項1または請求項2に記載の原子炉設備。   The nuclear reactor equipment according to claim 1, further comprising a plurality of obstacle members made of a heat-resistant material and disposed in the drain pipe. 前記排水管は、前記カバー貫通孔から前記ドレンサンプに至る途中に流路が縮小する縮流部を備えていること、を特徴とする請求項1ないし請求項3のいずれか一項に記載の原子炉設備。   The atom according to any one of claims 1 to 3, wherein the drain pipe includes a contracted portion in which a flow path is reduced in the middle from the cover through hole to the drain sump. Furnace equipment. 前記排水管には中性子吸収剤が含まれていること、を特徴とする請求項1ないし請求項4のいずれか一項に記載の原子炉設備。   The nuclear reactor equipment according to any one of claims 1 to 4, wherein the drain pipe contains a neutron absorber.
JP2015163137A 2015-08-20 2015-08-20 Nuclear reactor facility Pending JP2017040588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015163137A JP2017040588A (en) 2015-08-20 2015-08-20 Nuclear reactor facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015163137A JP2017040588A (en) 2015-08-20 2015-08-20 Nuclear reactor facility

Publications (1)

Publication Number Publication Date
JP2017040588A true JP2017040588A (en) 2017-02-23

Family

ID=58206146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015163137A Pending JP2017040588A (en) 2015-08-20 2015-08-20 Nuclear reactor facility

Country Status (1)

Country Link
JP (1) JP2017040588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459333A (en) * 2019-07-04 2019-11-15 中国核电工程有限公司 A kind of double crucible reactor core fusant capturing device with internal cooling tube

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280592A (en) * 1985-10-03 1987-04-14 株式会社東芝 Neutron shielding structure of penetrating section of pipingfor wall body of nuclear reactor
US5349615A (en) * 1992-09-14 1994-09-20 Elektrowatt Ingenieurunternehmung Ag Core melt-through retention device for light-water reactors
JPH06300880A (en) * 1993-04-19 1994-10-28 Hitachi Ltd Reactor container
JPH0843576A (en) * 1994-07-27 1996-02-16 Toshiba Corp Reactor core catcher
JPH09303623A (en) * 1996-05-17 1997-11-28 Nippon Steel Corp Powder transportation compound pipe
JP2000098078A (en) * 1998-09-25 2000-04-07 Hitachi Ltd Reactor safety installation
JP2011007613A (en) * 2009-06-25 2011-01-13 Toshiba Corp Drain sump of nuclear reactor containment vessel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280592A (en) * 1985-10-03 1987-04-14 株式会社東芝 Neutron shielding structure of penetrating section of pipingfor wall body of nuclear reactor
US5349615A (en) * 1992-09-14 1994-09-20 Elektrowatt Ingenieurunternehmung Ag Core melt-through retention device for light-water reactors
JPH06300880A (en) * 1993-04-19 1994-10-28 Hitachi Ltd Reactor container
JPH0843576A (en) * 1994-07-27 1996-02-16 Toshiba Corp Reactor core catcher
JPH09303623A (en) * 1996-05-17 1997-11-28 Nippon Steel Corp Powder transportation compound pipe
JP2000098078A (en) * 1998-09-25 2000-04-07 Hitachi Ltd Reactor safety installation
JP2011007613A (en) * 2009-06-25 2011-01-13 Toshiba Corp Drain sump of nuclear reactor containment vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459333A (en) * 2019-07-04 2019-11-15 中国核电工程有限公司 A kind of double crucible reactor core fusant capturing device with internal cooling tube
CN110459333B (en) * 2019-07-04 2022-01-18 中国核电工程有限公司 Double-layer crucible reactor core melt trapping device with internal cooling pipe

Similar Documents

Publication Publication Date Title
JP4987681B2 (en) Primary containment vessel and leak detection floor
JP6367023B2 (en) Static containment cooling filter vent system and nuclear power plant
JP4612558B2 (en) Core catcher and reactor containment
JP6776241B2 (en) A system that cools and traps the molten core of a pressurized water reactor
GB2542442B (en) Composite construction of nuclear reactor pressure vessel and barrier shield
BR112017013046B1 (en) CONFINMENT AND COOLING SYSTEM FOR MOLTEN MATERIAL FROM NUCLEAR REACTOR CORE MODERATED BY WATER AND COOLED BY WATER
JP2010237070A (en) Leakage water collector, nuclear power plant and leakage monitoring method
JP2008249348A (en) Boiling water reactor and its emergency core cooling system
EP3067895B1 (en) Primary containment vessel
JP2014081219A (en) Nuclear power plant and static containment vessel cooling system
JP2011169764A (en) Apparatus for cooling molten core and nuclear reactor containment vessel
JP2011163829A (en) Corium cooling structure
JP2010271261A (en) Core melt holding device and containment vessel
JP2009047637A (en) Core melt holding device and containment vessel
JP4746911B2 (en) Method for constructing fast reactor and fast reactor facility
JP2017040588A (en) Nuclear reactor facility
JP2010038571A (en) Furnace-core melted product cooling device and furnace-core melted product cooling method
JP6204823B2 (en) Core catcher
JP2012021877A (en) Core molten material holding device and containment vessel
KR20150069421A (en) a system for reducing steam and hydrogen exploision at LOCA(loos-Of-Coolant Accident)
KR101404954B1 (en) Method Of Nuclear Corium Cooling Using Liquid Metal Layer, And Nuclear Corium Cooling System Using The Same
JP2016017819A (en) Nuclear power plant and method of modifying the same
JP2016197051A (en) Corium holding arrangement
KR101404955B1 (en) Method Of Nuclear Corium Cooling Using Liquid Metal in External Reactor Vessel Cooling System, And Nuclear Corium Cooling System Using The Same
WO2013150750A1 (en) Structure for protecting penetrating part of reactor pressure vessel, and reactor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171201

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190702