JPH0843576A - Reactor core catcher - Google Patents

Reactor core catcher

Info

Publication number
JPH0843576A
JPH0843576A JP6175455A JP17545594A JPH0843576A JP H0843576 A JPH0843576 A JP H0843576A JP 6175455 A JP6175455 A JP 6175455A JP 17545594 A JP17545594 A JP 17545594A JP H0843576 A JPH0843576 A JP H0843576A
Authority
JP
Japan
Prior art keywords
reactor
coolant
shell
core
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6175455A
Other languages
Japanese (ja)
Inventor
Noriyuki Shirakawa
典幸 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6175455A priority Critical patent/JPH0843576A/en
Publication of JPH0843576A publication Critical patent/JPH0843576A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To prevent a large scale steam explosion by constituting a plurality of cooling units arranged in assembly in the space below a reactor vessel, filling the sealed shell with coolant and inert gas and forming thin wall part in the shell. CONSTITUTION:A space 4 is provided below a rector vessel 2 in a reactor building 1 and a concave part 6 is formed in its concrete floor 5. In the concave part 6, a multitude of coolant units 7 are arranged in assembly. In the units 7, steel ball shells with diameter of 1 to 10cm sealed inside with coolant 9 and inert gas 10, for example, are filled and on the shell 8 surface, many thin wall parts 11 are formed. When am accident occurs and molten core 12 from the core 3 penetrates the reactor vessel 2 to fall on the units 7, it comes into contact with the upper unit 7, heats them and boils the coolant 9 to make it discharge out of the thin parts 11. The melt 12, repeating this process, slowly flows down due to flow resistance and avoids large scale contact to be cooled. By this, a large scale explosion can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高速増殖炉または軽水炉
に設置されている炉心の溶融時に発生する炉心溶融物を
冷却する原子炉コアキャッチャーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor core catcher for cooling a core melt generated when a core installed in a fast breeder reactor or a light water reactor is melted.

【0002】[0002]

【従来の技術】高速増殖炉や軽水炉には万一の苛酷事故
時の炉心溶融に備えて炉心溶融物を効率的に冷却し、そ
の熱エネルギーが機械的エネルギーに転換されないよう
に冷却するための原子炉コアキャッチャーが設置され
る。
2. Description of the Related Art In a fast breeder reactor or a light water reactor, a core melt is efficiently cooled in preparation for core melting in the event of a severe accident, and its thermal energy is cooled so as not to be converted into mechanical energy. Reactor core catcher is installed.

【0003】従来の原子炉コアキャッチャーは原理的に
は2種類の冷却形態に分類される。すなわち、(1)炉
容器を貫通した炉心溶融物を、冷却材のなかに導くも
の、(2)落下した炉心溶融物の上から冷却材を散布す
るものである。
Conventional reactor core catchers are basically classified into two types of cooling modes. That is, (1) the core melt that penetrates the reactor vessel is introduced into the coolant, and (2) the coolant is sprinkled on the dropped core melt.

【0004】[0004]

【発明が解決しようとする課題】上記(1)においては
水蒸気爆発の可能性を否定できないこと、および(2)
においては炉容器底部に堆積した炉心溶融物を充分に冷
却できることの立証が困難であったことが挙げられる。
In (1) above, the possibility of steam explosion cannot be denied, and (2)
It is difficult to prove that the core melt deposited on the bottom of the reactor vessel can be sufficiently cooled.

【0005】また、(1),(2)に共通する課題とし
て、軽水炉においては、炉心溶融物は70気圧程度の高圧
で、溶融貫通した炉容器から噴出する場合があり、この
運動エネルギーを吸収するためのショック・アブソーバ
ーが必要であったことが挙げられる。
Further, as a problem common to (1) and (2), in a light water reactor, the core melt may be ejected from a reactor vessel that has penetrated through the melt at a high pressure of about 70 atm, and this kinetic energy is absorbed. It was possible to mention that a shock absorber was needed to do this.

【0006】本発明は上記課題を解決するためになされ
たもので、高速増殖炉に対しても、軽水炉に対しても有
効で、高速増殖炉においては過度な燃料・冷却材相互作
用(FCI)を起こすことなく炉心溶融物を冷却でき、
軽水炉においては水蒸気爆発を起こすことなく炉心溶融
物の噴出エネルギーを吸収することができる原子炉コア
キャッチャーを提供することにある。
The present invention has been made to solve the above problems, and is effective for both fast breeder reactors and light water reactors, and excessive fuel-coolant interaction (FCI) in fast breeder reactors. Can cool the core melt without causing
It is an object of the present invention to provide a reactor core catcher that can absorb jet energy of core melt without causing steam explosion in a light water reactor.

【0007】[0007]

【課題を解決するための手段】本発明は原子炉の炉容器
または原子炉圧力容器の下方に設けられる空間に集合配
置された多数個の冷却ユニットからなり、前記冷却ユニ
ットは密閉殻体内に冷却材および不活性ガスが封入され
るとともに前記殻体に薄肉部が形成されてなることを特
徴とする。
The present invention comprises a large number of cooling units collectively arranged in a space provided below a reactor vessel or a reactor pressure vessel of a nuclear reactor, the cooling units being cooled in a closed shell body. It is characterized in that a material and an inert gas are enclosed and a thin portion is formed in the shell body.

【0008】[0008]

【作用】炉心溶融物が炉容器を貫通し、冷却ユニットに
落下すると、まず上部の冷却ユニットと接触し、殻体
(スチール製)を通して熱伝導により、殻体内部の冷却
材を沸騰させる。これにより生じる圧力で、薄肉部のい
づれかが破損し、冷却材が噴出する。
When the core melt penetrates the reactor vessel and falls into the cooling unit, it first comes into contact with the upper cooling unit and heats through the shell (steel) to boil the coolant inside the shell. The pressure generated by this breaks either of the thin-walled parts, and the coolant is ejected.

【0009】多数の冷却ユニットが同時に炉心溶融物と
接触したとしても、噴出により冷却される炉心溶融物の
領域は局所的であり、かつ炉心溶融物は冷却ユニットに
よる流動抵抗でゆっくりと下方へ侵入するため、大規模
な接触面積は生成されず、従って大規模な蒸気爆発も生
じない。
Even if a large number of cooling units come into contact with the core melt at the same time, the region of the core melt cooled by the jet is local, and the core melt slowly intrudes downward due to the flow resistance of the cooling unit. Therefore, a large contact area is not created and therefore a large steam explosion does not occur.

【0010】また、スチール製殻体は内部に空隙を有す
るため、炉容器貫通孔から噴出する炉心溶融物のショッ
クアブソーバーとしての役割も果たす。さらに、不活性
ガスは冷却ユニットが破裂または薄肉部が破損した場
合、ユニット内部の冷却材を効率的に噴出させる。炉心
溶融物を効率的に冷却するためには破裂する度に吹き飛
ばし、炉心溶融物が冷却されないうちに堆積することを
防止する。
Further, since the steel shell body has voids inside, it also serves as a shock absorber for the core melt ejected from the through hole of the reactor vessel. Further, the inert gas efficiently ejects the coolant inside the unit when the cooling unit bursts or the thin portion is damaged. In order to efficiently cool the core melt, the core melt is blown off every time it bursts to prevent the core melt from depositing before it is cooled.

【0011】[0011]

【実施例】図1から図3を参照しながら本発明に係る原
子炉コアキャッチャーの第1の実施例を説明する。な
お、図1は本実施例の原子炉コアキャッチャーを原子炉
建屋内に設置して炉心溶融物を受け入れている状態を示
し、図2は図1における原子炉コアキャッチャーを示
し、図3は図1における冷却ユニットを示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a nuclear reactor core catcher according to the present invention will be described with reference to FIGS. 1 shows a state where the reactor core catcher of this embodiment is installed in the reactor building to receive the core melt, FIG. 2 shows the reactor core catcher in FIG. 1, and FIG. 2 shows the cooling unit in FIG.

【0012】図1において、符号1は高速増殖炉の炉容
器2を設置した原子炉建屋の要部を部分的に示してい
る。炉容器2内には炉心3が設置されている。原子炉建
屋1内の炉容器2の下方には空間4が設けられており、
この空間4内で原子炉建屋1のコンクリート製床5に凹
部6が形成されている。
In FIG. 1, reference numeral 1 partially shows a main part of a reactor building in which a reactor vessel 2 of a fast breeder reactor is installed. A reactor core 3 is installed in the reactor vessel 2. A space 4 is provided below the reactor vessel 2 in the reactor building 1,
In this space 4, a recess 6 is formed in the concrete floor 5 of the reactor building 1.

【0013】この凹部6内に冷却材ユニット7が多数個
集合して配置されている。この凹部6内に多数個の冷却
材ユニット7が集合配置されている状態を拡大して図2
に示す。
A large number of coolant units 7 are arranged in the recess 6 in a collective manner. FIG. 2 is an enlarged view of a state in which a large number of coolant units 7 are collectively arranged in the recess 6.
Shown in

【0014】この冷却材ユニット7は図3に示すように
密閉された直径1cm〜10cmで例えばスチール製球状殻体
8内に冷却材9と不活性ガス10が封入され、球状殻体8
の表面に多数の半円状薄肉部11が形成されている。この
半円状薄肉部11は例えばゴルフボールの表面に形成され
ているディンプルのようなもので、数気圧の内外圧力差
で容易に破損する程度の厚さとなっている。
As shown in FIG. 3, the coolant unit 7 has a closed diameter of 1 cm to 10 cm, and a coolant 9 and an inert gas 10 are enclosed in a spherical shell 8 made of steel, for example, to form a spherical shell 8.
A large number of semicircular thin-walled portions 11 are formed on the surface of the. The semicircular thin-walled portion 11 is, for example, a dimple formed on the surface of a golf ball, and has a thickness such that it is easily damaged by an internal / external pressure difference of several atmospheres.

【0015】冷却材9としては、例えば高速増殖炉の場
合にはその冷却材として使用されている液体金属ナトリ
ウムで、不活性ガス10としては例えばアルゴンガスを使
用する。
The coolant 9 is, for example, liquid metal sodium used as a coolant in the case of a fast breeder reactor, and the inert gas 10 is, for example, argon gas.

【0016】しかして、上記第1の実施例において、万
一の苛酷事故が発生して図1に示したように炉心2が発
生して炉心溶融物12が炉容器2を貫通し、冷却ユニット
7上に落下すると、まず上部の冷却ユニット7と接触
し、球状殻体8を通して熱伝導により内部の冷却材9を
沸騰させる。これにより生じる圧力で、薄肉部11のいず
れかが破損して冷却材9が噴出する。
In the first embodiment, however, in the unlikely event of a severe accident, the core 2 is generated as shown in FIG. 1, the core melt 12 penetrates the reactor vessel 2, and the cooling unit When it drops onto the cooling medium 7, it first comes into contact with the cooling unit 7 on the upper side, and the coolant 9 therein is boiled by heat conduction through the spherical shell 8. Due to the pressure generated as a result, one of the thin portions 11 is damaged and the coolant 9 is ejected.

【0017】多数の冷却ユニット7が同時に炉心溶融物
12と接触したとしても、噴出により冷却される炉心溶融
物12の領域は局所的であり、かつ炉心溶融物12は球状殻
体8による流動抵抗でゆっくりと下方へ侵入する。その
ため、大規模な接触面積は生成されず、大規模な接触を
回避し、徐々に冷却される。
A large number of cooling units 7 can simultaneously melt the core melt.
Even if it comes into contact with 12, the region of the core melt 12 that is cooled by the jet is local, and the core melt 12 slowly intrudes downward due to the flow resistance of the spherical shell 8. Therefore, no large contact area is created, avoiding large contact and cooling gradually.

【0018】また、球状殻体8内には不活性ガス10を封
入する空間を有するため、炉容器2の貫通孔から噴出す
る炉心溶融物12のショック・アブソーバ(緩衝機構)と
しての役割を果たす効果がある。
Further, since the spherical shell 8 has a space for enclosing the inert gas 10, it serves as a shock absorber (buffer mechanism) for the core melt 12 ejected from the through hole of the reactor vessel 2. effective.

【0019】なお、上記第1の実施例では高速増殖炉に
適用した例で説明したが、軽水炉においても前記実施例
と同様に原子炉圧力容器の下方空間に適用できるが、軽
水炉の場合には冷却材9に液体金属ナトリウム以外の水
を使用することにより大規模な水蒸気爆発を防止するこ
とができる。
Although the first embodiment has been described as an example applied to a fast breeder reactor, it can be applied to the space below the reactor pressure vessel in a light water reactor as in the above embodiment, but in the case of a light water reactor. By using water other than liquid metal sodium as the coolant 9, a large-scale steam explosion can be prevented.

【0020】また、球状殻体8の材質はスチール以外に
冷却ユニットに接して高温となった場合、水、金属反応
が激しく起こらないような物質であるならば、その物質
は特に限定されるものではない。
Besides the steel, the material of the spherical shell 8 is not particularly limited as long as it is a substance that does not cause water or metal reaction violently when it reaches a high temperature in contact with a cooling unit. is not.

【0021】つぎに、図4から図6により本発明の第2
の実施例を説明する。この第2の実施例が第1の実施例
と異なる点は球状殻体8の代りに円筒状殻体13を使用し
たことにあり、他の部分は第1の実施例と同様であるた
め重複する部分の説明は省略し、その要部のみ説明す
る。
Next, the second aspect of the present invention will be described with reference to FIGS.
An example will be described. The second embodiment is different from the first embodiment in that a cylindrical shell 13 is used in place of the spherical shell 8 and other parts are the same as those in the first embodiment, and therefore duplicated. The description of the part to be performed is omitted, and only the main part will be described.

【0022】すなわち、図4に示したように円筒状殻体
13は両端が閉塞され、内部に冷却材9と不活性ガス10が
密封されており、外面に多数の半円状薄肉部11が形成さ
れている。
That is, as shown in FIG. 4, a cylindrical shell body
Both ends of 13 are closed, the coolant 9 and the inert gas 10 are sealed inside, and a large number of semicircular thin-walled parts 11 are formed on the outer surface.

【0023】図5(a)は上記円筒状殻体13を冷却材ユ
ニット7aとして凹部6内に均一に一方向に配列して多
数段積み上げて原子炉コアキャッチャーを構成した例を
示し、図5(b)は図5(a)において冷却材ユニット
7aを縦横に配列して均一に多数段積み上げて原子炉コ
アキャッチャーを構成した他の例を示している。
FIG. 5 (a) shows an example in which the above cylindrical shells 13 are uniformly arranged in one direction in the recess 6 as the coolant unit 7a and stacked in multiple stages to form a reactor core catcher. FIG. 5B shows another example in which the coolant units 7a are arranged vertically and horizontally in FIG.

【0024】しかして、この第2の実施例においては第
1の実施例と同様に高速増殖炉においては過度な燃料・
冷却材相互作用(FCI)を起こすことなく、炉心溶融
物を冷却でき、一方、軽水炉においては水蒸気爆発を起
こすことなく炉心溶融物を冷却でき、炉心溶融物の噴出
エネルギーを吸収できる効果がある。
However, in the second embodiment, as in the first embodiment, excessive fuel and
The core melt can be cooled without causing the coolant interaction (FCI), while the core melt can be cooled without causing steam explosion in the light water reactor, and the jet energy of the core melt can be absorbed.

【0025】[0025]

【発明の効果】本発明によれば、原子炉の苛酷事故時
に、炉心溶融物が炉容器または原子炉圧力容器を貫通し
ても、大規模な蒸気爆発を生じさせることなく、また、
炉容器または原子炉圧力容器の下方のコンクリートへの
衝撃を緩和でき、炉心溶融物を冷却できる。
According to the present invention, even if the core melt penetrates the reactor vessel or the reactor pressure vessel during a severe accident in the reactor, it does not cause a large-scale steam explosion, and
Impact on the concrete below the reactor vessel or reactor pressure vessel can be mitigated and the core melt can be cooled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る原子炉コアキャッチャーの第1の
実施例を説明するための原子炉建屋内の要部を概略的に
示す縦断面図。
FIG. 1 is a vertical sectional view schematically showing a main part of a reactor building for explaining a first embodiment of a reactor core catcher according to the present invention.

【図2】図1における原子炉コアキャッチャーを示す縦
断面図。
FIG. 2 is a vertical sectional view showing the reactor core catcher in FIG.

【図3】図1における冷却ユニットを拡大して示す縦断
面図。
FIG. 3 is an enlarged vertical sectional view showing the cooling unit in FIG.

【図4】本発明に係る原子炉コアキャッチャーの第2の
実施例における冷却ユニットを示す縦断面図。
FIG. 4 is a longitudinal sectional view showing a cooling unit in a second embodiment of the nuclear reactor core catcher according to the present invention.

【図5】(a)は図4における冷却ユニットを配列した
原子炉コアキャッチャーの1例を示す縦断面図、(b)
は(a)における他の例を示す縦断面図。
5A is a vertical cross-sectional view showing an example of a nuclear reactor core catcher in which the cooling units in FIG. 4 are arranged, FIG.
FIG. 8A is a vertical cross-sectional view showing another example in (a).

【符号の説明】[Explanation of symbols]

1…原子炉建屋、2…炉容器、3…炉心、4…空間、5
…コンクリート製床、6…凹部、7,7a…冷却材ユニ
ット、8…球状殻体、9…冷却材、10…不活性ガス、11
…薄肉部、12…炉心溶融物、13…円筒状殻体。
1 ... Reactor building, 2 ... Reactor vessel, 3 ... Reactor core, 4 ... Space, 5
... Concrete floor, 6 ... Recess, 7, 7a ... Coolant unit, 8 ... Spherical shell, 9 ... Coolant, 10 ... Inert gas, 11
… Thin-walled part, 12… Core melt, 13… Cylindrical shell.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原子炉の炉容器または原子炉圧力容器の
下方に設けられる空間に集合配置された多数個の冷却ユ
ニットからなり、前記冷却ユニットは密閉殻体内に冷却
材および不活性ガスが封入されるとともに前記殻体に薄
肉部が形成されてなることを特徴とする原子炉コアキャ
ッチャー。
1. A plurality of cooling units collectively arranged in a space provided below a reactor vessel or a reactor pressure vessel of a nuclear reactor, the cooling unit enclosing a coolant and an inert gas in a closed shell. A core catcher for a nuclear reactor, characterized in that a thin portion is formed in the shell body.
【請求項2】 前記密閉殻体はスチールにより球状また
は円柱状容器に形成されてなることを特徴とする請求項
1記載の原子炉コアキャッチャー。
2. The nuclear reactor core catcher according to claim 1, wherein the closed shell is formed of steel into a spherical or cylindrical container.
【請求項3】 前記殻体に形成する多数の薄肉部は前記
殻体内に充填した冷却材および不活性ガスの加熱時の圧
力によって破壊される厚さで、前記殻体の少なくとも一
面にディンプル状に形成されてなることを特徴とする請
求項1記載のは原子炉コアキャッチャー。
3. A large number of thin-walled portions formed on the shell have a thickness that is destroyed by the pressure of the coolant filled in the shell and the inert gas during heating, and are dimple-shaped on at least one surface of the shell. The reactor core catcher according to claim 1, wherein the core catcher is a reactor core catcher.
JP6175455A 1994-07-27 1994-07-27 Reactor core catcher Pending JPH0843576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6175455A JPH0843576A (en) 1994-07-27 1994-07-27 Reactor core catcher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6175455A JPH0843576A (en) 1994-07-27 1994-07-27 Reactor core catcher

Publications (1)

Publication Number Publication Date
JPH0843576A true JPH0843576A (en) 1996-02-16

Family

ID=15996377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6175455A Pending JPH0843576A (en) 1994-07-27 1994-07-27 Reactor core catcher

Country Status (1)

Country Link
JP (1) JPH0843576A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2342769A (en) * 1998-10-14 2000-04-19 Commissariat Energie Atomique Water nuclear reactor equipped with a receptacle containing deformable inner structures
JP2008241657A (en) * 2007-03-29 2008-10-09 Toshiba Corp Reactor container
WO2012027966A1 (en) * 2010-09-02 2012-03-08 中国核工业第五建设有限公司 Method for assembling and installing steel containment vessel in nuclear power station
US9025721B2 (en) 2010-03-29 2015-05-05 Kabushiki Kaisha Toshiba Holding device
JP2016001164A (en) * 2014-06-12 2016-01-07 一般財団法人電力中央研究所 Reactor core molten material dispersion structure
JP2016080434A (en) * 2014-10-14 2016-05-16 株式会社東芝 Corium retaining device and nuclear facility
JP2017040588A (en) * 2015-08-20 2017-02-23 株式会社東芝 Nuclear reactor facility
CN108538411A (en) * 2018-03-08 2018-09-14 中国核电工程有限公司 A kind of reactor core fusant capturing device that reactor pit is directly detained
CN108986931A (en) * 2018-06-01 2018-12-11 中国核电工程有限公司 It is a kind of inhibit reactor core fusant be detained during vapour explosion system
RU2700925C1 (en) * 2018-09-25 2019-09-24 Акционерное Общество "Атомэнергопроект" Nuclear reactor core melt localization device
WO2019190367A1 (en) * 2018-03-28 2019-10-03 Bechta Sevostian A safety system of a nuclear reactor for stabilization of ex-vessel core melt during a severe accident
JP2020038186A (en) * 2018-09-03 2020-03-12 コリア アトミック エナジー リサーチ インスティテュートKorea Atomic Energy Research Institute Cooling apparatus for molten core material
JP2022553404A (en) * 2019-10-24 2022-12-22 ステート・アトミック・エナジー・コーポレーション・ロスアトム・オン・ビハーフ・オブ・ザ・ロシアン・フェデレーション Methods for Improving Nuclear Power Plant Explosion Safety
WO2024117689A1 (en) * 2022-11-29 2024-06-06 아주대학교산학협력단 Nuclear reactor corium cooling apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2342769A (en) * 1998-10-14 2000-04-19 Commissariat Energie Atomique Water nuclear reactor equipped with a receptacle containing deformable inner structures
GB2342769B (en) * 1998-10-14 2004-03-03 Commissariat Energie Atomique Water nuclear reactor equipped with a receptacle containing deformable inner structures
DE19949583B4 (en) * 1998-10-14 2008-10-02 Commissariat à l'Energie Atomique Water nuclear reactor with a deformable internal structures containing catch
JP2008241657A (en) * 2007-03-29 2008-10-09 Toshiba Corp Reactor container
US9025721B2 (en) 2010-03-29 2015-05-05 Kabushiki Kaisha Toshiba Holding device
WO2012027966A1 (en) * 2010-09-02 2012-03-08 中国核工业第五建设有限公司 Method for assembling and installing steel containment vessel in nuclear power station
JP2016001164A (en) * 2014-06-12 2016-01-07 一般財団法人電力中央研究所 Reactor core molten material dispersion structure
JP2016080434A (en) * 2014-10-14 2016-05-16 株式会社東芝 Corium retaining device and nuclear facility
JP2017040588A (en) * 2015-08-20 2017-02-23 株式会社東芝 Nuclear reactor facility
CN108538411A (en) * 2018-03-08 2018-09-14 中国核电工程有限公司 A kind of reactor core fusant capturing device that reactor pit is directly detained
CN108538411B (en) * 2018-03-08 2021-06-25 中国核电工程有限公司 Reactor core melt trapping device for direct pit retention
WO2019190367A1 (en) * 2018-03-28 2019-10-03 Bechta Sevostian A safety system of a nuclear reactor for stabilization of ex-vessel core melt during a severe accident
CN108986931A (en) * 2018-06-01 2018-12-11 中国核电工程有限公司 It is a kind of inhibit reactor core fusant be detained during vapour explosion system
CN108986931B (en) * 2018-06-01 2021-08-17 中国核电工程有限公司 System for inhibiting steam explosion in reactor core melt retention process
JP2020038186A (en) * 2018-09-03 2020-03-12 コリア アトミック エナジー リサーチ インスティテュートKorea Atomic Energy Research Institute Cooling apparatus for molten core material
US10991469B2 (en) 2018-09-03 2021-04-27 Korea Atomic Energy Research Institute Cooling apparatus for molten core material
RU2700925C1 (en) * 2018-09-25 2019-09-24 Акционерное Общество "Атомэнергопроект" Nuclear reactor core melt localization device
JP2022553404A (en) * 2019-10-24 2022-12-22 ステート・アトミック・エナジー・コーポレーション・ロスアトム・オン・ビハーフ・オブ・ザ・ロシアン・フェデレーション Methods for Improving Nuclear Power Plant Explosion Safety
WO2024117689A1 (en) * 2022-11-29 2024-06-06 아주대학교산학협력단 Nuclear reactor corium cooling apparatus

Similar Documents

Publication Publication Date Title
JPH0843576A (en) Reactor core catcher
US5263066A (en) Nuclear reactor equipped with a core catcher
US5867548A (en) Device and method for collecting and cooling reactor-meltdown products
GB1519703A (en) Apparatus for controlling molten core debris
JPS6039998B2 (en) Core molten material capture device
JP7337860B2 (en) Melt confinement device
CN103050155B (en) Accident mitigation device and manufacture method, nuclear plant pressure vessels, accident mitigation method
US4464333A (en) Molten core retention and solidification apparatus
JP6630746B2 (en) Reactor passive protection system
JP4070178B2 (en) Melt capture and cooling system
US5186888A (en) Device for recovering and cooling the core of a nuclear reactor in meltdown following
US4003785A (en) Reactor core melt containment receptacle
BR112020026850A2 (en) SYSTEM FOR CONFINING AND COOLING MELTING FROM THE CORE OF A WATER MODERATED NUCLEAR REACTOR
GB2342769A (en) Water nuclear reactor equipped with a receptacle containing deformable inner structures
JP3263402B2 (en) Clearance structure for reactor vessel
JPH06201879A (en) Melting reactor-core holding mechanism for light water reactor
CN103165198A (en) Large-scale passive pressurized water reactor nuclear power plant reactor core catcher with melt expansion room
JP2017187370A (en) Nuclear reactor containment and molten reactor core receiving device
JP4786007B2 (en) Water-based reactor with built-in receptacle
JP2010271261A (en) Core melt holding device and containment vessel
JP2012032276A (en) Corium cooling device and storage vessel
JPH07128476A (en) Reactor safety facilities
KR102626473B1 (en) Reactor core melt containment and cooling system
WO2019190367A1 (en) A safety system of a nuclear reactor for stabilization of ex-vessel core melt during a severe accident
US6347129B1 (en) Container for the collection and spreading of core melt and a nuclear power plant with such a container