JP5756414B2 - Heat transfer tube or header tube of open rack type vaporizer - Google Patents

Heat transfer tube or header tube of open rack type vaporizer Download PDF

Info

Publication number
JP5756414B2
JP5756414B2 JP2012008430A JP2012008430A JP5756414B2 JP 5756414 B2 JP5756414 B2 JP 5756414B2 JP 2012008430 A JP2012008430 A JP 2012008430A JP 2012008430 A JP2012008430 A JP 2012008430A JP 5756414 B2 JP5756414 B2 JP 5756414B2
Authority
JP
Japan
Prior art keywords
sacrificial anode
anode layer
base material
heat transfer
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012008430A
Other languages
Japanese (ja)
Other versions
JP2013148253A (en
Inventor
漆原 亘
亘 漆原
潤一郎 衣笠
潤一郎 衣笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012008430A priority Critical patent/JP5756414B2/en
Publication of JP2013148253A publication Critical patent/JP2013148253A/en
Application granted granted Critical
Publication of JP5756414B2 publication Critical patent/JP5756414B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

本発明は、オープンラック式気化器の熱交換パネルを構成する伝熱管またはヘッダー管に関するものである。   The present invention relates to a heat transfer tube or a header tube constituting a heat exchange panel of an open rack type vaporizer.

液化天然ガス(以下、適宜LNGという)は、通常、低温高圧の液体であって、燃料として使用される前に気化される。そして、大量のLNGを効率的に気化させるために、海水の熱を利用したオープンラック式気化器(以下、適宜ORVという)が用いられる。   Liquefied natural gas (hereinafter referred to as LNG as appropriate) is usually a low-temperature and high-pressure liquid that is vaporized before being used as fuel. And in order to vaporize a lot of LNG efficiently, the open rack type vaporizer (henceforth ORV suitably) using the heat of seawater is used.

図1(a)、(b)に示すように、ORV10は、多数配列された伝熱管2と、これらの伝熱管2を上下端で並列に接合する下部ヘッダー管3および上部ヘッダー管(以下、適宜ヘッダー管3、4という)とからなる熱交換パネル1を複数配列して備える。また、ORV10は、熱交換パネル1同士の間の上部に配されて各伝熱管2の外表面に供給される海水を貯めるトラフ(堰)7と、熱交換パネル1のそれぞれのヘッダー管3、4を並列に接合する下部マニホールド5および上部マニホールド6をさらに備える。LNGは、下部マニホールド5から下部ヘッダー管3を介して伝熱管2内に下端から導入される。一方、図示しない供給手段によりトラフ7に貯められた海水は、トラフ7の側縁部から溢流して伝熱管2の外表面を濡らしながら垂下する。伝熱管2内に導入されたLNGは、当該伝熱管2の外部を流通する海水により加熱されて(熱交換して)気化し、伝熱管2内を上昇する。この気化したLNGは、伝熱管2の上端から上部ヘッダー管4を介して上部マニホールド6へ導出される。すなわち、ORV10は熱交換器の一種であり、海水との熱交換によってLNGを加熱して気化するものである。   As shown in FIGS. 1 (a) and 1 (b), the ORV 10 includes a plurality of arranged heat transfer tubes 2, a lower header tube 3 and an upper header tube (hereinafter referred to as “joint”) that join these heat transfer tubes 2 in parallel at the upper and lower ends. A plurality of heat exchange panels 1 including appropriate header tubes 3 and 4 are provided. The ORV 10 is disposed in the upper part between the heat exchange panels 1 and has a trough (weir) 7 for storing seawater supplied to the outer surface of each heat transfer tube 2, and each header tube 3 of the heat exchange panel 1, 4 further includes a lower manifold 5 and an upper manifold 6 that join the four in parallel. LNG is introduced from the lower manifold 5 through the lower header pipe 3 into the heat transfer pipe 2 from the lower end. On the other hand, seawater stored in the trough 7 by a supply means (not shown) overflows from the side edge of the trough 7 and hangs down while wetting the outer surface of the heat transfer tube 2. The LNG introduced into the heat transfer tube 2 is heated (sealed) by seawater flowing outside the heat transfer tube 2 and vaporizes, and rises in the heat transfer tube 2. The vaporized LNG is led from the upper end of the heat transfer tube 2 to the upper manifold 6 through the upper header tube 4. That is, ORV10 is a kind of heat exchanger, and heats and vaporizes LNG by heat exchange with seawater.

熱交換パネル1(伝熱管2またはヘッダー管3、4)には、熱伝導性や加工性等の観点から、通常、3000系、5000系、6000系等のアルミニウム合金が使用されている。しかしながら、熱交換パネル1は、その外表面が海水に曝されるため、腐食し易いアルミニウム合金材では、一旦、外表面の侵食が始まるとその部分が集中的に侵されて孔食に至る虞がある。そのため、熱交換パネル1を構成するアルミニウム合金材には、その表面に防食処理を施す必要がある。特に、熱交換パネル1の下部では、内部の極低温(約−160℃)のLNGにより外側の海水が約0℃まで冷却されているため溶存酸素濃度が高く、より厳しい腐食環境となっている。また、熱交換パネル1の外表面には、上方から大量に流れ落ちる海水が衝突する。熱交換パネル1の下部(伝熱管2における下部ヘッダー管3近傍)では、海水の流速が4m/s以上と高速となるため、海水によって外表面が損耗する。さらに、海水による腐食と海水の流れによるエロージョン(侵食)との相乗効果によって流れ誘起腐食(FAC:Flow Accelerated Corrosion)が発生して、防食処理層の損耗を促進する。したがって、熱交換パネル1への防食処理には、一般的な腐食に対応する(耐食性)だけでなく、流れ誘起腐食への耐性(以下、耐FAC性)も要求され、さらに、これらの効果がORV10の長時間連続運転にも対応可能となるように、耐久性も要求されている。   For the heat exchange panel 1 (heat transfer tube 2 or header tubes 3 and 4), aluminum alloys such as 3000 series, 5000 series, and 6000 series are usually used from the viewpoint of thermal conductivity, workability, and the like. However, since the outer surface of the heat exchange panel 1 is exposed to seawater, in the case of an aluminum alloy material that is easily corroded, once the outer surface starts to be eroded, the portion may be eroded intensively, resulting in pitting corrosion. There is. Therefore, the surface of the aluminum alloy material constituting the heat exchange panel 1 needs to be subjected to anticorrosion treatment. In particular, at the lower part of the heat exchange panel 1, the outer seawater is cooled to about 0 ° C. by LNG at an extremely low temperature (about −160 ° C.), so the dissolved oxygen concentration is high and the environment is more severe. . Further, seawater flowing in a large amount from above collides with the outer surface of the heat exchange panel 1. In the lower part of the heat exchange panel 1 (in the vicinity of the lower header pipe 3 in the heat transfer pipe 2), the flow rate of the seawater is as high as 4 m / s or more, so the outer surface is worn by the seawater. Furthermore, flow-induced corrosion (FAC: Flow Accelerated Corrosion) occurs due to a synergistic effect of corrosion by seawater and erosion (erosion) by the flow of seawater, thereby promoting wear of the anticorrosion treatment layer. Therefore, the anti-corrosion treatment for the heat exchange panel 1 requires not only general corrosion (corrosion resistance) but also resistance to flow-induced corrosion (hereinafter referred to as FAC resistance). Durability is also required so that the ORV10 can be operated continuously for a long time.

そこで、基材を海水に接触させないように、アルミニウム合金材からなる基材の外表面を基材より電位の卑なAl−Zn合金等からなる犠牲陽極層で被覆した熱交換パネルが開発されている。この熱交換パネル1では、犠牲陽極層のZnを優先的にイオンとして海水中に溶解させることで、基材の腐食を防止している。また、基材に犠牲陽極層を被覆する方法としては、基材に犠牲陽極層の材料(Al−Zn合金等)を溶射により被覆する方法が作業性、複雑形状への施工性から実施される。ただし、溶射により被覆した膜(溶射皮膜)は、その形成方法から、膜内部にある程度の気孔を含む構造であり、気孔を介して基材まで海水が浸入する虞がある。また、溶射皮膜は、基材への密着性がクラッド材に比べて弱く、海水の流れにより剥離する虞があり、また冷却による氷結や温度差による応力で剥離や割れを生じる虞もある。さらに、溶射皮膜は、犠牲陽極効果を長寿命化するべく厚膜化すると、いっそう剥離し易くなる上、1回の溶射(パス)で形成できる溶射皮膜の厚さに限界があるために、溶射パス数が増えてコストが増大する。   Therefore, a heat exchange panel has been developed in which the outer surface of a base material made of an aluminum alloy material is covered with a sacrificial anode layer made of a base Al-Zn alloy or the like having a lower potential than the base material so that the base material is not brought into contact with seawater. Yes. In this heat exchange panel 1, corrosion of the base material is prevented by preferentially dissolving Zn in the sacrificial anode layer as ions in seawater. In addition, as a method for coating the base material with the sacrificial anode layer, a method for coating the base material with a material for the sacrificial anode layer (Al-Zn alloy or the like) by thermal spraying is carried out from the viewpoint of workability and workability to complex shapes. . However, a film (sprayed film) coated by thermal spraying has a structure including a certain amount of pores inside the film because of its formation method, and there is a possibility that seawater may enter the base material through the pores. In addition, the thermal spray coating is weaker in adhesion to the base material than the clad material, and may be peeled off due to the flow of seawater, and may be peeled off or cracked due to freezing caused by cooling or stress due to a temperature difference. Furthermore, when the thermal spray coating is made thicker to increase the life of the sacrificial anode effect, the thermal spray coating becomes easier to peel off, and there is a limit to the thickness of the thermal spray coating that can be formed by one thermal spray (pass). The number of passes increases and costs increase.

その対策として、特許文献1には、基材界面の腐食に伴う溶射皮膜の剥離を防止したORV用のアルミニウム合金材が開示されている。そして、特許文献1では、溶射後に機械加工を施して溶射皮膜の表面から所定深さの領域における気孔面積率を10%以下に低減することにより、基材への海水浸入を防止し、基材の腐食を抑制している。また、特許文献2、3には、溶射前に基材表面をブラスト処理で所定の表面粗さに粗面化することで溶射皮膜の密着性を高くしたORV用の伝熱管が開示されている。   As a countermeasure, Patent Document 1 discloses an aluminum alloy material for ORV that prevents the sprayed coating from being peeled off due to corrosion at the interface of the base material. And in patent document 1, by performing machining after thermal spraying, the pore area ratio in the region of a predetermined depth from the surface of the thermal spray coating is reduced to 10% or less, thereby preventing seawater from entering the base material. Suppresses corrosion. Patent Documents 2 and 3 disclose ORV heat transfer tubes in which the adhesion of the thermal spray coating is increased by roughening the surface of the substrate to a predetermined surface roughness by blasting before thermal spraying. .

特開2006−183087号公報JP 2006-183087 A 特開2005−265393号公報JP 2005-265393 A 特開2008−111638号公報JP 2008-111638 A

一般的な知見では、密着性は界面の結合状態に概ね依存し、さらに腐食環境にある場合は、腐食により界面の結合状態が劣化する。そのため、特許文献1、2に開示されているように、溶射法においては、腐食を促進する膜中の気孔を少なくするように、溶射皮膜が形成されている。また、溶射法においては、前処理により、界面すなわち基材の表面粗さを調整し、界面に隙間を形成しないようにしている。しかしながら、特許文献1〜3に開示された従来技術では、耐食性や耐剥離性は向上するが、ORV用としてそれぞれ改良の余地がある。すなわち、本発明者らは、ORVの運転環境下では、単純な腐食よりも、冷却による氷結や温度差による応力の影響が大きいことに知見した。具体的には、特許文献1、2の構成では、腐食に加えて、氷結や温度差による応力を受けることにより初期段階で溶射皮膜に微小割れが生じ、微小割れの進行と共に基材と溶射皮膜との界面割れ(局所的な剥離)が生じる。その結果、特許文献1、2の構成では、基材と溶射皮膜との界面に非密着領域が生じ、そして、非密着領域が広がると、溶射皮膜が膨れ、さらに微小割れの進行と連動して溶射皮膜の脱落に至る。   According to general knowledge, the adhesion generally depends on the bonding state of the interface, and further, in a corrosive environment, the bonding state of the interface deteriorates due to corrosion. Therefore, as disclosed in Patent Documents 1 and 2, in the thermal spraying method, a thermal spray coating is formed so as to reduce the number of pores in the film that promote corrosion. In the thermal spraying method, the interface, that is, the surface roughness of the base material is adjusted by pretreatment so that no gap is formed at the interface. However, in the prior art disclosed in Patent Documents 1 to 3, the corrosion resistance and peel resistance are improved, but there is room for improvement for ORV. That is, the present inventors have found that under the ORV operating environment, the influence of freezing due to cooling or stress due to a temperature difference is greater than simple corrosion. Specifically, in the configurations of Patent Documents 1 and 2, micro-cracks are generated in the initial stage by receiving stress due to icing or temperature difference in addition to corrosion, and the base material and the thermal-spray film as the micro-cracks progress. Interfacial cracking (local peeling) occurs. As a result, in the configurations of Patent Documents 1 and 2, a non-adhesion region occurs at the interface between the base material and the thermal spray coating, and when the non-adhesion region spreads, the thermal spray coating swells and further interlocks with the progress of microcracks. The sprayed coating will fall off.

本発明は、前記問題点に鑑みてなされたものであり、特にORVの運転環境下でも、犠牲陽極層の耐割れ性や耐剥離性に優れたORVの伝熱管またはヘッダー管を提供することを課題とする。   The present invention has been made in view of the above problems, and provides an ORV heat transfer tube or header tube excellent in crack resistance and peeling resistance of a sacrificial anode layer, particularly even in an ORV operating environment. Let it be an issue.

本発明者らは鋭意研究した結果、溶射条件の調整にて犠牲陽極層の溶射皮膜構造を制御することで、ORVの運転環境下でも、割れや剥離が生じ難く、進展しにくい犠牲陽極層が得られることを見出した。   As a result of diligent research, the present inventors have determined that a sacrificial anode layer that hardly cracks or peels off and does not easily progress even under an ORV operating environment by controlling the sprayed coating structure of the sacrificial anode layer by adjusting the spraying conditions. It was found that it can be obtained.

すなわち、本発明に係るオープンラック式気化器の伝熱管またはヘッダー管は、外表面に供給される海水との熱交換によって内部に流通する液化天然ガスを気化させるオープンラック式気化器の熱交換パネルを構成するものであって、アルミニウム合金からなる基材と、この基材の外表面の少なくとも一部に被覆されて当該基材に対して犠牲陽極性を有するアルミニウム合金からなる厚さ100μm以上の犠牲陽極層と、を備え、前記犠牲陽極層は、溶射によって形成される複数の溶射皮膜が積層した積層構造を有し、前記犠牲陽極層は、その厚さ方向の断面において、前記基材との界面から少なくとも100μmの深さまでの領域での、複数の前記溶射皮膜の平均膜厚が3〜8μmの範囲で、かつ、前記溶射皮膜の積層構造に挟まれる状態で形成される粒形状の組織のうち、下式(1)で算出される前記粒形状の組織の円形度が0.5以上の擬似円形状で、平均径が20μm以上となる粗大粒の単位面積当たりの個数密度が2.5個/mm未満であることを特徴とする。
円形度=4π×面積/(周長)・・・(1)
また、前記犠牲陽極層は、前記基材との界面から少なくとも100μmの深さまでの領域において、その厚さ方向の断面における気孔の気孔面積率が1.0〜5.0%であることが好ましい。
That is, the heat transfer tube or header tube of the open rack type vaporizer according to the present invention is a heat exchange panel of an open rack type vaporizer that vaporizes liquefied natural gas flowing inside by heat exchange with seawater supplied to the outer surface. A base material made of an aluminum alloy and a thickness of 100 μm or more made of an aluminum alloy that is coated on at least a part of the outer surface of the base material and has a sacrificial anode property with respect to the base material A sacrificial anode layer, wherein the sacrificial anode layer has a laminated structure in which a plurality of sprayed coatings formed by thermal spraying are laminated, and the sacrificial anode layer has a cross section in the thickness direction and the base material. In a state where the average film thickness of the plurality of sprayed coatings is in the range of 3 to 8 μm in the region from the interface to the depth of at least 100 μm and is sandwiched between the laminated structures of the sprayed coatings. Among the grain-shaped structures to be formed, the unit area of coarse grains having an average diameter of 20 μm or more in a pseudo-circular shape with a circularity of 0.5 or more of the grain-shaped structure calculated by the following formula (1) The number density per unit is less than 2.5 pieces / mm 2 .
Circularity = 4π × area / (peripheral length) 2 (1)
The sacrificial anode layer preferably has a pore area ratio of 1.0 to 5.0% in the cross section in the thickness direction in a region from the interface with the base material to a depth of at least 100 μm. .

このように、犠牲陽極層の溶射皮膜構造を制御することで、ORVの運転環境下でも、冷却による氷結や温度差による応力での割れが抑制され、溶射皮膜の深さ方向への腐食が防止できるため、最下層の溶射皮膜に界面割れが生じず、最下層の溶射皮膜と基材との界面に非密着領域が生じない。その結果、犠牲陽極層に割れや剥離が生じ難くなる。また、気孔面積率を所定範囲に限定することで、複数の気孔を介して、海水が基材の表面まで到達する虞がなくなるため、基材がいっそう腐食し難くなり、犠牲陽極層に割れや剥離がいっそう生じ難くなる。   In this way, by controlling the sprayed coating structure of the sacrificial anode layer, icing due to cooling and cracking due to stress due to temperature differences are suppressed even in the ORV operating environment, preventing corrosion of the sprayed coating in the depth direction. Therefore, no interfacial cracking occurs in the lowermost sprayed coating, and no non-adherent region occurs at the interface between the lowermost sprayed coating and the substrate. As a result, the sacrificial anode layer is hardly cracked or peeled off. Further, by limiting the pore area ratio to a predetermined range, there is no possibility that seawater reaches the surface of the base material through a plurality of pores, so that the base material is more difficult to corrode, and the sacrificial anode layer is cracked. Peeling is less likely to occur.

本発明に係るORVの伝熱管またはヘッダー管によれば、ORVの運転環境下でも、犠牲陽極層の耐割れ性や耐剥離性が優れる。その結果、ORVの耐食性および耐FAC性を長期にわたって維持することができる。   According to the ORV heat transfer tube or header tube of the present invention, the sacrificial anode layer is excellent in crack resistance and peel resistance even under the ORV operating environment. As a result, the corrosion resistance and FAC resistance of the ORV can be maintained over a long period of time.

オープンラック式気化器の一例を説明する部分概略図であり、(a)は正面図、(b)は側面断面図である。It is the partial schematic explaining an example of an open rack type vaporizer, (a) is a front view, (b) is side sectional drawing. 本発明に係るオープンラック式気化器の伝熱管またはヘッダー管の厚さ方向の断面を示す模式図である。It is a schematic diagram which shows the cross section of the thickness direction of the heat exchanger tube or header pipe | tube of the open rack type vaporizer | carburetor which concerns on this invention.

以下、本発明に係るオープンラック式気化器の伝熱管またはヘッダー管を実施するための形態について、図面を参照して説明する。   Hereinafter, the form for implementing the heat exchanger tube or header tube of the open rack type vaporizer | carburetor which concerns on this invention is demonstrated with reference to drawings.

図1(a)、(b)に示すように、本発明に係る伝熱管2またはヘッダー管(下部ヘッダー管、上部ヘッダー管)3、4は、オープンラック式気化器(ORV)10の熱交換パネル1を構成するものである。熱交換パネル1(伝熱管2またはヘッダー管3、4)の外側には海水が流通し、内部には液化天然ガス(LNG)が流通する。ORV10のその他の構造および機能は、一例として前記説明した内容と同様であるため省略する。   As shown in FIGS. 1 (a) and 1 (b), the heat transfer tube 2 or header tube (lower header tube, upper header tube) 3, 4 according to the present invention is used for heat exchange of an open rack type vaporizer (ORV) 10. The panel 1 is constituted. Seawater circulates outside the heat exchange panel 1 (heat transfer tube 2 or header tubes 3 and 4), and liquefied natural gas (LNG) circulates inside. The other structures and functions of the ORV 10 are the same as those described above as an example, and are therefore omitted.

図2に示すように、伝熱管2またはヘッダー管3、4は、管形状に成形された基材21と、この基材21の外表面の少なくとも一部に被覆された犠牲陽極層22とを備える。そして、犠牲陽極層22は、溶射によって形成される複数の溶射皮膜22aが基材21の上に積層した積層構造を有し、後記する要件を満足する。ここで、基材21の少なくとも一部とは、ORV10(熱交換パネル1)において、特にLNGにより低温となりかつ海水の流速が高速となる下部であって、例えば、下部ヘッダー管3の全体、または、その近傍である伝熱管2の下部である。基材21のこの領域以外に被覆した犠牲陽極層については、後記する犠牲陽極層22の要件を必ずしも満足しなくてもよい。そして、犠牲陽極層22を被覆する領域において、本発明に係る伝熱管2とヘッダー管3、4とは積層構造が同じである。以下に、伝熱管2またはヘッダー管3、4を構成する要素について説明する。   As shown in FIG. 2, the heat transfer tube 2 or the header tubes 3 and 4 include a base material 21 formed in a tube shape and a sacrificial anode layer 22 covered on at least a part of the outer surface of the base material 21. Prepare. The sacrificial anode layer 22 has a laminated structure in which a plurality of sprayed coatings 22a formed by thermal spraying are laminated on the base material 21, and satisfies the requirements described later. Here, at least a part of the base material 21 is a lower part in the ORV 10 (heat exchange panel 1), in particular, a lower part where the temperature becomes low due to LNG and the flow rate of seawater becomes high, for example, the entire lower header pipe 3 or The lower part of the heat transfer tube 2 in the vicinity thereof. The sacrificial anode layer coated outside this region of the substrate 21 may not necessarily satisfy the requirements of the sacrificial anode layer 22 described later. In the region covering the sacrificial anode layer 22, the heat transfer tube 2 and the header tubes 3 and 4 according to the present invention have the same laminated structure. Below, the element which comprises the heat exchanger tube 2 or the header tubes 3 and 4 is demonstrated.

〔基材〕
基材21は、特に限定されないが、通常、JIS規定の3000系、5000系、または6000系アルミニウム合金が用いられ、押出成形等の公知の方法で伝熱管2またはヘッダー管3、4の形状に成形されたものである。基材21の厚さは、特に限定されないが、伝熱管2(ヘッダー管3、4)の管径や長さ等に応じて必要な強度が得られる厚さに成形される。基材21は、伝熱管2またはヘッダー管3、4の形状にそれぞれ成形された後、溶接されて熱交換パネル1の形状に組み立てられる。なお、本発明に係る伝熱管2またはヘッダー管3、4は、それぞれ円筒形状としているが、これに限定されるものではない。
〔Base material〕
The base material 21 is not particularly limited, but usually a JIS standard 3000 series, 5000 series, or 6000 series aluminum alloy is used, and the shape of the heat transfer pipe 2 or the header pipes 3 and 4 is determined by a known method such as extrusion molding. It is molded. Although the thickness of the base material 21 is not specifically limited, it is shape | molded by the thickness from which required intensity | strength is obtained according to the pipe diameter, length, etc. of the heat exchanger tube 2 (header tubes 3 and 4). The base material 21 is formed into the shape of the heat transfer tube 2 or the header tubes 3, 4, and then welded and assembled into the shape of the heat exchange panel 1. In addition, although the heat exchanger tube 2 or the header tubes 3 and 4 which concern on this invention are each made into the cylindrical shape, it is not limited to this.

また、後記の犠牲陽極層22の形成(溶射)前に、犠牲陽極層22との界面となる基材21の外表面をブラスト処理等により粗面化することが好ましい。基材21の表面が粗面化されることで、溶射皮膜である犠牲陽極層22が剥離し難くなる。基材21の表面性状は特に限定しないが、算術平均粗さRa:15〜50μm、最大高さ粗さRy:150〜500μmが好ましい。   In addition, before the formation (spraying) of the sacrificial anode layer 22 described later, it is preferable to roughen the outer surface of the base material 21 serving as an interface with the sacrificial anode layer 22 by blasting or the like. When the surface of the base material 21 is roughened, the sacrificial anode layer 22 that is a sprayed coating is difficult to peel off. Although the surface property of the base material 21 is not specifically limited, Arithmetic mean roughness Ra: 15-50 micrometers and maximum height roughness Ry: 150-500 micrometers are preferable.

〔犠牲陽極層〕
犠牲陽極層22は、溶射材料として好適であり、かつ基材21を形成するアルミニウム合金より海水中での電位が卑となる(イオン化傾向が大きい)アルミニウム合金からなる。このようなアルミニウム合金として、Al−Zn合金、Al−Mg合金、Al−Zn−Mg合金等が挙げられる。すなわち、Zn、Mg等を単独または二種以上をAlに添加して、基材21を形成するアルミニウム合金の電位と比較して卑となる電位とすればよい。このようなアルミニウム合金で犠牲陽極層22を構成することにより、犠牲陽極層22が、腐食環境(海水中)で積極的にアノード反応(M→Mn++ne、M:Alおよび添加元素、n:価数)を起こすことで、いわゆる犠牲陽極性を有し、基材21の腐食を防止することができる。犠牲陽極層22は、前記成分のアルミニウム合金を、例えば線状の溶射材料(溶線材料)として、電気を熱源とするアーク溶射法やプラズマ溶射法、ガスを熱源とするフレーム溶射法等の公知の溶射方法により基材21の表面に溶射されて形成される。そして、犠牲陽極層22は、溶射によって形成される複数の溶射皮膜22aが積層した積層構造を有する。
[Sacrificial anode layer]
The sacrificial anode layer 22 is made of an aluminum alloy that is suitable as a thermal spray material and has a lower potential (higher ionization tendency) in seawater than the aluminum alloy that forms the substrate 21. Examples of such an aluminum alloy include an Al—Zn alloy, an Al—Mg alloy, and an Al—Zn—Mg alloy. That is, Zn, Mg, or the like may be added alone or in combination of two or more to Al so as to have a base potential as compared with the potential of the aluminum alloy forming the substrate 21. By constituting the sacrificial anode layer 22 with such an aluminum alloy, the sacrificial anode layer 22 is positively subjected to an anode reaction (M → M n + + ne , M: Al and an additive element, n) in a corrosive environment (in seawater). : Valence), so-called sacrificial anodic properties can be obtained, and corrosion of the substrate 21 can be prevented. The sacrificial anode layer 22 is made of an aluminum alloy having the above components, for example, a linear spraying material (welding material). It is formed by thermal spraying on the surface of the substrate 21 by a thermal spraying method. The sacrificial anode layer 22 has a laminated structure in which a plurality of thermal spray coatings 22a formed by thermal spraying are laminated.

(犠牲陽極層の厚さ:100μm以上)
長期にわたる犠牲防食作用を付与するために、犠牲陽極層22の厚さは100μm以上とし、250μm以上が好ましい。一方、犠牲陽極層22を厚くすると、熱交換効率が低下し、また剥離し易くなるため、厚さは1000μm以下が好ましく、600μm以下がより好ましい。
(Sacrificial anode layer thickness: 100 μm or more)
In order to provide a sacrificial anticorrosive action for a long time, the thickness of the sacrificial anode layer 22 is set to 100 μm or more, and preferably 250 μm or more. On the other hand, if the sacrificial anode layer 22 is made thicker, the heat exchange efficiency is lowered and it becomes easy to peel off. Therefore, the thickness is preferably 1000 μm or less, and more preferably 600 μm or less.

犠牲陽極層22は、基材21への密着性に特に影響の強い、基材21との界面から少なくとも100μmの深さまでの領域(深さ領域)において、以下の溶射皮膜構造を有する。なお、犠牲陽極層22の厚さが100μmを超える場合には、犠牲陽極層22の全領域において、以下の溶射皮膜構造を有することが好ましい。   The sacrificial anode layer 22 has the following thermal spray coating structure in a region (depth region) from the interface with the substrate 21 to a depth of at least 100 μm, which has a particularly strong influence on the adhesion to the substrate 21. When the thickness of the sacrificial anode layer 22 exceeds 100 μm, the entire region of the sacrificial anode layer 22 preferably has the following thermal spray coating structure.

(溶射皮膜の平均膜厚:3〜8μm)
溶射では、熱源により溶融したアルミニウム合金が液滴となって噴射されて溶射対象物に衝突して変形し、それぞれが連結しつつ凝固して溶射皮膜22aを形成する。そして、犠牲陽極層22は、溶射によって形成される多数の溶射皮膜22aが積層した積層構造を有する。溶射皮膜22aは、その膜厚が薄いほど緻密な膜となって、冷却による氷結や温度差による応力で割れ難くなる。したがって、犠牲陽極層22は、深さ領域において、犠牲陽極層22を構成する溶射皮膜22aの平均膜厚を3〜8μmとする。ここで、平均膜厚とは、各々の溶射皮膜22aの膜厚から算出され、深さ領域内に形成されている複数の溶射皮膜22aの膜厚の平均値をいう。
(Average film thickness of sprayed coating: 3-8 μm)
In the thermal spraying, the aluminum alloy melted by the heat source is ejected as droplets, collides with the object to be sprayed and deforms, and solidifies while being connected to form the thermal spray coating 22a. The sacrificial anode layer 22 has a stacked structure in which a large number of sprayed coatings 22a formed by spraying are stacked. The thermal spray coating 22a becomes denser as the film thickness is thinner, and is difficult to break due to freezing due to cooling or stress due to a temperature difference. Therefore, the sacrificial anode layer 22 has an average film thickness of 3 to 8 μm in the sprayed coating 22a constituting the sacrificial anode layer 22 in the depth region. Here, the average film thickness is calculated from the film thickness of each sprayed coating 22a and refers to the average value of the film thickness of the plurality of sprayed coatings 22a formed in the depth region.

溶射皮膜22aの平均膜厚が8μmを超えると、氷結や温度変化により溶射皮膜22aに微小割れが生じ易い。また、溶射皮膜22aの腐食は層に添って進行することを見出しており、同一の膜厚であっても、溶射皮膜22aの膜厚が3μmまでは、積層数が多いほど基材界面への腐食を遅延させることができる。したがって、犠牲陽極層22は、溶射皮膜22aの平均膜厚は8μm以下とし、6μm以下が好ましい。しかしながら、溶射皮膜22aの平均膜厚が3μm未満と薄すぎると、逆に緻密すぎて応力緩和が生じず割れやすく、さらには溶射皮膜22aの層に添って腐食が進まず、深さ方向に腐食が進みやすくなる。したがって、犠牲陽極層22は、溶射皮膜22aの平均膜厚を3μm以上とし、4μm以上が好ましい。   When the average film thickness of the thermal spray coating 22a exceeds 8 μm, micro-cracks are likely to occur in the thermal spray coating 22a due to freezing or temperature change. Further, it has been found that the corrosion of the thermal spray coating 22a proceeds along the layer. Even when the film thickness is the same, the thermal spray coating 22a has a film thickness of 3 μm. Corrosion can be delayed. Therefore, the sacrificial anode layer 22 has an average film thickness of the sprayed coating 22a of 8 μm or less, preferably 6 μm or less. However, if the average film thickness of the thermal spray coating 22a is too thin, less than 3 μm, it is too dense, and stress relaxation does not occur and cracking easily occurs. Further, corrosion does not proceed along the layer of the thermal spray coating 22a, and corrosion occurs in the depth direction. Is easier to proceed. Therefore, the sacrificial anode layer 22 has an average thickness of the sprayed coating 22a of 3 μm or more, and preferably 4 μm or more.

溶射皮膜22aの平均膜厚は、犠牲陽極層22の前記深さ領域を断面方向で切断し、鏡面として、光学顕微鏡などで観察することで得られる。鏡面状態でも積層構造が観察しにくい場合は、さらにアルカリ薬品にてエッチングすることにより、層間が溶解し、より積層構造が鮮明となる。例えば、40g/lの濃度のNaCl水溶液に1〜3分浸漬すればよい。エッチングしすぎると層全体が溶解するため、短時間毎、様子を見ながらエッチングすれば良い。   The average film thickness of the thermal spray coating 22a is obtained by cutting the depth region of the sacrificial anode layer 22 in the cross-sectional direction and observing it as a mirror surface with an optical microscope or the like. When it is difficult to observe the laminated structure even in the mirror state, the interlayer is dissolved by further etching with an alkaline chemical, and the laminated structure becomes clearer. For example, what is necessary is just to immerse in the NaCl aqueous solution of a density | concentration of 40 g / l for 1 to 3 minutes. If the etching is performed too much, the entire layer is dissolved.

溶射皮膜22aの膜厚は、溶射材料の種類、溶射の熱源や施工条件等に依存する。溶射皮膜22aの膜厚は溶融液滴が大きく、溶融液滴が連結するほど厚くなると考えられる。また、溶射対象物上での変形が小さいほど厚くなると考えられる。したがって、溶射条件を制御して、溶融液滴の量やサイズを減らすことや、溶射対象物に衝突するまでの凝固を抑制することで膜厚を薄くできると考えられる。例えば、熱源の温度が低い方が、溶融液滴が小さいため膜厚が薄くなる。また、溶射ガン速度を速めること、溶射材料の供給量を少なくすることにより、膜厚が薄くなる。あるいは、射出速度を速めること、溶射距離を短くすることによって、溶射対象物に衝突するまでの凝固を抑制することで膜厚が薄くなる。また、溶射対象物に対し、衝突角度が浅すぎると溶射対象物上での変形が小さく、膜厚が厚くなる。   The film thickness of the thermal spray coating 22a depends on the type of thermal spray material, the thermal source of the thermal spray, the construction conditions, and the like. The film thickness of the sprayed coating 22a is considered to be larger as the molten droplet is larger and the molten droplet is connected. Moreover, it is thought that it becomes thick, so that the deformation | transformation on a spraying target object is small. Therefore, it is considered that the film thickness can be reduced by controlling the thermal spraying conditions to reduce the amount and size of the molten droplets and to suppress the solidification before colliding with the object to be sprayed. For example, when the temperature of the heat source is lower, the melted droplets are smaller and the film thickness becomes thinner. Further, the film thickness is reduced by increasing the spray gun speed and decreasing the supply amount of the spray material. Alternatively, by increasing the injection speed and shortening the spraying distance, the film thickness is reduced by suppressing solidification until it collides with the object to be sprayed. Further, if the collision angle is too shallow with respect to the object to be sprayed, the deformation on the object to be sprayed is small and the film thickness is increased.

このような知見は、通常の溶射における施工条件の考え方とは大きく異なる。例えば、溶射距離については、特に溶射対象物が大きく、形状が複雑な場合、例えば、本発明のような熱交換パネル1の形状に組み立てられた基材21に対しては、広い領域へ一様に溶射できることから、溶射距離を長くして、具体的には、少なくとも300mm程度とすることが一般的であった。また、近距離の溶射では溶射対象物に熱歪みが生じるため、溶射距離をある程度は設ける必要があった。しかし、300mm程度またはそれ以上の溶射距離によるアルミニウム合金の溶射皮膜では、膜厚が厚くなる。あるいは、例えば、熱源の温度が高く、溶射材料の供給量が多いほど、溶射速度が大きくなるため、短時間で所望の膜厚が得られる。したがって、高温度の熱源で速い供給速度で施工することが一般的である。   Such knowledge is greatly different from the concept of construction conditions in normal thermal spraying. For example, with respect to the spraying distance, in particular, when the object to be sprayed is large and the shape is complicated, for example, the base material 21 assembled in the shape of the heat exchange panel 1 as in the present invention is uniform over a wide area. In general, it has been common to increase the spraying distance, specifically, at least about 300 mm. Moreover, since thermal distortion occurs in the object to be sprayed in short-distance spraying, it is necessary to provide a certain spraying distance. However, an aluminum alloy sprayed coating having a spraying distance of about 300 mm or more increases the film thickness. Alternatively, for example, the higher the temperature of the heat source and the larger the supply amount of the spray material, the higher the spraying speed, so that a desired film thickness can be obtained in a short time. Therefore, it is common to construct with a high temperature heat source at a high supply rate.

本発明に係るORV10の伝熱管2およびヘッダー管3、4は、その製造について、犠牲陽極層22(溶射皮膜22a)の形成における溶射条件を制限するものではないが、犠牲陽極層22の厚さおよび溶射皮膜22aの平均膜厚が本発明の範囲となるように、溶射距離や熱源、溶射ガン速度や溶射材料の供給量を設定することが望ましい。具体的には、溶射距離は200mm以下とすることが好ましく、熱源としてはプロパンを用いることが好ましく、溶射角度は45°〜90°の範囲とすることが好ましい。さらに、溶射ガン速度や溶射材料の供給量は、後記する粗大粒の個数密度や気孔面積率も考慮して適正範囲を定める。なお、溶射ガン速度の制御や、溶射角度の制御のしやすさから、熱交換パネル1を縦置きして溶射ガンを上下に移動して水平方向に溶射するよりは、熱交換パネル1を平置きして溶射ガンを水平に移動して下向き方向に溶射する方が好ましい。   Although the heat transfer tube 2 and the header tubes 3 and 4 of the ORV 10 according to the present invention do not limit the thermal spraying conditions in the formation of the sacrificial anode layer 22 (thermal spray coating 22a) for the manufacture, the thickness of the sacrificial anode layer 22 It is desirable to set the spray distance, the heat source, the spray gun speed, and the supply amount of the spray material so that the average film thickness of the spray coating 22a falls within the range of the present invention. Specifically, the spraying distance is preferably 200 mm or less, propane is preferably used as the heat source, and the spraying angle is preferably in the range of 45 ° to 90 °. Further, the spray gun speed and the amount of spray material supplied are determined in an appropriate range in consideration of the number density of coarse particles and the pore area ratio described later. In order to easily control the spray gun speed and spray angle, the heat exchange panel 1 can be flattened rather than placed in a vertical position and the spray gun moved up and down and sprayed horizontally. It is preferable to place the spray gun horizontally and spray it in the downward direction.

(粗大粒の個数密度:2.5個/mm未満)
溶射では、溶融が不十分あるいは溶射対象物に衝突するまでに凝固に至ったアルミニウム合金溶融液滴は、溶射対象物上での変形が不十分となり、溶射皮膜22aを形成せずに粒に近い形状の組織となる。そして、この粒形状の組織は、溶射皮膜22aの積層構造の間に挟まれる状態で形成されて溶射皮膜22aの一部となる。溶射皮膜22aと粒形状の組織との間は、応力が集中しやすく、冷却による氷結や温度差による応力で溶射皮膜22aが割れやすくなる。その結果、溶射皮膜22aと粒形状の組織との間に気孔が形成して、海水の浸入経路となり、深さ方向への腐食を助長する。特に、粒形状の組織のうち、粒形状の組織の円形度が0.5以上の擬似円形状で、平均径が20μm以上となる粗大粒23では、微小割れを形成しやすく、気孔を形成しやすい。ここで、円形度とは、下式(1)で算出されるものをいう。
円形度=4π×面積/(周長)・・・(1)
本発明に係る犠牲陽極層22においては、前記深さ領域での前記の形状・サイズの粗大粒23の個数密度を2.5個/mm未満として、割れによる気孔の形成を抑制する。好ましくは2個/mm未満、より好ましくは1.5個/mm未満である。
(Number density of coarse particles: less than 2.5 / mm 2 )
In the thermal spraying, the aluminum alloy molten droplets that have been solidified by the time when they are insufficiently melted or collide with the object to be sprayed are insufficiently deformed on the object to be sprayed, and are close to grains without forming the sprayed coating 22a. It becomes a tissue of shape. And this grain-shaped structure | tissue is formed in the state pinched | interposed between the laminated structures of the thermal spray coating 22a, and becomes a part of thermal spray coating 22a. Stress tends to concentrate between the thermal spray coating 22a and the grain-shaped structure, and the thermal spray coating 22a is likely to break due to freezing due to cooling or stress due to a temperature difference. As a result, pores are formed between the thermal spray coating 22a and the grain-shaped structure, and serve as a seawater infiltration path, which promotes corrosion in the depth direction. In particular, among the grain-shaped structures, the coarse grains 23 having a quasi-circular shape with a roundness of 0.5 or more in the grain-shaped structure and an average diameter of 20 μm or more easily form microcracks and form pores. Cheap. Here, the circularity means that calculated by the following formula (1).
Circularity = 4π × area / (peripheral length) 2 (1)
In the sacrificial anode layer 22 according to the present invention, the number density of the coarse particles 23 having the shape and size in the depth region is set to less than 2.5 / mm 2 to suppress pore formation due to cracking. Preferably it is less than 2 pieces / mm 2 , more preferably less than 1.5 pieces / mm 2 .

なお、粗大粒23の個数密度についても、犠牲陽極層22の前記深さ領域を断面方向で切断し、鏡面として、光学顕微鏡などで観察することで得られる。鏡面状態でも積層構造が観察しにくい場合は、さらにアルカリ薬品にてエッチングするとよいことも同様である。観察される画像より、平均径、円形度を画像ソフトにより解析することによって該当する粗大粒23にあたるか判断できる。   The number density of the coarse particles 23 can also be obtained by cutting the depth region of the sacrificial anode layer 22 in the cross-sectional direction and observing it as a mirror surface with an optical microscope or the like. Similarly, when it is difficult to observe the laminated structure even in the mirror state, it may be further etched with an alkaline chemical. From the observed image, it is possible to determine whether it corresponds to the corresponding coarse particle 23 by analyzing the average diameter and the circularity with image software.

また、溶射皮膜22aの粗大粒23の個数密度も、溶射材料の種類、溶射の熱源や施工条件等に依存する。溶射対象物上での変形が小さいほど、粗大粒23となる確率が高くなると考えられる。また、溶射対象物に衝突してはね返った液滴も粗大粒23となる。したがって、溶射距離を短くすることによって、溶射対象物に衝突するまでの凝固を抑制することで粗大粒23を少なくできる。また溶射角度が浅い場合は、衝突して跳ね返る液滴が多くなるが、溶射皮膜22aに取り込まれることが少ないのに対し、溶射角度が深い場合は、衝突してはね返る液滴は少ないが、溶射皮膜22aに取り込まれることが多くなる。溶射角度は20〜70度とし、溶射ガンの移動方向とはね返る方向を反対方向とすること、はね返り液滴をダミー板にてとらえること、パス毎にはね返り液滴を高圧水等で除去することなどが有効である。   Further, the number density of the coarse particles 23 of the thermal spray coating 22a also depends on the type of thermal spray material, the thermal source of the thermal spray, construction conditions, and the like. It is considered that the smaller the deformation on the object to be sprayed, the higher the probability of becoming coarse particles 23. In addition, droplets that bounce off the object to be sprayed also become coarse particles 23. Therefore, by shortening the spraying distance, the coarse particles 23 can be reduced by suppressing solidification until they collide with the object to be sprayed. In addition, when the spray angle is shallow, more droplets collide and bounce back, but they are rarely taken into the sprayed coating 22a. On the other hand, when the spray angle is deep, few droplets bounce off and collide, The film 22a is often taken in. The spraying angle is set to 20 to 70 degrees, the rebounding direction of the spraying gun is set to the opposite direction, the rebounding droplet is captured by a dummy plate, the rebounding droplet is removed with high-pressure water or the like for each pass, etc. Is effective.

また、溶射角度が一定の場合、溶射ガン速度が速すぎたり、溶射材料の供給量が少なすぎたりすると、溶射皮膜22aがまだらに形成され、徐々に形成された溶射皮膜22aに段が生じて、溶射ガンに対してカゲとなる部分が形成され、粗大な気孔となったり、非常に浅い溶射角度で溶射されることにより粗大粒23が形成されやすい。このことは、2種類以上の溶射角度で溶射することによって抑制することができる。このように、溶射皮膜22aの平均膜厚と、粗大粒23の個数密度とがいずれも本発明の範囲になるようにするには、溶射条件の最適範囲を求めることが必要である。   In addition, when the spray angle is constant, if the spray gun speed is too high or the supply amount of the spray material is too small, the spray coating 22a is formed in a mottle, and a step is generated in the gradually formed spray coating 22a. A part that becomes a lizard with respect to the spray gun is formed, and coarse pores are formed, or coarse particles 23 are easily formed by spraying at a very shallow spray angle. This can be suppressed by spraying at two or more spray angles. Thus, in order for both the average film thickness of the sprayed coating 22a and the number density of the coarse particles 23 to fall within the scope of the present invention, it is necessary to determine the optimum range of spraying conditions.

このような知見も、通常の溶射における施工条件の考え方とは大きく異なる。通常の環境で使用される部材においては、溶射皮膜中に粗大粒23があっても部材への熱応力は小さいため割れて気孔となることはない。したがって、溶射距離については、長くすることが一般的であった。さらに、溶射角度は90度に近い角度で溶射を行い、跳ね返りを少なくすることが一般的であり、2種類以上の溶射角度での溶射や、ダミー板を入れること、溶射パス間での清掃除去は不要である。   Such knowledge is also very different from the concept of construction conditions in normal thermal spraying. In a member used in a normal environment, even if there are coarse particles 23 in the sprayed coating, the thermal stress on the member is small, so it does not crack and become pores. Therefore, it is common to increase the spraying distance. In addition, spraying is generally performed at an angle close to 90 degrees to reduce rebound, and spraying at two or more spraying angles, inserting dummy plates, and cleaning removal between spraying passes Is unnecessary.

次に、本発明に係るORVの伝熱管またはヘッダー管を実施するための好ましい形態について説明する。伝熱管2またはヘッダー管3、4は、その犠牲陽極層22の厚さ方向の断面における気孔24の気孔面積率が所定範囲内であることが好ましい。   Next, the preferable form for implementing the heat transfer pipe | tube or header pipe | tube of ORV which concerns on this invention is demonstrated. In the heat transfer tube 2 or the header tubes 3, 4, the pore area ratio of the pores 24 in the cross section in the thickness direction of the sacrificial anode layer 22 is preferably within a predetermined range.

(厚さ方向の断面における気孔の気孔面積率:1.0〜5.0%)
犠牲陽極層22は、溶射によって形成されるため、内部にある程度の気孔24を含む構造を有する。気孔24は、図2の断面図ではそれぞれが分断されて示されているが、実際には他の気孔24と通じているものが多い。気孔24の数が多い、または、気孔24の1個あたりのサイズが大きくなると、複数の気孔24を介して犠牲陽極層22の表面から基材21との界面までが通じて、海水が基材21の表面まで到達する虞がある。したがって、腐食の進行を抑制するために、犠牲陽極層22は、前記深さ領域において、厚さ方向の断面における気孔24の気孔面積率の上限値を5.0%以下とすることが好ましい。
(Porosity area ratio of pores in cross section in thickness direction: 1.0 to 5.0%)
Since the sacrificial anode layer 22 is formed by thermal spraying, it has a structure including a certain amount of pores 24 inside. In the cross-sectional view of FIG. 2, each of the pores 24 is shown as being divided, but in reality, there are many that communicate with other pores 24. When the number of pores 24 is large or the size of each pore 24 is increased, the surface of the sacrificial anode layer 22 is connected to the interface with the substrate 21 through the plurality of pores 24, so that seawater is a substrate. There is a risk of reaching the surface of 21. Therefore, in order to suppress the progress of corrosion, the sacrificial anode layer 22 preferably has the upper limit value of the pore area ratio of the pores 24 in the cross section in the thickness direction in the depth region being 5.0% or less.

一方、気孔24には温度変化による犠牲陽極層22の体積変化を緩和する働きがあるため、犠牲陽極層22が、基材21との界面近傍において気孔24の数が極度に少ないと、氷結や温度変化により却って微小割れを生じ易くなる。したがって、犠牲陽極層22は、前記深さ領域においては、厚さ方向の断面における気孔24の気孔面積率の下限値を1.0%以上とすることが好ましい。   On the other hand, since the pores 24 have a function of relaxing the volume change of the sacrificial anode layer 22 due to temperature change, if the sacrificial anode layer 22 has an extremely small number of pores 24 in the vicinity of the interface with the base material 21, It becomes easy to produce a microcrack on the contrary with a temperature change. Therefore, in the sacrificial anode layer 22, in the depth region, the lower limit value of the pore area ratio of the pores 24 in the cross section in the thickness direction is preferably 1.0% or more.

なお、この犠牲陽極層22における気孔24の気孔面積率は、基材21との界面から少なくとも100μmの深さまでの領域(深さ領域)におけるものであるが、犠牲陽極層22の全領域において前記範囲の気孔面積率であることがより好ましい。また、犠牲陽極層22は、形成(溶射)後に表面からエポキシ樹脂等を封孔剤として含浸させて気孔24に充填してもよい。   The pore area ratio of the pores 24 in the sacrificial anode layer 22 is in a region (depth region) from the interface with the base material 21 to a depth of at least 100 μm. A pore area ratio in the range is more preferable. Moreover, the sacrificial anode layer 22 may be filled with the pores 24 by impregnating an epoxy resin or the like from the surface as a sealing agent after formation (thermal spraying).

犠牲陽極層22の気孔面積率は、犠牲陽極層22の前記深さ領域を断面方向で切断し、鏡面研磨等、適宜処理して鏡面として、光学顕微鏡にて観察して求めればよい。気孔24は空洞であっても、または封孔剤が充填されていても、犠牲陽極層22のアルミニウム合金部分とは色調が異なって見えるため、例えば光学顕微鏡にて100倍で撮影した写真を画像解析することによって、面積率を算出することができる。なお、気孔24の観察においては、前述のエッチングはしないで行う。   The pore area ratio of the sacrificial anode layer 22 may be obtained by slicing the depth region of the sacrificial anode layer 22 in the cross-sectional direction, treating it appropriately, such as mirror polishing, as a mirror surface, and observing it with an optical microscope. Even if the pores 24 are hollow or filled with a sealing agent, the color looks different from the aluminum alloy portion of the sacrificial anode layer 22, so a photograph taken at a magnification of 100 times with an optical microscope, for example, is an image By analyzing, the area ratio can be calculated. The observation of the pores 24 is performed without performing the above-described etching.

犠牲陽極層22の気孔面積率も溶射条件によって変化し、例えば溶射距離が小さいと気孔面積率は低減し、溶射角度が小さいと気孔面積率は増加する。また、溶射皮膜の表面にショットブラスト等を行って、表面近傍の気孔24を機械的につぶして気孔面積率を低減することもできるので、1回の溶射パス後にショットブラスト等を行うことで、犠牲陽極層22の前記深さ領域における気孔面積率を低減することもできる。   The pore area ratio of the sacrificial anode layer 22 also changes depending on the spraying conditions. For example, the pore area ratio decreases when the spraying distance is small, and the pore area ratio increases when the spray angle is small. In addition, by performing shot blasting on the surface of the sprayed coating, it is possible to reduce the pore area ratio by mechanically crushing the pores 24 in the vicinity of the surface, so by performing shot blasting etc. after one spraying pass, The pore area ratio in the depth region of the sacrificial anode layer 22 can also be reduced.

次に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。   Next, an example in which the effect of the present invention has been confirmed will be specifically described in comparison with a comparative example that does not satisfy the requirements of the present invention.

〔供試材作製〕
伝熱管またはヘッダー管に代えて、以下の供試材を作製した。
基材として、A5083合金の厚さ5mmの板材を35mm×100mmに切り出して用いた。基材の片面を、ショットブラスト(ブラスト粒子:アルミナ#16〜20)にて算術平均粗さRa:20〜40μmに粗面化し、目視で確認できなくなるまでブラスト粒子を除去した。この基材の粗面化された面上に、Al−2質量%Zn合金の線材を用いて、溶線式フレーム溶射法にて複数の溶射皮膜から構成された厚さ500μmの犠牲陽極層を形成した。ここで、溶射条件として、溶射距離は150mm、また、表1に示すように、熱源はプロパンまたはアセチレンとし、溶射角度は30度一定または、45度と30度の繰り返しとして、ワイヤ送り速度(溶射材料の供給速度)は3000mm/min、2000mm/min、1000mm/minとした。一部の供試材では溶射1パス毎に7.5MPaの高圧水での洗浄やショットブラストを行った。
[Sample preparation]
Instead of the heat transfer tube or the header tube, the following specimens were produced.
As a base material, a 5 mm thick plate material of A5083 alloy was cut into 35 mm × 100 mm and used. One side of the substrate was roughened with shot blasting (blast particles: alumina # 16 to 20) to an arithmetic average roughness Ra of 20 to 40 μm, and the blast particles were removed until it could not be visually confirmed. On the roughened surface of this base material, a sacrificial anode layer having a thickness of 500 μm composed of a plurality of sprayed coatings is formed by a wire-type flame spraying method using an Al-2 mass% Zn alloy wire. did. Here, as the spraying conditions, the spraying distance is 150 mm, and as shown in Table 1, the heat source is propane or acetylene, the spraying angle is constant 30 degrees, or the repetition of 45 degrees and 30 degrees, the wire feed rate (spraying) The material supply speed was 3000 mm / min, 2000 mm / min, and 1000 mm / min. Some test materials were washed with 7.5 MPa high-pressure water and shot blasted for each thermal spray pass.

得られた各供試材について、以下の方法で、犠牲陽極層の気孔面積率、溶射皮膜の平均膜厚、粗大粒の個数密度を測定し、その結果を表1に示す。   About each obtained test material, the porosity area ratio of a sacrificial anode layer, the average film thickness of a sprayed coating, and the number density of a coarse grain were measured with the following method, and the result is shown in Table 1.

(気孔面積率)
供試材を切り出し、厚さ方向の切断面を研磨して、この切断面を、光学顕微鏡にて100倍で5箇所撮影した(撮影範囲:1mm×1mm)。この撮影写真に対して、画像解析ソフト(ImageJ)を用いて画像を2値化して、犠牲陽極層の基材との界面から100μmの深さまでの領域における気孔の面積率を算出し、5視野の平均値を気孔面積率とした。
(Pore area ratio)
The test material was cut out, the cut surface in the thickness direction was polished, and this cut surface was photographed at five locations with an optical microscope at a magnification of 100 (imaging range: 1 mm × 1 mm). For this photograph, the image is binarized using image analysis software (ImageJ), and the area ratio of the pores in the region from the interface with the base material of the sacrificial anode layer to the depth of 100 μm is calculated, and 5 fields of view are calculated. Was the pore area ratio.

(溶射皮膜の平均膜厚、粗大粒の個数密度)
前記と同じ切断面を、40g/lの濃度のNaCl水溶液に浸漬してエッチングを行った。エッチングは光学顕微鏡の100倍にて観察しながら繰り返し行い、溶射皮膜の積層構造が確認しやすい状態で、100倍で5箇所撮影した(撮影範囲:1mm×1mm)。エッチングの合計時間は1〜3分であった。この撮影写真に対して、画像解析ソフト(ImageJ)を用いて各画像に対して、基材との界面から100μmの深さまでの領域において、各5点、溶射皮膜の膜厚を計測し、平均して平均膜厚とした。また、5枚の画像に対して、基材との界面から100μmの深さまでの領域における全ての粒形状の組織に対し、面積、周長を解析し、円形度が0.5以上、平均径が20μm以上となる粗大粒であるか判定し、その粗大粒の数をカウントし、1mm長さ当たりの数を算出して個数密度とした。
(Average film thickness of sprayed coating, number density of coarse particles)
Etching was performed by immersing the same cut surface as described above in a NaCl aqueous solution having a concentration of 40 g / l. Etching was repeatedly performed while observing at a magnification of 100 times with an optical microscope, and five locations were photographed at a magnification of 100 (imaging range: 1 mm × 1 mm) in a state in which the laminated structure of the sprayed coating was easily confirmed. The total etching time was 1 to 3 minutes. For this photograph, using image analysis software (ImageJ), for each image, measure the film thickness of the sprayed coating at five points in the region from the interface with the substrate to a depth of 100 μm, and average The average film thickness was determined. In addition, for 5 images, the area and circumference were analyzed for all grain-shaped structures in the region from the interface with the substrate to a depth of 100 μm, the circularity was 0.5 or more, and the average diameter Was determined to be a coarse particle having a particle size of 20 μm or more, the number of coarse particles was counted, and the number per 1 mm length was calculated to obtain the number density.

次に、得られた各供試材に以下の熱サイクル試験を施し、耐割れ性、耐剥離性について以下のように評価した。その結果を表1に示す。   Next, the following thermal cycle tests were performed on the obtained test materials, and the crack resistance and peel resistance were evaluated as follows. The results are shown in Table 1.

(熱サイクル試験)
ORVとして海水中で運転した場合の熱サイクルを含めた環境を再現するため、各仕様5枚の供試材に対して以下の試験を行った。供試材の犠牲陽極皮膜の表面へ、pH8.2、液温35℃に調整した人工海水(株式会社ヤシマ製金属腐食試験用アクアマリン)の噴霧を行い、また、1日1回、LNGによる基材冷却を模擬するため、基材のみを液体窒素に浸漬し冷却する工程を合計8週間行った。試験後、供試材を切り出し、厚さ方向の切断面を研磨して、この面を観察面として以下の評価を行った。
(Thermal cycle test)
In order to reproduce the environment including the heat cycle when operated in seawater as an ORV, the following tests were performed on five specimens of each specification. The surface of the sacrificial anode film of the test material is sprayed with artificial seawater (aquamarine for metal corrosion test manufactured by Yashima Co., Ltd.) adjusted to pH 8.2 and liquid temperature of 35 ° C., and once a day by LNG In order to simulate the cooling of the base material, the process of immersing and cooling only the base material in liquid nitrogen was performed for a total of 8 weeks. After the test, the test material was cut out, the cut surface in the thickness direction was polished, and the following evaluation was performed using this surface as an observation surface.

(耐割れ性:割れの観察、評価)
供試材の切断面を光学顕微鏡にて400倍で観察して(観察範囲:1mm×1mm)、割れと判別できるものの有無を評価した。直線距離2.5μm以上10μm未満の割れが存在しないものを○(優れている)、直線距離2.5μm以上10μm未満の割れが存在するものを△(良好)、直線距離10μm以上の割れが存在するものを×(不良)とした。
(Crack resistance: Observation and evaluation of cracks)
The cut surface of the specimen was observed at 400 times with an optical microscope (observation range: 1 mm × 1 mm), and the presence or absence of what could be identified as a crack was evaluated. ○ (excellent) when there is no crack with a linear distance of 2.5 μm or more and less than 10 μm, △ (good) when there is a crack with a linear distance of 2.5 μm or more and less than 10 μm, and there is a crack with a linear distance of 10 μm or more. The thing to do was made into x (defect).

(耐剥離性:界面剥離の観察、評価)
犠牲陽極層の基材との界面を含む1mm×1mmの視野範囲を、光学顕微鏡にて400倍で観察した。界面を視野に平行として界面長さ1mmに対して間隔10μmで100点の観察点を設定し、各観察点にて界面の密着、非密着を判定した。ここで、非密着の観察点の3つ隣の観察点までに非密着の観察点が存在した場合は、この非密着の2点間における密着の観察点も非密着点としてカウントする。そして、非密着点数/全観察点数(100点)を非密着界面率(%)とした。各仕様について無作為の5視野を観察し、非密着界面率(%)の平均値で界面剥離を評価した。非密着界面率が30%を超えると、実機でも早期に犠牲陽極層が剥離することがわかっていることから、非密着界面率が30%を超えるものを×(不良)、非密着界面率が20〜30%を△(良好)、20%未満を○(優れている)とした。
(Peeling resistance: observation and evaluation of interfacial peeling)
The visual field range of 1 mm × 1 mm including the interface between the sacrificial anode layer and the base material was observed 400 times with an optical microscope. With the interface parallel to the field of view, 100 observation points were set at an interval of 10 μm for an interface length of 1 mm, and adhesion or non-adhesion of the interface was determined at each observation point. Here, when there is a non-contact observation point up to three observation points next to the non-contact observation point, the close observation point between the two non-contact points is also counted as a non-contact point. The number of non-contact points / the total number of observation points (100 points) was defined as the non-contact interface ratio (%). For each specification, 5 random fields of view were observed, and the interfacial peeling was evaluated by the average value of the non-adhesive interface rate (%). When the non-adhesion interface ratio exceeds 30%, it is known that the sacrificial anode layer exfoliates at an early stage even in the actual machine. Therefore, when the non-adhesion interface ratio exceeds 30%, x (defect), the non-adhesion interface ratio is 20-30% was set as Δ (good), and less than 20% was set as ○ (excellent).

Figure 0005756414
Figure 0005756414

表1に示すように、溶射条件の制御により、溶射皮膜の平均膜厚、粗大粒の個数密度および犠牲陽極層の気孔面積率を制御して、本発明の要件を満足する犠牲陽極層を形成することができた。そして、平均膜厚および個数密度が本発明の要件を満足する供試材No.1〜5(実施例)は、良好な耐割れ性および耐剥離性を示した。また、そのうち供試材No.1〜3(実施例)は、気孔面積率も本発明の要件を満足しているため、優れた耐剥離性を示した。これに対して、平均膜厚および個数密度の少なくとも1つが本発明の要件を満足しない供試材No.6〜11(比較例)は、熱サイクル試験後に基材との界面近傍で割れ、剥離が見られ、耐割れ性、耐剥離性が劣っていた。   As shown in Table 1, the sacrificial anode layer satisfying the requirements of the present invention is formed by controlling the spraying conditions to control the average film thickness of the sprayed coating, the number density of coarse grains, and the pore area ratio of the sacrificial anode layer. We were able to. And test material No. whose average film thickness and number density satisfy the requirements of this invention. 1-5 (Examples) showed good crack resistance and peel resistance. Among them, the test material No. Nos. 1 to 3 (Examples) exhibited excellent peel resistance because the pore area ratio also satisfied the requirements of the present invention. In contrast, at least one of the average film thickness and number density does not satisfy the requirements of the present invention. 6-11 (comparative example) were cracked and peeled in the vicinity of the interface with the substrate after the thermal cycle test, and were inferior in crack resistance and peel resistance.

以上、本発明を実施するための形態およびその実施例について述べてきたが、本発明は前記記載によって制限を受けるものではなく、特許請求の範囲に示した範囲内で適宜変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   As mentioned above, although the form for implementing this invention and its Example have been described, this invention is not restrict | limited by the said description, It implements by adding a change suitably within the range shown to the claim. All of which are within the scope of the present invention.

1 熱交換パネル
2 伝熱管
3 下部ヘッダー管
4 上部ヘッダー管
10 ORV
21 基材
22 犠牲陽極層
22a 溶射皮膜
23 粗大粒
24 気孔
1 Heat Exchange Panel 2 Heat Transfer Tube 3 Lower Header Tube 4 Upper Header Tube 10 ORV
21 Substrate 22 Sacrificial anode layer 22a Thermal spray coating 23 Coarse grain 24 Pore

Claims (2)

外表面に供給される海水との熱交換によって内部に流通する液化天然ガスを気化させるオープンラック式気化器の熱交換パネルを構成するオープンラック式気化器の伝熱管またはヘッダー管において、
アルミニウム合金からなる基材と、この基材の外表面の少なくとも一部に被覆されて当該基材に対して犠牲陽極性を有するアルミニウム合金からなる厚さ100μm以上の犠牲陽極層と、を備え、
前記犠牲陽極層は、溶射によって形成される複数の溶射皮膜が積層した積層構造を有し、
前記犠牲陽極層は、その厚さ方向の断面において、前記基材との界面から少なくとも100μmの深さまでの領域での、複数の前記溶射皮膜の平均膜厚が3〜8μmの範囲で、かつ、
前記溶射皮膜の積層構造に挟まれる状態で形成される粒形状の組織のうち、下式(1)で算出される前記粒形状の組織の円形度が0.5以上の擬似円形状で、平均径が20μm以上となる粗大粒の単位面積当たりの個数密度が2.5個/mm未満であることを特徴とするオープンラック式気化器の伝熱管またはヘッダー管。
円形度=4π×面積/(周長)・・・(1)
In the heat transfer tube or header tube of the open rack type vaporizer that constitutes the heat exchange panel of the open rack type vaporizer that vaporizes the liquefied natural gas flowing inside by heat exchange with the seawater supplied to the outer surface,
A base material made of an aluminum alloy, and a sacrificial anode layer having a thickness of 100 μm or more made of an aluminum alloy coated on at least a part of the outer surface of the base material and having a sacrificial anode property with respect to the base material,
The sacrificial anode layer has a laminated structure in which a plurality of thermal spray coatings formed by thermal spraying are laminated,
The sacrificial anode layer has a thickness in a range of 3 to 8 μm in average in the region from the interface with the base material to a depth of at least 100 μm in a cross section in the thickness direction, and
Among the grain-shaped structures formed in a state of being sandwiched between the laminated structures of the thermal spray coating, the circularity of the grain-shaped structure calculated by the following formula (1) is a pseudo-circular shape having a circularity of 0.5 or more, and the average A heat transfer tube or a header tube of an open rack type vaporizer, wherein the number density per unit area of coarse particles having a diameter of 20 μm or more is less than 2.5 pieces / mm 2 .
Circularity = 4π × area / (peripheral length) 2 (1)
前記犠牲陽極層は、前記基材との界面から少なくとも100μmの深さまでの領域において、その厚さ方向の断面における気孔の気孔面積率が1.0〜5.0%であることを特徴とする請求項1に記載のオープンラック式気化器の伝熱管またはヘッダー管。   The sacrificial anode layer has a pore area ratio of 1.0 to 5.0% in the cross section in the thickness direction in a region from the interface with the base material to a depth of at least 100 μm. The heat transfer tube or header tube of the open rack type vaporizer according to claim 1.
JP2012008430A 2012-01-18 2012-01-18 Heat transfer tube or header tube of open rack type vaporizer Expired - Fee Related JP5756414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012008430A JP5756414B2 (en) 2012-01-18 2012-01-18 Heat transfer tube or header tube of open rack type vaporizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012008430A JP5756414B2 (en) 2012-01-18 2012-01-18 Heat transfer tube or header tube of open rack type vaporizer

Publications (2)

Publication Number Publication Date
JP2013148253A JP2013148253A (en) 2013-08-01
JP5756414B2 true JP5756414B2 (en) 2015-07-29

Family

ID=49045912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008430A Expired - Fee Related JP5756414B2 (en) 2012-01-18 2012-01-18 Heat transfer tube or header tube of open rack type vaporizer

Country Status (1)

Country Link
JP (1) JP5756414B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7045230B2 (en) * 2018-03-22 2022-03-31 住友精密工業株式会社 How to operate the open rack heat exchanger and the open rack heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2951108B2 (en) * 1992-05-21 1999-09-20 新日本製鐵株式会社 Thermal spray coating formation method
JP4451885B2 (en) * 2007-01-18 2010-04-14 トーカロ株式会社 Thermal spray coating forming method and high-speed flame spraying apparatus
JP5164008B2 (en) * 2009-03-11 2013-03-13 株式会社神戸製鋼所 Corrosion-resistant aluminum alloy members and heat transfer tubes or header tubes
JP5144629B2 (en) * 2009-11-27 2013-02-13 株式会社神戸製鋼所 Heat transfer tube and header tube of open rack type vaporizer

Also Published As

Publication number Publication date
JP2013148253A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP4796362B2 (en) Heat transfer tube for LNG vaporizer and method for manufacturing the same
JP2007203289A (en) Method for forming protective coating film of improved interlayer adhesion
JP2018507316A (en) Plasma gun nozzle corrosion prevention and gun nozzle corrosion prevention method
JP5568756B2 (en) Cermet sprayed coating member excellent in corrosion resistance and plasma erosion resistance and method for producing the same
CN102465290A (en) Manufacturing method of double-layer metal composite pipe
JP5144629B2 (en) Heat transfer tube and header tube of open rack type vaporizer
JP6075782B2 (en) Method for manufacturing heat transfer tube for LNG vaporizer and heat transfer tube for LNG vaporizer
Kumar et al. Influence of coating defects on the corrosion behavior of cold sprayed refractory metals
Gavendová et al. Microstructure modification of CGDS and HVOF sprayed CoNiCrAlY bond coat remelted by electron beam
JP5756414B2 (en) Heat transfer tube or header tube of open rack type vaporizer
Yang et al. Thermal shock behavior of YSZ thermal barrier coatings with a Ni-P/Al/Ni-P sandwich interlayer on AZ91D magnesium alloy substrate at 400° C
JP6838864B2 (en) Aluminum alloy LNG vaporizer member and LNG vaporizer
Aminazad et al. Investigation on corrosion behaviour of copper brazed joints
JP5572128B2 (en) Corrosion-resistant aluminum alloy member and open rack type vaporizer heat transfer tube or header tube
Musztyfaga-Staszuk et al. Investigation of mechanical and anti-corrosion properties of flame sprayed coatings
JP4834513B2 (en) Heat transfer tube for LNG vaporizer, manufacturing method thereof, and LNG vaporizer using the same
JP2017211141A (en) Aluminum alloy member and LNG vaporizer
JP2014237864A (en) Manufacturing method of coated member and coated member
JP5385754B2 (en) Heat exchange member
JP2008018455A (en) Mold for continuous casting and method for manufacturing the mold
JP5336797B2 (en) Manufacturing method of heat transfer tube and header tube of open rack type vaporizer
Koivuluoto Corrosion resistance of cold-sprayed coatings
JP4287798B2 (en) Al-alloy heat transfer tube for open rack type vaporizer and method for manufacturing the Al-alloy heat transfer tube
Cho et al. Micro-scale observation of corrosion of hot-dip aluminized 11% Cr stainless steel
TW201304910A (en) Austenitic stainless steel pipe, boiler device, and method for processing inner surface of pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150529

R150 Certificate of patent or registration of utility model

Ref document number: 5756414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees