JP2951108B2 - Thermal spray coating formation method - Google Patents

Thermal spray coating formation method

Info

Publication number
JP2951108B2
JP2951108B2 JP15597392A JP15597392A JP2951108B2 JP 2951108 B2 JP2951108 B2 JP 2951108B2 JP 15597392 A JP15597392 A JP 15597392A JP 15597392 A JP15597392 A JP 15597392A JP 2951108 B2 JP2951108 B2 JP 2951108B2
Authority
JP
Japan
Prior art keywords
sprayed
temperature
thermal spray
base material
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15597392A
Other languages
Japanese (ja)
Other versions
JPH05320858A (en
Inventor
彰 伊藤
昌俊 綾垣
光二 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15597392A priority Critical patent/JP2951108B2/en
Publication of JPH05320858A publication Critical patent/JPH05320858A/en
Application granted granted Critical
Publication of JP2951108B2 publication Critical patent/JP2951108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶射皮膜形成方法に関
し、特にロールやボイラーチューブなどのような、高温
腐食、摩耗雰囲気、高負荷応力など過酷な環境下で使用
される母材を、耐食性、耐摩耗性に富む溶射材料をその
表面に溶射することによって保護し、高機能化、長寿命
化を図る溶射技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thermal sprayed coating, and more particularly to a method for forming a base material used in a severe environment such as a roll or a boiler tube, which is used in a severe environment such as high-temperature corrosion, a wear atmosphere, and a high load stress. The present invention relates to a spraying technique for protecting a sprayed material having high wear resistance by spraying the material on the surface thereof, thereby achieving high functionality and long life.

【0002】[0002]

【従来の技術】従来の溶射プロセスに於ては、図6に示
す如く、プラズマジェット1によって溶融した溶射粒子
2は、母材3に吹き付けられて衝突し、急速に凝固す
る。この時の凝固速度は、 105k/sec程度と測定
されており、瞬間的に凝固することが分っている。この
ため、溶射粒子2が既積層皮膜粒子4の間隙に充分に浸
透せず、原理的に溶射皮膜内には気孔5が発生する。ま
た溶射粒子2が瞬間的に凝固するため、皮膜を構成する
粒子間の原子拡散が起こらず、結合力が弱いものにな
る。
2. Description of the Related Art In a conventional thermal spraying process, as shown in FIG. 6, thermal spray particles 2 melted by a plasma jet 1 are blown against a base material 3 to collide therewith and rapidly solidify. The solidification rate at this time was measured to be about 10 5 k / sec, and it was found that solidification was instantaneous. For this reason, the thermal spray particles 2 do not sufficiently penetrate into the gaps between the laminated film particles 4, and the pores 5 are generated in the thermal spray film in principle. Further, since the thermal spray particles 2 are instantaneously solidified, atomic diffusion between the particles constituting the coating does not occur, and the bonding force is weak.

【0003】これらの原因により、溶射皮膜は、延性に
乏しく、かつ強度、特に曲げ強度の乏しいものになり、
実際の使用環境下の応力や衝撃により、簡単にクラック
(割れ)、欠け、及び剥離が生じるため、信頼性の低い
ものになっていた。
[0003] Due to these causes, the sprayed coating has poor ductility and poor strength, particularly poor bending strength.
Cracks (cracks), chipping, and peeling easily occur due to stresses and impacts in an actual use environment, resulting in low reliability.

【0004】このような溶射皮膜の信頼性を向上させる
ための方法として、例えば特開平2−294457号公
報には、任意の温度で溶射皮膜形成後、溶射材料の絶対
温度で表した融点の0.6倍以上、0.75倍以下の温
度で中間熱処理を加え、更に、最終的に2000気圧、
1150℃、1時間程度の熱間静水処理を行って皮膜中
に存在する気孔を消滅させる方法が提案されている。
[0004] As a method for improving the reliability of such a thermal spray coating, for example, Japanese Patent Application Laid-Open No. 2-294457 discloses a method of forming a thermal spray coating at an arbitrary temperature, and then setting the melting point of the thermal spray material to zero. Intermediate heat treatment is applied at a temperature of 0.6 times or more and 0.75 times or less, and finally, 2000 atm.
A method has been proposed in which hot water isostatic treatment is performed at 1150 ° C. for about 1 hour to eliminate pores present in the film.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来方法によると、溶射皮膜形成後に溶射皮膜の剥離防止
を目的とする熱処理などの工程を施さねばならないた
め、製造工程の増加による処理費用の増加及び歩留りの
低下を招くうえ、設備費の増加をも免れない。加えて、
設備による制約を受けるために処理可能な母材寸法も適
用範囲が狭くなる。また、この熱処理は、溶射粒子の原
子拡散作用を目的としたものであることから、仮に溶射
後に熱処理を施すにしても、処理前の溶射皮膜自体の緻
密さや、皮膜構成粒子間の接合度が溶射後の熱処理に大
きく影響する。すなわち、処理前の状態で緻密性、接合
度に優れた溶射皮膜であるほど、処理効果が大きくて処
理時間も短く、しかも得られる品質も良質になるものと
考えられる。
However, according to the above-mentioned conventional method, a process such as heat treatment for preventing peeling of the sprayed coating must be performed after the formation of the sprayed coating. In addition to lowering the yield, it is inevitable that equipment costs will increase. in addition,
Due to equipment limitations, the applicable range of the base material size that can be processed is narrowed. In addition, since this heat treatment is intended for the atomic diffusion effect of the sprayed particles, even if heat treatment is performed after spraying, the density of the sprayed coating itself before treatment and the degree of bonding between the coating constituent particles are reduced. Significantly affects heat treatment after thermal spraying. In other words, it is considered that a thermal sprayed film having excellent denseness and bonding degree in a state before the treatment has a greater treatment effect, a shorter treatment time, and a higher quality.

【0006】本発明は、このような従来技術の問題点及
び発明者の知見に鑑みなされたものであり、その主な目
的は、溶射皮膜形成後の処理を特に施すことなく、延
性、強度に富む溶射皮膜を安価に製造することができる
溶射皮膜形成方法を提供することにある。
The present invention has been made in view of the problems of the prior art and the knowledge of the inventor. The main object of the present invention is to improve ductility and strength without special treatment after forming a thermal sprayed coating. An object of the present invention is to provide a method for forming a thermal spray coating capable of producing a rich thermal spray coating at low cost.

【0007】[0007]

【課題を解決するための手段】上述した目的は、本発明
によれば、1種以上の金属からなる溶射材料を減圧不活
性雰囲気下で溶射する際に、溶射母材の被溶射部位の表
面近傍の温度を、溶射材料を構成する材料のうち最も融
点の低い材料の、絶対温度で表した融点の0.65倍以
上、0.9倍以下の温度に保って溶射することを特徴と
する溶射皮膜形成方法、あるいは1種以上の金属からな
る溶射材料を減圧不活性雰囲気下で金属溶射母材に溶射
する際に、母材とプラズマガンのノズル間に母材を陽極
とする移行型アーク電流を流し、溶射母材の被溶射部位
の表面近傍の温度を、溶射材料を構成する材料のうち最
も融点が低い材料の、絶対温度で表した融点の0.65
倍以上、0.9倍以下の温度に保って溶射することを特
徴とする溶射皮膜形成方法を提供することによって達成
される。
SUMMARY OF THE INVENTION According to the present invention, when spraying a thermal spray material comprising at least one metal under a reduced-pressure inert atmosphere, the surface of the thermal spray base material to be sprayed is provided. Thermal spraying is performed by maintaining a temperature in the vicinity of 0.65 times or more and 0.9 times or less the absolute melting point of the material having the lowest melting point among the materials constituting the thermal spraying material. A transition type arc in which a base material is used as an anode between a base material and a nozzle of a plasma gun when spraying a sprayed material composed of one or more metals on a metal sprayed base material under a reduced pressure inert atmosphere. An electric current is applied, and the temperature in the vicinity of the surface of the portion to be sprayed on the sprayed base material is set to 0.65 of the melting point of the material having the lowest melting point among the materials constituting the sprayed material.
This is attained by providing a thermal spray coating forming method characterized in that thermal spraying is performed while maintaining the temperature at a temperature of at least twice and at most 0.9 times.

【0008】[0008]

【作用】被溶射部の溶射中の母材温度を溶射材料のうち
最も融点が低い材料の絶対温度で表した融点の0.65
倍以上に保つことにより、溶射皮膜を構成する溶射粒子
間の原子拡散が活発になって粒子間が焼結し、積層時に
発生した気孔が順次消滅していくと共に粒子間の結合力
が強固なものになり、結果として皮膜の延性、強度が向
上する。
The temperature of the base material during thermal spraying of the portion to be sprayed is 0.65 of the melting point expressed by the absolute temperature of the material having the lowest melting point among the thermal sprayed materials.
By keeping it more than twice, atom diffusion between the spray particles constituting the spray coating becomes active and the particles sinter, the pores generated during lamination gradually disappear and the bonding force between the particles is strong. As a result, the ductility and strength of the film are improved.

【0009】ここで熱容量の大きな母材に溶射を施す場
合、溶射中に溶射材料のうち最も融点が低い材料の絶対
温度で表した融点の0.65倍以上に母材温度を保つた
めには、プラズマジェット以外の加熱源が必要となる。
In the case where a base material having a large heat capacity is subjected to thermal spraying, it is necessary to maintain the base material temperature at 0.65 times or more the absolute melting point of the material having the lowest melting point among the sprayed materials during thermal spraying. However, a heating source other than the plasma jet is required.

【0010】一般には、接触式のヒータや高周波誘導コ
イルなどが加熱源として考えられるが、任意の溶射母材
形状に対応できて母材溶射部へ吹き付ける溶射粒子を物
理的に遮らないことから、母材とプラズマガンのノズル
間に母材を陽極とする移行型アーク電流を流し、母材を
加熱することが最も容易であり、かつ効果的である。こ
の移行型アークにより、溶射中の母材の被溶射部を、溶
射材料のうち最も融点が低い材料の絶対温度で表した融
点の0.65倍以上に保持することが可能である。
In general, a contact-type heater, a high-frequency induction coil, or the like is considered as a heating source. However, since it can correspond to an arbitrary shape of the sprayed base material and does not physically block the sprayed particles sprayed to the base material spraying portion, It is easiest and most effective to heat the base material by passing a transfer type arc current having the base material as an anode between the base material and the nozzle of the plasma gun. By this transition type arc, it is possible to maintain the portion to be sprayed of the base material being sprayed at 0.65 times or more the melting point of the material having the lowest melting point among the sprayed materials expressed in absolute temperature.

【0011】[0011]

【実施例】以下に添付の図面を参照して本発明の実施例
について詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0012】[0012]

【表1】 [Table 1]

【0013】溶射材料として表1に示したCoを主成分
とする超合金(融点1375℃)を用い、これを図1
(A)に示すようにして、プラズマガン7が発生するプ
ラズマジェット1にてSS400母材3(寸法:長さ1
00mm×幅30mm×厚さ12mm)の表面に50T
orrの減圧エア雰囲気下で溶射し、厚さ約2mmの溶
射皮膜8を形成した。この時、図1(B)に示すように
して母材3の表面から約1mm内部位置に熱電対9を接
触させて温度を測定し、母材3を正極とする移行型アー
ク電流を0〜200Aの間で制御することにより、母材
3の温度を一定に保った。溶射終了後、室温まで冷却し
た溶射皮膜8から図1(C)に示したL40mm×W4
mm×T1mmの試験片10を切り出し、図2に示す抗
折試験(JIS R 1601)を行った。また試験片
10の硬度も併せて測定した。
As a thermal spraying material, a superalloy containing Co as a main component shown in Table 1 (melting point 1375 ° C.) was used.
As shown in (A), the SS400 base material 3 (dimensions: length 1
50T on the surface of 00mm x 30mm x 12mm)
Thermal spraying was performed under a reduced pressure air atmosphere of orr to form a thermal spray coating 8 having a thickness of about 2 mm. At this time, as shown in FIG. 1 (B), a thermocouple 9 was brought into contact with a position approximately 1 mm from the surface of the base material 3 to measure the temperature. By controlling between 200 A, the temperature of the base material 3 was kept constant. After the thermal spraying was completed, the thermal spray coating 8 cooled to room temperature was used to obtain L40 mm × W4 shown in FIG.
A test piece 10 of mm × T1 mm was cut out and subjected to a bending test (JIS R 1601) shown in FIG. The hardness of the test piece 10 was also measured.

【0014】これらの結果を図3に示す。ここで横軸に
とった相対温度とは、絶対温度で表した皮膜材料融点に
対する絶対温度で表した皮膜温度の比である。相対温度
0.6を超えない温度で溶射したものは溶射中に割れが
生じ、試験片が採取できなかった。この温度領域では、
皮膜強度、延性が共に乏しく、溶射中の熱応力によって
簡単に破壊が生じる。
FIG. 3 shows the results. Here, the relative temperature on the horizontal axis is the ratio of the coating temperature expressed in absolute temperature to the melting point of the coating material expressed in absolute temperature. When sprayed at a temperature not exceeding 0.6 relative temperature, cracks occurred during spraying, and test pieces could not be collected. In this temperature range,
Both the film strength and ductility are poor, and easily broken by thermal stress during thermal spraying.

【0015】相対温度が0.6から0.65までは皮膜
の割れや剥離はなく、強度が増加することが分ったが、
試料の破断は脆性的であった。この領域を脆性域と呼
ぶ。
When the relative temperature was from 0.6 to 0.65, there was no cracking or peeling of the film, and it was found that the strength increased.
The fracture of the sample was brittle. This region is called a brittle region.

【0016】相対温度が約0.65を超えると、試料は
破断に至らずに著しい延性の向上が見られた。この領域
を延性域と呼ぶ。
When the relative temperature exceeded about 0.65, the sample exhibited a marked improvement in ductility without breaking. This region is called a ductile region.

【0017】相対温度が0.9を超えて溶射した場合、
プラズマ及び移行型アーク電流による表面からの入熱に
よって溶射皮膜表面の溶損が見られた。
When the relative temperature exceeds 0.9, thermal spraying is performed.
The erosion of the sprayed coating surface was observed by the heat input from the surface by the plasma and the transfer type arc current.

【0018】これらの事実に基づいて本発明に於ては、
溶射中の被溶射部表面直下の温度の下限を相対温度で
0.65とし、上限を相対温度で0.9とした。
Based on these facts, in the present invention,
The lower limit of the temperature immediately below the surface to be sprayed during the thermal spraying was set to 0.65 in relative temperature, and the upper limit was set to 0.9 in relative temperature.

【0019】[0019]

【表2】 [Table 2]

【0020】溶射材料として表2に示したNi基合金
(融点1400℃)を用いて上述と同様の手順を経て抗
折試験を実施した結果、図4に示したように、ここでも
相対温度が0.65以上で皮膜は延性域に入り、著しく
靭性が向上することが分った。すなわち、材料成分が全
く異なっているにも関わらず、この場合も前述のCo基
超合金と同様の傾向を示しており、相対温度を0.65
以上に保つことが溶射皮膜強度に非常に大きく寄与する
ことを示している。
As a result of performing a bending test using the Ni-based alloy (melting point 1400 ° C.) shown in Table 2 as a thermal spraying material through the same procedure as described above, the relative temperature was again increased as shown in FIG. At 0.65 or more, it was found that the film entered the ductile range and the toughness was significantly improved. That is, although the material components are completely different, the same tendency as in the above-mentioned Co-based superalloy is shown in this case, and the relative temperature is set to 0.65.
It is shown that maintaining the above value greatly contributes to the thermal spray coating strength.

【0021】次に直径42mm×長さ850mm(厚さ
9mm)のステンレス鋼管(SUS304)の表面に表
1に示した溶射材料を50Torrのアルゴンガス雰囲
気下で溶射したところ、図5に示すように、移行型アー
ク電流が0(A)、すなわちプラズマジェットのみの加
熱では、母材温度を約700℃、相対温度を0.59程
度にしか保てず、この温度では、図3に見るように、形
成される皮膜の強度、延性は共に低く、皮膜には簡単に
割れが生じた。ところが、移行型アーク電流量を増加さ
せるに従って保持可能な母材温度も増加し、設備の最高
電流量200(A)では970℃(相対温度0.75)
まで母材温度を上昇、維持することができ、図3で示し
た延性に富み、かつ強度が大きい皮膜の形成が可能であ
った。
Next, when a sprayed material shown in Table 1 was sprayed on a surface of a stainless steel pipe (SUS304) having a diameter of 42 mm × length 850 mm (thickness 9 mm) in an argon gas atmosphere of 50 Torr, as shown in FIG. When the transition type arc current is 0 (A), that is, when only the plasma jet is heated, the base material temperature can be maintained at only about 700 ° C. and the relative temperature can be maintained at only about 0.59. At this temperature, as shown in FIG. Both the strength and ductility of the formed film were low, and the film was easily cracked. However, the base material temperature that can be held increases as the transfer type arc current amount increases, and 970 ° C. (relative temperature 0.75) at the maximum current amount 200 (A) of the equipment.
It was possible to raise and maintain the base material temperature up to this point, and it was possible to form a film having high ductility and high strength as shown in FIG.

【0022】本試験材を軸方向の圧縮試験に供した結
果、5%以上の圧縮歪に対しても剥離や割れを全く生ぜ
ず、著しい延性の向上を示した。参考として大気中で行
う高速度フレーム溶射(HVOFと一般的に称される)
によって製作した試料では、2%の圧縮歪によって皮膜
の剥離が生じた。
As a result of subjecting this test material to a compression test in the axial direction, no peeling or cracking occurred even at a compression strain of 5% or more, and a remarkable improvement in ductility was shown. High-speed flame spraying in air (commonly referred to as HVOF) for reference
In the sample manufactured by the method described above, the peeling of the film was caused by the compression strain of 2%.

【0023】本実施例では、溶射中の雰囲気圧力は50
Torrとしたが、20〜100Torrの間であれば
溶射皮膜組織に顕著な違いはなく、上記実施例と同様の
効果が得られることが分った。しかしながら、100T
orrを超えた場合には、皮膜中の気孔の数が多くな
り、強度、延性の向上効果は低下する。また、20To
rrを下回る減圧下での溶射は、多大な設備能力を要求
し、設備費用が増大するため、本発明の主旨である安価
な溶射皮膜の形成方法には適当でない。
In this embodiment, the atmospheric pressure during thermal spraying is 50
Although it was set to Torr, there was no remarkable difference in the thermal spray coating structure when the pressure was between 20 and 100 Torr, and it was found that the same effect as in the above example was obtained. However, 100T
If it exceeds orr, the number of pores in the coating increases, and the effect of improving strength and ductility decreases. Also, 20To
Thermal spraying under reduced pressure below rr requires a large amount of equipment capacity and increases equipment costs, and is not suitable for the method of forming an inexpensive thermal spray coating which is the gist of the present invention.

【0024】[0024]

【発明の効果】以上説明したように、本発明による溶射
皮膜の形成方法によれば、溶射後に後加工を施す必要が
なく、かつ溶射皮膜の強度、延性を共に著しく向上する
ことが可能になり、従来では使用できなかった過酷な使
用環境での用途が拡大すると共に、溶射皮膜の信頼性が
著しく向上する。
As described above, according to the method for forming a thermal spray coating according to the present invention, it is not necessary to perform post-processing after thermal spraying, and it is possible to remarkably improve both the strength and the ductility of the thermal spray coating. In addition, the use in a severe use environment, which could not be used conventionally, is expanded, and the reliability of the thermal spray coating is remarkably improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に用いた試験片の製作手順を示す説明
図。
FIG. 1 is an explanatory view showing a procedure for manufacturing a test piece used in an example.

【図2】皮膜強度試験法を示す説明図。FIG. 2 is an explanatory view showing a film strength test method.

【図3】本発明に係わる成膜温度と溶射皮膜強度との関
係を示すグラフ。
FIG. 3 is a graph showing a relationship between a film forming temperature and a sprayed film strength according to the present invention.

【図4】別の溶射材料の場合の図3と同様のグラフ。FIG. 4 is a graph similar to FIG. 3 for another thermal spray material.

【図5】本発明に係わる成膜温度と移行型アーク電流と
の関係を示すグラフ。
FIG. 5 is a graph showing a relationship between a film forming temperature and a transition type arc current according to the present invention.

【図6】溶射皮膜の形成メカニズムを示す模式的な説明
図。
FIG. 6 is a schematic explanatory view showing a formation mechanism of a thermal spray coating.

【符号の説明】[Explanation of symbols]

1 プラズマジェット 2 溶射粒子 3 母材 4 既積層皮膜粒子 5 粒子 6 未溶融粒子 7 プラズマガン 8 溶射皮膜 9 熱電対 10 試験片 DESCRIPTION OF SYMBOLS 1 Plasma jet 2 Thermal spray particle 3 Base material 4 Pre-laminated coating particle 5 Particle 6 Unmelted particle 7 Plasma gun 8 Thermal spray coating 9 Thermocouple 10 Test piece

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1種以上の金属からなる溶射材料を減圧
不活性雰囲気下で溶射する際に、溶射母材の被溶射部位
の表面近傍の温度を、前記溶射材料を構成する材料のう
ち最も融点の低い材料の、絶対温度で表した融点の0.
65倍以上、0.9倍以下の温度に保って溶射すること
を特徴とする溶射皮膜形成方法。
When a thermal spray material made of one or more metals is thermally sprayed under a reduced-pressure inert atmosphere, the temperature of the thermal spray base material in the vicinity of the surface to be sprayed is adjusted to the most of the materials constituting the thermal spray material. The melting point of the material with a low melting point, expressed as an absolute temperature, of 0.
A method for forming a thermal spray coating, wherein the thermal spraying is performed while maintaining the temperature at 65 times or more and 0.9 times or less.
【請求項2】 1種以上の金属からなる溶射材料を減圧
不活性雰囲気下で金属溶射母材に溶射する際に、前記母
材とプラズマガンのノズル間に前記母材を陽極とする移
行型アーク電流を流し、前記母材の被溶射部位の表面近
傍の温度を、前記溶射材料を構成する材料のうち最も融
点が低い材料の、絶対温度で表した融点の0.65倍以
上、0.9倍以下の温度に保って溶射することを特徴と
する溶射皮膜形成方法。
2. A transition type in which a sprayed material made of one or more metals is sprayed onto a metal sprayed base material under a reduced-pressure inert atmosphere and the base material is an anode between the base material and a nozzle of a plasma gun. An arc current is applied to set the temperature of the base material near the surface to be sprayed to 0.65 times or more of the absolute melting point of the material having the lowest melting point among the materials constituting the sprayed material. A method for forming a thermal spray coating, wherein the thermal spraying is performed while maintaining the temperature at 9 times or less.
JP15597392A 1992-05-21 1992-05-21 Thermal spray coating formation method Expired - Fee Related JP2951108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15597392A JP2951108B2 (en) 1992-05-21 1992-05-21 Thermal spray coating formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15597392A JP2951108B2 (en) 1992-05-21 1992-05-21 Thermal spray coating formation method

Publications (2)

Publication Number Publication Date
JPH05320858A JPH05320858A (en) 1993-12-07
JP2951108B2 true JP2951108B2 (en) 1999-09-20

Family

ID=15617582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15597392A Expired - Fee Related JP2951108B2 (en) 1992-05-21 1992-05-21 Thermal spray coating formation method

Country Status (1)

Country Link
JP (1) JP2951108B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5756414B2 (en) * 2012-01-18 2015-07-29 株式会社神戸製鋼所 Heat transfer tube or header tube of open rack type vaporizer

Also Published As

Publication number Publication date
JPH05320858A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
EP0511318B1 (en) Plasma spraying of rapidly solidified aluminum base alloys
US20030082066A1 (en) Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders
US20040076540A1 (en) Welding material, gas turbine blade or nozzle and a method of repairing a gas turbine blade or nozzle
US20100028706A1 (en) Shaped body
EP1320460B1 (en) Article including a composite of unstabilized zirconium oxide particles in a metallic matrix, and its preparation
US5298095A (en) Enhancement of hot workability of titanium base alloy by use of thermal spray coatings
JP2022532894A (en) Nickel-based alloys for powders and powder manufacturing methods
US4562090A (en) Method for improving the density, strength and bonding of coatings
WO1995026419A1 (en) Liquid-phase diffusion bonding alloy foil for heat-resistant material which is joinable in oxidizing atmosphere
CN109604865A (en) For connecting the zirconium base solder of TiAl alloy Yu Ni based high-temperature alloy
US6824888B2 (en) Bonded body comprising beryllium member and copper or copper alloy member, and method of manufacturing the same
US5032190A (en) Sheet processing for ODS iron-base alloys
KR101422902B1 (en) Roll for hot rolling equipment and method for manufacturing the same
JP2951108B2 (en) Thermal spray coating formation method
JPH0778273B2 (en) Wing member surface treatment method
JP2736525B2 (en) Spray method
JPS5839228B2 (en) Composite hot tool material and its manufacturing method
JP4342700B2 (en) COATING MEMBER FOR ELECTRIC DEVICE AND MANUFACTURING METHOD THEREOF
JP3113738B2 (en) Manufacturing method of functionally graded material
JP2931384B2 (en) Continuous casting roll with excellent heat crack resistance
US3336120A (en) Molybdenum coated with heat-resistant alloys by casting
EP0513238B1 (en) Arc spraying of rapidly solidified aluminum base alloys
CN110893523B (en) High-strength copper-based amorphous brazing filler metal
JPS61186190A (en) Composite filter rod for building up by welding
KR950008690B1 (en) Cr2c system cermet coating make and powder made thereby

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990629

LAPS Cancellation because of no payment of annual fees