JP4287798B2 - Al-alloy heat transfer tube for open rack type vaporizer and method for manufacturing the Al-alloy heat transfer tube - Google Patents

Al-alloy heat transfer tube for open rack type vaporizer and method for manufacturing the Al-alloy heat transfer tube Download PDF

Info

Publication number
JP4287798B2
JP4287798B2 JP2004220466A JP2004220466A JP4287798B2 JP 4287798 B2 JP4287798 B2 JP 4287798B2 JP 2004220466 A JP2004220466 A JP 2004220466A JP 2004220466 A JP2004220466 A JP 2004220466A JP 4287798 B2 JP4287798 B2 JP 4287798B2
Authority
JP
Japan
Prior art keywords
coating
heat transfer
transfer tube
alloy
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004220466A
Other languages
Japanese (ja)
Other versions
JP2006038368A (en
Inventor
真司 阪下
龍哉 安永
季弘 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004220466A priority Critical patent/JP4287798B2/en
Publication of JP2006038368A publication Critical patent/JP2006038368A/en
Application granted granted Critical
Publication of JP4287798B2 publication Critical patent/JP4287798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Extrusion Of Metal (AREA)

Description

本発明は、オープンラック式気化器のAl合金製伝熱管およびそのAl合金製伝熱管の製造方法に関するものである。   The present invention relates to an Al alloy heat transfer tube of an open rack type vaporizer and a method of manufacturing the Al alloy heat transfer tube.

液化天然ガス(LNG)は、通常低温高圧の液状で移送または貯蔵されるが、実際に使用されるときには事前に気化される。例えば、海水との熱交換によってLNGを加温して気化させるオープンラック式気化器(以下、ORVという。)では、伝熱管の素材として熱伝導性が良好なアルミニウム合金が使用されている。しかしながら、アルミニウム合金は、海水との接触により腐食し、そして一旦腐食が始まると、その腐食部分が集中的に侵され、いわゆる孔があく孔腐食を受け易いという欠点がある。通常、ORVの伝熱管パネル(伝熱管の集合体)では、表面に犠牲防食金属(Al−Zn合金等)の溶射やクラッド等により犠牲防食金属被膜を形成して防食するようにしている。   Liquefied natural gas (LNG) is usually transported or stored in a liquid at a low temperature and high pressure, but is vaporized in advance when actually used. For example, in an open rack type vaporizer (hereinafter referred to as ORV) that heats and vaporizes LNG by heat exchange with seawater, an aluminum alloy having good thermal conductivity is used as a material for the heat transfer tube. However, the aluminum alloy is corroded by contact with seawater, and once corrosion starts, the corroded portion is intensively affected, so that it is susceptible to so-called perforation corrosion. Usually, in an ORV heat transfer tube panel (an assembly of heat transfer tubes), a sacrificial anticorrosive metal film is formed on the surface by thermal spraying or cladding of a sacrificial anticorrosive metal (Al—Zn alloy or the like) to prevent corrosion.

犠牲防食金属被膜としては、Zn量が2〜15質量%のAl−Zn合金を溶射法により形成して用いる場合が最も一般的で適用例が多い。溶射法によれば、伝熱管パネルを組み上げた後から犠牲防食金属被膜を形成させることが可能であり、実機使用後に腐食等により犠牲防食金属被膜が消失してしまった場合にも現地で再形成することができるという施工上の利点がある。これに対して、クラッド法では、伝熱管パネル製造前に予め伝熱管に犠牲防食金属被膜を形成させておかなければならず、実機使用後の再形成が困難であるため、溶射法に比較して施工性が劣るという欠点がある。しかしながら、クラッド法で形成した犠牲防食金属被膜であるクラッド被膜は気孔等の腐食起点となる欠陥が少ないため、溶射法により形成した溶射被膜よりも長寿命である。クラッド被膜を、クラッド被膜を再形成する必要がない程度に長寿命化することができれば、溶射法に対してクラッド法の施工上の欠点とは無関係に実用することができる。   As the sacrificial anticorrosive metal film, the most common case is the use of an Al—Zn alloy having a Zn content of 2 to 15% by mass formed by thermal spraying. According to the thermal spraying method, it is possible to form a sacrificial anti-corrosion metal coating after assembling the heat transfer tube panel, and even if the sacrificial anti-corrosion metal coating disappears due to corrosion after use of the actual machine, it is re-formed on site There is a construction advantage that can be done. On the other hand, in the clad method, a sacrificial anti-corrosion metal coating must be formed on the heat transfer tube in advance before manufacturing the heat transfer tube panel, and it is difficult to re-form after using the actual machine. There is a disadvantage that workability is inferior. However, the clad coating, which is a sacrificial anticorrosive metal coating formed by the cladding method, has a longer life than the thermal spray coating formed by the thermal spraying method because there are few defects such as pores as starting points of corrosion. If the life of the clad coating can be extended to such an extent that it is not necessary to re-form the clad coat, it can be put into practical use regardless of the drawbacks of the clad method for the thermal spraying method.

上記のような実情に鑑み、長期間に亘って伝熱管の基材を防食することを可能ならしめるようにした犠牲防食金属被膜として、厚さ1mm以上のクラッド被膜を形成させたスターフィンチューブ(以下、伝熱管という。)が提案されている。以下。この従来例に係る伝熱管を説明する。即ち、棒状の母材インゴットの外周面に被クラッド用のAl−Zn合金管を外嵌したクラッド素材を用いて押出し成型法により所要形状のフィンチューブを形成することにより、表面に所要厚みの犠牲陽極膜(犠牲防食金属被膜)がクラッドされた伝熱管を得る。このような方法で製造した伝熱管を、乾湿交互浸漬試験を行ったところ、一部ピッチングが散見されたものの、母材表面まで消耗した個所は皆無であるということが説明されている(例えば、特許文献1参照。)。
特開平5−164496号公報
In view of the above circumstances, as a sacrificial anti-corrosion metal coating that makes it possible to prevent corrosion of the base material of the heat transfer tube over a long period of time, a star fin tube (with a clad coating having a thickness of 1 mm or more ( Hereinafter, it is referred to as a heat transfer tube). Less than. A heat transfer tube according to this conventional example will be described. That is, a fin tube of a required shape is formed by extrusion molding using a clad material in which a clad Al-Zn alloy tube is fitted on the outer peripheral surface of a rod-shaped base material ingot, thereby sacrificing the required thickness on the surface. A heat transfer tube clad with an anode film (sacrificial anticorrosive metal coating) is obtained. When the heat transfer tube manufactured by such a method was subjected to a wet and dry alternate immersion test, it was explained that although there was some pitching, there were no places where the base material was consumed (for example, (See Patent Document 1).
Japanese Patent Laid-Open No. 5-16496

上記従来例に係る伝熱管では、犠牲防食金属被膜であるクラッド被膜の寿命は溶射法により形成したクラッド被膜に比較して改善されていると考えられる。しかしながら、伝熱管のクラッド被膜の損傷について検討した結果、下記のことが判明した。即ち、先ず、クラッド被膜の表面において孔腐食状の腐食が進行し、孔腐食部分における海水の流動によりキャビテーションエロージョンが発生し、海水の腐食作用との重畳によってクラッド被膜の損傷が加速されることを見出した。このようなクラッド被膜の損傷作用は海水の氷着と解氷による機械的作用よりも大きく、通常のクラッド被膜では密着性が不十分で犠牲防食金属被膜と基材とが比較的早く剥離してしまうことに起因するということが分った。   In the heat transfer tube according to the conventional example, it is considered that the life of the clad coating which is a sacrificial anticorrosive metal coating is improved as compared with the clad coating formed by the thermal spraying method. However, as a result of examining damage to the clad coating of the heat transfer tube, the following was found. That is, first of all, the corrosion of the pore coating progresses on the surface of the cladding coating, cavitation erosion occurs due to the flow of seawater in the pore corrosion portion, and the damage to the cladding coating is accelerated by the superposition with the corrosion action of the seawater. I found it. The damage effect of such clad coating is greater than the mechanical action of seawater icing and de-icing, and ordinary clad coating has insufficient adhesion and the sacrificial anticorrosive metal coating and the substrate peel off relatively quickly. It was found that it was caused by

即ち、クラッド法によりクラッド被膜を形成する際には、表面が荒れているとクラッドしたときに隙間が生じて耐腐食性が低下するという問題があるため、基材と被クラッド被膜素材との合わせ面を予め機械加工により平坦にしておくのが普通である。ところが、このようにしても密着性が十分であるとはいえず、実機の使用期間を勘案すると、上記従来例に係る伝熱管のクラッド被膜では寿命が不十分である。   In other words, when forming a clad film by the clad method, there is a problem that if the surface is rough, a gap is formed when clad and the corrosion resistance is lowered. Usually, the surface is previously flattened by machining. However, even if it does in this way, it cannot be said that adhesiveness is enough, and when the usage period of an actual machine is considered, the lifetime of the clad coating of the heat transfer tube according to the conventional example is insufficient.

従って、本発明の目的は、耐食性、耐サンドエロージョン性、耐エロージョンコロージョン性等に優れたORVのAl合金製伝熱管およびそのAl合金製伝熱管の製造方法を提供することである。   Accordingly, an object of the present invention is to provide an ORV Al alloy heat transfer tube excellent in corrosion resistance, sand erosion resistance, erosion corrosion resistance and the like, and a method for producing the Al alloy heat transfer tube.

上記課題を解決するために、本発明の請求項1に係るORVのAl合金製伝熱管が採用した手段は、Al合金からなる基材の表面に、この基材よりも電位が低い金属からなるクラッド被膜が形成されてなるオープンラック式気化器のAl合金製伝熱管において、前記クラッド被膜の厚さが400〜1000μmであり、クラッド被膜と基材との界面の平均粗さRaが0.1〜10μm、最大粗さRmaxが10〜100μmであり、またクラッド被膜と基材との界面を含む断面の100μm×100μmの範囲において間隔5μmの格子点法により求めた隙間面積率の10視野の平均値が0.10%未満であることを特徴とする。   In order to solve the above problems, the means adopted by the ORV Al alloy heat transfer tube according to claim 1 of the present invention is made of a metal having a lower potential than the base material on the surface of the base material made of Al alloy. In an Al-alloy heat transfer tube of an open rack type vaporizer formed with a clad film, the thickness of the clad film is 400 to 1000 μm, and the average roughness Ra of the interface between the clad film and the substrate is 0.1. Average of 10 fields of gap area ratio obtained by a lattice point method with an interval of 5 μm in a range of 100 μm × 100 μm of the cross section including the interface between the clad coating and the substrate, and having a maximum roughness Rmax of 10 to 100 μm The value is less than 0.10%.

また、本発明の請求項2に係るORVのAl合金製伝熱管が採用した手段は、請求項1に記載のORVのAl合金製伝熱管において、前記クラッド被膜が、1〜30質量%のZnを含有するAl−Zn合金であることを特徴とする。   Further, the means adopted by the ORV Al alloy heat transfer tube according to claim 2 of the present invention is the ORV Al alloy heat transfer tube according to claim 1, wherein the clad coating is 1 to 30% by mass of Zn. An Al—Zn alloy containing

また、本発明の請求項3に係るORVのAl合金製伝熱管の製造方法が採用した手段の要旨は、Al合金からなる基材の表面に、この基材よりも電位が低い金属からなるクラッド被膜が形成されてなるオープンラック式気化器のAl合金製伝熱管の製造方法において、前記クラッド被膜側の表面粗さの山数をN1とし、基材側の表面粗さの山数をN2としたとき(N1−N2)/N2×100で求められるΔN%の値と、クラッド被膜側の表面平均粗さをRa1とし、基材側の表面平均粗さをRa2としたとき(Ra1−Ra2)/Ra2×100で求められるΔRa%の値と、クラッド被膜側の表面最大粗さをRmax1とし、基材側の表面最大粗さをRmax2としたとき(Rmax1−Rmax2)/Rmax2×100で求められるΔRmax%の値とのそれぞれが20%以下になるように基材の表面とクラッド被膜の表面とを粗面化した後、クラッド化することを特徴とする。 Further, the gist of the means adopted by the method for manufacturing an ORV Al alloy heat transfer tube according to claim 3 of the present invention is that the surface of the base material made of Al alloy is clad made of a metal having a lower potential than the base material. In the method for manufacturing an Al alloy heat transfer tube of an open rack type vaporizer having a coating formed thereon, the number of surface roughness peaks on the cladding coating side is N 1 and the number of surface roughness peaks on the substrate side is N 1. the value of .DELTA.N% sought (N 1 -N 2) / N 2 × 100 when 2, the average surface roughness of cladding coating side is Ra 1, a surface roughness of the base material side and Ra 2 When (Ra 1 −Ra 2 ) / Ra 2 × 100, the value of ΔRa%, the maximum surface roughness on the clad coating side is Rmax 1 and the maximum surface roughness on the substrate side is Rmax 2 ΔRma sought (Rmax 1 -Rmax 2) / Rmax 2 × 100 After% each of the values of roughened the surface clad coating the surface of the substrate to be less than 20%, characterized by clad.

本発明の請求項1、または2に係るORVのAl合金製伝熱管、およびそのAl合金製伝熱管の製造方法によれば、犠牲防食金属被膜であるクラッド被膜の厚さを400μmにすることにより、その消耗速度とORVの使用期間を勘案すると十分な寿命を得ることができる。しかしながら、1000μmを超えると、孔腐食の孔内で腐食生成物の体積膨張作用が大きくなり、被膜剥離が起こり易くなる。従って、クラッド被膜の厚さを、400μm〜1000μmにすれば、腐食生成物の体積膨張作用の影響を抑制しながら、Al合金製伝熱管に対して十分な寿命を付与することができる。   According to the ORV Al alloy heat transfer tube of ORV according to claim 1 or 2 of the present invention and the method of manufacturing the Al alloy heat transfer tube, the thickness of the clad coating which is a sacrificial anticorrosive metal coating is set to 400 μm. Considering the consumption rate and the use period of the ORV, a sufficient life can be obtained. However, when the thickness exceeds 1000 μm, the volume expansion action of the corrosion product becomes large in the hole of the hole corrosion, and the film peeling tends to occur. Therefore, if the thickness of the clad coating is set to 400 μm to 1000 μm, a sufficient life can be given to the Al alloy heat transfer tube while suppressing the influence of the volume expansion effect of the corrosion product.

犠牲防食金属被膜であるクラッド被膜の割れや剥離の発生を防止するためには、伝熱管の基材とクラッド被膜との密着力をある程度高める必要がある。界面が粗い方が密着力にとって好ましく、平均粗さRaが0,1μm以上で、かつ最大粗さRmaxが10μm以上であることが必要である。ところが、最大粗さRmaxが100μmを超えると、クラッド形成時に界面の凹部に空隙が形成され、その空隙部分から起こり易いということや、使用時の腐食(孔腐食)の進展時に基材の露出部が早期に形成されるため、逆にクラッド被膜の寿命が低下する。従って、平均粗さRaを0,1μm以上、かつ最大粗さRmaxを10μm以上、100μm以下にすることにより、Al合金製伝熱管に対して十分な寿命を付与することができる。   In order to prevent the clad coating, which is a sacrificial anticorrosive metal coating, from cracking or peeling, it is necessary to increase the adhesion between the base material of the heat transfer tube and the clad coating to some extent. A rougher interface is preferable for the adhesion, and it is necessary that the average roughness Ra is 0.1 μm or more and the maximum roughness Rmax is 10 μm or more. However, if the maximum roughness Rmax exceeds 100 μm, voids are formed in the recesses at the interface during clad formation, and it is likely to occur from the voids, and the exposed portion of the base material during the progress of corrosion during use (hole corrosion) Is formed early, the life of the clad coating is conversely reduced. Therefore, by setting the average roughness Ra to 0.1 μm or more and the maximum roughness Rmax to 10 μm or more and 100 μm or less, it is possible to give a sufficient life to the Al alloy heat transfer tube.

伝熱管の基材には、通常3000系、5000系、あるいは6000系アルミニウム合金が用いられている。基材の表面に形成した被膜が犠牲防食金属として作用するためには、基材よりも電位が低くなければならないが、犠牲防食金属としてAl合金、Zn合金、Mg合金を使用することができる。3価のイオンとして溶解するAlは、2価イオンとして溶解するZnやMgよりも有効電気量が大きいため、少なくとも同じ基材防食効果が得られる。原子量から単純計算すると、1gの基材アルミニウム合金を防食するために要する溶解量は、Alでは1g、Mgでは1.4g、Znでは3.6gであるから、寿命(防食効果持続期間)の観点から最も好ましいのはAl合金である。但し、犠牲防食金属としてAl合金を用いる場合には、上記のとおり、基材として用いるアルミニウム合金よりも電位を低くする必要がある。被膜中のZnは電位を低下させる働きがあり、被膜を犠牲防食金属被膜として作用させるのに有効である。また、Znは被膜の硬度を高める作用を有するが、Znの添加量が1%未満であると被膜硬度が不足し、海水衝突によるエロージョン損傷を受け易い。一方、Znの添加量が30%を超えると、被膜自身の耐食性が低下する。従って、犠牲防食金属として、1〜30%のZnを添加したAl合金を用いることにより、Al合金製伝熱管に対して十分な寿命を付与することができる。   As the base material of the heat transfer tube, 3000 series, 5000 series, or 6000 series aluminum alloy is usually used. In order for the coating formed on the surface of the base material to act as a sacrificial anticorrosive metal, the potential must be lower than that of the base material, but an Al alloy, Zn alloy, or Mg alloy can be used as the sacrificial anticorrosive metal. Since Al that dissolves as trivalent ions has a larger amount of effective electricity than Zn or Mg that dissolves as divalent ions, at least the same substrate anticorrosive effect can be obtained. When calculated simply from the atomic weight, the amount of dissolution required for anticorrosion of 1 g of the base aluminum alloy is 1 g for Al, 1.4 g for Mg, and 3.6 g for Zn. Most preferred is an Al alloy. However, when an Al alloy is used as the sacrificial anticorrosive metal, the potential needs to be lower than that of the aluminum alloy used as the substrate as described above. Zn in the film has a function of lowering the potential, and is effective in causing the film to act as a sacrificial anticorrosive metal film. Zn has the effect of increasing the hardness of the coating, but if the added amount of Zn is less than 1%, the coating hardness is insufficient, and erosion damage due to seawater collision is likely to occur. On the other hand, if the added amount of Zn exceeds 30%, the corrosion resistance of the coating itself is lowered. Therefore, by using an Al alloy to which 1 to 30% of Zn is added as the sacrificial anticorrosive metal, a sufficient life can be imparted to the Al alloy heat transfer tube.

以下、本発明の形態に係るAl合金性伝熱管を説明する。図1は犠牲防食金属被膜の膜厚および粗大粗さ測定方法説明摸式図であり、図2は平均粗さRaの測定方法説明図である。本発明の形態に係るAl合金製伝熱管は、このAl合金製伝熱管の基材と犠牲防食金属被膜であるクラッド被膜の素材とを合わせて、押出しまたは引抜き加工によって製造するが、製造するに当たり、Al合金製伝熱管の犠牲防食金属被膜の膜厚、Al合金製伝熱管の基材と犠牲防食金属被膜の界面粗さ、Al合金製伝熱管の犠牲防食金属被膜中のZn量は、それぞれ下記のようにして決定される。   Hereinafter, an Al alloy heat transfer tube according to an embodiment of the present invention will be described. FIG. 1 is a schematic diagram for explaining a method for measuring the film thickness and coarse roughness of a sacrificial anticorrosive metal film, and FIG. 2 is a diagram for explaining a method for measuring average roughness Ra. The Al alloy heat transfer tube according to the embodiment of the present invention is manufactured by combining the base material of the Al alloy heat transfer tube and the material of the clad coating, which is a sacrificial anticorrosive metal coating, by extrusion or drawing. The film thickness of the sacrificial anticorrosion metal coating of the Al alloy heat transfer tube, the interface roughness between the base material of the Al alloy heat transfer tube and the sacrificial anticorrosion metal coating, and the Zn amount in the sacrificial anticorrosion metal coating of the Al alloy heat transfer tube are respectively It is determined as follows.

先ず、Al合金製伝熱管の犠牲防食金属被膜の膜厚については、下記のとおりである。即ち、犠牲防食金属被膜であるクラッド被膜はORVのAl合金製伝熱管を防食するために必要不可欠であり、クラッド被膜の膜厚を400μm以上にすることにより、その消耗速度とORVの使用期間からすると、十分な寿命を得ることができる。しかしながら、1000μmを超えると、孔腐食の孔内で腐食生成物の体積膨張作用が大きくなり、被膜剥離が起こり易くなる。従って、クラッド被膜の厚さを、400μm〜1000μmにすれば、腐食生成物の体積膨張作用の影響を抑制しながら、Al合金製伝熱管に対して十分な寿命を付与することができる。なお、図1に示すように、犠牲防食金属被膜を形成させたORVのAl合金製伝熱管の光学顕微鏡での断面写真(光学顕微鏡倍率は最大粗さに応じて適宜変更されるものである。)において、Al合金製伝熱管の基材の界面と表面部のそれぞれの凹凸範囲の中心間の距離を膜厚と定義し、任意の10視野の平均値として算出するものである。   First, the film thickness of the sacrificial anticorrosive metal coating of the Al alloy heat transfer tube is as follows. That is, the clad coating which is a sacrificial anti-corrosion metal coating is indispensable to prevent corrosion of ORV Al alloy heat transfer tubes. By increasing the thickness of the cladding coating to 400 μm or more, the consumption rate and the duration of use of the ORV are reduced. Then, a sufficient lifetime can be obtained. However, when the thickness exceeds 1000 μm, the volume expansion action of the corrosion product becomes large in the hole of the hole corrosion, and the film peeling tends to occur. Therefore, if the thickness of the clad coating is set to 400 μm to 1000 μm, a sufficient life can be given to the Al alloy heat transfer tube while suppressing the influence of the volume expansion effect of the corrosion product. In addition, as shown in FIG. 1, the cross-sectional photograph in the optical microscope of the heat transfer tube made from Al alloy of ORV in which the sacrificial anticorrosive metal film is formed (the optical microscope magnification is appropriately changed according to the maximum roughness). ), The distance between the centers of the irregularities of the interface and surface of the base material of the Al alloy heat transfer tube is defined as the film thickness, and is calculated as an average value of arbitrary 10 fields of view.

Al合金製伝熱管の基材と犠牲防食金属被膜の界面の粗さについては、下記のとおりである。即ち、犠牲防食金属被膜であるクラッド被膜の割れや剥離の発生を防止するためには、基材とクラッド被膜との密着力をある程度高める必要がある。界面が粗い方が密着力にとって好ましく、平均粗さRaが0,1μm以上で、かつ最大粗さRmaxが10μm以上であることが必要である。ところが、最大粗さRmaxが100μmを超えると、クラッド形成時に界面の凹部に空隙が形成され、その空隙部分から起こり易いということや、使用時の腐食(孔腐食)の進展時に基材の露出部が早期に形成されるため、逆にクラッド被膜寿命が低下する。従って、平均粗さRaが0,1μm以上で、かつ最大粗さRmaxが10μm以上、100μm以下にすることにより、Al合金製伝熱管に対して十分な寿命を付与することができる。ここで、規定するRaおよびRmaxは、クラッド被膜形成後の最終的な界面の粗さパラメータを意味するものである。   The roughness of the interface between the base material of the Al alloy heat transfer tube and the sacrificial anticorrosive metal coating is as follows. That is, in order to prevent the clad coating that is the sacrificial anticorrosive metal coating from cracking or peeling, it is necessary to increase the adhesion between the substrate and the clad coating to some extent. A rougher interface is preferable for the adhesion, and it is necessary that the average roughness Ra is 0.1 μm or more and the maximum roughness Rmax is 10 μm or more. However, if the maximum roughness Rmax exceeds 100 μm, voids are formed in the recesses at the interface during clad formation, and it is likely to occur from the voids, and the exposed portion of the base material during the progress of corrosion during use (hole corrosion) Is formed early, conversely, the life of the clad coating is reduced. Therefore, when the average roughness Ra is 0.1 μm or more and the maximum roughness Rmax is 10 μm or more and 100 μm or less, a sufficient life can be given to the Al alloy heat transfer tube. Here, Ra and Rmax to be defined mean the final interface roughness parameters after the clad coating is formed.

なお、最大粗さRmaxは、と犠牲防食金属被膜を形成させたORVのAl合金製伝熱管の光学顕微鏡での断面写真(光学顕微鏡倍率は最大粗さに応じて適宜変更されるものである。)において、図1に示すように、Al合金製伝熱管の基材の界面部の凹凸範囲の最大値を最大粗さと定義し、任意の10視野の最大値として算出するものとする。また、平均粗さRaは、図2に示すように、光学顕微鏡の視野において、Al合金製伝熱管の基材と犠牲防食金属被膜との界面の凹凸の中間線A−A′と凹凸曲線とに囲まれた面積に等しくなるような長方形を描いたときの長方形の縦の長さ(短片)に相当し、画像解析等の手法によって求めることが可能であり、このような方法で任意の10視野の平均値として算出するものである。実機のAl合金製伝熱管における界面の粗さの確認方法としては、基材と犠牲防食金属被膜の界面の粗さについては、Al合金製伝熱管の長手方向に水平切断した断面に関して測定することが好ましい。その理由は、用いるAl合金製伝熱管の曲率半径にもよるが。Al合金製伝熱管の長手方向に垂直に切断した断面では界面の中央線が曲線になるために、Ra、Rmaxを正確に測定することができないからである。   Note that the maximum roughness Rmax is a cross-sectional photograph of an ORV Al alloy heat transfer tube of an ORV formed with a sacrificial anticorrosive metal film in an optical microscope (the optical microscope magnification is appropriately changed according to the maximum roughness). 1), as shown in FIG. 1, the maximum value of the unevenness range of the interface portion of the base material of the Al alloy heat transfer tube is defined as the maximum roughness, and is calculated as the maximum value of any 10 visual fields. Further, as shown in FIG. 2, the average roughness Ra is determined by the intermediate line AA ′ and the uneven curve of the unevenness at the interface between the base material of the Al alloy heat transfer tube and the sacrificial anticorrosive metal film in the field of view of the optical microscope. This is equivalent to the vertical length (short piece) of a rectangle that is equal to the area surrounded by, and can be obtained by a technique such as image analysis. It is calculated as the average value of the visual field. As a method of confirming the roughness of the interface in the actual Al alloy heat transfer tube, the roughness of the interface between the base material and the sacrificial anti-corrosion metal coating should be measured with respect to the cross section cut horizontally in the longitudinal direction of the Al alloy heat transfer tube. Is preferred. The reason depends on the radius of curvature of the Al alloy heat transfer tube used. This is because Ra and Rmax cannot be measured accurately because the center line of the interface is a curve in the cross section cut perpendicularly to the longitudinal direction of the heat transfer tube made of Al alloy.

さらに、Ra、Rmaxを上記のように粗くした上で、Al合金製伝熱管の基材とクラッド被膜との界面に実質的に隙間がないことが必要である。隙間が存在すると、基材と被膜との密着性が劣り、また隙間から基材側に腐食が進み易くなるからである。実質的に隙間がないということは、基材と被膜との界面を含む断面を、光学顕微鏡により400倍で観察し、紙面上で間隔2mm(実態5μm)の格子点法により隙間面積率を求めた場合に、隙間面積率が0.10%未満である場合をいうものとする。隙間面積率は、光学顕微鏡により400倍で観察し、紙面上の20mm×20mmの範囲(実態50μm×50μm)に間隔1mm(実態2.5μm)の格子点において、隙間として認められた格子点の数を全格子点数で除したものとして定義されるものである。なお、隙間面積率は任意の10視野の平均値を用いるものとする。   Furthermore, after Ra and Rmax are roughened as described above, it is necessary that there is substantially no gap at the interface between the base material of the Al alloy heat transfer tube and the clad coating. This is because if there is a gap, the adhesion between the substrate and the coating is poor, and corrosion easily proceeds from the gap to the substrate. The fact that there is substantially no gap means that the cross section including the interface between the base material and the coating is observed 400 times with an optical microscope, and the gap area ratio is obtained by a lattice point method with an interval of 2 mm (actual 5 μm) on the paper surface. The gap area ratio is less than 0.10%. The gap area ratio was observed with an optical microscope at a magnification of 400 times, and the lattice point was recognized as a gap at a lattice point of 1 mm (actual 2.5 μm) in a 20 mm × 20 mm range (actual 50 μm × 50 μm) on the paper surface. It is defined as the number divided by the total number of grid points. In addition, the average value of arbitrary 10 visual fields shall be used for a clearance area ratio.

Al合金製伝熱管の犠牲防食金属被膜中の好ましいZn量については、下記のとおりである。即ち、LNGの低温に耐え得る材料としては、9%以上のNiを添加した鉄鋼、オーステナイト系ステンレス鋼(SUS304等)、アルミニウム合金、銅合金等がある。
ORVにおいては、熱伝導性、加工性、コスト等の観点から、伝熱管の基材としてはアルミニウム合金が最も好ましく、使用例が多い。伝熱管の基材には、通常3000系、5000系、あるいは6000系アルミニウム合金が用いられている。Al合金製伝熱管の表面に形成された被膜が犠牲防食金被膜として作用するためには、これらの基材よりも電位が低くなければならないが、犠牲防食金属被膜としてAl合金、Zn合金、Mg合金を使用することができる。3価のイオンとして溶解するAlは、2価イオンとして溶解するZnやMgよりも有効電気量が大きいため、少なくとも同じ基材防食効果が得られる。原子量から単純計算すると、1gの基材アルミニウム合金を防食するために要する溶解量は、Alでは1g、Mgでは1.4g、Znでは3.6gであるから、寿命(防食効果持続期間)の観点から最も好ましいのはAl合金である。
The preferable Zn content in the sacrificial anticorrosive metal coating of the Al alloy heat transfer tube is as follows. That is, as a material that can withstand the low temperature of LNG, there are iron steel added with 9% or more of Ni, austenitic stainless steel (SUS304, etc.), aluminum alloy, copper alloy and the like.
In ORV, from the viewpoints of thermal conductivity, workability, cost, etc., an aluminum alloy is most preferable as the base material of the heat transfer tube, and there are many examples of use. As the base material of the heat transfer tube, 3000 series, 5000 series, or 6000 series aluminum alloy is usually used. In order for the coating formed on the surface of the Al alloy heat transfer tube to act as a sacrificial anti-corrosion gold coating, the potential must be lower than these substrates, but as the sacrificial anti-corrosion metal coating, Al alloy, Zn alloy, Mg Alloys can be used. Since Al that dissolves as trivalent ions has a larger amount of effective electricity than Zn or Mg that dissolves as divalent ions, at least the same substrate anticorrosive effect can be obtained. When calculated simply from the atomic weight, the amount of dissolution required for anticorrosion of 1 g of the base aluminum alloy is 1 g for Al, 1.4 g for Mg, and 3.6 g for Zn. Most preferred is an Al alloy.

但し、Al合金製伝熱管の犠牲防食金属被膜としてAl合金を用いる場合、基材として用いるアルミニウム合金よりも電位を低くする必要がある。被膜中のZnは電位を低下させる働きがあり、被膜を犠牲防食金属被膜として作用させるのに有効である。また、Znは被膜の硬度を高める作用を有するが、Znの添加量が1%未満であると被膜硬度が不足し、海水衝突によるエロージョン損傷を受け易い。一方、Znの添加量が30%を超えると、被膜自身の耐食性が低下する。従って、犠牲防食金属被膜として、1〜30%のZnを添加したAl合金を用いることにより、Al合金製伝熱管に対して十分な寿命を付与することができる。なお、犠牲防食金属被膜中のZn量とは、被膜中の平均的なZn成分のことである。そして、犠牲防食金属被膜中のZn量は、犠牲防食金属被膜を形成させたAl合金製伝熱管からの剥離片を酸等の適当な溶媒に溶解させて、発光分析や原子吸光分析等の適当な分析方法で分析して求めることができる。   However, when an Al alloy is used as the sacrificial anticorrosive metal coating of the Al alloy heat transfer tube, the potential needs to be lower than that of the aluminum alloy used as the substrate. Zn in the film has a function of lowering the potential, and is effective in causing the film to act as a sacrificial anticorrosive metal film. Zn has the effect of increasing the hardness of the coating, but if the added amount of Zn is less than 1%, the coating hardness is insufficient, and erosion damage due to seawater collision is likely to occur. On the other hand, if the added amount of Zn exceeds 30%, the corrosion resistance of the coating itself is lowered. Therefore, by using an Al alloy to which 1 to 30% of Zn is added as the sacrificial anticorrosive metal coating, a sufficient life can be imparted to the Al alloy heat transfer tube. The amount of Zn in the sacrificial anticorrosive metal film is the average Zn component in the film. The amount of Zn in the sacrificial anticorrosive metal film is determined by dissolving the peeled piece from the Al alloy heat transfer tube on which the sacrificial anticorrosive metal film is formed in an appropriate solvent such as an acid, and performing appropriate analysis such as emission analysis or atomic absorption analysis. It can be obtained by analyzing with various analysis methods.

本発明の形態に係るAl合金製伝熱管は、上記のとおり、Al合金製伝熱管の基材と犠牲防食金属被膜とするクラッド被膜の素材とを合わせて、押出しまたは引抜き加工により製造される。製造する際は、Al合金製伝熱管の基材とクラッド被膜との合わせ面の粗さを調整することにより、クラッド被膜形成後の界面粗さを変化させることが可能である。
このとき、合わせ面の粗さ特性に差違が大きいと、界面に空隙が形成され、剥離が起こり易くなる。このような空隙の形成を抑制するために、合わせ面の粗さ特性に関しては、下記の式で表される山数の違いΔN、平均粗さの違いΔRa、最大粗さの違いΔRmaxをそれぞれ20%以下にするのが好ましい。なお、クラッド被膜形成時の圧下率や用いる素材の機械的特性によって状況が異なるので、両者の粗さの絶対値は特に制限されるものではない。
ΔN(%) =(クラッド被膜側の山数−基材側の山数)/基材側の山数×100
ΔRa(%) =(クラッド被膜側のRa−基材側のRa)/基材側のRa×100
ΔRmax(%)=(クラッド被膜側のRmax−基材側のRmax)/基材側のRmax×100
但し、山数とは、犠牲防食金属被膜を形成させたAl合金製伝熱管の光学顕微鏡での断面写真において、例えば図1に示すように、山と認められる数を評価した長さで除した値を算出し、任意の10視野についての平均値として定義されるものである。
As described above, the Al alloy heat transfer tube according to the embodiment of the present invention is manufactured by extrusion or drawing by combining the base material of the Al alloy heat transfer tube and the material of the clad coating used as the sacrificial anticorrosive metal coating. When manufacturing, it is possible to change the interface roughness after forming the clad film by adjusting the roughness of the mating surface of the base material of the Al alloy heat transfer tube and the clad film.
At this time, if there is a large difference in the roughness characteristics of the mating surfaces, voids are formed at the interface, and peeling tends to occur. In order to suppress the formation of such voids, regarding the roughness characteristics of the mating surfaces, the difference in the number of peaks ΔN, the difference in average roughness ΔRa, and the difference in maximum roughness ΔRmax expressed by the following formulas are 20 respectively. % Or less is preferable. In addition, since the situation differs depending on the rolling reduction at the time of forming the clad film and the mechanical characteristics of the material used, the absolute value of the roughness of both is not particularly limited.
ΔN (%) = (number of ridges on the clad coating side−number of ridges on the substrate side) / number of ridges on the substrate side × 100
ΔRa (%) = (Ra on the clad coating side−Ra on the substrate side) / Ra × 100 on the substrate side
ΔRmax (%) = (Rmax on the clad coating side−Rmax on the substrate side) / Rmax × 100 on the substrate side
However, the number of ridges is divided by the length evaluated as the number of peaks recognized as shown in FIG. 1, for example, in a cross-sectional photograph of an Al alloy heat transfer tube on which a sacrificial anticorrosive metal film is formed. The value is calculated and defined as the average value for any 10 fields of view.

ところで、基材の表面にクラッド被膜を形成させたAl合金製伝熱管を用いて伝熱管パネルを製造する場合、Al合金製伝熱管とヘッダーの接合部は、溶接のために機械加工が施される。この機械加工によってクラッド被膜が除去されてしまうため、接合部に別途防食を施す必要がある。機械加工部の防食方法としては、例えば重防食塗料の塗布や溶射法等が採用されるが、特に防食方法に限定されるものではない。   By the way, when manufacturing a heat transfer tube panel using an Al alloy heat transfer tube having a clad coating formed on the surface of the base material, the joint between the Al alloy heat transfer tube and the header is machined for welding. The Since the cladding film is removed by this machining, it is necessary to separately provide anticorrosion at the joint. As the anticorrosion method for the machined portion, for example, application of a heavy anticorrosion paint, a spraying method, or the like is adopted, but it is not particularly limited to the anticorrosion method.

以下、本発明の実施例1について説明する。本発明の実施例1では、Al合金基材として、寸法100×50×5mmのA3203材を用いて、片面に犠牲防食金属被膜を形成させた供試材を作成し、下記のとおりの種々の試験を行って性能を評価した。被膜材料No.1およびNo.2の犠牲防食金属被膜の形成方法は、溶線式フレーム溶射法(酸素+プロパン炎)である。そして、被膜材料No.3以降は、所定の成分および厚さ箔を基材に重ねて冷間圧延を行うという冷間圧延法によりクラッド被膜を形成させた。冷間圧延前にブラスト処理や機械加工を行って基材の表面粗さを予め変化させて、基材と被膜との界面のRaやRmaxを制御した。具体的には、ブラスト処理では基材の表面に平均粒径5〜80μmのアルミナ粒子を吹き付けて粗さを調整した。   Embodiment 1 of the present invention will be described below. In Example 1 of the present invention, a test material in which a sacrificial anticorrosive metal film was formed on one side using an A3203 material having dimensions of 100 × 50 × 5 mm as an Al alloy substrate was prepared. Tests were performed to evaluate performance. Coating material No. 1 and no. The method of forming the sacrificial anticorrosive metal film 2 is a hot wire flame spraying method (oxygen + propane flame). The coating material No. After 3, the clad film was formed by a cold rolling method in which a predetermined component and a thickness foil were stacked on a base material and cold rolling was performed. Prior to cold rolling, blasting and machining were performed to change the surface roughness of the substrate in advance, thereby controlling Ra and Rmax at the interface between the substrate and the coating. Specifically, in the blast treatment, the roughness was adjusted by spraying alumina particles having an average particle diameter of 5 to 80 μm on the surface of the substrate.

また、機械加工は番手の異なるベルトを用いてヘアライン仕上げを行って、基材の表面粗さを調整した。Rmaxが概ね50μm以下の供試材については、ブラスト処理を行い、Rmaxがそれ以上のものについては機械加工を行った。なお、供試材の被膜中のZn量は、以下の方法で測定した。即ち、鑢等を用いて供試材の被膜から削り取った粉末1gを、1mol/リットルの希塩酸に溶解させ、その溶解液のICP発光分光分析を行って被膜中のZn量を測定した。なお、被膜材料No.1〜7までは比較例に係る供試材であり、被膜材料No.8〜26までが、本発明に係る供試材である。これら被膜材料No.1〜26の試験結果は、下記表1(被膜材料No.1〜20までを表示)および表2(被膜材料No.21〜26までを表示)に示すとおりである。

Figure 0004287798
Figure 0004287798
In addition, the machining was performed with a hairline using belts having different counts to adjust the surface roughness of the substrate. The specimens with Rmax of about 50 μm or less were subjected to blasting, and those with Rmax of more than were machined. The Zn content in the coating film of the test material was measured by the following method. That is, 1 g of the powder scraped from the coating film of the test material using a scissors or the like was dissolved in 1 mol / liter of diluted hydrochloric acid, and the dissolved solution was subjected to ICP emission spectroscopic analysis to measure the Zn content in the coating film. The coating material No. 1 to 7 are test materials according to the comparative example, and the coating material No. 8 to 26 are test materials according to the present invention. These coating material Nos. The test results of 1 to 26 are as shown in the following Table 1 (displaying film materials No. 1 to 20) and Table 2 (displaying film material Nos. 21 to 26).
Figure 0004287798
Figure 0004287798

実機の伝熱管パネルは、伝熱管パネルの入口側(通常は下部である。)ではLNGがまだ気化していないため低温であり、出口側(通常は上部である。)では既に気化して常温となっている。従って、ORVの稼動時には停止時に比べて、上下の温度差により伝熱管パネルの全体が変形する傾向がある。そこで、製作した試験片に対して、JISZ2248に準じる方法で押し曲げ試験を行い、このような伝熱管パネルの変形に対する耐久性を調べた。試験片の曲げ方向は被膜の表面および裏面の両面であり、曲げ角度は90度までとした。試験後の被膜損傷状況を目視観察し、何れかの曲げ方向で被膜に割れや剥離が発生した供試材は×印評価(割れや剥離あり)とし、発生しなかった供試材は○印評価(割れや剥離なし)とした。   The actual heat transfer tube panel is cold at the inlet side (usually the lower part) of the heat transfer tube panel because LNG has not yet vaporized, and is already vaporized at the outlet side (usually the upper part). It has become. Therefore, when the ORV is in operation, the entire heat transfer tube panel tends to be deformed due to the temperature difference between the upper and lower sides compared to when the ORV is stopped. Therefore, a push-bending test was performed on the manufactured test piece by a method according to JISZ2248, and the durability against such deformation of the heat transfer tube panel was examined. The bending direction of the test piece was both the front and back surfaces of the coating, and the bending angle was up to 90 degrees. Visually observe the coating damage after the test, and the specimens that cracked or peeled off in any of the bending directions were evaluated as x (cracking or peeling). The specimens that did not occur were marked with ○. Evaluation (no cracking or peeling) was made.

被膜材料No.1〜20までの供試材の押し曲げ試験結果は、表1の「曲げ試験*1」に示すとおりであり、被膜材料No.21〜26までの供試材の押し曲げ試験結果は、表2の「曲げ試験*1」に示すとおりである。即ち、最も一般的な溶射被膜の供試材(被膜材料No.1,2)や本願請求の範囲と外れている被膜/基材の界面、隙間面積率等の条件を有する供試材(被膜材料No.3〜7)では×印評価であり、特に隙間面積率が0.23の被膜材料No.4については割れが発生した。本願請求の範囲の界面粗さに制御した供試材(被膜材料No.8〜26)については、何れも割れや剥離が発生せず、優れた密着性を有していることが分った。なお、実機では90度まで変形が進むことはないが、加速試験の位置付けとして実施したものである。   Coating material No. The results of the push bending test of the test materials 1 to 20 are as shown in “Bending test * 1” in Table 1. The results of the push bending test of the test materials 21 to 26 are as shown in “Bending test * 1” in Table 2. That is, the most common thermal sprayed coating material (coating material Nos. 1 and 2), the coating material / substrate interface that deviates from the scope of claims of the present application, and the test material (coating material) having conditions such as the gap area ratio Material Nos. 3 to 7) are evaluated as x, and in particular, the coating material No. For 4, cracking occurred. About the test material (film material No. 8-26) controlled to the interface roughness of the claim of this application, neither crack nor peeling generate | occur | produced and it turned out that it has the outstanding adhesiveness. . In the actual machine, the deformation does not progress up to 90 degrees, but it was carried out as a positioning for the acceleration test.

実機では、ORVの起動・停止によって伝熱管が低温−室温の熱サイクルを受け、このときの氷着と解氷の繰り返しによる機械的作用や熱応力で犠牲防食金属被膜に割れや剥離が発生する場合がある。これに対する劣化特性を調べるために、LNGよりも沸点温度が低温の液体窒素を用いて熱サイクル試験を行った。試験条件は、液体窒素に5分間浸漬した後、60℃に温度調整した恒温器内に55分間保持するという熱サイクルを1日当たり8回繰返し、これを30日間継続した。1日の熱サイクル試験が終了したサンプルは、次の日の熱サイクル試験を実施するまで室温のデシケータ内で保管した。   In the actual machine, the heat transfer tube undergoes a low temperature-room temperature thermal cycle due to the start / stop of the ORV, and the sacrificial anticorrosive metal coating is cracked or peeled off due to mechanical action and thermal stress due to repeated ice deposition and de-icing at this time. There is a case. In order to investigate the deterioration characteristics against this, a thermal cycle test was performed using liquid nitrogen having a boiling point lower than that of LNG. As test conditions, a thermal cycle of dipping in liquid nitrogen for 5 minutes and holding for 55 minutes in a thermostat adjusted to 60 ° C. was repeated 8 times per day, and this was continued for 30 days. Samples for which the one-day thermal cycle test was completed were stored in a room temperature desiccator until the next day's thermal cycle test was performed.

試験後に犠牲防食金属被膜の割れや剥離の発生状況を目視により観察した結果(×印;割れや剥離あり、○印;割れや剥離なし)は、表1および表2の「熱サイクル試験*2」に示すとおりである。この熱サイクル試験結果によれば、最も一般的な溶射被膜の供試材(被膜材料No.1,2)や供試材(被膜材料No.3〜7)には割れや剥離が発生したが、本願請求の範囲の界面粗さに制御した供試材(被膜材料No.8〜26)については、何れも割れや剥離は認められなかった。このような液体窒素−室温の温度変化により犠牲防食金属被膜に割れや剥離が発生しないことから、これよりも温度差が少ない実機のLNG−室温の温度変化に対しても十分耐久性があるものと判断することができる。   The results of visual observation of the occurrence of cracking and peeling of the sacrificial anticorrosive metal coating after the test (× mark; with cracking and peeling, ○ mark; without cracking and peeling) are shown in “Thermal cycle test * 2” in Table 1 and Table 2. As shown in FIG. According to the results of this thermal cycle test, cracks and peeling occurred in the most common sprayed coating specimens (coating material Nos. 1 and 2) and specimens (coating material Nos. 3 to 7). No cracking or peeling was observed in any of the test materials (coating material Nos. 8 to 26) controlled to the interface roughness within the scope of claims of the present application. Since the sacrificial anticorrosive metal coating does not crack or peel off due to such temperature change of liquid nitrogen-room temperature, it has sufficient durability against temperature change of actual machine LNG-room temperature with less temperature difference than this. It can be judged.

実機の伝熱管では、被膜の表面において腐食が孔食状に進行し、この孔食部分における海水の流動によりキャビテーションエロージョンが発生して、海水の腐食作用との重畳によって被膜の損傷が加速される。このような状態を模擬する試験として、試験片の被膜の形成面に垂直に人工海水を吹き付けることにより表面を腐食させて被膜の割れや剥離の状況を調べた。試験片の表面以外はシリコンシーラントで被覆し、また吹き付ける人工海水は温度を0℃に制御し、内径5mmφの4フッ化エチレン樹脂からなるノズルから試験片に吹き付けて、キャビテーションエロージョン作用と腐食作用を重畳した。実機において、自然落下により伝熱管に衝突する海水の速度は、ORVの大きさにも依存するが概ね2〜4m/sである。本実施例における試験では、人工海水の拭き付け速度を10m/sと実機の場合よりも高速とし、損傷を加速した。試験時間は12ヶ月で、1日毎に犠牲防食金属被膜の割れや剥離の発生状況を目視で観察して、試験開始から割れや剥離が発生するまでの時間を評価した。   In actual heat transfer tubes, corrosion progresses in a pitting-like manner on the surface of the coating, and cavitation erosion occurs due to the flow of seawater in this pitting portion, and damage to the coating is accelerated by superimposition with the corrosive action of seawater. . As a test for simulating such a state, artificial seawater was sprayed perpendicularly to the coating surface of the test piece to corrode the surface, and the state of cracking or peeling of the coating was investigated. The surface of the test piece is covered with a silicon sealant, and the artificial seawater to be sprayed is controlled at a temperature of 0 ° C. The test piece is sprayed from a nozzle made of tetrafluoroethylene resin with an inner diameter of 5 mmφ to cause cavitation erosion and corrosion. Superimposed. In the actual machine, the speed of the seawater colliding with the heat transfer tube due to natural fall is approximately 2 to 4 m / s, although it depends on the size of the ORV. In the test in this example, the wiping speed of artificial seawater was 10 m / s, which was higher than that of the actual machine, and the damage was accelerated. The test time was 12 months, and the occurrence of cracking and peeling of the sacrificial anticorrosive metal film was visually observed every day to evaluate the time from the start of the test until cracking and peeling occurred.

試験後に犠牲防食金属被膜の割れや剥離の発生状況を目視により観察した結果は、表1および表2の「腐食試験*3」に示すとおりである。これら表1および表2の「腐食試験*3」において、◎印;は12ヶ月経過しても割れや剥離なし、○印:9〜12ヶ月で割れや剥離発生、△印:6〜9ヶ月で割れや剥離発生、×印:6ヶ月未満で割れや剥離発生した場合をそれぞれ示すものである。この腐食試験結果によれば、最も一般的な溶射被膜の供試材(被膜材料No.1,2)や本願の範囲から外れた範囲の供試材(被膜材料No.3,5〜7)は、6ヶ月未満で犠牲防食金属被膜に割れや剥離が発生した。ただ、被膜材料No.4では6〜9ヶ月で、やや犠牲防食金属被膜の割れや剥離の発生期間が延長されているが、不十分なレベルである。これに対して、本願請求の範囲の界面粗さに制御した供試材(被膜材料No.8〜26)については、犠牲防食金属被膜の割れや剥離の発生期間は9ヶ月以上に延長されており、実機環境において十分な密着性を有していると考えられる。特に、Zn量を1〜30%としたAl−Zn合金のクラッド被膜では、高硬度で、耐食性も良好であるため海水衝突のエロージョン作用や海水の腐食作用に対して耐性があり、割れや剥離が発生しにくくなっていることが良く示されている。   The results of visual observation of the occurrence of cracking and peeling of the sacrificial anticorrosive metal film after the test are as shown in “Corrosion Test * 3” in Tables 1 and 2. In these “corrosion tests * 3” in Tables 1 and 2, “A” indicates no cracking or peeling even after 12 months, ○: Cracking or peeling occurs after 9 to 12 months, Δ: 6 to 9 months , Cracking and peeling occurrence, x mark: shows the case where cracking and peeling occurred in less than 6 months. According to the results of this corrosion test, the most common spray coating specimens (coating material Nos. 1 and 2) and specimens outside the scope of the present application (coating material Nos. 3, 5 to 7) In less than 6 months, the sacrificial anticorrosive metal film was cracked or peeled off. However, the coating material No. In No. 4, the period of occurrence of cracking and peeling of the sacrificial anticorrosive metal coating is somewhat extended in 6 to 9 months, but it is an insufficient level. On the other hand, for the test materials (coating material Nos. 8-26) controlled to the interface roughness within the scope of claims of the present application, the period of occurrence of cracking and peeling of the sacrificial anticorrosive metal coating is extended to 9 months or more. Therefore, it is considered that there is sufficient adhesion in the actual machine environment. In particular, an Al-Zn alloy clad coating with a Zn content of 1 to 30% has high hardness and good corrosion resistance, so it is resistant to the erosion action of seawater collision and the corrosive action of seawater, and cracks and peeling It is well shown that is less likely to occur.

次に、本発明の実施例2について説明する。本発明の実施例2の場合には、Al合金基材としてA5083材を用いて、押出しにより外周面にクラッド被膜を形成させたパイプ(外径;50mm,内径;34mm.長さ;300mm)により性能評価を行った。評価試験に用いた犠牲防食金属被膜の被膜材料と合わせ面との粗さ特性は、被膜材料No.27〜40までのデータを示す表3のとおりである。合わせ面の粗さは、上記実施例1の場合と同様に、平均粒径5〜80μmのアルミナ粒子の吹き付けによるブラスト処理や番手の異なるベルトを用いたヘアライン加工によって、押出し前に予め調整しておいた。上記実施例1の場合と同様の方法で実施した熱サイクル試験の結果は、表3の「熱サイクル試験*2」に示すとおりである。

Figure 0004287798
Next, a second embodiment of the present invention will be described. In the case of Example 2 of the present invention, a pipe (outer diameter: 50 mm, inner diameter: 34 mm, length: 300 mm) in which an A5083 material was used as an Al alloy substrate and a clad coating was formed on the outer peripheral surface by extrusion was used. Performance evaluation was performed. The roughness characteristics between the coating material and the mating surface of the sacrificial anticorrosive metal coating used in the evaluation test are as follows. It is as Table 3 which shows the data to 27-40. The roughness of the mating surfaces is adjusted in advance before extrusion by blasting by spraying alumina particles having an average particle diameter of 5 to 80 μm or hairline processing using belts having different counts as in the case of Example 1 above. Oita. The results of the thermal cycle test performed by the same method as in Example 1 are as shown in “Thermal cycle test * 2” in Table 3.
Figure 0004287798

被膜材料No.27では界面のRaが、被膜材料No.28では界面のRmaxが、被膜材料No.29では界面のRmaxと隙間面積率が、被膜材料No.30では界面の隙間面積率がそれぞれ不適切であったため、Al合金基材と被膜との密着性が不十分で剥離の発生が認められた。それに対して、界面の粗さ特性を本願の範囲内に制御した被膜材料No.31〜40については、被膜が剥離しておらず、熱サイクルに対して優れた耐久性があることが分かる。   Coating material No. 27, the Ra of the interface is the coating material No. 28, the Rmax of the interface is the coating material No. 29, the Rmax of the interface and the gap area ratio are the coating material No. In No. 30, since the gap area ratio of the interface was inappropriate, the adhesion between the Al alloy substrate and the coating was insufficient, and the occurrence of peeling was recognized. On the other hand, the coating material No. in which the roughness characteristics of the interface are controlled within the scope of the present application. About 31-40, the film has not peeled and it turns out that there exists the outstanding durability with respect to a heat cycle.

上記実施例1の場合と同様の方法で実施した被膜材料の腐食試験の結果は、表3の「腐食試験*3」に示すとおりである。試験溶液である人工海水は、垂直方向からパイプの中央部に衝突するようにした。この試験の場合には、パイプの内部に試験溶液が入るのを防ぐために、パイプそれぞれの両端部にアクリル樹脂板(寸法;60×60×8mm)を接着して、その開口を塞いだ上で腐食試験に供した。これら各パイプの腐食試験の結果は、上記熱サイクル試験結果の場合と同様に、被膜材料No.27では界面のRaが、被膜材料No.28では界面のRmaxが、被膜材料No.29では界面のRmaxと隙間面積率が、被膜材料No.30では界面の隙間面積率がそれぞれ不適切であったため、Al合金基材と被膜との密着性が不十分で人工海水の衝突力あるいは腐食生成物の体積膨張圧に耐えきれず剥離の発生が認められた。それに対して、界面の粗さ特性を本願の範囲内に制御した被膜材料No.31〜40については、被膜が剥離しておらず、腐食に対して優れた耐久性があることが分かる。なお、被覆中のZn量を1〜30%に制御したものの耐食性は特に優れていることが分かる。   The results of the corrosion test of the coating material performed in the same manner as in Example 1 are as shown in “Corrosion Test * 3” in Table 3. The artificial seawater as the test solution collided with the center of the pipe from the vertical direction. In this test, in order to prevent the test solution from entering the pipe, an acrylic resin plate (dimension: 60 × 60 × 8 mm) is adhered to both ends of each pipe and the opening is closed. It was subjected to a corrosion test. The result of the corrosion test of each of these pipes is the same as in the case of the above thermal cycle test result. 27, the Ra of the interface is the coating material No. 28, the Rmax of the interface is the coating material No. 29, the Rmax of the interface and the gap area ratio are the coating material No. In 30, the gap area ratio at the interface was inappropriate, so the adhesion between the Al alloy substrate and the coating was insufficient, and could not withstand the impact force of artificial seawater or the volume expansion pressure of the corrosion products, and peeling occurred. Admitted. On the other hand, the coating material No. in which the roughness characteristics of the interface are controlled within the scope of the present application. About 31-40, the film has not peeled and it turns out that there exists the outstanding durability with respect to corrosion. In addition, it turns out that the corrosion resistance of what controlled the Zn amount in coating | cover to 1 to 30% is especially excellent.

以上の試験片による実施例1では、冷間圧延によるクラッド法の場合を例に挙げ、またパイプによる実施例2では、押出しによるクラッド法の場合を例に挙げた。しかしながら、例えば爆発圧着法等他のクラッド被膜形成方法でも、本発明と同等の効果を得ることができるので、犠牲防食金属被膜を形成する方法は、冷間圧延や押出しによるクラッド法に限定されるものではない。また、粗さの制御方法に関しても、上述の方法に限定されるものではなく、例えばブラスト処理ではアルミナ粒子以外のセラミックス粒子やガラスビーズを用いてもよい。機械加工もヘアライン仕上げ以外の加工(研削加工等)でも本発明と同等の効果を得ることができる。   In Example 1 using the above test piece, the case of the clad method by cold rolling was taken as an example, and in Example 2 using a pipe, the case of the clad method by extrusion was taken as an example. However, for example, other clad film forming methods such as the explosive pressure bonding method can obtain the same effect as the present invention, and therefore the method of forming the sacrificial anticorrosive metal film is limited to the clad method by cold rolling or extrusion. It is not a thing. Further, the roughness control method is not limited to the above-described method. For example, ceramic particles other than alumina particles or glass beads may be used in the blast treatment. An effect equivalent to that of the present invention can be obtained by machining (such as grinding) other than hairline finishing.

犠牲防食金属被膜の膜厚および粗大粗さ測定方法説明摸式図である。It is a schematic diagram explaining the film thickness and coarse roughness measuring method of a sacrificial anticorrosive metal film. 平均粗さRaの測定方法説明図である。It is explanatory drawing of the measuring method of average roughness Ra.

Claims (3)

Al合金からなる基材の表面に、この基材よりも電位が低い金属からなるクラッド被膜が形成されてなるオープンラック式気化器のAl合金製伝熱管において、前記クラッド被膜の厚さが400〜1000μmであり、クラッド被膜と基材との界面の平均粗さRaが0.1〜10μm、最大粗さRmaxが10〜100μmであり、またクラッド被膜と基材との界面を含む断面の100μm×100μmの範囲において間隔5μmの格子点法により求めた隙間面積率の10視野の平均値が0.10%未満であることを特徴とするオープンラック式気化器のAl合金製伝熱管。   In an Al alloy heat transfer tube of an open rack vaporizer in which a clad coating made of a metal having a lower potential than the base material is formed on the surface of a base material made of an Al alloy, the thickness of the clad coating is 400 to 400 mm. The average roughness Ra of the interface between the clad coating and the substrate is 0.1 to 10 μm, the maximum roughness Rmax is 10 to 100 μm, and the cross section including the interface between the cladding coating and the substrate is 100 μm × An Al alloy heat transfer tube for an open rack type vaporizer, characterized in that an average value of 10 fields of gap area ratio obtained by a lattice point method with an interval of 5 μm in a range of 100 μm is less than 0.10%. 前記クラッド被膜が、1〜30質量%のZnを含有するAl−Zn合金であることを特徴とする請求項1に記載のオープンラック式気化器のAl合金製伝熱管。   2. The Al alloy heat transfer tube of an open rack type vaporizer according to claim 1, wherein the clad coating is an Al-Zn alloy containing 1 to 30% by mass of Zn. Al合金からなる基材の表面に、この基材よりも電位が低い金属からなるクラッド被膜が形成されてなるオープンラック式気化器のAl合金製伝熱管の製造方法において、前記クラッド被膜側の表面粗さの山数をN1とし、基材側の表面粗さの山数をN2としたとき(N1−N2)/N2×100で求められるΔN%の値と、クラッド被膜側の表面平均粗さをRa1とし、基材側の表面平均粗さをRa2としたとき(Ra1−Ra2)/Ra2×100で求められるΔRa%の値と、クラッド被膜側の表面最大粗さをRmax1とし、基材側の表面最大粗さをRmax2としたとき(Rmax1−Rmax2)/Rmax2×100で求められるΔRmax%の値とのそれぞれが20%以下になるように基材の表面とクラッド被膜の表面とを粗面化した後、クラッド化することを特徴とするオープンラック式気化器のAl合金製伝熱管の製造方法。

In the manufacturing method of an Al alloy heat transfer tube of an open rack type vaporizer in which a clad coating made of a metal having a lower potential than the base material is formed on the surface of a base material made of an Al alloy, the surface on the clad coating side number of peaks of roughness and N 1, and the value of .DELTA.N% sought (N 1 -N 2) / N 2 × 100 when the number of peaks of the surface roughness of the substrate side was N 2, cladding coating side When the surface average roughness is Ra 1 and the surface average roughness on the substrate side is Ra 2 , the value of ΔRa% obtained by (Ra 1 −Ra 2 ) / Ra 2 × 100 and the surface on the clad coating side When the maximum roughness is Rmax 1 and the maximum surface roughness on the substrate side is Rmax 2 , the value of ΔRmax% obtained by (Rmax 1 −Rmax 2 ) / Rmax 2 × 100 is 20% or less. Roughen the surface of the substrate and the surface of the cladding film After manufacturing method of Al alloy heat exchanger tube of the open rack type vaporizer, characterized in that the clad.

JP2004220466A 2004-07-28 2004-07-28 Al-alloy heat transfer tube for open rack type vaporizer and method for manufacturing the Al-alloy heat transfer tube Active JP4287798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004220466A JP4287798B2 (en) 2004-07-28 2004-07-28 Al-alloy heat transfer tube for open rack type vaporizer and method for manufacturing the Al-alloy heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004220466A JP4287798B2 (en) 2004-07-28 2004-07-28 Al-alloy heat transfer tube for open rack type vaporizer and method for manufacturing the Al-alloy heat transfer tube

Publications (2)

Publication Number Publication Date
JP2006038368A JP2006038368A (en) 2006-02-09
JP4287798B2 true JP4287798B2 (en) 2009-07-01

Family

ID=35903537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004220466A Active JP4287798B2 (en) 2004-07-28 2004-07-28 Al-alloy heat transfer tube for open rack type vaporizer and method for manufacturing the Al-alloy heat transfer tube

Country Status (1)

Country Link
JP (1) JP4287798B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834513B2 (en) * 2006-10-31 2011-12-14 株式会社神戸製鋼所 Heat transfer tube for LNG vaporizer, manufacturing method thereof, and LNG vaporizer using the same
JP5882615B2 (en) * 2011-06-30 2016-03-09 株式会社Uacj Aluminum alloy inner surface grooved tube for air conditioner, air conditioner including the grooved tube, aluminum alloy inner surface grooved tube manufacturing method, and air conditioner aluminum inner surface grooved tube manufacturing method
JP6075782B2 (en) * 2012-12-05 2017-02-08 株式会社神戸製鋼所 Method for manufacturing heat transfer tube for LNG vaporizer and heat transfer tube for LNG vaporizer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346393A (en) * 1986-08-11 1988-02-27 Kawasaki Heavy Ind Ltd Heat transfer tube
JPH05164496A (en) * 1991-12-17 1993-06-29 Tokyo Gas Co Ltd Fin tube for open rack type carburetor
JP2984889B2 (en) * 1992-07-08 1999-11-29 新日本製鐵株式会社 High carbon steel wire or steel wire excellent in wire drawability and method for producing the same
JPH11269588A (en) * 1998-03-19 1999-10-05 Furukawa Electric Co Ltd:The High corrosion resistant aluminum clad material for heat exchanger, and heat exchanger tube material using the same
JPH11302761A (en) * 1998-04-17 1999-11-02 Furukawa Electric Co Ltd:The Aluminum alloy sacrificial anode material for heat exchanger and high corrosion-resistant aluminum alloy composite material for heat exchanger

Also Published As

Publication number Publication date
JP2006038368A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
CN107250418B (en) Hot-dip Al-Zn-Mg-Si-coated steel sheet and method for producing same
Geng et al. Effect of sandblasting and subsequent acid pickling and passivation on the microstructure and corrosion behavior of 316L stainless steel
JP4796362B2 (en) Heat transfer tube for LNG vaporizer and method for manufacturing the same
US8038894B2 (en) Method of selectively stripping an engine-run ceramic coating
US10822685B2 (en) Hot-dip Al alloy coated steel sheet and method of producing same
WO2018181391A1 (en) Hot-dipped al coated steel sheet and method for producing hot-dipped al coated steel sheet
JP6075782B2 (en) Method for manufacturing heat transfer tube for LNG vaporizer and heat transfer tube for LNG vaporizer
ES2934125T3 (en) Procedure for galvanizing, in particular hot-dip galvanizing, of iron and steel products
JP4287798B2 (en) Al-alloy heat transfer tube for open rack type vaporizer and method for manufacturing the Al-alloy heat transfer tube
WO2017159054A1 (en) Member formed from aluminum alloy and lng vaporizer
JP2006002223A (en) Corrosion resistant film
JP5144629B2 (en) Heat transfer tube and header tube of open rack type vaporizer
WO2017203805A1 (en) Member formed from aluminum alloy and lng vaporizer
US20150075756A1 (en) Surface treatment for corrosion resistance of aluminum
JP2005265393A (en) Heat transfer pipe for open rack type vaporizer
JP4773780B2 (en) Heat transfer tube for LNG vaporizer and LNG vaporizer using the same
JP2003239085A (en) Inorganic film clad copper or copper alloy member, method of forming inorganic film to surface of copper or copper alloy member, heat exchanger for hot-water supply device, and method of manufacturing the same
JP2014237864A (en) Manufacturing method of coated member and coated member
JP4398784B2 (en) Heat transfer tube for open rack type vaporizer
JP5336797B2 (en) Manufacturing method of heat transfer tube and header tube of open rack type vaporizer
JP5746893B2 (en) Surface-treated duplex stainless steel and method for producing the same
TW201304910A (en) Austenitic stainless steel pipe, boiler device, and method for processing inner surface of pipe
Koivuluoto Corrosion resistance of cold-sprayed coatings
JP2011094170A (en) Heat exchange member
JP5756414B2 (en) Heat transfer tube or header tube of open rack type vaporizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090327

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20130403

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5