WO2017159054A1 - Member formed from aluminum alloy and lng vaporizer - Google Patents

Member formed from aluminum alloy and lng vaporizer Download PDF

Info

Publication number
WO2017159054A1
WO2017159054A1 PCT/JP2017/002449 JP2017002449W WO2017159054A1 WO 2017159054 A1 WO2017159054 A1 WO 2017159054A1 JP 2017002449 W JP2017002449 W JP 2017002449W WO 2017159054 A1 WO2017159054 A1 WO 2017159054A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
aluminum alloy
less
film
heat transfer
Prior art date
Application number
PCT/JP2017/002449
Other languages
French (fr)
Japanese (ja)
Inventor
真司 阪下
亘 漆原
祐二 澄田
龍生 吉田
康行 堀家
大造 青木
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2017159054A1 publication Critical patent/WO2017159054A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Definitions

  • the present invention relates to an aluminum alloy member and an LNG vaporizer.
  • the present invention particularly relates to an aluminum alloy member having excellent corrosion resistance and an LNG vaporizer provided with the aluminum alloy member.
  • the aluminum alloy member which has favorable heat conductivity is used abundantly as heat-transfer members, such as a heat exchanger tube used for a liquefied natural gas (LNG) vaporizer and various heat exchangers, and a header pipe.
  • heat-transfer members such as a heat exchanger tube used for a liquefied natural gas (LNG) vaporizer and various heat exchangers, and a header pipe.
  • LNG liquefied natural gas
  • Such aluminum alloy members may locally undergo corrosion (pitting corrosion) by being exposed to the air or water for a long time, and as a result, they may lead to penetration. Therefore, it is necessary to take some anticorrosion measures on the aluminum alloy member. As one of them, the cathodic protection method is often used.
  • an anticorrosive effect can be obtained by bringing a sacrificial anticorrosion film or fin material formed of an Al-Zn alloy or the like, which has a potential lower than that of an aluminum alloy base material, to the base material.
  • a corrosion inhibitor inhibitor
  • adding a corrosion inhibitor (inhibitor) to circulating water is also used in combination.
  • Patent Documents 1 and 2 a countermeasure is proposed to form a sacrificial anticorrosive coating made of an Al-Zn alloy or an Al-Mg alloy on the outer surface of a heat transfer tube by a thermal spraying method or a cladding method. It is done.
  • An object of the present invention is to provide a long-life aluminum alloy member having excellent corrosion resistance and an LNG vaporizer including the aluminum alloy member.
  • the aluminum alloy member according to an aspect of the present invention includes a base made of an aluminum alloy, and a film formed on the surface of the base.
  • the film is made of an aluminum alloy containing 0.8% by mass or more and 20.7% by mass or less of magnesium and 0.004% by mass or more and 1.20% by mass or less of chromium.
  • An LNG vaporizer according to another aspect of the present invention includes the above-described aluminum alloy member.
  • the aluminum alloy member according to the present embodiment includes a base made of an aluminum alloy, and a film formed on the surface of the base.
  • the film is made of an aluminum alloy containing 0.8% by mass or more and 20.7% by mass or less of magnesium and 0.004% by mass or more and 1.20% by mass or less of chromium.
  • the present inventors diligently studied measures for improving the corrosion resistance of aluminum alloy members exposed to a corrosive medium such as seawater. As a result, in the film made of an aluminum alloy formed on the surface of the substrate, adjusting the composition range of magnesium (hereinafter also represented by the chemical symbol “Mg”. The same applies to other elements) and Cr as appropriate. Thus, the present inventors have found that the anti-corrosion property of the substrate is improved by suppressing the film swelling which is the initial deterioration of the film, and reducing the consumption of the film after the substrate exposure.
  • the film formed on the surface of the base contains 0.8% by mass or more and 20.7% by mass or less of Mg.
  • Mg in the coating improves the sacrificial corrosion resistance by causing the potential of the aluminum alloy to grow.
  • Mg relaxes the pH in the vicinity of the surface and interface in a corrosive environment such as seawater to near neutrality by interaction with Cr in the coating, thereby suppressing local corrosion and interfacial peeling. In order to acquire such an effect, it is necessary to contain 0.8 mass% or more of Mg in a film.
  • the corrosion resistance of the film is improved by adjusting the Mg content in the film to 0.8% by mass or more and 20.7% by mass or less, whereby the life is extended.
  • the Mg content in a film it is more preferable that it is 1.2 mass% or more, and it is more preferable that it is 1.5 mass% or more.
  • the Mg content in the film is preferably 20% by mass or less, more preferably 19% by mass or less, and still more preferably 18% by mass or less.
  • the coating contains 0.004% by mass or more and 1.20% by mass or less of Cr.
  • Cr in the film relaxes the pH in the vicinity of the surface and interface in a corrosive environment such as seawater so that it approaches neutrality, thereby suppressing local corrosion and interfacial peeling.
  • Cr in the coating forms a protective film by densifying the corrosion product deposited on the surface of the aluminum alloy, and the protective film suppresses the penetration of corrosive substances, thereby preventing the corrosion of the aluminum alloy. Improve.
  • the Cr content in the film is adjusted within the range of 0.004 mass% or more and 1.20 mass% or less . Thereby, the corrosion resistance of the film is improved.
  • the Cr content in the film is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and still more preferably 0.03% by mass or more.
  • the Cr content in the film is preferably 1.0% by mass or less, more preferably 0.9% by mass or less, and still more preferably 0.8% by mass or less.
  • the coating may have a thickness of 50 ⁇ m to 1000 ⁇ m.
  • the thickness of the coating is too small, it will be difficult to sufficiently suppress the entry of corrosive substances such as chloride ions and oxygen into the substrate. In addition, since the coating is dissolved early, it is difficult to obtain a sufficient anticorrosion effect over a long period of time. On the other hand, if the thickness of the film is too large, peeling occurs at the interface between the film and the substrate, and cracks occur in the film, making it difficult to obtain a sufficient anticorrosion effect.
  • the thickness of the coating is preferably in the range of 50 ⁇ m to 1000 ⁇ m. With respect to the lower limit value, the thickness of the coating is more preferably 60 ⁇ m or more on average, and still more preferably 70 ⁇ m or more on average. With respect to the upper limit value, the thickness of the coating is more preferably 980 ⁇ m or less on average, and still more preferably 950 ⁇ m or less on average.
  • the film may further contain 0.01% by mass or more and 20% by mass or less of Zn.
  • Zn in the film has a function of promoting the corrosion potential, the sacrificial corrosion resistance can be further improved.
  • Zn content in a film is 0.01 mass% or more and 20 mass% or less.
  • the Zn content in the film is more preferably 0.02% by mass or more, and still more preferably 0.03% by mass or more.
  • the Zn content in the film is more preferably 19% by mass or less, and still more preferably 18% by mass or less.
  • the film is made of 0.01% by mass to 1.0% by mass of Si, 0.01% by mass to 1.0% by mass of Fe, 0.01% by mass to 1.0% And at least one element selected from the group consisting of Cu by mass or less, Mn of 0.01 to 1.0 mass% and Ti of 0.01 to 1.0 mass%, and It may be
  • the content of Si, Fe, Cu, Mn and Ti in the film contribute to the reduction of the film consumption rate by reducing the anodic reaction rate of Al.
  • the content of these elements in the film is preferably 0.01% by mass or more and 1.0% by mass or less.
  • the content of these elements is more preferably 0.02% by mass or more, and still more preferably 0.03% by mass or more.
  • the content of these elements is more preferably 0.9% by mass or less, and still more preferably 0.8% by mass or less.
  • the base material may be made of any one of 3000 series, 5000 series and 6000 series aluminum alloys.
  • 3000 series, 5000 series and 6000 series are international aluminum alloy names.
  • the base material as the base material, one made of an aluminum alloy having good thermal conductivity and no brittle fracture even at low temperatures is used. Further, among the aluminum alloys, in view of strength, it is preferable to use ones of 2000 series, 3000 series, 5000 series, 6000 series or 7000 series. In particular, it is preferable to use ones of 3000 series, 5000 series or 6000 series. By using these aluminum alloys, good strength and corrosion resistance can be obtained. Specifically, A3003, A3203, A5052, A5154, A5083, A6061, A6063, or A6N01 can be used. Moreover, what heat-treated, such as hardening, tempering, and artificial aging, may be used as needed.
  • the aluminum alloy member may be used in a low temperature environment of 0 ° C. or less.
  • the above-mentioned aluminum alloy member has a coating excellent in corrosion resistance formed on the surface of a substrate, and therefore can be used continuously with a long life even when used in a low temperature environment of 0 ° C. or less .
  • the aluminum alloy member may be a heat transfer pipe or a header pipe of an LNG vaporizer.
  • the aluminum alloy member is a member having a coating excellent in corrosion resistance formed on the surface of a substrate. For this reason, high corrosion resistance is achieved even when used under an environment where it is exposed to seawater, which is a corrosive medium, and is subjected to temperature change between low temperature and normal temperature, such as a heat transfer pipe or header pipe of an LNG vaporizer. You can get it.
  • the LNG vaporizer which concerns on this embodiment is equipped with the said aluminum-alloy-made members.
  • the aluminum alloy member has the coating excellent in corrosion resistance formed on the surface of the base material, and by providing this, the life of the LNG vaporizer can be further extended.
  • FIG. 1 schematically shows the configuration as viewed from the side of the LNG vaporizer 1.
  • FIG. 2 schematically shows the cross-sectional structure of the LNG vaporizer 1 along the line segment II-II in FIG.
  • the LNG vaporizer 1 is an open rack type LNG vaporizer (ORV).
  • the LNG vaporizer 1 uses seawater as a heat source (fluid), and is liquefied liquefied gas of cryogenic temperature (-162 ° C. or less) flowing inside the heat transfer tube 13 and seawater at normal temperature flowing outside the heat transfer tube 13
  • the LNG is gasified by heat exchange between
  • the LNG vaporizer 1 mainly includes a plurality of heat transfer pipe panels 11 which exchange heat between LNG and seawater, and a trough 12 which supplies the heat transfer pipe panels 11 with seawater.
  • the seawater may contain Cu ions.
  • the heat transfer tube panels 11 are arranged to be spaced apart from each other in the lateral direction in the posture that the heat transfer tube panels 11 are vertically erected.
  • the heat transfer pipe panel 11 includes a plurality of heat transfer pipes 13 spaced apart from one another, lower header pipes 14 connected to the lower ends of the heat transfer pipes 13, and heat transfer pipes 13. And an upper header pipe 15 connected to the upper end.
  • the lower header pipe 14 is connected to an inlet manifold 16 communicating therewith.
  • An outlet manifold 17 communicating with the upper header pipe 15 is connected to the upper header pipe 15.
  • the heat transfer pipe 13 and the lower header pipe 14 are heat transfer members, and are used in a low temperature environment of 0 ° C. or less because cryogenic LNG flows.
  • the heat transfer pipe 13 and the lower header pipe 14 are members made of an aluminum alloy according to the present embodiment, and the details will be described later.
  • the trough 12 is a member made of an aluminum alloy according to the present embodiment, and is formed of a container which is open at the upper side and in which seawater is accumulated. As shown in FIG. 2, the troughs 12 are disposed on the upper side (lower side than the upper header pipe 15) of the heat transfer pipe panel 11 between the adjacent heat transfer pipe panels 11. The trough 12 stores the seawater supplied from the seawater header pipe (not shown). Then, as shown by the arrows in FIG. 2, the seawater overflowing from the trough 12 flows down along the outer surface of the heat transfer tube 13 in each heat transfer tube panel 11. The details of the trough 12 will also be described later.
  • a gasification process of LNG by the LNG vaporizer 1 will be described.
  • LNG flows in the order of the inlet manifold 16 and the lower header pipe 14. Thereafter, the LNG is diverted to each heat transfer tube 13.
  • the LNG flows from the lower side to the upper side in the flow paths 7 formed inside the heat transfer tubes 13.
  • the seawater supplied from the trough 12 to the heat transfer tube panel 11 flows down along the outer surface of the heat transfer tube 13.
  • LNG is vaporized by heat exchange with seawater (heat absorption from seawater) through the heat transfer tube 13 and becomes NG.
  • the NG gathers in the upper header pipe 15, passes through the outlet manifold 17, and is discharged as a gas at a normal temperature.
  • a member through which seawater flows such as the heat transfer tube 13, the lower header tube 14 and the trough 12 which are aluminum alloy members, or a member for collecting seawater is corrosive in the LNG gasification process as described above. It is exposed to the medium seawater. Specifically, the outer surfaces of the heat transfer tube 13 and the lower header tube 14 and the inner surface of the trough 12 are exposed to seawater. For this reason, corrosion of aluminum progresses by being exposed to seawater over a long period of time during operation of the LNG vaporizer 1, which may cause problems such as pitting. In particular, when seawater contains Cu ions, the progress of corrosion is remarkable.
  • FIG. 3 shows the cross-sectional structure of the heat transfer tube 13 along the radial direction.
  • the heat transfer tube 13 is one in which a flow path 7 through which LNG flows is formed inside.
  • the heat transfer tube 13 has a base 21 made of an aluminum alloy and a coating 22 formed on the surface of the base 21.
  • the base 21 has a cylindrical tube body 23 and a plurality of fins 24 projecting radially outward from the outer surface of the tube body 23.
  • the fins 24 are provided to widen the heat transfer area of the heat transfer tube 13 and are formed at equal intervals along the outer surface of the tube main body 23 as shown in FIG.
  • the substrate 21 is made of an aluminum alloy of any of 3000 series, 5000 series and 6000 series.
  • the base 21 is made of an aluminum alloy such as A3003, A3203, A5052, A5154, A5083, A6061, A6063 or A6N01, which is excellent in strength and corrosion resistance.
  • the coating 22 is a sacrificial anticorrosion coating for preventing the corrosion of the base 21, and is formed on the outer surface of the base 21 so as to conform to the shapes of the tube main body 23 and the fins 24.
  • the coating 22 is made of an aluminum alloy containing appropriate amounts of Mg and Cr, thereby having excellent corrosion resistance. That is, the film 22 contains 0.8% by mass or more and 20.7% by mass or less of Mg and 0.004% by mass or more and 1.20% by mass or less of Cr, and consists of the balance aluminum and unavoidable impurities. Functions as an excellent sacrificial anticorrosive coating.
  • "an unavoidable impurity" is contained by the quantity which is a grade which does not impair the anti-corrosion performance of the film 22, for example, H, O, C, B etc. can be mentioned.
  • Mg contained in the film 22 improves the sacrificial corrosion resistance by causing the potential of the aluminum alloy to grow. Further, Mg interacts with Cr contained in the film 22 to relax the pH in the vicinity of the surface and interface in a corrosive environment due to seawater so as to approach neutrality, thereby suppressing local corrosion and interfacial peeling.
  • the coating 22 has such an anticorrosion effect by containing 0.8% by mass or more of Mg. However, when the Mg content of the coating 22 is excessive, the consumption rate of the coating 22 is increased, and as a result, the life of the heat transfer tube 13 is reduced. In order to prevent this, the Mg content in the film 22 is adjusted to 20.7 mass% or less.
  • Cr contained in the film 22 relaxes the pH in the vicinity of the surface and interface in a corrosive environment to be close to neutrality by interaction with Mg in the film 22 and suppresses local corrosion and interfacial peeling. Further, Cr contained in the film 22 densifies the corrosion product deposited on the surface of the aluminum alloy, and the dense layer prevents the corrosive substances (such as chloride ions and oxygen) from entering the substrate 21 side. Improve corrosion resistance.
  • the coating 22 has such an anticorrosion effect by containing 0.004% by mass or more of Cr. However, when the Cr content of the film 22 is excessive, a large amount of an intermetallic compound of Al and Cr is formed, and the local corrosion is promoted, whereby the corrosion resistance is lowered. In order to prevent this, the Cr content in the film 22 is adjusted to 1.20% by mass or less.
  • the coating 22 is formed on the outer surface of the substrate 21 by, for example, a thermal spraying method.
  • a thermal spraying method a usual method such as flame spraying, high speed flame spraying, detonation spraying, arc spraying, plasma spraying or laser spraying can be used.
  • a fuel for flame spraying a mixed gas of propane and oxygen, a mixed gas of acetylene and oxygen, or the like can be used.
  • a thermal spray material the wire and powder of an aluminum alloy which have the same composition as the film 22 can be used.
  • the adhesion between the base 21 and the coating 22 can be improved by performing an appropriate pretreatment on the outer surface (the surface on which the coating 22 is formed) of the base 21 before the application of the thermal spraying.
  • adjusting the surface roughness of the outer surface of the substrate 21 by shot blasting, grid blasting, or the like can be mentioned.
  • the surface roughness of the substrate 21 can be, for example, 1 ⁇ m or more and 30 ⁇ m or less in average roughness Ra, and can be 10 ⁇ m or more and 100 ⁇ m or less in maximum roughness Rmax.
  • the cleaning material used for the blast treatment remains on the outer surface of the substrate 21, the adhesion between the film 22 formed by thermal spraying and the substrate 21 is reduced. For this reason, after blasting, it is preferable to remove the cleaning material by brushing or the like.
  • the thickness T1 of the coating 22 can be adjusted depending on the conditions at the time of thermal spraying, but is 50 ⁇ m or more and 1000 ⁇ m or less. If the thickness T1 of the film 22 is too small, it will be difficult to sufficiently suppress the entry of corrosive substances such as chloride ions and oxygen into the substrate 21. Furthermore, since the coating 22 is dissolved early, it becomes difficult to obtain a sufficient anticorrosion effect over a long period of time. On the other hand, if the thickness T1 of the coating 22 is too large, peeling of the coating 22 occurs due to temperature change of low temperature and normal temperature, and a crack occurs in the coating 22 to make it difficult to obtain sufficient anticorrosion effect become. For this reason, the thickness T1 of the film 22 is adjusted in the range of 50 ⁇ m to 1000 ⁇ m.
  • FIG. 4 shows a cross-sectional structure along the radial direction of the lower header pipe 14.
  • FIG. 5 shows the cross-sectional structure of the trough 12.
  • the lower header pipe 14 has a cylindrical base 31 in which a flow path 33 through which LNG flows is formed, and a coating 32 formed on the entire outer surface of the base 31 by thermal spraying or the like.
  • the trough 12 has a base 41 which is a container in which the opening 43 is formed, and a coating 42 formed on the entire surface of the base 41 by thermal spraying or the like.
  • the substrates 31 and 41 are made of an aluminum alloy having excellent thermal conductivity, as with the substrate 21 constituting the heat transfer tube 13.
  • the coatings 32 and 42 are the same as the coating 22 constituting the heat transfer tube 13. That is, the coatings 32, 42 contain 0.8% by mass or more and 20.7% by mass or less of Mg and 0.004% by mass or more and 1.20% by mass or less of Cr, with the balance being aluminum and unavoidable impurities. It will be Thus, the coatings 32, 42 function as excellent sacrificial coatings.
  • the aluminum alloy members (heat transfer pipes 13, lower header pipes 14 and troughs 12) according to the present embodiment are made of an aluminum alloy containing appropriate amounts of Mg and Cr on the surfaces of the base members 21, 31 and 41.
  • the coating 22, 32, 42 has been formed. Therefore, excellent corrosion resistance can be exhibited even when used in an environment exposed to a corrosive medium such as seawater, which is subject to temperature changes of low temperature and normal temperature.
  • a corrosive medium such as seawater
  • the coating 22 may be made of an aluminum alloy further containing 0.01% by mass or more and 20% by mass or less of Zn in addition to Mg and Cr. That is, the coating film 22 contains 0.8 mass% or more and 20.7 mass% or less of Mg, 0.004 mass% or more and 1.20 mass% or less of Cr, and 0.01 mass% or more and 20 mass% or less of Zn And may be composed of the balance aluminum and unavoidable impurities.
  • Zn in the coating 22 has a function of warming the corrosion potential, whereby the sacrificial corrosion resistance of the coating 22 can be further improved.
  • the Zn content in the film 22 is adjusted to 0.01% by mass or more and 20% by mass or less.
  • the coating 22 contains 0.01% by mass or more and 1.0% by mass or less of Si, 0.01% by mass or more and 1.0% by mass or less of Fe, and 0.01% by mass or more. It further contains at least one element selected from the group consisting of 0 mass% or less Cu, 0.01 mass% or more and 1.0 mass% or less Mn, and 0.01 mass% or more and 1.0 mass% or less Ti. May be made of an aluminum alloy.
  • the coating film 22 contains Mg of 0.8% by mass or more and 20.7% by mass or less, Cr of 0.004% by mass or more and 1.20% by mass or less, and 0.01% by mass or more and 1.0% by mass or less Element M (at least one element of Si, Fe, Cu, Mn and Ti), and the balance may be made of aluminum and unavoidable impurities.
  • Si, Fe, Cu, Mn and Ti in the coating 22 reduce the rate of consumption of the coating 22 by reducing the anodic reaction rate of Al.
  • the content of these elements in the coating 22 is excessive, the corrosion potential may become noble and as a result, the sacrificial corrosion resistance of the coating 22 may be reduced. Therefore, the contents of Si, Fe, Cu, Mn and Ti in the film 22 are adjusted to 0.01% by mass or more and 1.0% by mass or less.
  • the film 22 may also be made of an aluminum alloy to which both Zn and element M are further added in addition to Mg and Cr.
  • the present invention is not limited thereto.
  • the aluminum alloy member of the present invention may be applied. That is, any of the members of the heat transfer tube 13, the lower header tube 14 and the trough 12 may be a coating formed of an aluminum alloy containing appropriate amounts of Mg and Cr on the surface of the base material.
  • the thickness of the coatings 22, 32 and 42 may be less than 50 ⁇ m or more than 1000 ⁇ m.
  • the base materials 21, 31 and 41 are made of 3000 series, 5000 series or 6000 series aluminum alloy has been described, but other types of aluminum alloys such as 2000 series and 7000 series are used. May be
  • the coatings 22 and 32 are formed on the base members 21, 31 and 41 by thermal spraying to produce the heat transfer tube 13 and the lower header tube 14, but a cladding tube is formed by extrusion or the like. May be used. Thus, when manufacturing by a clad, the adhesiveness of the base materials 21 and 31 and the films 22 and 33 can be improved.
  • the LNG vaporizer 2 is an intermediate medium vaporizer (IFV) that performs heat exchange via an intermediate medium 61 having a boiling point and a condensation point between the temperature of seawater as a heating source and the temperature of the LNG.
  • the LNG vaporizer 2 has an intermediate medium evaporation unit 51, a vaporization unit 52, and an NG heating unit 53.
  • the intermediate-medium evaporating unit 51 is a portion on the bottom side in the shell 70, and has a plurality of (three in the present embodiment) heat transfer pipes 71 disposed in the shell space on the bottom side.
  • the intermediate medium evaporation unit 51 exchanges heat between the seawater 72 flowing inside the heat transfer tube 71 and the liquid intermediate medium 61 accumulated at the bottom of the shell 70. By this heat exchange, the liquid intermediate medium 61 evaporates, and an intermediate medium gas 61A is generated. That is, the heat transfer tube 71 is a heat transfer member for performing heat exchange between the seawater 72 and the intermediate medium 61.
  • the vaporizing unit 52 is an upper portion in the shell 70, and has an LNG pipe 73 through which LNG flows as indicated by arrows in FIG.
  • the vaporization unit 52 performs heat exchange between the LNG flowing inside the LNG pipe 73 and the intermediate medium gas 61A.
  • the LNG is vaporized to generate an NG.
  • the NG is sent to the NG heating unit 53 through the NG pipe 74.
  • the intermediate medium gas 61A is condensed by heat exchange with the LNG, and is accumulated at the bottom of the shell 70 as a liquid intermediate medium 61.
  • the NG heating unit 53 has a plurality of (three in the present embodiment) heat transfer tubes 81 through which seawater, which is a heating source, flows.
  • An NG is sent to the NG heating unit 53 from the vaporization unit 52 via the NG pipe 74, and the NG exchanges heat with the seawater 72 flowing inside the heat transfer tube 81. Thereafter, the NG heated by the seawater is discharged as a gas at normal temperature. That is, the heat transfer tube 81 is a heat transfer member for exchanging heat between the seawater 72 and the NG.
  • the heat transfer tubes 71 and 81 are aluminum alloy members according to the present embodiment, and contain appropriate amounts of Mg and Cr, as in the first embodiment (heat transfer tube 13, lower header tube 14, trough 12). A film made of an aluminum alloy is formed on the surface of the substrate. For this reason, the heat transfer pipes 71 and 81 have improved corrosion resistance. Specifically, as shown in the cross-sectional view of FIG.
  • the heat transfer tubes 71 and 81 extend along the inner surface of a cylindrical base 91 having a flow path 91A through which seawater flows, and a base 91. It has the formed film 92.
  • the film 92 contains 0.8% by mass or more and 20.7% by mass or less of Mg and 0.004% by mass or more and 1.20% by mass or less of Cr, with the balance being aluminum and unavoidable impurities. ing. For this reason, even if corrosive seawater flows in the flow path 91A, the film 92 can prevent the corrosion of the base 91, and the life of the heat transfer tubes 71, 81 can be further lengthened.
  • sacrificial corrosion protection made of an aluminum alloy containing appropriate amounts of Mg and Cr is also applied to members that may be corroded by being exposed to seawater 72, similarly to heat transfer tubes 71 and 81. You may form a film.
  • the aluminum alloy member of the present invention can also be used as a heat transfer member in a liquefied petroleum gas (LPG) vaporizer.
  • LPG liquefied petroleum gas
  • plate-shaped heat-transfer members such as a heat-transfer panel in a plate heat exchanger, and a plate fin in a fin and tube type heat exchanger.
  • such a plate-shaped aluminum alloy member can be produced by clad rolling. Specifically, first, an aluminum alloy base material and a coating material are respectively melted and cast, and if necessary, subjected to homogenization heat treatment to obtain respective ingots. Next, the ingot is rolled (hot rolling, cold rolling) or cut to obtain a plate of a desired size. Thereafter, these plate materials are stacked and pressure-bonded by hot rolling to obtain an integrated plate material. Then, cold rolling is performed until a predetermined final thickness is achieved, whereby a plate-like aluminum alloy member having a film formed on the surface of the base material can be produced. At this time, the thickness of the film can be controlled by adjusting the thickness of the plate material corresponding to the film and the rolling reduction in the hot rolling.
  • FIGS. 8 and 9 are test materials 100 and 101 shown in FIGS. 8 and 9 .
  • FIG. 8 is a test material for evaluation of the blister resistance, which assumes a sound portion of an aluminum alloy member, and was used to evaluate initial deterioration in practical use.
  • FIG. 9 is a test material for sacrificial corrosion resistance evaluation, Comprising: Deterioration of the aluminum alloy member progresses to a certain extent, and the state which the base material exposed is assumed.
  • size of 20 mm diameter was formed by cutting. Also, in all the test materials 100 and 101, the surfaces other than the 50 mm (L1) ⁇ 50 mm (L2) size on which the film is formed are sealed with a Teflon (registered trademark) tape, and then the next heat cycle corrosion is performed. Tested.
  • Thermal cycle corrosion test The following heat cycle corrosion test was conducted as a test to evaluate the corrosion resistance of aluminum alloy members against temperature change due to low temperature and normal temperature and corrosion action of seawater.
  • the artificial seawater adjusted to a liquid temperature of 35 ° C is sprayed on the surface of the test material 100, 101 on which the thermal spray coating is formed, and only the base portion of the test material 100, 101 is immersed in liquid nitrogen.
  • the cooling process was carried out once a day for a total of 3 months.
  • As artificial sea water what added copper chloride (II) so that a Cu ⁇ 2+ > ion concentration might be 1 ppm to aquamarine for metal corrosion tests by Yashima Co., Ltd. was used.
  • a photograph of the appearance of the test material 100 for evaluation of blister resistance was taken, and the area of the swollen portion of the film was measured by image analysis.
  • the corrosion product was removed by making 30% nitric acid of room temperature immerse. Thereafter, the substrate exposed portion 100A was observed with a laser microscope, and the depth of local corrosion was measured by the focal depth method to determine the deepest depth of local corrosion. Moreover, the amount of corrosion consumption of the test material 101 for sacrificial corrosion resistance evaluation was measured by the weight change before and behind a corrosion test. The weight after the corrosion test was the weight after removal of the corrosion product.
  • the evaluation criteria of each measurement item are as follows.
  • the ratio of corrosion consumption to 1 is less than 50 ⁇ : No.
  • the ratio of corrosion consumption amount to 1 is 50 or more and less than 75 ⁇ : No.
  • the ratio of corrosion consumption to 1 is 75 or more and less than 100.
  • x: No. Ratio of corrosion consumption to 1 is 100 or more

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Members formed from an aluminum alloy (a heat transfer pipe 13, a lower header pipe 14 and a trough 12) comprise a base that is formed from an aluminum alloy and a coating film that is formed on the surface of the base. The coating film contains from 0.8% by mass to 20.7% by mass (inclusive) of magnesium and from 0.004% by mass to 1.20% by mass (inclusive) of chromium, with the balance made up of aluminum and unavoidable impurities. An LNG vaporizer 1 is provided with a heat transfer pipe 13, a lower header pipe 14 and a trough 12, which are formed of the above-described members formed from an aluminum alloy.

Description

アルミニウム合金製部材及びLNG気化器Aluminum alloy members and LNG vaporizer
 本発明は、アルミニウム合金製部材及びLNG気化器に関する。本発明は、特に、防食性に優れたアルミニウム合金製部材及び当該アルミニウム合金製部材を備えたLNG気化器に関する。 The present invention relates to an aluminum alloy member and an LNG vaporizer. The present invention particularly relates to an aluminum alloy member having excellent corrosion resistance and an LNG vaporizer provided with the aluminum alloy member.
 従来、液化天然ガス(LNG)気化器や各種熱交換器に使用される伝熱管やヘッダー管などの伝熱部材として、良好な熱伝導性を有するアルミニウム合金製部材が多く用いられている。このようなアルミニウム合金製部材は、大気や水に対して長期間曝されることにより局所的に腐食(孔食)が進行し、その結果貫通に至る場合がある。このため、アルミニウム合金製部材に対して何らかの防食対策を講じる必要がある。その一つとして、陰極防食法が多く用いられている。具体的には、アルミニウム合金からなる基材よりも電位が卑であるAl-Zn合金などにより形成された犠牲防食被膜やフィン材を当該基材に接触させることにより、防食効果が得られることが知られている。また熱交換器における伝熱管の内面などの密閉系では、循環水に腐食抑制剤(インヒビター)を添加することも併用されている。 DESCRIPTION OF RELATED ART Conventionally, the aluminum alloy member which has favorable heat conductivity is used abundantly as heat-transfer members, such as a heat exchanger tube used for a liquefied natural gas (LNG) vaporizer and various heat exchangers, and a header pipe. Such aluminum alloy members may locally undergo corrosion (pitting corrosion) by being exposed to the air or water for a long time, and as a result, they may lead to penetration. Therefore, it is necessary to take some anticorrosion measures on the aluminum alloy member. As one of them, the cathodic protection method is often used. Specifically, an anticorrosive effect can be obtained by bringing a sacrificial anticorrosion film or fin material formed of an Al-Zn alloy or the like, which has a potential lower than that of an aluminum alloy base material, to the base material. Are known. In addition, in a closed system such as the inner surface of a heat transfer tube in a heat exchanger, adding a corrosion inhibitor (inhibitor) to circulating water is also used in combination.
 近年、LNGは、クリーンエネルギーとして注目されており、通常、-162℃以下の極低温により液化した状態において貯蔵、輸送される。そして、オープンラック式LNG気化器(ORV)において、海水を熱源として用いた熱交換によってLNGが使用前に気化される。一般に、ORVは、アルミニウム合金製の伝熱管がパネル状に配置され、LNGが当該伝熱管の内部を下側から上側に向かって流れると共に、海水が当該パネルの外面を上側から下側に向かって流下する構造となっている。このため、ORVの伝熱管は、その外面が海水に曝されるため腐食の進行が問題となる。これに対して、下記特許文献1及び2に開示されるように、Al-Zn合金やAl-Mg合金からなる犠牲防食被膜を溶射法やクラッド法などにより伝熱管の外面に形成する対策が提案されている。 In recent years, LNG has attracted attention as clean energy, and is usually stored and transported in a liquefied state at a cryogenic temperature of -162 ° C or less. Then, in the open rack type LNG vaporizer (ORV), the LNG is vaporized before use by heat exchange using seawater as a heat source. Generally, in the ORV, a heat transfer tube made of aluminum alloy is arranged in a panel shape, and LNG flows from the lower side to the upper side inside the heat transfer tube, and seawater flows from the upper side to the lower side of the outer surface of the panel It has a structure that flows down. For this reason, since the heat exchanger tube of ORV exposes the outer surface to seawater, the progress of corrosion becomes a problem. On the other hand, as disclosed in Patent Documents 1 and 2 below, a countermeasure is proposed to form a sacrificial anticorrosive coating made of an Al-Zn alloy or an Al-Mg alloy on the outer surface of a heat transfer tube by a thermal spraying method or a cladding method. It is done.
 ORVの伝熱管では、犠牲防食被膜に不可避的に存在する気孔に海水が進入し、これによって犠牲防食被膜と基材との界面において優先的に腐食が進行する。この腐食に伴って生成する腐食生成物や気孔中に進入した海水の凍結に起因した体積膨張により、犠牲防食被膜の膨れや剥離が発生し、その結果伝熱管の寿命が短くなるという問題がある。これに対して、下記特許文献1では、犠牲防食被膜と基材との界面における粗さを調整することにより、犠牲防食被膜の膨れや剥離を防ぐことが提案されている。 In the heat transfer tube of ORV, seawater intrudes into pores inevitably present in the sacrificial coating, and thereby corrosion progresses preferentially at the interface between the sacrificial coating and the substrate. There is a problem that swelling or peeling of the sacrificial anticorrosive coating occurs as a result of volumetric expansion caused by freezing of the corrosion products formed with this corrosion or seawater entering into the pores, and as a result, the life of the heat transfer tube becomes short. . On the other hand, in the following patent document 1, preventing the swelling and peeling of a sacrificial anticorrosive coating is proposed by adjusting the roughness in the interface of a sacrificial anticorrosive film and a base material.
 下記特許文献1及び2に開示されるように、Al-Zn合金やAl-Mg合金からなる犠牲防食被膜を形成することにより、海水のような腐食性媒体に曝されるORVの伝熱管の耐久性をある程度向上させることができる。しかしながら、これらの従来の対策による防食効果は十分ではなく、エネルギー安定供給の観点からLNG気化器や各種熱交換器の安全性を向上させるため、さらなる腐食低減及び寿命延長が要求される。 As disclosed in Patent Documents 1 and 2 below, the durability of the heat transfer tube of ORV exposed to a corrosive medium such as seawater by forming a sacrificial anticorrosive coating made of Al-Zn alloy or Al-Mg alloy. The quality can be improved to some extent. However, the anticorrosion effect by these conventional measures is not sufficient, and in order to improve the safety of the LNG vaporizer and various heat exchangers from the viewpoint of stable energy supply, further reduction of corrosion and life extension are required.
 また、海水中に極微量に含有される銅イオンは、アルミニウム合金の表面に析出してカソードとして作用するため、アルミニウム合金の腐食を著しく促進させる。このため、銅イオンの含有量が多い海域では、犠牲防食被膜の劣化が激しく、腐食寿命が極端に短くなることから、効果的な腐食低減策が一層要求される。またORVの伝熱管のように、外面側の防食が必要な場合では、腐食抑制剤の使用も困難であることから、材料面からの防食対策が必要である。 In addition, copper ions contained in trace amounts in seawater precipitate on the surface of the aluminum alloy and act as a cathode, thereby significantly promoting the corrosion of the aluminum alloy. For this reason, in the sea area where the content of copper ions is large, the sacrificial anticorrosive coating is extremely deteriorated and the corrosion life becomes extremely short, so that effective measures for corrosion reduction are further required. When corrosion on the outer surface side is required as in the heat transfer tube of ORV, since the use of a corrosion inhibitor is also difficult, corrosion prevention measures from the material side are necessary.
特開2014-157009号公報JP, 2014-157009, A 特開2007-78237号公報JP, 2007-78237, A
 本発明の目的は、防食性に優れた長寿命なアルミニウム合金製部材及び当該アルミニウム合金製部材を備えたLNG気化器を提供することである。 An object of the present invention is to provide a long-life aluminum alloy member having excellent corrosion resistance and an LNG vaporizer including the aluminum alloy member.
 本発明の一局面に係るアルミニウム合金製部材は、アルミニウム合金からなる基材と、前記基材の表面に形成された被膜と、を備えている。前記被膜は、0.8質量%以上20.7質量%以下のマグネシウムと、0.004質量%以上1.20質量%以下のクロムと、を含有するアルミニウム合金からなっている。 The aluminum alloy member according to an aspect of the present invention includes a base made of an aluminum alloy, and a film formed on the surface of the base. The film is made of an aluminum alloy containing 0.8% by mass or more and 20.7% by mass or less of magnesium and 0.004% by mass or more and 1.20% by mass or less of chromium.
 本発明の他局面に係るLNG気化器は、上記アルミニウム合金製部材を備えている。 An LNG vaporizer according to another aspect of the present invention includes the above-described aluminum alloy member.
本発明の実施形態1におけるオープンラック式LNG気化器の側方から見た構成を示す模式図である。It is a schematic diagram which shows the structure seen from the side of the open rack type LNG vaporizer in Embodiment 1 of this invention. 上記オープンラック式LNG気化器の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the said open rack type LNG vaporizer. 上記オープンラック式LNG気化器を構成する伝熱管の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the heat exchanger tube which comprises the said open rack type LNG vaporizer. 上記オープンラック式LNG気化器を構成する下部ヘッダー管の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the lower header pipe which comprises the said open rack type LNG vaporizer. 上記オープンラック式LNG気化器を構成するトラフの断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the trough which comprises the said open rack type LNG vaporizer. 本発明の実施形態2における中間媒体式LNG気化器の構成を示す模式図である。It is a schematic diagram which shows the structure of the intermediate medium type LNG vaporizer in Embodiment 2 of this invention. 上記中間媒体式LNG気化器を構成する伝熱管の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the heat exchanger tube which comprises the said intermediate-medium type LNG vaporizer. 被膜の耐膨れ性を評価するための供試材を示す模式図である。It is a schematic diagram which shows the test material for evaluating the swelling resistance of a film. 被膜の犠牲防食性を評価するための供試材を示す模式図である。It is a schematic diagram which shows the test material for evaluating the sacrificial corrosion resistance of a film.
 まず、本発明の実施形態に係るアルミニウム合金製部材及びLNG気化器の概要について説明する。 First, an outline of an aluminum alloy member and an LNG vaporizer according to an embodiment of the present invention will be described.
 本実施形態に係るアルミニウム合金製部材は、アルミニウム合金からなる基材と、前記基材の表面に形成された被膜と、を備えている。前記被膜は、0.8質量%以上20.7質量%以下のマグネシウムと、0.004質量%以上1.20質量%以下のクロムと、を含有するアルミニウム合金からなっている。 The aluminum alloy member according to the present embodiment includes a base made of an aluminum alloy, and a film formed on the surface of the base. The film is made of an aluminum alloy containing 0.8% by mass or more and 20.7% by mass or less of magnesium and 0.004% by mass or more and 1.20% by mass or less of chromium.
 本発明者らは、海水などの腐食性媒体に曝されるアルミニウム合金製部材において、防食性を向上させるための方策について鋭意検討を行った。その結果、基材の表面に形成されたアルミニウム合金からなる被膜において、マグネシウム(以下、化学記号である「Mg」によっても表す。他元素も同様。)及びCrの組成範囲を適量に調整することにより、当該被膜の初期劣化である被膜膨れが抑制されると共に、基材露出後における被膜の消耗が低減されることにより基材の防食性が向上することを見出し、本発明に想到した。 The present inventors diligently studied measures for improving the corrosion resistance of aluminum alloy members exposed to a corrosive medium such as seawater. As a result, in the film made of an aluminum alloy formed on the surface of the substrate, adjusting the composition range of magnesium (hereinafter also represented by the chemical symbol “Mg”. The same applies to other elements) and Cr as appropriate. Thus, the present inventors have found that the anti-corrosion property of the substrate is improved by suppressing the film swelling which is the initial deterioration of the film, and reducing the consumption of the film after the substrate exposure.
 上記アルミニウム合金製部材において、基材の表面に形成された被膜は、0.8質量%以上20.7質量%以下のMgを含有している。被膜中のMgは、アルミニウム合金の電位を卑化させることにより、犠牲防食性を向上させる。またMgは、被膜中のCrとの相互作用により海水などの腐食環境における表面、界面近傍のpHを中性に近づけるように緩和し、局部腐食や界面剥離を抑制する。このような効果を得るためには、被膜中に0.8質量%以上のMgを含有させる必要がある。一方で、被膜中のMg含有量が過剰になると、pHがアルカリ性に近づくことにより腐食が進行し、被膜の消耗速度が増大するため、所望の寿命を得ることが困難になる。このため、被膜中のMg含有量は、20.7質量%以下に調整する必要がある。 In the aluminum alloy member, the film formed on the surface of the base contains 0.8% by mass or more and 20.7% by mass or less of Mg. Mg in the coating improves the sacrificial corrosion resistance by causing the potential of the aluminum alloy to grow. In addition, Mg relaxes the pH in the vicinity of the surface and interface in a corrosive environment such as seawater to near neutrality by interaction with Cr in the coating, thereby suppressing local corrosion and interfacial peeling. In order to acquire such an effect, it is necessary to contain 0.8 mass% or more of Mg in a film. On the other hand, when the Mg content in the film becomes excessive, the corrosion progresses as the pH approaches alkalinity, and the consumption rate of the film increases, making it difficult to obtain a desired life. For this reason, it is necessary to adjust the Mg content in the film to 20.7% by mass or less.
 上記アルミニウム合金製部材では、被膜中のMg含有量が0.8質量%以上20.7質量%以下に調整されることにより当該被膜の防食性が向上しており、これによって長寿命化されている。また、被膜中のMg含有量は、1質量%以上であることが好ましく、1.2質量%以上であることがより好ましく、1.5質量%以上であることがさらに好ましい。また、被膜中のMg含有量は、20質量%以下であることが好ましく、19質量%以下であることがより好ましく、18質量%以下であることがさらに好ましい。 In the aluminum alloy member, the corrosion resistance of the film is improved by adjusting the Mg content in the film to 0.8% by mass or more and 20.7% by mass or less, whereby the life is extended. There is. Moreover, it is preferable that it is 1 mass% or more, as for Mg content in a film, it is more preferable that it is 1.2 mass% or more, and it is more preferable that it is 1.5 mass% or more. Further, the Mg content in the film is preferably 20% by mass or less, more preferably 19% by mass or less, and still more preferably 18% by mass or less.
 また上記アルミニウム合金製部材において、被膜は、0.004質量%以上1.20質量%以下のCrを含有している。被膜中のCrは、Mgとの相互作用により、海水などの腐食環境における表面、界面近傍のpHを中性に近づけるように緩和し、局部腐食や界面剥離を抑制する。また被膜中のCrは、アルミニウム合金の表面に堆積する腐食生成物を緻密化することにより保護膜を形成し、当該保護膜によって腐食性物質の進入を抑制することにより、アルミニウム合金の防食性を向上させる。これらの効果は、特にCuイオンを含有する海水中において有効である。この効果を得るためには、被膜中のCr含有量を0.004質量%以上に調整する必要がある。一方で、被膜中のCr含有量が過剰になると、AlとCrの金属間化合物が多量に生成し、局部腐食が促進されることにより防食性が低下する。これを防止するため、被膜中のCr含有量を1.20質量%以下に調整する必要がある。 Further, in the aluminum alloy member, the coating contains 0.004% by mass or more and 1.20% by mass or less of Cr. By interaction with Mg, Cr in the film relaxes the pH in the vicinity of the surface and interface in a corrosive environment such as seawater so that it approaches neutrality, thereby suppressing local corrosion and interfacial peeling. In addition, Cr in the coating forms a protective film by densifying the corrosion product deposited on the surface of the aluminum alloy, and the protective film suppresses the penetration of corrosive substances, thereby preventing the corrosion of the aluminum alloy. Improve. These effects are particularly effective in seawater containing Cu ions. In order to obtain this effect, it is necessary to adjust the Cr content in the film to 0.004% by mass or more. On the other hand, when the Cr content in the film is excessive, a large amount of intermetallic compound of Al and Cr is formed, and the local corrosion is promoted, whereby the corrosion resistance is lowered. In order to prevent this, it is necessary to adjust the Cr content in the film to 1.20% by mass or less.
 上記アルミニウム合金製部材では、被膜中のMg含有量が上記範囲内に調整されるのに加えて、Cr含有量が0.004質量%以上1.20質量%以下の範囲内に調整されている。これにより、被膜の防食性が向上している。また、被膜中のCr含有量は、0.01質量%以上であることが好ましく、0.02質量%以上であることがより好ましく、0.03質量%以上であることがさらに好ましい。また、被膜中のCr含有量は、1.0質量%以下であることが好ましく、0.9質量%以下であることがより好ましく、0.8質量%以下であることがさらに好ましい。 In the aluminum alloy member, in addition to the fact that the Mg content in the coating is adjusted within the above range, the Cr content is adjusted within the range of 0.004 mass% or more and 1.20 mass% or less . Thereby, the corrosion resistance of the film is improved. The Cr content in the film is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and still more preferably 0.03% by mass or more. The Cr content in the film is preferably 1.0% by mass or less, more preferably 0.9% by mass or less, and still more preferably 0.8% by mass or less.
 上記アルミニウム合金製部材において、前記被膜は、50μm以上1000μm以下の厚さを有するものであってもよい。 In the aluminum alloy member, the coating may have a thickness of 50 μm to 1000 μm.
 被膜の厚さが小さすぎると、塩化物イオンや酸素などの腐食性物質が基材に進入することを十分に抑制することが困難になる。また当該被膜が早期に溶失するため、十分な防食効果を長期間に亘って得ることが困難になる。一方で、被膜の厚さが大きすぎると、被膜と基材との界面において剥離が生じ、また被膜にクラックが生じることで、十分な防食効果を得ることが困難になる。 If the thickness of the coating is too small, it will be difficult to sufficiently suppress the entry of corrosive substances such as chloride ions and oxygen into the substrate. In addition, since the coating is dissolved early, it is difficult to obtain a sufficient anticorrosion effect over a long period of time. On the other hand, if the thickness of the film is too large, peeling occurs at the interface between the film and the substrate, and cracks occur in the film, making it difficult to obtain a sufficient anticorrosion effect.
 このような観点から、被膜の厚さは、50μm以上1000μm以下の範囲内であることが好ましい。また下限値に関しては、被膜の厚さは、平均で60μm以上であることがより好ましく、平均で70μm以上であることがさらに好ましい。また上限値に関しては、被膜の厚さは、平均で980μm以下であることがより好ましく、平均で950μm以下であることがさらに好ましい。 From such a point of view, the thickness of the coating is preferably in the range of 50 μm to 1000 μm. With respect to the lower limit value, the thickness of the coating is more preferably 60 μm or more on average, and still more preferably 70 μm or more on average. With respect to the upper limit value, the thickness of the coating is more preferably 980 μm or less on average, and still more preferably 950 μm or less on average.
 上記アルミニウム合金製部材において、前記被膜は、0.01質量%以上20質量%以下のZnをさらに含有していてもよい。 In the aluminum alloy member, the film may further contain 0.01% by mass or more and 20% by mass or less of Zn.
 被膜中のZnは、腐食電位を卑化させる作用を有するため、犠牲防食性をより向上させることができる。しかし、被膜中のZn含有量が過剰になると、被膜の消失速度が増大し、所望の寿命を得ることが困難になる。このため、被膜中のZn含有量は、0.01質量%以上20質量%以下であることが好ましい。また下限値に関しては、被膜中のZn含有量は、0.02質量%以上であることがより好ましく、0.03質量%以上であることがさらに好ましい。また上限値に関しては、被膜中のZn含有量は、19質量%以下であることがより好ましく、18質量%以下であることがさらに好ましい。 Since Zn in the film has a function of promoting the corrosion potential, the sacrificial corrosion resistance can be further improved. However, if the Zn content in the film becomes excessive, the disappearance rate of the film increases and it becomes difficult to obtain the desired life. For this reason, it is preferable that Zn content in a film is 0.01 mass% or more and 20 mass% or less. With regard to the lower limit value, the Zn content in the film is more preferably 0.02% by mass or more, and still more preferably 0.03% by mass or more. With regard to the upper limit value, the Zn content in the film is more preferably 19% by mass or less, and still more preferably 18% by mass or less.
 上記アルミニウム合金製部材において、前記被膜は、0.01質量%以上1.0質量%以下のSi、0.01質量%以上1.0質量%以下のFe、0.01質量%以上1.0質量%以下のCu、0.01質量%以上1.0質量%以下のMn及び0.01質量%以上1.0質量%以下のTiからなる群より選択される少なくとも一種の元素をさらに含有していてもよい。 In the above-mentioned aluminum alloy member, the film is made of 0.01% by mass to 1.0% by mass of Si, 0.01% by mass to 1.0% by mass of Fe, 0.01% by mass to 1.0% And at least one element selected from the group consisting of Cu by mass or less, Mn of 0.01 to 1.0 mass% and Ti of 0.01 to 1.0 mass%, and It may be
 被膜中のSi、Fe、Cu、Mn及びTiは、Alのアノード反応速度を低下させることにより、被膜の消耗速度の低減に寄与する。しかし、被膜中においてこれらの元素の含有量が過剰になると、腐食電位が貴化し、犠牲防食性が低下する場合がある。このため、被膜中におけるSi、Fe、Cu、Mn及びTiの含有量は、0.01質量%以上1.0質量%以下であることが好ましい。また下限値に関しては、これらの元素の含有量は、0.02質量%以上であることがより好ましく、0.03質量%以上であることがさらに好ましい。また上限値に関しては、これらの元素の含有量は、0.9質量%以下であることがより好ましく、0.8質量%以下であることがさらに好ましい。 Si, Fe, Cu, Mn and Ti in the film contribute to the reduction of the film consumption rate by reducing the anodic reaction rate of Al. However, when the content of these elements in the film is excessive, the corrosion potential may be noble and the sacrificial corrosion resistance may be reduced. Therefore, the content of Si, Fe, Cu, Mn and Ti in the film is preferably 0.01% by mass or more and 1.0% by mass or less. With respect to the lower limit value, the content of these elements is more preferably 0.02% by mass or more, and still more preferably 0.03% by mass or more. With respect to the upper limit value, the content of these elements is more preferably 0.9% by mass or less, and still more preferably 0.8% by mass or less.
 上記アルミニウム合金製部材において、前記基材は、3000系、5000系及び6000系のうち何れかのアルミニウム合金からなるものであってもよい。ここで、「3000系、5000系及び6000系」は、国際アルミニウム合金名である。 In the aluminum alloy member, the base material may be made of any one of 3000 series, 5000 series and 6000 series aluminum alloys. Here, "3000 series, 5000 series and 6000 series" are international aluminum alloy names.
 上記アルミニウム合金製部材では、基材として、熱伝導性が良好であり、低温下でも脆性破壊がなく靱性が良好なアルミニウム合金からなるものが用いられる。また、アルミニウム合金の中でも、強度の観点から、2000系、3000系、5000系、6000系又は7000系のものを用いることが好ましい。特に、3000系、5000系又は6000系のものを用いることが好ましい。これらのアルミニウム合金を用いることにより、良好な強度及び防食性を得ることができる。具体的には、A3003、A3203、A5052、A5154、A5083、A6061、A6063、又はA6N01などを用いることができる。また必要に応じて、焼き入れ、焼き戻し、人工時効などの熱処理を施したものが用いられてもよい。 In the above-mentioned aluminum alloy member, as the base material, one made of an aluminum alloy having good thermal conductivity and no brittle fracture even at low temperatures is used. Further, among the aluminum alloys, in view of strength, it is preferable to use ones of 2000 series, 3000 series, 5000 series, 6000 series or 7000 series. In particular, it is preferable to use ones of 3000 series, 5000 series or 6000 series. By using these aluminum alloys, good strength and corrosion resistance can be obtained. Specifically, A3003, A3203, A5052, A5154, A5083, A6061, A6063, or A6N01 can be used. Moreover, what heat-treated, such as hardening, tempering, and artificial aging, may be used as needed.
 上記アルミニウム合金製部材は、0℃以下の低温環境において使用されてもよい。上記アルミニウム合金製部材は、防食性に優れた被膜が基材の表面に形成されたものであるため、0℃以下の低温環境において使用される場合でも高寿命で継続的に使用することができる。 The aluminum alloy member may be used in a low temperature environment of 0 ° C. or less. The above-mentioned aluminum alloy member has a coating excellent in corrosion resistance formed on the surface of a substrate, and therefore can be used continuously with a long life even when used in a low temperature environment of 0 ° C. or less .
 上記アルミニウム合金製部材は、LNG気化器の伝熱管又はヘッダー管であってもよい。 The aluminum alloy member may be a heat transfer pipe or a header pipe of an LNG vaporizer.
 上記アルミニウム合金製部材は、防食性に優れた被膜が基材の表面に形成されたものである。このため、LNG気化器の伝熱管やヘッダー管のように、腐食性媒体である海水に曝され、且つ、低温と常温との温度変化を受ける環境下において使用される場合でも、高い防食性を得ることができる。 The aluminum alloy member is a member having a coating excellent in corrosion resistance formed on the surface of a substrate. For this reason, high corrosion resistance is achieved even when used under an environment where it is exposed to seawater, which is a corrosive medium, and is subjected to temperature change between low temperature and normal temperature, such as a heat transfer pipe or header pipe of an LNG vaporizer. You can get it.
 本実施形態に係るLNG気化器は、上記アルミニウム合金製部材を備えている。上記アルミニウム合金製部材は、防食性に優れた被膜が基材の表面に形成されたものであるため、これを備えることによりLNG気化器の寿命をより長くすることができる。 The LNG vaporizer which concerns on this embodiment is equipped with the said aluminum-alloy-made members. The aluminum alloy member has the coating excellent in corrosion resistance formed on the surface of the base material, and by providing this, the life of the LNG vaporizer can be further extended.
 以下、図面に基づいて、本発明の実施形態につき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
 (実施形態1)
 [LNG気化器]
 まず、本発明の実施形態1に係るLNG気化器1の構成について、図1及び図2を参照して説明する。図1は、LNG気化器1の側方から見た構成を模式的に示している。図2は、図1中の線分II-IIに沿ったLNG気化器1の断面構造を模式的に示している。
(Embodiment 1)
[LNG vaporizer]
First, the configuration of the LNG vaporizer 1 according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 schematically shows the configuration as viewed from the side of the LNG vaporizer 1. FIG. 2 schematically shows the cross-sectional structure of the LNG vaporizer 1 along the line segment II-II in FIG.
 LNG気化器1は、オープンラック式LNG気化器(ORV)である。このLNG気化器1は、海水を熱源(流体)として使用し、伝熱管13の内部を流れる極低温(-162℃以下)の液化ガスであるLNGと伝熱管13の外部を流れる常温の海水との間で熱交換させることにより、LNGをガス化させるものである。LNG気化器1は、LNGと海水との熱交換を行う複数の伝熱管パネル11と、伝熱管パネル11に海水を供給するトラフ12と、を主に有している。海水は、Cuイオンを含有していてもよい。 The LNG vaporizer 1 is an open rack type LNG vaporizer (ORV). The LNG vaporizer 1 uses seawater as a heat source (fluid), and is liquefied liquefied gas of cryogenic temperature (-162 ° C. or less) flowing inside the heat transfer tube 13 and seawater at normal temperature flowing outside the heat transfer tube 13 The LNG is gasified by heat exchange between The LNG vaporizer 1 mainly includes a plurality of heat transfer pipe panels 11 which exchange heat between LNG and seawater, and a trough 12 which supplies the heat transfer pipe panels 11 with seawater. The seawater may contain Cu ions.
 図2に示すように、伝熱管パネル11は、上下方向に起立した姿勢において横方向に互いに間隔を空けて配置されている。図1に示すように、伝熱管パネル11は、互いに間隔を空けて並べられた複数本の伝熱管13と、各伝熱管13の下端に接続された下部ヘッダー管14と、各伝熱管13の上端に接続された上部ヘッダー管15と、を有している。下部ヘッダー管14には、これに連通する入口マニホールド16が接続されている。上部ヘッダー管15には、これに連通する出口マニホールド17が接続されている。 As shown in FIG. 2, the heat transfer tube panels 11 are arranged to be spaced apart from each other in the lateral direction in the posture that the heat transfer tube panels 11 are vertically erected. As shown in FIG. 1, the heat transfer pipe panel 11 includes a plurality of heat transfer pipes 13 spaced apart from one another, lower header pipes 14 connected to the lower ends of the heat transfer pipes 13, and heat transfer pipes 13. And an upper header pipe 15 connected to the upper end. The lower header pipe 14 is connected to an inlet manifold 16 communicating therewith. An outlet manifold 17 communicating with the upper header pipe 15 is connected to the upper header pipe 15.
 伝熱管13及び下部ヘッダー管14は、伝熱部材であり、極低温のLNGが流れるため、0℃以下の低温環境において使用される。伝熱管13及び下部ヘッダー管14は、それぞれ本実施形態に係るアルミニウム合金製部材であり、詳細については後述する。 The heat transfer pipe 13 and the lower header pipe 14 are heat transfer members, and are used in a low temperature environment of 0 ° C. or less because cryogenic LNG flows. The heat transfer pipe 13 and the lower header pipe 14 are members made of an aluminum alloy according to the present embodiment, and the details will be described later.
 トラフ12は、本実施形態に係るアルミニウム合金製部材であり、上方が開口し、海水が溜まる容器からなる。図2に示すように、トラフ12は、隣り合う伝熱管パネル11の間において当該伝熱管パネル11の上側(上部ヘッダー管15よりも下側)に配置されている。トラフ12は、不図示の海水ヘッダー管から供給された海水を溜める。そして、図2中矢印に示すように、トラフ12から溢れた海水は、各伝熱管パネル11において伝熱管13の外面に沿って流れ落ちる。なお、トラフ12の詳細についても後述する。 The trough 12 is a member made of an aluminum alloy according to the present embodiment, and is formed of a container which is open at the upper side and in which seawater is accumulated. As shown in FIG. 2, the troughs 12 are disposed on the upper side (lower side than the upper header pipe 15) of the heat transfer pipe panel 11 between the adjacent heat transfer pipe panels 11. The trough 12 stores the seawater supplied from the seawater header pipe (not shown). Then, as shown by the arrows in FIG. 2, the seawater overflowing from the trough 12 flows down along the outer surface of the heat transfer tube 13 in each heat transfer tube panel 11. The details of the trough 12 will also be described later.
 上記LNG気化器1によるLNGのガス化プロセスについて説明する。まず、LNGが入口マニホールド16、下部ヘッダー管14の順に流入する。その後、LNGが各伝熱管13に分流される。そして、図2に示すように、各伝熱管13の内部に形成された流路7においてLNGが下側から上側に向かって流れる。一方で、トラフ12から伝熱管パネル11に供給された海水が伝熱管13の外面に沿って流れ落ちる。この過程において、LNGは、伝熱管13を介して海水と熱交換する(海水から吸熱する)ことにより気化し、NGとなる。そして、NGは上部ヘッダー管15に集まり、出口マニホールド17を通過して常温のガスとして排出される。 A gasification process of LNG by the LNG vaporizer 1 will be described. First, LNG flows in the order of the inlet manifold 16 and the lower header pipe 14. Thereafter, the LNG is diverted to each heat transfer tube 13. Then, as shown in FIG. 2, the LNG flows from the lower side to the upper side in the flow paths 7 formed inside the heat transfer tubes 13. Meanwhile, the seawater supplied from the trough 12 to the heat transfer tube panel 11 flows down along the outer surface of the heat transfer tube 13. In this process, LNG is vaporized by heat exchange with seawater (heat absorption from seawater) through the heat transfer tube 13 and becomes NG. Then, the NG gathers in the upper header pipe 15, passes through the outlet manifold 17, and is discharged as a gas at a normal temperature.
 上記LNG気化器1において、アルミニウム合金製部材である伝熱管13、下部ヘッダー管14及びトラフ12等の海水が流れる部材又は海水を溜める部材は、上記のようなLNGのガス化プロセスにおいて、腐食性媒体である海水に曝される。具体的には、伝熱管13及び下部ヘッダー管14の外面やトラフ12の内面が海水に曝される。このため、上記LNG気化器1の運転中に長時間に亘って海水に曝されることによりアルミニウムの腐食が進行し、孔食などの問題が生じる場合がある。特に、海水がCuイオンを含む場合には、腐食の進行が顕著である。また伝熱管13及び下部ヘッダー管14は、低温と常温の温度変化を受けることから、腐食がより進行し易くなる。これに対して、本実施形態に係るアルミニウム合金製部材である伝熱管13、下部ヘッダー管14及びトラフ12は、各基材(母材)の表面に防食性に優れた犠牲防食被膜が形成されたものとなっている。これにより、腐食の進行を効果的に防ぐことができる。以下、伝熱管13、下部ヘッダー管14及びトラフ12について各々詳細に説明する。 In the above-mentioned LNG vaporizer 1, a member through which seawater flows such as the heat transfer tube 13, the lower header tube 14 and the trough 12 which are aluminum alloy members, or a member for collecting seawater is corrosive in the LNG gasification process as described above. It is exposed to the medium seawater. Specifically, the outer surfaces of the heat transfer tube 13 and the lower header tube 14 and the inner surface of the trough 12 are exposed to seawater. For this reason, corrosion of aluminum progresses by being exposed to seawater over a long period of time during operation of the LNG vaporizer 1, which may cause problems such as pitting. In particular, when seawater contains Cu ions, the progress of corrosion is remarkable. In addition, since the heat transfer tube 13 and the lower header tube 14 are subjected to temperature changes at a low temperature and a normal temperature, corrosion is more likely to progress. On the other hand, in the heat transfer tube 13, the lower header tube 14 and the trough 12, which are aluminum alloy members according to the present embodiment, a sacrificial anticorrosive coating having excellent corrosion resistance is formed on the surface of each base material (base material). It has become This can effectively prevent the progress of corrosion. The heat transfer pipe 13, the lower header pipe 14, and the trough 12 will be described in detail below.
 [伝熱管]
 図3は、伝熱管13の径方向に沿った断面構造を示している。伝熱管13は、LNGが流れる流路7が内部に形成されたものである。伝熱管13は、アルミニウム合金からなる基材21と、基材21の表面に形成された被膜22と、を有する。
[Heat transfer tube]
FIG. 3 shows the cross-sectional structure of the heat transfer tube 13 along the radial direction. The heat transfer tube 13 is one in which a flow path 7 through which LNG flows is formed inside. The heat transfer tube 13 has a base 21 made of an aluminum alloy and a coating 22 formed on the surface of the base 21.
 基材21は、円筒形状の管本体23と、管本体23の外面から径方向外側に向かって突設された複数のフィン24と、を有する。フィン24は、伝熱管13の伝熱面積を広くするためのものであり、図3に示すように管本体23の外面に沿って等間隔に形成されている。 The base 21 has a cylindrical tube body 23 and a plurality of fins 24 projecting radially outward from the outer surface of the tube body 23. The fins 24 are provided to widen the heat transfer area of the heat transfer tube 13 and are formed at equal intervals along the outer surface of the tube main body 23 as shown in FIG.
 基材21は、3000系、5000系及び6000系のうちいずれかのアルミニウム合金からなる。具体的には、基材21は、強度及び防食性に優れたA3003、A3203、A5052、A5154、A5083、A6061、A6063又はA6N01などのアルミニウム合金からなる。 The substrate 21 is made of an aluminum alloy of any of 3000 series, 5000 series and 6000 series. Specifically, the base 21 is made of an aluminum alloy such as A3003, A3203, A5052, A5154, A5083, A6061, A6063 or A6N01, which is excellent in strength and corrosion resistance.
 被膜22は、基材21の腐食を防止するための犠牲防食被膜であり、管本体23及びフィン24の形状に沿うように基材21の外面に形成されている。被膜22は、適量のMg及びCrを含有するアルミニウム合金からなっており、これにより優れた防食性を有する。即ち、被膜22は、0.8質量%以上20.7質量%以下のMgと、0.004質量%以上1.20質量%以下のCrと、を含有し、残部アルミニウム及び不可避不純物からなることにより、優れた犠牲防食被膜として機能する。なお「不可避不純物」とは、被膜22の防食性能を害さない程度の量だけ含有されるものであり、例えば、H、O、C、Bなどを挙げることができる。 The coating 22 is a sacrificial anticorrosion coating for preventing the corrosion of the base 21, and is formed on the outer surface of the base 21 so as to conform to the shapes of the tube main body 23 and the fins 24. The coating 22 is made of an aluminum alloy containing appropriate amounts of Mg and Cr, thereby having excellent corrosion resistance. That is, the film 22 contains 0.8% by mass or more and 20.7% by mass or less of Mg and 0.004% by mass or more and 1.20% by mass or less of Cr, and consists of the balance aluminum and unavoidable impurities. Functions as an excellent sacrificial anticorrosive coating. In addition, "an unavoidable impurity" is contained by the quantity which is a grade which does not impair the anti-corrosion performance of the film 22, for example, H, O, C, B etc. can be mentioned.
 被膜22に含有されるMgは、アルミニウム合金の電位を卑化させることにより犠牲防食性を向上させる。またMgは、被膜22に含有されるCrとの相互作用により、海水による腐食環境における表面、界面近傍のpHを中性に近づけるように緩和し、局部腐食や界面剥離を抑制する。被膜22は、0.8質量%以上のMgを含有することにより、このような腐食防止効果を有する。しかし、被膜22のMg含有量が過剰になると、被膜22の消耗速度が増大し、その結果伝熱管13の寿命が低下する。これを防止するため、被膜22中のMg含有量は、20.7質量%以下に調整されている。 Mg contained in the film 22 improves the sacrificial corrosion resistance by causing the potential of the aluminum alloy to grow. Further, Mg interacts with Cr contained in the film 22 to relax the pH in the vicinity of the surface and interface in a corrosive environment due to seawater so as to approach neutrality, thereby suppressing local corrosion and interfacial peeling. The coating 22 has such an anticorrosion effect by containing 0.8% by mass or more of Mg. However, when the Mg content of the coating 22 is excessive, the consumption rate of the coating 22 is increased, and as a result, the life of the heat transfer tube 13 is reduced. In order to prevent this, the Mg content in the film 22 is adjusted to 20.7 mass% or less.
 また被膜22に含有されるCrは、被膜22中のMgとの相互作用により腐食環境における表面、界面近傍のpHを中性に近づけるように緩和し、局部腐食や界面剥離を抑制する。また被膜22に含有されるCrは、アルミニウム合金の表面に堆積する腐食生成物を緻密化し、当該緻密層によって腐食性物質(塩化物イオンや酸素など)が基材21側へ進入するのを防ぐことにより防食性を向上させる。被膜22は、0.004質量%以上のCrを含有することにより、このような腐食防止効果を有する。しかし、被膜22のCr含有量が過剰になると、AlとCrの金属間化合物が多量に生成し、局部腐食が促進されることにより防食性が低下する。これを防ぐため、被膜22中のCr含有量は、1.20質量%以下に調整されている。 Further, Cr contained in the film 22 relaxes the pH in the vicinity of the surface and interface in a corrosive environment to be close to neutrality by interaction with Mg in the film 22 and suppresses local corrosion and interfacial peeling. Further, Cr contained in the film 22 densifies the corrosion product deposited on the surface of the aluminum alloy, and the dense layer prevents the corrosive substances (such as chloride ions and oxygen) from entering the substrate 21 side. Improve corrosion resistance. The coating 22 has such an anticorrosion effect by containing 0.004% by mass or more of Cr. However, when the Cr content of the film 22 is excessive, a large amount of an intermetallic compound of Al and Cr is formed, and the local corrosion is promoted, whereby the corrosion resistance is lowered. In order to prevent this, the Cr content in the film 22 is adjusted to 1.20% by mass or less.
 被膜22は、例えば溶射法によって基材21の外面上に形成されている。溶射法としては、フレーム溶射、高速フレーム溶射、爆発溶射、アーク溶射、プラズマ溶射又はレーザー溶射などの通常の方法を用いることができる。フレーム溶射における燃料としては、プロパンと酸素の混合ガスやアセチレンと酸素の混合ガスなどを用いることができる。また溶射材としては、被膜22と同じ組成を有するアルミニウム合金の線材や粉末を用いることができる。 The coating 22 is formed on the outer surface of the substrate 21 by, for example, a thermal spraying method. As the thermal spraying method, a usual method such as flame spraying, high speed flame spraying, detonation spraying, arc spraying, plasma spraying or laser spraying can be used. As a fuel for flame spraying, a mixed gas of propane and oxygen, a mixed gas of acetylene and oxygen, or the like can be used. Moreover, as a thermal spray material, the wire and powder of an aluminum alloy which have the same composition as the film 22 can be used.
 また溶射の施工前に、基材21の外面(被膜22が形成される面)に対して適切な前処理を施すことにより、基材21と被膜22の密着性を向上させることができる。具体的には、ショットブラスト処理やグリッドブラスト処理などにより、基材21の外面における表面粗度を調整することが挙げられる。基材21の表面粗度は、例えば平均粗さRaで1μm以上30μm以下とすることができ、また最大粗さRmaxで10μm以上100μm以下とすることができる。また、ブラスト処理に用いた研掃材が基材21の外面に残存すると、溶射により形成される被膜22と基材21との密着性が低下する。このため、ブラスト処理後には、ブラッシングなどを行うことにより研掃材を除去することが好ましい。 Moreover, the adhesion between the base 21 and the coating 22 can be improved by performing an appropriate pretreatment on the outer surface (the surface on which the coating 22 is formed) of the base 21 before the application of the thermal spraying. Specifically, adjusting the surface roughness of the outer surface of the substrate 21 by shot blasting, grid blasting, or the like can be mentioned. The surface roughness of the substrate 21 can be, for example, 1 μm or more and 30 μm or less in average roughness Ra, and can be 10 μm or more and 100 μm or less in maximum roughness Rmax. In addition, when the cleaning material used for the blast treatment remains on the outer surface of the substrate 21, the adhesion between the film 22 formed by thermal spraying and the substrate 21 is reduced. For this reason, after blasting, it is preferable to remove the cleaning material by brushing or the like.
 被膜22の厚さT1は、溶射時の条件によって調整可能であるが、50μm以上1000μm以下となっている。被膜22の厚さT1が小さすぎると、塩化物イオンや酸素などの腐食性物質の基材21への進入を十分に抑制することが困難になる。さらに、被膜22が早期に溶失するため、十分な防食効果を長期間に亘って得ることが困難になる。一方で、被膜22の厚さT1が大きすぎると、低温と常温の温度変化に起因して被膜22の剥離が生じ、また被膜22にクラックが生じることにより、十分な防食効果を得ることが困難になる。このため、被膜22の厚さT1は、50μm以上1000μm以下の範囲に調整されている。 The thickness T1 of the coating 22 can be adjusted depending on the conditions at the time of thermal spraying, but is 50 μm or more and 1000 μm or less. If the thickness T1 of the film 22 is too small, it will be difficult to sufficiently suppress the entry of corrosive substances such as chloride ions and oxygen into the substrate 21. Furthermore, since the coating 22 is dissolved early, it becomes difficult to obtain a sufficient anticorrosion effect over a long period of time. On the other hand, if the thickness T1 of the coating 22 is too large, peeling of the coating 22 occurs due to temperature change of low temperature and normal temperature, and a crack occurs in the coating 22 to make it difficult to obtain sufficient anticorrosion effect become. For this reason, the thickness T1 of the film 22 is adjusted in the range of 50 μm to 1000 μm.
 [下部ヘッダー管,トラフ]
 図4は、下部ヘッダー管14の径方向に沿った断面構造を示している。図5は、トラフ12の断面構造を示している。図4に示すように、下部ヘッダー管14は、LNGが流れる流路33が形成された円筒形状の基材31と、溶射などによって基材31の外面全体に形成された被膜32と、を有する。また図5に示すように、トラフ12は、開口部43が形成された容器である基材41と、溶射などによって基材41の表面全体に形成された被膜42と、を有する。基材31,41は、上記伝熱管13を構成する基材21と同様に、熱伝導性に優れたアルミニウム合金からなる。また被膜32,42は、上記伝熱管13を構成する被膜22と同様のものである。即ち、被膜32,42は、0.8質量%以上20.7質量%以下のMgと、0.004質量%以上1.20質量%以下のCrと、を含有し、残部アルミニウム及び不可避不純物からなるものである。よって、この被膜32,42は、優れた犠牲防食被膜として機能する。
[Lower header pipe, trough]
FIG. 4 shows a cross-sectional structure along the radial direction of the lower header pipe 14. FIG. 5 shows the cross-sectional structure of the trough 12. As shown in FIG. 4, the lower header pipe 14 has a cylindrical base 31 in which a flow path 33 through which LNG flows is formed, and a coating 32 formed on the entire outer surface of the base 31 by thermal spraying or the like. . Further, as shown in FIG. 5, the trough 12 has a base 41 which is a container in which the opening 43 is formed, and a coating 42 formed on the entire surface of the base 41 by thermal spraying or the like. The substrates 31 and 41 are made of an aluminum alloy having excellent thermal conductivity, as with the substrate 21 constituting the heat transfer tube 13. The coatings 32 and 42 are the same as the coating 22 constituting the heat transfer tube 13. That is, the coatings 32, 42 contain 0.8% by mass or more and 20.7% by mass or less of Mg and 0.004% by mass or more and 1.20% by mass or less of Cr, with the balance being aluminum and unavoidable impurities. It will be Thus, the coatings 32, 42 function as excellent sacrificial coatings.
 [実施形態1のまとめ,変形例]
 以上のように、本実施形態に係るアルミニウム合金製部材(伝熱管13、下部ヘッダー管14及びトラフ12)は、基材21,31,41の表面において適量のMg及びCrを含有するアルミニウム合金からなる被膜22,32,42が形成されたものとなっている。このため、低温と常温の温度変化を受け、海水のような腐食性媒体に曝される環境下において使用された場合にも、優れた防食性を発揮することができる。このように、腐食劣化が進行しにくくなることから、各部材を長寿命化し、定期補修の回数を削減することができる。このため、LNG気化器1の安全性向上や維持管理コストの削減を図ることができる。
[Summary of Embodiment 1, Modified Example]
As described above, the aluminum alloy members (heat transfer pipes 13, lower header pipes 14 and troughs 12) according to the present embodiment are made of an aluminum alloy containing appropriate amounts of Mg and Cr on the surfaces of the base members 21, 31 and 41. The coating 22, 32, 42 has been formed. Therefore, excellent corrosion resistance can be exhibited even when used in an environment exposed to a corrosive medium such as seawater, which is subject to temperature changes of low temperature and normal temperature. As described above, since it is difficult for the corrosion and deterioration to progress, the life of each member can be extended, and the number of regular repairs can be reduced. Therefore, the safety of the LNG vaporizer 1 can be improved and the maintenance cost can be reduced.
 また被膜22は、Mg及びCrに加えて、0.01質量%以上20質量%以下のZnをさらに含有するアルミニウム合金からなっていてもよい。即ち、被膜22は、0.8質量%以上20.7質量%以下のMgと、0.004質量%以上1.20質量%以下のCrと、0.01質量%以上20質量%以下のZnと、を含有し、残部アルミニウム及び不可避不純物からなっていてもよい。 The coating 22 may be made of an aluminum alloy further containing 0.01% by mass or more and 20% by mass or less of Zn in addition to Mg and Cr. That is, the coating film 22 contains 0.8 mass% or more and 20.7 mass% or less of Mg, 0.004 mass% or more and 1.20 mass% or less of Cr, and 0.01 mass% or more and 20 mass% or less of Zn And may be composed of the balance aluminum and unavoidable impurities.
 被膜22中のZnは、腐食電位を卑化させる作用を有し、これにより被膜22の犠牲防食性をより向上させることができる。しかし、被膜22中のZn含有量が過剰になると、被膜22の消失速度が増大し、その結果伝熱管13の寿命が低下する。このため、被膜22中のZn含有量は、0.01質量%以上20質量%以下に調整されている。 Zn in the coating 22 has a function of warming the corrosion potential, whereby the sacrificial corrosion resistance of the coating 22 can be further improved. However, if the Zn content in the film 22 is excessive, the disappearance rate of the film 22 is increased, and as a result, the life of the heat transfer tube 13 is reduced. For this reason, the Zn content in the film 22 is adjusted to 0.01% by mass or more and 20% by mass or less.
 また被膜22は、Mg及びCrに加えて、0.01質量%以上1.0質量%以下のSi、0.01質量%以上1.0質量%以下のFe、0.01質量%以上1.0質量%以下のCu、0.01質量%以上1.0質量%以下のMn及び0.01質量%以上1.0質量%以下のTiからなる群より選択される少なくとも一種の元素をさらに含有するアルミニウム合金からなっていてもよい。即ち、被膜22は、0.8質量%以上20.7質量%以下のMgと、0.004質量%以上1.20質量%以下のCrと、0.01質量%以上1.0質量%以下の元素M(Si、Fe、Cu、Mn及びTiのうち少なくとも一種の元素)と、を含有し、残部アルミニウム及び不可避不純物からなっていてもよい。 In addition to Mg and Cr, the coating 22 contains 0.01% by mass or more and 1.0% by mass or less of Si, 0.01% by mass or more and 1.0% by mass or less of Fe, and 0.01% by mass or more. It further contains at least one element selected from the group consisting of 0 mass% or less Cu, 0.01 mass% or more and 1.0 mass% or less Mn, and 0.01 mass% or more and 1.0 mass% or less Ti. May be made of an aluminum alloy. That is, the coating film 22 contains Mg of 0.8% by mass or more and 20.7% by mass or less, Cr of 0.004% by mass or more and 1.20% by mass or less, and 0.01% by mass or more and 1.0% by mass or less Element M (at least one element of Si, Fe, Cu, Mn and Ti), and the balance may be made of aluminum and unavoidable impurities.
 被膜22中のSi、Fe、Cu、Mn及びTiは、Alのアノード反応速度を低下させることにより、被膜22の消耗速度を低減させる。しかし、被膜22中においてこれらの元素含有量が過剰になると、腐食電位が貴化し、その結果被膜22の犠牲防食性が低下する場合がある。このため、被膜22中におけるSi、Fe、Cu、Mn及びTiの含有量は、0.01質量%以上1.0質量%以下に調整されている。また被膜22は、Mg及びCrに加えて、Zn及び元素Mの両方がさらに添加されたアルミニウム合金からなっていてもよい。 Si, Fe, Cu, Mn and Ti in the coating 22 reduce the rate of consumption of the coating 22 by reducing the anodic reaction rate of Al. However, if the content of these elements in the coating 22 is excessive, the corrosion potential may become noble and as a result, the sacrificial corrosion resistance of the coating 22 may be reduced. Therefore, the contents of Si, Fe, Cu, Mn and Ti in the film 22 are adjusted to 0.01% by mass or more and 1.0% by mass or less. The film 22 may also be made of an aluminum alloy to which both Zn and element M are further added in addition to Mg and Cr.
 また上記実施形態1では、伝熱管13、下部ヘッダー管14及びトラフ12の全てに本発明のアルミニウム合金製部材が適用される場合について説明したがこれに限定されず、少なくともいずれかの部材に対して本発明のアルミニウム合金製部材が適用されてもよい。つまり、伝熱管13、下部ヘッダー管14及びトラフ12のうちいずれかの部材が、適量のMg及びCrを含有するアルミニウム合金からなる被膜が基材の表面に形成されたものであってもよい。 In the first embodiment, the case where the aluminum alloy member of the present invention is applied to all of the heat transfer pipe 13, the lower header pipe 14 and the trough 12 has been described, but the present invention is not limited thereto. The aluminum alloy member of the present invention may be applied. That is, any of the members of the heat transfer tube 13, the lower header tube 14 and the trough 12 may be a coating formed of an aluminum alloy containing appropriate amounts of Mg and Cr on the surface of the base material.
 また上記実施形態1において、被膜22,32,42の厚さは、50μm未満であってもよいし、1000μmを超えていてもよい。 In the first embodiment, the thickness of the coatings 22, 32 and 42 may be less than 50 μm or more than 1000 μm.
 また上記実施形態1では、基材21,31,41が3000系、5000系又は6000系のアルミニウム合金からなる場合について説明したが、2000系や7000系などの他の種類のアルミニウム合金からなっていてもよい。 In the first embodiment, the case where the base materials 21, 31 and 41 are made of 3000 series, 5000 series or 6000 series aluminum alloy has been described, but other types of aluminum alloys such as 2000 series and 7000 series are used. May be
 また上記実施形態1では、溶射によって被膜22,32を基材21,31,41上に形成して伝熱管13及び下部ヘッダー管14を作製する場合について説明したが、押出などによってクラッド管を形成する方法でもよい。このようにクラッドによって製造する場合には、基材21,31と被膜22,33との密着性を向上させることができる。 In the first embodiment, the coatings 22 and 32 are formed on the base members 21, 31 and 41 by thermal spraying to produce the heat transfer tube 13 and the lower header tube 14, but a cladding tube is formed by extrusion or the like. May be used. Thus, when manufacturing by a clad, the adhesiveness of the base materials 21 and 31 and the films 22 and 33 can be improved.
 なお、クラッドにより伝熱管13及び下部ヘッダー管14をそれぞれ作製し、これらを組み合わせて伝熱管パネル11を製造する場合には、伝熱管13の下端と下部ヘッダー管14とを溶接により接合する必要がある。この場合、伝熱管13の下端においてフィン24を削り落として除去する必要があり、このとき被膜22も除去される。このため、伝熱管13の下端を下部ヘッダー管14に対して溶接により接合した後、溶接部に対して溶射法により被膜22をさらに形成する必要がある。 When the heat transfer pipe 13 and the lower header pipe 14 are respectively manufactured by cladding and these are combined to manufacture the heat transfer pipe panel 11, it is necessary to weld the lower end of the heat transfer pipe 13 and the lower header pipe 14 by welding. is there. In this case, it is necessary to scrape and remove the fins 24 at the lower end of the heat transfer tube 13, and the coating 22 is also removed at this time. For this reason, after the lower end of the heat transfer tube 13 is joined to the lower header tube 14 by welding, it is necessary to further form the coating 22 on the welded portion by the thermal spraying method.
 (実施形態2)
 次に、本発明の実施形態2に係るLNG気化器2について、図6を参照して説明する。LNG気化器2は、加熱源である海水の温度とLNGの温度との間に沸点及び凝縮点を有する中間媒体61を介して熱交換を行う中間媒体気化器(IFV)である。LNG気化器2は、中間媒体蒸発部51と、気化部52と、NG加温部53と、を有する。
Second Embodiment
Next, the LNG vaporizer 2 according to Embodiment 2 of the present invention will be described with reference to FIG. The LNG vaporizer 2 is an intermediate medium vaporizer (IFV) that performs heat exchange via an intermediate medium 61 having a boiling point and a condensation point between the temperature of seawater as a heating source and the temperature of the LNG. The LNG vaporizer 2 has an intermediate medium evaporation unit 51, a vaporization unit 52, and an NG heating unit 53.
 中間媒体蒸発部51は、シェル70内の底側の部分であり、当該底部側のシェル空間に配設された複数(本実施形態では3つ)の伝熱管71を有する。中間媒体蒸発部51は、伝熱管71の内部を流れる海水72と、シェル70の底部に溜まった液状の中間媒体61と、の熱交換を行う。この熱交換によって液状の中間媒体61が蒸発し、中間媒体ガス61Aが発生する。つまり、伝熱管71は、海水72と中間媒体61との間の熱交換を行うための伝熱部材である。 The intermediate-medium evaporating unit 51 is a portion on the bottom side in the shell 70, and has a plurality of (three in the present embodiment) heat transfer pipes 71 disposed in the shell space on the bottom side. The intermediate medium evaporation unit 51 exchanges heat between the seawater 72 flowing inside the heat transfer tube 71 and the liquid intermediate medium 61 accumulated at the bottom of the shell 70. By this heat exchange, the liquid intermediate medium 61 evaporates, and an intermediate medium gas 61A is generated. That is, the heat transfer tube 71 is a heat transfer member for performing heat exchange between the seawater 72 and the intermediate medium 61.
 気化部52は、シェル70内の上側の部分であり、図6中矢印に示すようにLNGが流れるLNG配管73を有する。気化部52は、LNG配管73の内部を流れるLNGと中間媒体ガス61Aとの熱交換を行う。これにより、LNGが気化し、NGが発生する。NGは、NG配管74を通ってNG加温部53に送られる。一方、中間媒体ガス61Aは、LNGとの熱交換により凝縮し、液状の中間媒体61としてシェル70内の底部に溜まる。 The vaporizing unit 52 is an upper portion in the shell 70, and has an LNG pipe 73 through which LNG flows as indicated by arrows in FIG. The vaporization unit 52 performs heat exchange between the LNG flowing inside the LNG pipe 73 and the intermediate medium gas 61A. As a result, the LNG is vaporized to generate an NG. The NG is sent to the NG heating unit 53 through the NG pipe 74. On the other hand, the intermediate medium gas 61A is condensed by heat exchange with the LNG, and is accumulated at the bottom of the shell 70 as a liquid intermediate medium 61.
 NG加温部53は、加熱源である海水が流れる複数(本実施形態では3つ)の伝熱管81を有する。NG加温部53には、気化部52からNG配管74を介してNGが送られ、当該NGは伝熱管81の内部を流れる海水72と熱交換する。その後、海水によって加温されたNGは、常温のガスとして排出される。つまり、伝熱管81は、海水72とNGとの間で熱交換するための伝熱部材である。 The NG heating unit 53 has a plurality of (three in the present embodiment) heat transfer tubes 81 through which seawater, which is a heating source, flows. An NG is sent to the NG heating unit 53 from the vaporization unit 52 via the NG pipe 74, and the NG exchanges heat with the seawater 72 flowing inside the heat transfer tube 81. Thereafter, the NG heated by the seawater is discharged as a gas at normal temperature. That is, the heat transfer tube 81 is a heat transfer member for exchanging heat between the seawater 72 and the NG.
 上記LNG気化器2において、伝熱管71,81は、内面が腐食性媒体である海水72に曝されるため、腐食が進行することによって孔食などの問題が生じる。ここで、伝熱管71,81は、本実施形態に係るアルミニウム合金製部材であり、上記実施形態1(伝熱管13、下部ヘッダー管14、トラフ12)と同様に、適量のMg及びCrを含有するアルミニウム合金からなる被膜が基材の表面に形成されている。このため、伝熱管71,81は、防食性が向上したものとなっている。具体的には、図7の断面図に示すように、伝熱管71,81は、海水が流れる流路91Aが内部に形成された円筒形状の基材91と、基材91の内面に沿って形成された被膜92と、有している。そして、当該被膜92は、0.8質量%以上20.7質量%以下のMgと、0.004質量%以上1.20質量%以下のCrと、を含有し、残部アルミニウム及び不可避不純物からなっている。このため、流路91Aに腐食性の海水を流しても、被膜92によって基材91の腐食を防止することができ、伝熱管71,81の寿命をより長くすることができる。また伝熱管71,81以外に海水72に曝されることにより腐食が懸念される部材に対しても、伝熱管71,81と同様に、適量のMg及びCrを含有するアルミニウム合金からなる犠牲防食被膜を形成してもよい。 In the above-mentioned LNG vaporizer 2, since the heat transfer tubes 71 and 81 are exposed to seawater 72 which is the corrosive medium at the inner surface, the corrosion progresses to cause problems such as pitting. Here, the heat transfer tubes 71 81 are aluminum alloy members according to the present embodiment, and contain appropriate amounts of Mg and Cr, as in the first embodiment (heat transfer tube 13, lower header tube 14, trough 12). A film made of an aluminum alloy is formed on the surface of the substrate. For this reason, the heat transfer pipes 71 and 81 have improved corrosion resistance. Specifically, as shown in the cross-sectional view of FIG. 7, the heat transfer tubes 71 and 81 extend along the inner surface of a cylindrical base 91 having a flow path 91A through which seawater flows, and a base 91. It has the formed film 92. The film 92 contains 0.8% by mass or more and 20.7% by mass or less of Mg and 0.004% by mass or more and 1.20% by mass or less of Cr, with the balance being aluminum and unavoidable impurities. ing. For this reason, even if corrosive seawater flows in the flow path 91A, the film 92 can prevent the corrosion of the base 91, and the life of the heat transfer tubes 71, 81 can be further lengthened. In addition to heat transfer tubes 71 and 81, sacrificial corrosion protection made of an aluminum alloy containing appropriate amounts of Mg and Cr is also applied to members that may be corroded by being exposed to seawater 72, similarly to heat transfer tubes 71 and 81. You may form a film.
 (その他実施形態)
 上記実施形態1,2では、本発明のアルミニウム合金製部材がLNG気化器1,2における伝熱管13,71,81、下部ヘッダー管14及びトラフ12として用いられる場合について説明したが、これに限定されない。例えば、本発明のアルミニウム合金製部材は、液化石油ガス(LPG)の気化器における伝熱部材として用いることもできる。またプレート熱交換器における伝熱パネルやフィンアンドチューブ型熱交換器におけるプレートフィンなどの板状の伝熱部材としても用いることができる。
(Other embodiments)
In the first and second embodiments, the case where the aluminum alloy member of the present invention is used as the heat transfer pipes 13, 71, 81, the lower header pipe 14 and the trough 12 in the LNG vaporizers 1 and 2 has been described. I will not. For example, the aluminum alloy member of the present invention can also be used as a heat transfer member in a liquefied petroleum gas (LPG) vaporizer. Moreover, it can use also as plate-shaped heat-transfer members, such as a heat-transfer panel in a plate heat exchanger, and a plate fin in a fin and tube type heat exchanger.
 また、このような板状のアルミニウム合金製部材は、クラッド圧延により作製することができる。具体的には、まず、アルミニウム合金製の基材及び被膜材をそれぞれ溶解、鋳造し、必要に応じて均質化熱処理を施し、それぞれの鋳塊を得る。次に、当該鋳塊を圧延(熱間圧延、冷間圧延)又は切断することにより、所望のサイズの板材を得る。その後、これらの板材を重ね合わせて熱間圧延により圧着することにより一体の板材とする。そして、所定の最終板厚になるまで冷間圧延を行うことにより、基材の表面に被膜が形成された板状のアルミニウム合金製部材を作製することができる。このとき、被膜に相当する板材の板厚と熱間圧延における圧下率とを調整することにより、被膜の厚さを制御することができる。 Moreover, such a plate-shaped aluminum alloy member can be produced by clad rolling. Specifically, first, an aluminum alloy base material and a coating material are respectively melted and cast, and if necessary, subjected to homogenization heat treatment to obtain respective ingots. Next, the ingot is rolled (hot rolling, cold rolling) or cut to obtain a plate of a desired size. Thereafter, these plate materials are stacked and pressure-bonded by hot rolling to obtain an integrated plate material. Then, cold rolling is performed until a predetermined final thickness is achieved, whereby a plate-like aluminum alloy member having a film formed on the surface of the base material can be produced. At this time, the thickness of the film can be controlled by adjusting the thickness of the plate material corresponding to the film and the rolling reduction in the hot rolling.
 [供試材の作製]
 アルミニウム合金製部材の耐膨れ性及び犠牲防食性について、本発明の効果を確認するための評価を行った。まず、図8及び図9に示す2種類の供試材100,101を作製した。図8は、耐膨れ性評価用の供試材であって、アルミニウム合金製部材の健全部を想定したものであり、実用時の初期劣化を評価するために用いた。図9は、犠牲防食性評価用の供試材であって、アルミニウム合金製部材の劣化がある程度進み、基材が露出した状態を想定したものである。
[Preparation of test material]
The swelling resistance and the sacrificial corrosion resistance of the aluminum alloy member were evaluated to confirm the effects of the present invention. First, two types of test materials 100 and 101 shown in FIGS. 8 and 9 were manufactured. FIG. 8 is a test material for evaluation of the blister resistance, which assumes a sound portion of an aluminum alloy member, and was used to evaluate initial deterioration in practical use. FIG. 9: is a test material for sacrificial corrosion resistance evaluation, Comprising: Deterioration of the aluminum alloy member progresses to a certain extent, and the state which the base material exposed is assumed.
 まず、基材として、大きさが50mm(L1)×50mm(L2)×20mm(厚さ)の各種アルミニウム合金からなるものを準備した。そして、いずれの供試材100,101の作製においても、被膜形成の前処理として、平均粗さRaが10±2μmとなるように、アルミナを研掃材として用いたショットブラスト処理を50mm(L1)×50mm(L2)の1つの面に対して行った。そして、ブラッシングにより研掃材の除去を行った。その後、プロパンと酸素の混合ガスを用いたフレーム溶射により、ショットブラスト処理を施した基材の表面に被膜を形成し、供試材100,101を作製した。被膜における各元素の成分組成(質量%)、被膜の厚さ(μm)及び基材に用いたアルミニウム合金の種類は、下記表1に示す通りである。被膜の成分組成は、溶射材の組成によって調整した。 First, as a base material, what consists of various aluminum alloys of 50 mm (L1) x 50 mm (L2) x 20 mm (thickness) in size was prepared. And, in preparation of any of the test materials 100 and 101, 50 mm (L 1) of shot blasting using alumina as a cleaning material so that the average roughness Ra is 10 ± 2 μm as pretreatment for film formation. ) Was performed on one side of x 50 mm (L2). Then, the abrasive was removed by brushing. Thereafter, a coating was formed on the surface of the base material subjected to the shot blasting treatment by flame spraying using a mixed gas of propane and oxygen, and test materials 100 and 101 were produced. The component composition (mass%) of each element in the film, the thickness (μm) of the film, and the type of aluminum alloy used for the substrate are as shown in Table 1 below. The composition of the coating was adjusted by the composition of the thermal spray material.
 犠牲防食性評価用の供試材101の作製においては、20mmφの大きさの基材露出部100Aを切削加工により形成した。また全ての供試材100,101において、被膜を形成した50mm(L1)×50mm(L2)の大きさの面以外の面は、テフロン(登録商標)テープでシールし、その後次の熱サイクル腐食試験に供試した。 In preparation of the test material 101 for sacrificial-corrosion evaluation, the base-material exposed part 100A of the magnitude | size of 20 mm diameter was formed by cutting. Also, in all the test materials 100 and 101, the surfaces other than the 50 mm (L1) × 50 mm (L2) size on which the film is formed are sealed with a Teflon (registered trademark) tape, and then the next heat cycle corrosion is performed. Tested.
 [熱サイクル腐食試験]
 低温と常温による温度変化及び海水の腐食作用に対するアルミニウム合金製部材の防食性を評価する試験として、以下の熱サイクル腐食試験を行った。供試材100,101の溶射被膜が形成された面に対して、液温35℃に調整された人工海水の噴霧を行い、供試材100,101の基材部分のみを液体窒素に浸漬して冷却する工程を1日1回合計3カ月行った。人工海水としては、株式会社ヤシマ製金属腐食試験用アクアマリンにCu2+イオン濃度が1ppmとなるように塩化銅(II)を添加したものを用いた。腐食試験終了後、耐膨れ性評価用の供試材100の外観写真を撮影し、その画像解析により被膜の膨らんだ部分の面積を測定した。
Thermal cycle corrosion test
The following heat cycle corrosion test was conducted as a test to evaluate the corrosion resistance of aluminum alloy members against temperature change due to low temperature and normal temperature and corrosion action of seawater. The artificial seawater adjusted to a liquid temperature of 35 ° C is sprayed on the surface of the test material 100, 101 on which the thermal spray coating is formed, and only the base portion of the test material 100, 101 is immersed in liquid nitrogen. The cooling process was carried out once a day for a total of 3 months. As artificial sea water, what added copper chloride (II) so that a Cu <2+ > ion concentration might be 1 ppm to aquamarine for metal corrosion tests by Yashima Co., Ltd. was used. After completion of the corrosion test, a photograph of the appearance of the test material 100 for evaluation of blister resistance was taken, and the area of the swollen portion of the film was measured by image analysis.
 犠牲防食性評価用の供試材101については、室温の30%硝酸に浸漬させることにより腐食生成物を除去した。その後、基材露出部100Aをレーザー顕微鏡で観察し、焦点深度法により局部腐食の深さを測定し、最も深い局部腐食の深さを求めた。また、犠牲防食性評価用の供試材101の腐食消耗量は、腐食試験前後の重量変化により測定した。腐食試験後の重量は、腐食生成物を除去した後の重量とした。各測定項目の評価基準は、下記の通りである。 About the test material 101 for sacrificial corrosion resistance evaluation, the corrosion product was removed by making 30% nitric acid of room temperature immerse. Thereafter, the substrate exposed portion 100A was observed with a laser microscope, and the depth of local corrosion was measured by the focal depth method to determine the deepest depth of local corrosion. Moreover, the amount of corrosion consumption of the test material 101 for sacrificial corrosion resistance evaluation was measured by the weight change before and behind a corrosion test. The weight after the corrosion test was the weight after removal of the corrosion product. The evaluation criteria of each measurement item are as follows.
 [膨れ面積の評価基準]
 ◎:No.1に対する膨れ面積の比率が50未満
 ○:No.1に対する膨れ面積の比率が50以上75未満
 △:No.1に対する膨れ面積の比率が75以上100未満
 ×:No.1に対する膨れ面積の比率が100以上
 [基材露出部における腐食深さの評価基準]
 ◎:基材露出部の局部腐食なし
 ○:基材露出部の局部腐食の最大値が10μm未満
 △:基材露出部の局部腐食の最大値が10μm以上20μm未満
 ×:基材露出部の局部腐食の最大値が20μm以上
 [腐食消耗量の評価基準]
 ◎:No.1に対する腐食消耗量の比率が50未満
 ○:No.1に対する腐食消耗量の比率が50以上75未満
 △:No.1に対する腐食消耗量の比率が75以上100未満
 ×:No.1に対する腐食消耗量の比率が100以上
[Evaluation criteria for blister area]
◎: No. The ratio of the swelling area to 1 is less than 50 ○: No. The ratio of the swelling area to 1 is 50 or more and less than 75 Δ: No. The ratio of the swelling area to 1 is 75 or more and less than 100. x: No. The ratio of blister area to 1 is 100 or more [Evaluation criteria of corrosion depth in substrate exposed portion]
:: no localized corrosion at exposed substrate part ○: maximum localized corrosion at exposed substrate less than 10 μm Δ: maximum localized corrosion at exposed substrate less than 10 μm and less than 20 μm x: localized exposed substrate Maximum value of corrosion is 20 μm or more [Evaluation criteria for corrosion loss]
◎: No. The ratio of corrosion consumption to 1 is less than 50 ○: No. The ratio of corrosion consumption amount to 1 is 50 or more and less than 75 Δ: No. The ratio of corrosion consumption to 1 is 75 or more and less than 100. x: No. Ratio of corrosion consumption to 1 is 100 or more
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [試験結果]
 上記熱サイクル腐食試験の結果は、表1の通りである。表1に示される通り、銅イオンを比較的多く含有する海水環境(1ppm)において温度サイクルが付与された場合でも、0.8質量%以上20.7質量%以下のMgと、0.004質量%以上1.20質量%以下のCrと、を含むアルミニウム合金からなる被膜が形成されたもの(No.2~29)では、Znのみを含むアルミニウム合金からなる被膜を形成した場合(No.1)に比べて、膨れ面積が小さくなり、基材露出部100Aにおける腐食深さが小さくなり、腐食消耗量も低減された。以上の結果より、本発明のアルミニウム合金製部材によれば、腐食劣化の進行を防ぐことができ、これによりLNG気化器や熱交換器を長寿命化し、またメンテナンス負荷を低減することが可能であることが分かった。
[Test results]
The results of the thermal cycle corrosion test are as shown in Table 1. As shown in Table 1, even when a temperature cycle is provided in a seawater environment (1 ppm) containing a relatively large amount of copper ions, Mg of 0.8% by mass or more and 20.7% by mass or less and 0.004% by mass In the case where a film made of an aluminum alloy containing 1% to 1.20% by mass of Cr (Nos. 2 to 29) is formed, a film made of an aluminum alloy containing only Zn (No. 1) In comparison with the above, the swelling area is smaller, the corrosion depth in the substrate exposed portion 100A is smaller, and the corrosion consumption amount is also reduced. From the above results, according to the aluminum alloy member of the present invention, it is possible to prevent the progress of corrosion and deterioration, thereby prolonging the life of the LNG vaporizer and the heat exchanger and reducing the maintenance load. It turned out that there is.

Claims (10)

  1.  アルミニウム合金からなる基材と、
     前記基材の表面に形成された被膜と、を備え、
     前記被膜は、0.8質量%以上20.7質量%以下のマグネシウムと、0.004質量%以上1.20質量%以下のクロムと、を含有するアルミニウム合金からなることを特徴とする、アルミニウム合金製部材。
    A substrate made of an aluminum alloy,
    And a film formed on the surface of the substrate,
    The coating is made of an aluminum alloy containing 0.8% by mass or more and 20.7% by mass or less of magnesium and 0.004% by mass or more and 1.20% by mass or less of chromium. Alloy members.
  2.  前記被膜は、50μm以上1000μm以下の厚さを有することを特徴とする、請求項1に記載のアルミニウム合金製部材。 The aluminum alloy member according to claim 1, wherein the coating has a thickness of 50 μm or more and 1000 μm or less.
  3.  前記被膜は、0.01質量%以上20質量%以下の亜鉛をさらに含有することを特徴とする、請求項1又は2に記載のアルミニウム合金製部材。 The aluminum alloy member according to claim 1, wherein the coating further contains 0.01% by mass or more and 20% by mass or less of zinc.
  4.  前記被膜は、0.01質量%以上1.0質量%以下の珪素、0.01質量%以上1.0質量%以下の鉄、0.01質量%以上1.0質量%以下の銅、0.01質量%以上1.0質量%以下のマンガン及び0.01質量%以上1.0質量%以下のチタンからなる群より選択される少なくとも一種の元素をさらに含有することを特徴とする、請求項1又は2に記載のアルミニウム合金製部材。 The film is 0.01% by mass or more and 1.0% by mass or less of silicon, 0.01% by mass or more and 1.0% by mass or less of iron, 0.01% by mass or more and 1.0% by mass or less of copper, 0 . At least one element selected from the group consisting of 0.01 mass% or more and 1.0 mass% or less of manganese and 0.01 mass% or more and 1.0 mass% or less of titanium, An aluminum alloy member according to item 1 or 2.
  5.  前記被膜は、0.01質量%以上1.0質量%以下の珪素、0.01質量%以上1.0質量%以下の鉄、0.01質量%以上1.0質量%以下の銅、0.01質量%以上1.0質量%以下のマンガン及び0.01質量%以上1.0質量%以下のチタンからなる群より選択される少なくとも一種の元素をさらに含有することを特徴とする、請求項3に記載のアルミニウム合金製部材。 The film is 0.01% by mass or more and 1.0% by mass or less of silicon, 0.01% by mass or more and 1.0% by mass or less of iron, 0.01% by mass or more and 1.0% by mass or less of copper, 0 . At least one element selected from the group consisting of 0.01 mass% or more and 1.0 mass% or less of manganese and 0.01 mass% or more and 1.0 mass% or less of titanium, The aluminum alloy member according to Item 3.
  6.  前記基材は、3000系、5000系及び6000系のうち何れかのアルミニウム合金からなることを特徴とする、請求項1又は2に記載のアルミニウム合金製部材。 The aluminum alloy member according to claim 1 or 2, wherein the base material is made of any one of 3000 series, 5000 series and 6000 series aluminum alloys.
  7.  前記基材は、3000系、5000系及び6000系のうち何れかのアルミニウム合金からなることを特徴とする、請求項3に記載のアルミニウム合金製部材。 The aluminum alloy member according to claim 3, wherein the base material is made of any one of 3000 series, 5000 series and 6000 series aluminum alloys.
  8.  0℃以下の低温環境において使用されることを特徴とする、請求項1、2、5又は7に記載のアルミニウム合金製部材。 The aluminum alloy member according to claim 1, 2, 5 or 7, which is used in a low temperature environment of 0 ° C or less.
  9.  LNG気化器の伝熱管又はヘッダー管であることを特徴とする、請求項1、2、5又は7に記載のアルミニウム合金製部材。 The aluminum alloy member according to claim 1, 2, 5, or 7, which is a heat transfer pipe or a header pipe of an LNG vaporizer.
  10.  請求項1、2、5又は7に記載のアルミニウム合金製部材を備えることを特徴とする、LNG気化器。 A LNG vaporizer comprising the aluminum alloy member according to claim 1, 2, 5, or 7.
PCT/JP2017/002449 2016-03-17 2017-01-25 Member formed from aluminum alloy and lng vaporizer WO2017159054A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-053655 2016-03-17
JP2016053655A JP6838864B2 (en) 2016-03-17 2016-03-17 Aluminum alloy LNG vaporizer member and LNG vaporizer

Publications (1)

Publication Number Publication Date
WO2017159054A1 true WO2017159054A1 (en) 2017-09-21

Family

ID=59852206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002449 WO2017159054A1 (en) 2016-03-17 2017-01-25 Member formed from aluminum alloy and lng vaporizer

Country Status (3)

Country Link
JP (1) JP6838864B2 (en)
TW (1) TW201741468A (en)
WO (1) WO2017159054A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11203801B2 (en) 2019-03-13 2021-12-21 Novelis Inc. Age-hardenable and highly formable aluminum alloys and methods of making the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108060331A (en) * 2017-12-15 2018-05-22 中铝瑞闽股份有限公司 A kind of 3003H14 aluminum alloy plate materials and its production method
JP7045231B2 (en) * 2018-03-22 2022-03-31 住友精密工業株式会社 Thermal spraying method of open rack heat exchanger
CN113493877A (en) * 2020-03-18 2021-10-12 郭涛 Aluminum alloy for producing wind power tower cylinder ladder stand stepping stick

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078237A (en) * 2005-09-13 2007-03-29 Kobe Steel Ltd Heat transfer pipe for lng vaporizer and its manufacturing method
JP2014055339A (en) * 2012-09-13 2014-03-27 Uacj Corp Aluminum clad-pipe and method for manufacturing the same
JP2014157009A (en) * 2012-12-05 2014-08-28 Kobe Steel Ltd Process of manufacture of heat exchanger tube for lng vaporizer and heat exchanger tube for lng vaporizer
JP2015196866A (en) * 2014-03-31 2015-11-09 株式会社神戸製鋼所 aluminum alloy clad material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213552A (en) * 1985-07-12 1987-01-22 Nippon Light Metal Co Ltd Aluminum alloy for galvanic anode
JPH0525572A (en) * 1991-07-19 1993-02-02 Furukawa Alum Co Ltd Corrosion resisting aluminum alloy clad material for high temperature forming

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078237A (en) * 2005-09-13 2007-03-29 Kobe Steel Ltd Heat transfer pipe for lng vaporizer and its manufacturing method
JP2014055339A (en) * 2012-09-13 2014-03-27 Uacj Corp Aluminum clad-pipe and method for manufacturing the same
JP2014157009A (en) * 2012-12-05 2014-08-28 Kobe Steel Ltd Process of manufacture of heat exchanger tube for lng vaporizer and heat exchanger tube for lng vaporizer
JP2015196866A (en) * 2014-03-31 2015-11-09 株式会社神戸製鋼所 aluminum alloy clad material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11203801B2 (en) 2019-03-13 2021-12-21 Novelis Inc. Age-hardenable and highly formable aluminum alloys and methods of making the same
US11932924B2 (en) 2019-03-13 2024-03-19 Novelis, Inc. Age-hardenable and highly formable aluminum alloys and methods of making the same

Also Published As

Publication number Publication date
JP6838864B2 (en) 2021-03-03
JP2017166771A (en) 2017-09-21
TW201741468A (en) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2017159054A1 (en) Member formed from aluminum alloy and lng vaporizer
CN104105804B (en) High corrosion-resistant aluminium alloy brazing sheet material and the runner formation part using it
JP4796362B2 (en) Heat transfer tube for LNG vaporizer and method for manufacturing the same
EP3173502B1 (en) Ferritic stainless steel and method for producing same, and heat exchanger equipped with ferritic stainless steel as member
CN102146540A (en) Aluminum alloy clad member adopted to heat exchanger, and core material for the same
JPS61184395A (en) Corrosion preventive process for aluminum heat exchanger
JP2012513539A5 (en)
TR201806865T4 (en) HEAT TRANSFORMER, USE OF AN ALUMINUM ALLOY AND AN ALUMINUM TAPE AS A METHOD FOR PRODUCING AN ALUMINUM TAPE
WO2017203805A1 (en) Member formed from aluminum alloy and lng vaporizer
CN102471836A (en) Highly corrosion-resistant aluminum alloy brazing sheet, process for production of the brazing sheet, and highly corrosion-resistant heat exchanger equipped with the brazing sheet
JP5144629B2 (en) Heat transfer tube and header tube of open rack type vaporizer
JP2017020108A (en) Aluminum alloy clad material and manufacturing method therefor and heat exchanger using the aluminum alloy clad material
JP4773780B2 (en) Heat transfer tube for LNG vaporizer and LNG vaporizer using the same
JP5385754B2 (en) Heat exchange member
JP2023510621A (en) Pipe and its manufacturing method
JP2007120878A (en) Heat transfer tube for open rack type carburetor and header tube
JP4398784B2 (en) Heat transfer tube for open rack type vaporizer
RU80933U1 (en) HEAT EXCHANGE PIPE
CN101842657A (en) The coating that is used for heat exchanger material
JP2004293811A (en) Heat transfer pipe or header pipe for open rack type carburetor
KR100865212B1 (en) Heat transfer tube for lng vaporizer, its production method, and lng vaporizer using such heat transfer tubes
JPH0460393A (en) Heat transfer tube for lng vaporizer
JPS62120455A (en) Aluminum alloy core for radiator
RU2085608C1 (en) Anticorrosive protector coating
CN114000088A (en) Coating for field protection of water wall pipe of power station boiler and preparation method thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766062

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766062

Country of ref document: EP

Kind code of ref document: A1