JP5753272B2 - タップ出力の正規化を伴う非線形モデル - Google Patents

タップ出力の正規化を伴う非線形モデル Download PDF

Info

Publication number
JP5753272B2
JP5753272B2 JP2013538282A JP2013538282A JP5753272B2 JP 5753272 B2 JP5753272 B2 JP 5753272B2 JP 2013538282 A JP2013538282 A JP 2013538282A JP 2013538282 A JP2013538282 A JP 2013538282A JP 5753272 B2 JP5753272 B2 JP 5753272B2
Authority
JP
Japan
Prior art keywords
distortion
model
predistortion
signal
data samples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013538282A
Other languages
English (en)
Other versions
JP2013542696A (ja
JP2013542696A5 (ja
Inventor
バイ、チャンロング
Original Assignee
テレフオンアクチーボラゲット エル エム エリクソン(パブル)
テレフオンアクチーボラゲット エル エム エリクソン(パブル)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テレフオンアクチーボラゲット エル エム エリクソン(パブル), テレフオンアクチーボラゲット エル エム エリクソン(パブル) filed Critical テレフオンアクチーボラゲット エル エム エリクソン(パブル)
Publication of JP2013542696A publication Critical patent/JP2013542696A/ja
Publication of JP2013542696A5 publication Critical patent/JP2013542696A5/ja
Application granted granted Critical
Publication of JP5753272B2 publication Critical patent/JP5753272B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3252Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using multiple parallel paths between input and output

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Description

本発明は、一般に、非線形電子デバイスの物理的モデルを構築するための技法に関し、特に、電子デバイスによって入力信号に導入される歪みについて当該入力信号を補償するための方法及び装置に関する。
通信アプリケーションのための無線周波数電力増幅器の設計は、線形性と効率性との間のトレードオフをしばしば伴う。電力増幅器は、典型的に、飽和点(saturation point)において又は飽和点近傍で動作させられる場合に最も効率的である。しかしながら、飽和点又は飽和点近傍における増幅器の応答は、非線形である。一般的に言えば、高効率な範囲において動作する場合、電力増幅器の応答は、非線形性及びメモリ効果を示す。
電力増幅器の効率性及びその全体的な線形性を改善するための1つの手法は、当該電力増幅器によって導入される歪みを補償するために当該電力増幅器への入力をデジタル的に事前歪みさせる(predistort)ことである。実際には、出力信号に歪みの影響がほとんど無いように、電力増幅器によって導入されることとなる歪みを見込んで入力信号は調整される。一般に、事前歪み(predistortion)は、ベースバンド周波数において、即ち信号が無線周波数にアップコンバートされる前に、信号にデジタル的に適用される。
これらの技法は、送信機システムの全体的な性能を改善することにおいて、線形性及び効率性の双方の観点から、非常に有益となり得る。さらに、これらの技法は、事前歪み器(predistorter)のデジタル実装に起因して、比較的安価となり得る。実際、これらの技法が利用可能であれば、そうでない場合に可能となるよりも、電力増幅器は、より緩和された線形性要件を考慮して設計され得る。従って、全体的なシステムのコストは潜在的に低減され得る。
本発明は、事前歪みシステムにおいて用いられる歪みモデルを提供する。事前歪みシステムは、事前歪み器と、電力増幅器と、歪みモデリング回路と、を備える。事前歪み器は、電力増幅器によって導入される歪みを補償するために入力信号を事前歪みさせる。歪みモデリング回路は、歪みモデルを用いて、事前歪み器によって入力信号に適用される事前歪み器の重み係数を算出する。歪みモデルは、タップ出力の正規化を用いて、基底関数のセットにおける異なる基底関数から生成されるデータ信号の分散を所定の値に正規化する。
従って、本発明の実施形態は、入力信号に対して動作して出力信号を生成する電子デバイスによって導入される歪みについて当該入力信号を補償するための種々の方法を含む。1つの例示的な方法において、複数のサンプリング時間インスタンスを表す第1の信号サンプル及び第2の信号サンプルは、入力信号及び出力信号から生成される。上記サンプリング時間インスタンスのうちの1つ以上について、対応するデータサンプルのセットは、第1の信号サンプル及び電子デバイス又は事前歪み器の非線形歪みモデルにおける基底関数のセットから生成される。データサンプルは、各基底関数からの正規化されたデータサンプルが所定の分散を有するように正規化される。モデル重み係数は、正規化されたデータサンプルを第2の信号サンプルに適合させるために非線形歪みモデルに従って算出される。モデル適合パラメータ(model fitting parameter)は、事前歪み器の重みのセットを判定するために用いられ、当該事前歪み器の重みのセットは、事前歪み器によって電力増幅器への入力信号に適用される。
本発明の他の実施形態は、入力信号に対して動作して出力信号を生成する電子デバイスによって導入される歪みを補償するために当該入力信号を事前歪みさせるための事前歪み回路を含む。1つの例示的な事前歪み回路は、入力回路と、歪みモデリング回路と、事前歪み器と、を備える。入力回路は、複数のサンプリング時間インスタンスの各々について、入力信号及び出力信号から第1の信号サンプル及び第2の信号サンプルを生成するように構成される。歪みモデリング回路は、電子デバイス又は事前歪み器の歪みをモデリングし、当該事前歪み器についての事前歪み重みを算出する。歪みモデリング回路は、1つ以上のサンプリング時間インスタンスについて、第1の信号サンプル及び電子デバイス又は事前歪み器の非線形歪みモデルにおける基底関数のセットから対応するデータサンプルのセットを生成するように構成される。歪みモデリング回路は、各基底関数からの正規化されたデータサンプルが所定の分散を有するようにデータサンプルを正規化し、正規化されたデータサンプルを第2の信号サンプルに適合させるためのモデル重み係数を非線形歪みモデルに従って算出し、及びモデル重み係数から事前歪み器の重みを判定する。事前歪み器は、電子デバイスによって導入される歪みを補償するために入力信号に事前歪み重みを適用する。
事前歪み回路のための間接的なモデルを示す。 事前歪み回路のための間接的なモデルを示す。 事前歪み器又は電力増幅器によって導入される歪みをモデリングするための一般的な歪みモデルを示す。 事前歪み器又は電力増幅器によって導入される歪みをモデリングするための、メモリ無しの歪みモデルを示す。 歪みモデルについて設定される例示的なべき基底関数(power basis function)セットを示す。 歪みモデルについて設定される例示的なべき基底関数セットを示す。 事前歪み器又は電力増幅器によって導入される歪みをモデリングするための、メモリ付きの歪みモデルを示す。 タップ出力の正規化を伴う一般的な歪みモデルを示す。 タップ出力の正規化を伴うメモリ付きの別の歪みモデルを示す。 タップ出力の正規化を伴うメモリ付きの別の歪みモデルを示す。 タップ出力の正規化を伴うメモリ付きの別の歪みモデルを示す。 電力増幅器の入力信号を事前歪みさせる例示的な方法を示す。 電力増幅器の入力信号を事前歪みさせるための例示的な事前歪み回路を示す。
ここで図面を参照すると、図1は、デジタル事前歪みシステム100を示し、当該デジタル事前歪みシステム100は、電力増幅器120によって通信信号に導入される歪みを補償するように構成される。電力増幅器120は、典型的に、非線形な範囲において動作する場合に最も効率的である。しかしながら、電力増幅器120の非線形な応答は、帯域外の放射を引き起こし、通信システムにおけるスペクトル効率を低下させる。事前歪み器110は、電力増幅器120によって導入される非線形歪みを補償するために電力増幅器120への入力信号を歪めることによって、電力増幅器の効率性及び線形性を改善するために用いられ得る。事前歪み器110及び電力増幅器120のカスケーディングは、出力信号の線形性を改善し、従って、電力増幅器120がより効率的に動作することを可能にする。事前歪みは本明細書において説明される回路及びシステムにおいて電力増幅器120の出力を線形化するために用いられるが、説明される技法がより一般的には如何なるタイプの非線形電子デバイスの出力を線形化することにも適用可能であることを当業者は認識するであろう。
図1において見られるように、入力信号x(n)は、事前歪み器110に入力される。事前歪み器110は、電力増幅器120が非線形な範囲において動作される場合、電力増幅器120によって導入される歪みを補償するために入力信号x(n)を事前歪みさせる。事前歪み器110によって生成される事前歪みされた入力信号z(n)は、次いで、電力増幅器120の入力に印加される。電力増幅器120は、事前歪みされた入力信号z(n)を増幅して、出力信号y(n)を生成する。事前歪み器110が適当に設計され及び構成される場合、電力増幅器120が単独で用いられる場合よりも、出力信号y(n)は、より少ない歪みの影響及び帯域外の放射しか含まない。
電力増幅器120によって導入される歪みを補償するために、事前歪み器110は、電力増幅器120の非線形的な作用を実質的に元に戻す非線形伝達関数を有しなければならない。事前歪み器110を適切に構成するために、この非線形伝達関数についての適当なモデルが必要である。この非線形伝達関数を導くための2つの異なるアプローチを取り得る。第1のアプローチは、図1に表されるような間接学習アーキテクチャを利用し、第2のアプローチは、図2の直接学習アーキテクチャを用いる。両方の場合において、電力増幅器120に入力される信号z(n)及び増幅器の出力信号y(n)のスケーリングされたバージョンは、歪みモデリング回路130に印加される。図1及び図2において減衰器140として示されるスケーリングは、事前歪み器110と電力増幅器120との組み合わせから所望される純線形利得Gを反映する。Gの逆値(inverse)による出力信号y(n)のスケーリングは、電力増幅器120によって導入される非線形性がその利得とは独立に分析されることを可能にする。
図1の間接学習アーキテクチャにおいて、事前歪み器110のモデルについての一般的な構造は所与であるとみなされ、その係数(パラメータ)は電力増幅器120の入力及び出力から直接推定される。歪みモデリング回路130は、事前歪み器110によって適用されるべき重み係数のセットを事前歪み器が判定するための所定の非線形モデルに従って増幅器の入力信号z(n)及び増幅器の出力信号y(n)/Gを評価するための係数評価回路150を含む。この処理は、以下でさらに詳細に説明される。この間接アプローチでは、電力増幅器120についてのモデルが導かれない。むしろ、電力増幅器120によって導入される歪みを相殺するために必要な事前歪みのモデリングを通じて、電力増幅器120についての非線形特性が間接的に学習される。
対照的に、図2の直接学習アーキテクチャは、電力増幅器120の非線形性能を直接的に特徴付ける。電力増幅器は、電力増幅器120についての所定の非線形モデルに従って増幅器の入力信号z(n)及び増幅器の出力信号y(n)/Gを評価するための係数評価回路160を含む。電力増幅器の非線形特性をブロック120における電力増幅器モデルに最もよく適合させる重み係数は、事前歪み器110を構成するための重みを生成すべく係数導出回路170によって用いられる。
事前歪み器110又は電力増幅器120によって導入される歪みは、複雑な非線形関数によって表されることができ、当該関数は、本明細書において歪み関数と呼ばれるであろう。本明細書において分解アプローチと呼ばれる、歪み関数をモデリングするための1つのアプローチは、歪み関数をより複雑でない基底関数のセットに分解し、歪み関数の出力を基底関数の出力の重み付け加算(weighted sum)として算出することである。歪み関数をモデリングするために用いられる基底関数のセットは、本明細書において基底関数セットと呼ばれる。
図3は、一般化された歪みモデル200を示し、当該モデルは、(例えば、図2の直接学習アーキテクチャにおけるモデル係数評価部160によってモデリングされるような)電力増幅器120によって導入される歪み、又は(例えば、図1の事前歪み器モデル係数評価部150によってモデリングされるような)事前歪み器の事前歪み伝達関数を表し得る。いずれの場合も、歪みモデル200は、所望の基底関数セットに対応する構造210を含む。モデル構造210は、P個のタップを含み、各タップが基底関数に対応する。留意すべき点は、幾つかの実施形態において、複数個のタップが同じ基底関数に対応し得るという点である。モデル構造210は、入力信号x(n)に対して動作して、それぞれのタップにおいてデータ信号{u(n),u(n),...uP−1(n)}を生成する。歪みモデル00は、データ信号{u(n),u(n),...uP−1(n)}の重み付け加算を算出して、歪められた入力信号d(n)を取得する。より具体的には、データ信号{u(n),u(n),...uP−1(n)}に、対応する重み係数{w(n),w(n),...wP−1(n)}が乗算され、結果とし得られる積が足し合わされて、d(n)が取得される。
図3に示される歪みモデルは、以下によって表されることができる:
Figure 0005753272
式1は、以下に従って一次方程式として書かれることができる:
Figure 0005753272
ここで、uは、時刻nにおいてモデル構造によって出力されるデータ信号のP×1ベクトルであり、wは、それぞれのデータ信号に適用される重み係数のP×1ベクトルである。
所与のベクトルuについて、d(n)は、歪みモデル200の所望の出力である。直接学習アーキテクチャにおいて、d(n)は、電力増幅器120の実際の出力である。間接学習アーキテクチャにおいて、d(n)は、事前歪み器110の所望の出力である。ある期間にわたりベクトルuを所望の出力d(n)に最もよく適合させる重み係数wは、uの複数の観測値を対応する所望の出力d(n)に適合させることによって学習されることができる。N個のサンプリングインスタンスにわたる観測値のセットについて、式2において与えられる対応する一次方程式は、以下のように表されることができる:
Figure 0005753272
ここで、Uは、データ信号のN×P行列であり、dは、N個のサンプリングインスタンスの各々についての歪みモデルの所望の出力信号に対応するN×1ベクトルである。行列Uの列は、それぞれのタップによって出力されるデータ信号に対応し、行は、異なるサンプリングインスタンスに対応する。式3は、事前歪み器110又は増幅器120の歪みを最も良くモデリングする重みwを見つけるために、(例えば、最小平方誤差基準などの基準を最小化するための)周知の技法に従って評価されることができる。
図4は、歪み関数をモデリングするための、メモリ無しの、多分岐歪みモデル300を示す。歪みモデル300は、K個の分岐310を含み、各々が基底関数セットにおけるK個の基底関数のうちの1つに対応する。各分岐についての基底関数320は、入力信号x(n)に対して動作して、基底関数の出力信号u(n)=f(x(n))を生成する。このモデルにおいて、基底関数は「メモリレス」であり、基底関数の出力信号f(x(n))は、現在の入力信号x(n)のみに依存する。基底関数の出力信号{f(x(n)),f(x(n)),...fk−1(x(n))}に、対応する重み係数{w(n),w(n),...wK−1(n)}が乗算され、足し合わされて、d(n)が取得される。
図4に示されるメモリ無しの歪みモデル300と図3の一般的な歪みモデル200とを比較すると、メモリ無しの歪みモデル300における分岐の数Kは一般的な歪みモデル200におけるタップの数Pと等しいことに気付き得る。メモリ無しのモデル300における所与のサンプリング時間インスタンスnについて出力される基底関数の出力信号{f(x(n)),f(x(n)),...fk−1(x(n))}は一般的な歪みモデル200におけるデータサンプル{u(n),u(n),...uP−1(n)}に対応することにも気付き得る。従って、図4のモデルは、K=Pである、図3のモデルの特別な場合と見なされることができる。所与のサンプリング時間インスタンスについてのデータ信号u(n)は、従って、以下によって与えられる:
Figure 0005753272
図4に示される歪みモデルを用いる歪みモデル回路130は、x(n)及びd(n)が与えられると、基底関数の出力信号u(n)についての重み係数{w(n),...,w,...,w(k−1)(n)}を算出する。従って、増幅器120又は事前歪み器110の歪みを最も良くモデリングする重みwは、上述した手法と同様の手法で、例えば基底関数セットの出力のN個の観測値の行列を所望の出力信号ベクトルdに適合させることによって求めることができる。歪みモデル300は、メモリ効果を考慮しないため、所与の電力増幅器120の実際の歪み関数に対するこのモデルの精度は、限定され得る。
メモリ無しの歪みモデル300によって用いられる基底関数セットは、多項式モデルにおいて用いられる、べき関数のセットを含み得る。例えば、基底関数セットは、非線形システムをモデリングするために広く用いられるボルテラ級数(Volterra series)に基づいて設計され得る。実際のアプリケーションにおいては、完全なボルテラ級数よりも少ない項を含む幾らか簡略化されたモデルが用いられて、性能に著しい影響を及ぼすことなく、算出の複雑性を低減することができる。例えば、多項式モデルは、累乗項を除く全てを省略することによって取得され、べき関数が基底関数として用いられ及びそれぞれの分岐に割り当てられる多分岐モデルとして実装され得る。
図5は、メモリ無しの歪みモデル300におけるべき基底関数(power basis functions)のセットを実装するために用いられ得る基底関数構造400を示す。基底関数セットは、K個のべき基底関数から構築され、fPOWER,k(・)と表される。ここで、下付き文字kは、k次のべき基底関数を示し、歪みモデル300におけるK個の分岐のうちの1つに対応する。べき基底関数が歪みモデル300において用いられる場合、所与のサンプリング時間インスタンスについてのデータ信号u(n)は、以下によって与えられる:
Figure 0005753272
直交基底関数セットは、べき基底関数の重み付け加算(weighted summation)として構築されることができる。直交基底関数セットは、歪みモデルについての重み係数を評価するために用いられる行列計算の期間中により良好な数値安定性を提供することができるため、多くのアプリケーションにおいて有利となり得る
図6は、直交基底関数セットを実装するための基底関数構造500を示す。基底関数構造500は、K個のべき基底関数510のセットを含む。入力信号x(n)は、各べき基底関数510を通過して、べき基底関数の出力信号fPOWER,h(x(n))のセットが生成される。ここで、下付き文字hは、べき基底関数の次数を表す。fORTHO,k(x(n))と表され、下付き文字kが次数を表す直交基底関数の出力信号は、べき基底関数の出力信号fPOWER,h(x(n))の重み付け加算を含む。直交基底関数が歪みモデル300において用いられる場合、所与のサンプリング時間インスタンスについてのデータ信号u(n)は、以下によって与えられる:
Figure 0005753272
接続係数と呼ばれる項ck,hは、k次の直交基底関数fORTHO,k(x(n))を生成するためにh次のべき基底関数fPOWER,h(x(n))に適用される重みである。係数ck,hの所与の集合は、(式6によって与えられるように)特定の直交基底関数セットを識別する。
直交基底関数セットは、種々の基準に基づいて設計されることができる。幾つかの共通的な入力信号の分布についてうまく機能する1つの設計は、Raviv Raich, Hua Qian, and G. Tong Zhou, ”Orthogonal polynomials for power amplifier modeling and predistorter design,” IEEE Transactions on Vehicular Technology, vol. 53, no. 5, pp.1468-1479, Sept. 2004において導かれる。
メモリ効果、即ち入力信号の過去の状態及び現在の状態への出力信号の依存も、歪み関数に組み込まれることができる。図7は、メモリを有する非線形歪みモデル600を示す。歪みモデル600は、K個の分岐610を含む。各分岐610は、基底関数620を含み、対応するメモリモデル630がその後に続く。基底関数620は、前述のように、べき基底関数又は直交基底関数のうちの1つであり得る。このモデル600において、各基底関数620に対応するメモリ効果は、Q個のタップを有するタップ遅延ラインとしてモデリングされ、ここで、Qは、メモリモデル630のメモリ長である。当業者は、格子予測子(lattice predictor)メモリモデルなど他のメモリモデルも用いられ得ることを認識するであろう。各分岐610の出力信号は、現在のサンプリング時間インスタンス及びQ−1個の過去のサンプリング時間インスタンスを含むQ個のサンプリング時間インスタンスにわたる対応する基底関数によって生成される基底関数の出力信号の重み付け加算である。例えば、分岐kについての基底関数がf(・)であり、入力信号がx(n)である場合、分岐kの出力は、f(x(n)),f(x(n−1)),f(x(n−2))等の重み付け加算である。時刻nにおいてメモリモデルのタップから出力されるデータ信号{ukQ(n),ukQ+1(n),...ukQ+q(n),...u(k+1)Q−1(n)}に、対応する重み係数{wkQ(n),wkQ+1(n),...wkQ+q(n),...w(k+1)Q−1(n)}が乗算され、結果として得られる積が加算されて、K個の分岐出力信号が生成される。K個の分岐610から出力されるK個の出力は、加算されて、所望の歪み信号d(n)が形成される。
図7における歪みモデル600と図3における一般的なモデル200とを比較すると、留意すべき点は、各分岐610がQ個のタップを有する点、及び合計でKQ個のタップ及びKQ個の対応する重みが存在する点である。このモデルにおけるタップの総数KQは、一般的なモデル200におけるタップの数Pと等しい。さらに留意すべき点は、KQ個のデータ信号{ukQ(n),ukQ+1(n),...ukQ+q(n),...u(k+1)Q−1(n)}は、一般的なモデル200におけるモデル構造210によって出力されるP個のデータサンプル{u(n),u(n),...uP−1(n)}に対応する。
図7に示される歪みモデル600を用いる歪みモデリング回路130は、x(n)及びd(n)が与えられると、メモリモデルのタップについての重み係数{wkQ(n),wkQ+1(n),...wkQ+q(n),...w(k+1)Q−1(n)}を算出する。従って、再び、重みw(この場合は1×KQベクトル)は、KQ個のサンプルの出力のN個の観測値を記録して行列Uを生成し、式3及び特定の最適化基準に従って当該行列Uを所望の出力信号ベクトルdに適合させることによって推定されることができる。適当な基底関数セット及び適正な深度のメモリモデルが与えられると、結果として得られる歪みは、概して、メモリ無しのモデルよりも良好な実際の装置歪みのモデルを提供するであろう。
上記の議論において提案されるように、図3〜図7におけるモデルの各々は、データサンプルのセットUを含み、当該セットは下記によって表されることができる:
Figure 0005753272
これは、モデルがメモリを含むか否かに関わらず当てはまる。メモリ無しのモデルにおいて、Uの要素は、基底関数の出力信号のみから成る。即ち、各要素は、厳密にx(n)の関数である。メモリ付きのモデルにおいて、Uは、基底関数の出力信号の遅延されたバージョンに対応する要素も含む。従って、Uの幾つかの要素は、x(n−1),x(n−2)等の関数に対応し得る。式7において及び本明細書において一般に用いられるように、(・)は、転置行列を表し、(・)は、共役転置行列を表し、Pは、モデルにおける係数の数であり、P×1ベクトルu(n)は、所与の時間インデックスnにおけるモデル中のデータサンプルの全てを表し、P×1ベクトルwは、歪みモデルにおける係数の全てを表し、d(n)は、時間インスタンスnについてのモデルの所望の出力である。
任意の所与の時間インデックスnについて、u(n)及びd(n)の双方は既知であり、式7はwの一次方程式である。前述のように、N個の時間インデックスについて取得される観測値について、式7に表される対応する一次方程式は、以下のように簡潔に表されることができる:
Figure 0005753272
式8において、Uは、入力データ行列であり、dは、所望の出力ベクトルである。
図1の間接学習アーキテクチャにおいて、d(n)は、事前歪み器110の所望の出力であり、理想的には、電力増幅器120によって導入される歪みを完璧に補償する歪み関数を有する。従って、間接学習アーキテクチャが用いられる場合、d(n)は、電力増幅器120への入力z(n)に対応する。図3〜図7においてx(n)と表される、歪みモデルへの入力信号は、電力増幅器120のスケーリングされた出力y(n)/Gに対応する。従って、任意の所与のモデル構造について、電力増幅器120からの出力のサンプルは、N個のサンプリングインスタンスの各々について取得され、基底関数のセットに適用されて、行列Uが生成される。この行列Uは、式8に従って所望の出力ベクトルdに適合され、ここで、dは、行列Uを形成するための用いられる同じN個のサンプリングインスタンスにおいて取得される、電力増幅器への入力のサンプルのベクトルである。
前述のように、電力増幅器120についての歪み特性は、図2に示される直接学習アーキテクチャにおいて直接モデリングされる。この場合において、「所望の(desired)」歪み信号d(n)は、電力増幅器120のスケーリングされた出力y(n)/Gに対応する。モデルへの入力x(n)は、電力増幅器の入力信号に対応する。従って、任意の所与のモデル構成について、電力増幅器120からの入力のサンプルは、N個のサンプリングインスタンスの各々について取得され、基底関数のセットに適用されて、行列Uが生成される。この行列Uは、式6に従って所望の出力ベクトルdに適合され、ここで、dは、当該行列Uを形成するために用いられた同じN個のサンプリングインスタンスにおいて取得された、電力増幅器からのスケーリングされた出力のサンプルのベクトルである。
モデル構造の詳細に関わらず、及び間接学習アーキテクチャが用いられるか又は直接学習アーキテクチャが用いられるかに関わらず、図1及び図2のデジタル事前歪み器における係数評価の中心において推定の問題となるのは、式8に基づく係数ベクトルwがある基準を満たすかである。この推定の問題を解決するために、何らかの形式におけるデータ行列Uの逆行列化、又はUUが要求される。逆行列化などのデジタル動作のための行列のセンシティビティの周知の指標は、いわゆる条件数であり、当該条件数は、行列の最大固有値の当該行列の最小固有値に対する比として定義される。1に近い条件数を有する行列は、良条件(well-conditioned)であると言われる。
行列計算は非常に複雑となり得るため、電力増幅器120又は事前歪み器110についての歪みモデルの設計における重要な目標は、(行列演算の計算の複雑性を低減するために)列の数が比較的小さく、条件数ができる限り1に近く(高い数値安定性)、それと同時に、特定の最適化基準が与えられると、電力増幅器又は事前歪み器の物理的な振る舞いもできる限り正確にモデリングするデータ行列UUについての係数評価アルゴリズムを提供することである。歪みモデルについての基底関数セットを導くために用いられる入力信号の歪みと事前歪み器110に適用される実際のデータの歪みとの間の差異は、結果として大きな条件数を有するデータ行列UUになり得る。
本発明の実施形態によれば、行列Uの複数の列にわたる分散を正規化するために正規化関数が歪みモデルに加えられる。行列Uの複数の列にわたる分散は、行列UUの条件数への寄与因子である。行列Uの複数の列にわたる不均一な分散は、典型的に、行列UUの条件数の増加という結果をもたらす。その一方で、Uの複数の列にわたる均一な分散は、良条件な行列UUを生成するであろう。基本的な概念は、歪みモデルにおける各タップについての出力信号の分散を所定の値に正規化することである。
図8は、タップ出力の正規化を伴う一般的な歪みモデル700を示し、当該モデル700は、図3の歪みモデル200と比較され得る。歪みモデル700は、P個のタップを有するモデル構造710を含む。正規化ブロック720は、各タップ出力に対して動作して、各タップ上で出力されるデータ信号の分散を正規化して、正規化されたデータ信号
Figure 0005753272
を生成する。より具体的には、正規化ブロック720は、タップ出力信号u(n)に対応する正規化因子αを乗算する。正規化因子αは、異なるタップについては異なってもよく、所定の時間間隔にわたるタップ出力信号u(n)の分散に基づいて選択される。各タップについての正規化因子αは、事前に設定されても、又は所望の更新頻度で更新されてもよい。P番目のタップについての正規化されたタップ出力信号は、以下によって与えられる:
Figure 0005753272
各タップ上で生成される正規化された出力信号u (n)(はuの真上にあるものとする。以下同じ)に、対応する重み係数w が乗算され、結果として得られる積が加算されて、d(n)が取得される。
正規化されたタップ出力を有する歪みモデル700は、以下によって表され得る:
Figure 0005753272
ここで、
Figure 0005753272
である。留意すべき点は、正規化及び重み付け演算が線形であるという点である。従って、式10において重み係数w に正規化因子αを乗算した積は、式1〜3における重み係数wと等しい。それ故に、式10において与えられるモデルは、理論上は、式1〜3において与えられるタップ出力の正規化無しのモデルと同等である。
1つの例示的な実施形態において、所与のタップについての正規化因子αは、当該タップからのデータサンプルの分散と比例するように選択される。正規化因子αは、以下に従って算出されることができる:
Figure 0005753272
ここで、varは、分散を表し、Eは、期待値を表し、β(例えば、β=1)は、正規化演算についての所定値を表し、mは、所定の時間間隔にわたるデータシーケンスu(n)の平均値である。記号*は、共役を表す。βの値の選択は、実装によって判定されてもよく、任意の値であってもよい。多くの実際のアプリケーションについて、β=1を設定することは、良好な性能を提供するであろう。入力サンプルシーケンスがゼロの平均値を有し、且つべき基底関数又は直交基底関数のセットが用いられる場合、mの値は、ゼロになるであろう。
図7に示される歪みモデル600を用いる歪みモデリング回路130は、x(n)及びd(n)が与えられると、重み係数
Figure 0005753272
を算出する。重みw(この場合、1×Pベクトル)は、行列Uを形成するためのP個のサンプルの出力のN個の観測値を記録すること、及び式10及び特定の最適化基準に従って当該行列Uを所望の出力信号ベクトルdに適合させることによって推定されることができる。事前歪み器がタップ出力の正規化を適用する実装において、重み係数wは、事前歪み器の係数として用いられ得る。事前歪み器が正規化を適用しない実施形態において、事前歪み器の重み係数は、重み係数のそれぞれの積にそれぞれの正規化因子が乗算された積として算出され得る。
図9は、メモリ付きの歪みモデル800におけるタップ出力の正規化のための1つのアプローチを示し、当該モデル800は、図5における歪みモデルと比較され得る。歪みモデル800は、複数の分岐810を含む。各分岐810は、基底関数820及びメモリモデル830を含む。前述のように、基底関数80は、基底関数セットにおけるべき基底関数又は直交基底関数のうちの1つであってよい。歪みモデル800における分岐810と基底関数セットにおける基底関数820との間には1対1の対応が存在する。メモリモデル830は、Q個のタップを有するタップ遅延ラインとして表され、ここで、Qは、メモリ長である。一般的なモデルと比較して、メモリモデルにおけるタップの総数Pは、K・Qである。正規化ブロック840は、各タップからのデータ信号出力に正規化因子αを乗算する。タップからのデータ信号にそれぞれの係数、例えば、
Figure 0005753272
が乗算され、結果として得られる積が加算されて、分岐出力信号が生成される。分岐出力信号は加算されて、d(n)が取得される。このモデルにおいて、x(n)及びd(n)が与えられると、歪みモデリング回路130は、正規化因子α及びメモリモデルタップについての重み係数w kQを算出する。
図10は、メモリ付きの歪みモデル800におけるタップ出力の正規化のための別のアプローチを示し、当該モデル800は、図9における歪みモデルと比較され得る。便宜上、図9において用いられる符号は、歪みモデル800における同様のコンポーネントを示すために図10において再利用される。この実施形態において、正規化ブロック840は、メモリモデルのタップからメモリモデル830の入力に移動される。このアプローチは、メモリモデル830への入力シーケンスが広い意味で安定的である場合に用いられることができる。この場合、各タップにおけるデータサンプルは、同じ分散を有するであろう。それ故に、基底関数の出力信号に対して単一の乗算が実行され得る。あるいは、正規化ブロック840は、図11に示されるように分岐出力信号を正規化するために用いられ得る。図10及び図11に示されるモデリングアプローチは、重み係数を算出するために必要とされる計算の数を低減する。
図12は、電力増幅器などの電子デバイスにおける非線形歪みを補償するために入力信号を事前歪みさせるための、本発明の一実施形態に係る例示的な方法900を示す。歪みモデリング回路130への入力のために第1の信号サンプル及び第2の信号サンプルが生成される(ブロック902)。この間接アプローチにおいて、複数の第1の信号サンプルが電力増幅器の出力信号をサンプリングすることによって生成され、複数の第2の信号サンプルが事前歪み器によって生成される。あるいは、第2の信号サンプルは、電力増幅器への入力における信号をサンプリングすることによって生成され得る。この直接アプローチにおいて、第1の信号サンプルは、事前歪み器によって又は電力増幅器の入力をサンプリングすることによって提供され、第2の信号サンプルは、電力増幅器の出力をサンプリングすることによって生成される。
歪みモデリング回路130は、複数の第1の入力信号サンプルと歪みモデルにおいて用いられる基底関数のセットとからデータサンプルを生成する(ブロック904)。メモリを欠く実施形態においては、1つのデータサンプルが、各サンプリング時間インスタンスについての基底関数セットにおける各基底関数について生成される。メモリ付きの実施形態においては、複数のデータサンプルが、各サンプリング時間インスタンスについての基底関数セットにおける各基底関数について生成される。
直接アプローチ及び間接アプローチの双方において、歪みモデリング回路130は、正規化されたデータサンプルが所定の分散(例えば、var=1)を有するようにデータサンプルを正規化する(ブロック906)。歪みモデリング回路130は、正規化されたデータサンプルを第2の信号サンプルに適合させるためのモデル重み係数を算出する(ブロック908)。間接アプローチにおいて、第2の信号サンプルは、事前歪み器から出力されるサンプルであり、あるいは、電力増幅器への入力における信号をサンプリングすることによって生成されるサンプルである。直接アプローチにおいて、第2の信号サンプルは、電力増幅器の出力信号をサンプリングすることによって生成される。
モデル重み係数は、事前歪み器の重み係数を算出するために用いられる(ブロック910)。間接アプローチにおいて、歪みモデリング回路130は、事前歪み器をモデリングし、事前歪み器の重み係数は、モデル重み係数にそれぞれの正規化因子を乗算した積である。あるいは、事前歪み器が基底関数からのデータサンプルを正規化するための正規化ブロックを含む場合、モデル重み係数は、事前歪み器の重み係数として用いられることができる。直接アプローチにおいて、歪みモデリング回路130は、電力増幅器をモデリングし、電力増幅器の係数を算出する。事前歪み器の重み係数は、電力増幅器の係数の行列の逆行列化によって導かれることができる。
いったん重み係数が算出されると、事前歪み器は、重み係数を用いて構成され、それにより、当該事前歪み器は、当該重み係数を適用して入力信号を事前歪みさせる。前述のように、事前歪み器は、ハードウェア回路によって、又は歪みモデリング回路130と同じ歪みモデルを用いるプロセッサによって実装され得る。事前歪み器110は、事前歪み重み係数を入力信号x(n)に適用して、事前歪みされた信号z(n)を生成する。各入力信号サンプルについて、事前歪み器110は、基底関数の出力信号のセットを算出し、それぞれの事前歪み器の重み係数によって重み付けされた基底関数の出力信号を合計する。事前歪み器の重み係数は、静的に構成されてもよく、又は所望の更新頻度で定期的に更新されてもよい。
図13は、電力増幅器についての例示的な事前歪み回路100を示す。当該事前歪み回路は、ベースバンドプロセッサなどのデジタル処理回路、ハードウェア、ファームウェア、又はこれらの組み合わせによって実装され得る。事前歪み回路は、事前歪み器1010、サンプリング回路1020、及び歪みモデリング回路1030を備える。変調入力信号は、事前歪み器1010に印加される。事前歪み器1010は、入力信号を事前歪みさせて、事前歪みされた信号を生成する。アップコンバータ/フィルタ回路100は、事前歪みされた信号を電力増幅器100への入力のためにアップコンバートし及びフィルタリングする。アップコンバージョンの期間中、事前歪みされた信号は、デジタル領域からアナログ領域に変換される。電力増幅器10は、事前歪みされた信号を増幅して、送信のための出力信号を生成する。
電力増幅器の出力信号は、サンプリング回路1020によってサンプリングされて、事前歪みモデリング回路1030に入力される歪みモデリング回路のための信号サンプルのセットを生成する。間接モデリングアプローチを用いる実施形態において、電力増幅器1050からの出力信号はサンプリングされて、歪みモデルについての入力信号x(n)が生成される。歪みモデルについての出力信号d(n)は、事前歪み器の出力を含む。直接モデリングアプローチを用いる実施形態において、電力増幅器への入力信号x(n)はサンプリングされて、歪みモデルについての入力信号が生成され、電力増幅器からの出力信号はサンプリングされて、歪みモデルについての出力信号d(n)が生成される。
歪みモデリング回路1030は、前述のように、事前歪み器1010(間接アプローチ)又は電力増幅器100(直接アプローチ)のいずれかによって導入される歪みをモデリングする。歪みモデリング回路1030は、歪みモデルへの入力信号を出力信号に適合させるためのモデル重み係数wのセットを算出する。歪みモデリング回路1030は、モデル重み係数から事前歪み器の係数も算出する。間接アプローチにおいて、モデル重み係数に、対応する正規化因子が乗算されて、事前歪み器の重み係数が取得され得る。直接アプローチにおいて、モデル重み係数の行列は、事前歪み器の重み係数を算出する前に逆行列化される必要がある。
重み係数の算出において用いられるデータサンプルの正規化は、行列UUの条件数における著しい低減という結果をもたらす。より低い条件数は、事前歪み器モデルのセンシティビティが低く、より安定することを意味する。正規化ブロックは、歪みモデルの精度を低下させることなく、不均一な分散が存在する場合にのみ柔軟に適用されることができる。タップ出力の正規化を伴う歪みモデルとタップ出力の正規化を伴わない歪みモデルとは、数学的に同等である。正規化因子は常に実数であるため、歪みモデルの各分岐に単一の実数乗算器を加えることにより、正規化は低いコストで達成されることができる。タップ出力信号の正規化は、歪みモデルのダイナミックレンジを低減し、従って、ハードウェア効率を高める可能性を有する。
当然ながら、本発明は、本発明の範囲及び本質的な特性から逸脱することなく、本明細書において説明されたものとは異なる他の特定の手法において実行されてもよい。それ故に、提示された実施形態は、あらゆる点において限定ではなく例示として見なされるべきであり、添付の特許請求の範囲の意味及び均等物の範囲内におさまるあらゆる変更は、当該特許請求の範囲内に包含されることが意図される。

Claims (24)

  1. 入力信号に対して動作して出力信号を生成する電子デバイスによって導入される歪みについて当該入力信号を補償する方法であって、当該方法は、
    複数のサンプリング時間インスタンスの各々について、前記入力信号及び前記出力信号を表す第1の信号サンプル及び第2の信号サンプルを生成することと、
    前記サンプリング時間インスタンスのうちの1つ以上について、前記第1の信号サンプルと前記電子デバイス又は事前歪み器の非線形歪みモデルにおける基底関数のセットとから対応するデータサンプルのセットを生成することと、
    各基底関数からの正規化された前記データサンプルが所定の分散を有するように前記データサンプルを正規化することと、
    正規化された前記データサンプルを前記第2の信号サンプルに適合させるために前記非線形歪みモデルに従ってモデル重み係数を算出することと、
    前記モデル重み係数から事前歪み重みを判定することと、
    前記事前歪み重みを前記入力信号に適用して、前記電子デバイスによって導入される前記歪みを補償することと、
    を含む、方法。
  2. 所与のサンプリング時間インスタンスについて前記対応するデータサンプルのセットを生成することは、2つ以上のサンプリング時間インスタンスに対応する複数の第1の信号サンプルに基づいて1つ以上のデータサンプルを算出することを含む、請求項1に記載の方法。
  3. 2つ以上のサンプリング時間インスタンスに対応する複数の第1の信号サンプルに基づいて1つ以上のデータサンプルを算出することは、
    2つ以上のサンプリング時間インスタンスに対応する基底関数の出力信号を算出することと、
    前記基底関数の出力信号から前記1つ以上のデータサンプルを生成することと、
    を含む、請求項2に記載の方法。
  4. 前記データサンプルを正規化することは、
    前記基底関数の出力信号を正規化することと、
    正規化された当該基底関数の出力信号から正規化されたデータサンプルを生成することと、
    を含む、請求項3に記載の方法。
  5. 前記データサンプルを正規化することは、
    前記基底関数の出力信号から前記1つ以上のデータサンプルを正規化されていないデータサンプルとして生成することと、
    前記正規化されていないデータサンプルを正規化することと、
    を含む、請求項3に記載の方法。
  6. 前記データサンプルを正規化することは、
    各基底関数から生成される前記データサンプルに、当該基底関数によって生成される前記データサンプルの分散の平方根の逆数に比例する対応する正規化因子を乗算すること、
    を含む、請求項1に記載の方法。
  7. 前記非線形歪みモデルは、事前歪み器モデルを含み、
    前記モデル重み係数から事前歪み重みを判定することは、前記事前歪みモデルの前記モデル重み係数から事前歪み重みを算出することを含む、
    請求項1に記載の方法。
  8. 前記モデル重み係数から事前歪み重みを算出することは、前記モデル重み係数とそれぞれの正規化因子との積として事前歪み重みを算出することを含む、
    請求項7に記載の方法。
  9. 前記非線形歪みモデルは、前記電子デバイスの歪みモデルを含み、
    前記モデル重み係数から事前歪み重みを判定することは、
    前記モデル重み係数から電力増幅器重み係数を算出することと、
    事前歪み重み係数を前記電力増幅器重み係数の逆値として算出することと、
    を含む、請求項1に記載の方法。
  10. 所与のサンプリング時間インスタンスについての前記データサンプルは、データサンプルを、分岐出力信号として、前記第1の信号サンプル及びそれぞれの分岐に対応する基底関数のセットから算出することを含む、請求項1に記載の方法。
  11. 前記データサンプルを正規化することは、前記分岐出力信号を正規化することを含む、請求項10に記載の方法。
  12. 前記分岐出力信号は、2つ以上のサンプリング時間インスタンスに対応する基底関数の出力信号の重み付け加算として算出される、請求項10に記載の方法。
  13. 入力信号に対して動作して出力信号を生成する電子デバイスによって導入される歪みを補償するために当該入力信号を事前歪みさせるための事前歪み回路であって、当該事前歪み回路は、
    複数のサンプリング時間インスタンスの各々について、前記入力信号及び前記出力信号を表す第1の信号サンプル及び第2の信号サンプルを生成するように構成される入力回路と、
    前記電子デバイス又は事前歪み器の歪みをモデリングし、事前歪み重みを算出するための歪みモデリング回路であって、
    前記サンプリング時間インスタンスのうちの1つ以上について、前記第1の信号サンプルと前記電子デバイス又は事前歪み器の非線形歪みモデルにおける基底関数のセットとから、対応するデータサンプルのセットを生成し、
    各基底関数からの正規化された前記データサンプルが所定の分散を有するように前記データサンプルを正規化し、
    正規化された前記データサンプルを前記第2の信号サンプルに適合させるためにモデル重み係数を前記非線形歪みモデルに従って算出し、
    前記モデル重み係数から事前歪み重みを判定する、
    ように構成される歪みモデリング回路と、
    前記事前歪み重みを前記入力信号に適用して、前記電子デバイスによって導入される前記歪みを補償する事前歪み器と、
    を備える、事前歪み回路。
  14. 前記歪みモデリング回路は、2つ以上のサンプリング時間インスタンスに対応する複数の第1の信号サンプルに基づいて1つ以上のデータサンプルを算出することによって、所与のサンプリング時間インスタンスについての前記対応するデータサンプルのセットを生成するように構成される、請求項13に記載の事前歪み回路。
  15. 前記歪みモデリング回路は、2つ以上のサンプリング時間インスタンスに対応する基底関数の出力信号を算出し、当該基底関数の出力信号から前記1つ以上のデータサンプルを生成することによって、前記1つ以上のデータサンプルを算出するように構成される、請求項14に記載の事前歪み回路。
  16. 前記歪みモデリング回路は、前記基底関数の出力信号を正規化し、正規化された前記基底関数の出力信号から正規化されたデータサンプルを生成することによって、前記データサンプルを正規化するように構成される、請求項15に記載の事前歪み回路。
  17. 前記歪みモデリング回路は、前記基底関数の出力信号から前記1つ以上のデータサンプルを正規化されていないデータサンプルとして生成し、当該正規化されていないデータサンプルを正規化することによって、前記データサンプルを正規化するように構成される、請求項15に記載の事前歪み回路。
  18. 前記歪みモデリング回路は、各基底関数から生成される前記データサンプルに、当該基底関数によって生成される前記データサンプルの分散の平方根の逆数に比例する対応する正規化因子を乗算することによって、前記データサンプルを正規化するように構成される、請求項15に記載の事前歪み回路。
  19. 前記非線形歪みモデルは、事前歪み器モデルを含み、
    前記歪みモデリング回路は、前記事前歪みモデルの前記モデル重み係数から事前歪み重みを算出するように構成される、
    請求項13に記載の事前歪み回路。
  20. 前記歪みモデリング回路は、前記モデル重み係数とそれぞれの正規化因子との積として前記事前歪み重みを算出するように構成される、請求項19に記載の事前歪み回路。
  21. 前記非線形歪みモデルは、前記電子デバイスの歪みモデルを含み、
    前記歪みモデリング回路は、
    前記電子デバイスの歪みモデルのモデル重み係数から電力増幅器重み係数を算出し、
    事前歪み重み係数を前記電力増幅器重み係数の逆値として算出する、
    ように構成される、請求項13に記載の事前歪み回路。
  22. 前記歪みモデリング回路は、データサンプルを、分岐出力信号として、前記第1の信号サンプル及びそれぞれの分岐に対応する基底関数のセットから算出するように構成される、請求項13に記載の事前歪み回路。
  23. 前記歪みモデリング回路は、前記分岐出力信号を正規化することによって前記データサンプルを正規化するように構成される、請求項22に記載の事前歪み回路。
  24. 前記歪みモデリング回路は、2つ以上のサンプリング時間インスタンスに対応する基底関数の出力信号の重み付け加算として前記分岐出力信号を算出するように構成される、請求項22に記載の事前歪み回路。
JP2013538282A 2010-11-16 2010-11-16 タップ出力の正規化を伴う非線形モデル Expired - Fee Related JP5753272B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2010/055193 WO2012066382A1 (en) 2010-11-16 2010-11-16 Non-linear model with tap output normalization

Publications (3)

Publication Number Publication Date
JP2013542696A JP2013542696A (ja) 2013-11-21
JP2013542696A5 JP2013542696A5 (ja) 2014-01-09
JP5753272B2 true JP5753272B2 (ja) 2015-07-22

Family

ID=44063457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013538282A Expired - Fee Related JP5753272B2 (ja) 2010-11-16 2010-11-16 タップ出力の正規化を伴う非線形モデル

Country Status (6)

Country Link
US (1) US8390376B2 (ja)
EP (1) EP2641327B8 (ja)
JP (1) JP5753272B2 (ja)
CN (1) CN103201949B (ja)
CA (1) CA2815438A1 (ja)
WO (1) WO2012066382A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120195392A1 (en) * 2011-02-02 2012-08-02 Provigent Ltd. Predistortion in split-mount wireless communication systems
CN103428133B (zh) * 2012-05-24 2016-09-07 富士通株式会社 预失真的温度补偿装置、方法、预失真器以及发射机
JP2014049939A (ja) * 2012-08-31 2014-03-17 Japan Radio Co Ltd 非線形補償装置
KR101451912B1 (ko) * 2013-03-22 2014-10-22 (주)아이앤씨테크놀로지 전력증폭기 모델을 포함하는 광대역 신호 송신장치
US9252821B2 (en) * 2014-06-27 2016-02-02 Freescale Semiconductor, Inc. Adaptive high-order nonlinear function approximation using time-domain volterra series to provide flexible high performance digital pre-distortion
US9628119B2 (en) * 2014-06-27 2017-04-18 Nxp Usa, Inc. Adaptive high-order nonlinear function approximation using time-domain volterra series to provide flexible high performance digital pre-distortion
US9590668B1 (en) * 2015-11-30 2017-03-07 NanoSemi Technologies Digital compensator
EP3523856A4 (en) 2016-10-07 2020-06-24 NanoSemi, Inc. DIGITAL BEAM ORIENTATION PREDISTORSION
EP3586439A4 (en) 2017-02-25 2021-01-06 NanoSemi, Inc. MULTI-BAND DIGITAL PRE-STORAGE DEVICE
US10141961B1 (en) 2017-05-18 2018-11-27 Nanosemi, Inc. Passive intermodulation cancellation
US11115067B2 (en) 2017-06-09 2021-09-07 Nanosemi, Inc. Multi-band linearization system
US10931318B2 (en) * 2017-06-09 2021-02-23 Nanosemi, Inc. Subsampled linearization system
US10581470B2 (en) 2017-06-09 2020-03-03 Nanosemi, Inc. Linearization system
US10075201B1 (en) * 2017-07-12 2018-09-11 Intel IP Corporation Adaptive nonlinear system control using robust and low-complexity coefficient estimation
US11323188B2 (en) 2017-07-12 2022-05-03 Nanosemi, Inc. Monitoring systems and methods for radios implemented with digital predistortion
US11303251B2 (en) 2017-10-02 2022-04-12 Nanosemi, Inc. Digital predistortion adjustment based on determination of load condition characteristics
US10523159B2 (en) 2018-05-11 2019-12-31 Nanosemi, Inc. Digital compensator for a non-linear system
US10644657B1 (en) 2018-05-11 2020-05-05 Nanosemi, Inc. Multi-band digital compensator for a non-linear system
JP2019201361A (ja) 2018-05-17 2019-11-21 富士通株式会社 歪補償装置および歪補償方法
US10931238B2 (en) 2018-05-25 2021-02-23 Nanosemi, Inc. Linearization with envelope tracking or average power tracking
US11863210B2 (en) 2018-05-25 2024-01-02 Nanosemi, Inc. Linearization with level tracking
CN112640299A (zh) 2018-05-25 2021-04-09 纳诺塞米有限公司 变化操作条件下的数字预失真
US10985951B2 (en) 2019-03-15 2021-04-20 The Research Foundation for the State University Integrating Volterra series model and deep neural networks to equalize nonlinear power amplifiers
CN111865228A (zh) * 2019-04-30 2020-10-30 中兴通讯股份有限公司 一种信号失真预校正方法及装置、系统及复合系统
US10992326B1 (en) 2020-05-19 2021-04-27 Nanosemi, Inc. Buffer management for adaptive digital predistortion
WO2021251852A1 (en) * 2020-06-08 2021-12-16 Telefonaktiebolaget Lm Ericsson (Publ) Linearization of a non-linear electronic device
CN111901846A (zh) * 2020-07-31 2020-11-06 浙江鑫网能源工程有限公司 采用多个NB-IoT节点网关的自组网系统
WO2022176139A1 (ja) * 2021-02-19 2022-08-25 三菱電機株式会社 歪み補償装置及び電力増幅器
WO2023115376A1 (en) * 2021-12-22 2023-06-29 Telefonaktiebolaget Lm Ericsson (Publ) Digital pre-distorter for non-linear electronic devices

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0465709A1 (de) * 1990-07-12 1992-01-15 Thomcast Ag Verfahren zur Kompensation von Nichtlinearitäten einer Verstärkerschaltung
US6236837B1 (en) 1998-07-30 2001-05-22 Motorola, Inc. Polynomial Predistortion linearizing device, method, phone and base station
US6240278B1 (en) 1998-07-30 2001-05-29 Motorola, Inc. Scalar cost function based predistortion linearizing device, method, phone and basestation
US6798843B1 (en) 1999-07-13 2004-09-28 Pmc-Sierra, Inc. Wideband digital predistortion linearizer for nonlinear amplifiers
US6260038B1 (en) * 1999-09-13 2001-07-10 International Businemss Machines Corporation Clustering mixed attribute patterns
US7058369B1 (en) 2001-11-21 2006-06-06 Pmc-Sierra Inc. Constant gain digital predistortion controller for linearization of non-linear amplifiers
US8811917B2 (en) * 2002-05-01 2014-08-19 Dali Systems Co. Ltd. Digital hybrid mode power amplifier system
US7149257B2 (en) 2003-07-03 2006-12-12 Powerwave Technologies, Inc. Digital predistortion system and method for correcting memory effects within an RF power amplifier
US7099399B2 (en) 2004-01-27 2006-08-29 Crestcom, Inc. Distortion-managed digital RF communications transmitter and method therefor
US7430248B2 (en) 2004-01-27 2008-09-30 Crestcom, Inc. Predistortion circuit and method for compensating nonlinear distortion in a digital RF communications transmitter
US7577211B2 (en) * 2004-03-01 2009-08-18 Powerwave Technologies, Inc. Digital predistortion system and method for linearizing an RF power amplifier with nonlinear gain characteristics and memory effects
JP4835241B2 (ja) * 2006-04-11 2011-12-14 株式会社日立製作所 ディジタルプリディストーション送信機
US7844014B2 (en) 2006-07-07 2010-11-30 Scintera Networks, Inc. Pre-distortion apparatus
US7724840B2 (en) 2006-12-19 2010-05-25 Crestcom, Inc. RF transmitter with predistortion and method therefor
US8180581B2 (en) * 2007-08-31 2012-05-15 Dh Technologies Development Pte. Ltd. Systems and methods for identifying correlated variables in large amounts of data
US7899416B2 (en) 2007-11-14 2011-03-01 Crestcom, Inc. RF transmitter with heat compensation and method therefor
JP4973532B2 (ja) * 2008-02-12 2012-07-11 住友電気工業株式会社 増幅回路とこれを有する無線通信装置及びコンピュータプログラム
US8369447B2 (en) * 2008-06-04 2013-02-05 Apple Inc. Predistortion with sectioned basis functions
JP5228723B2 (ja) * 2008-09-10 2013-07-03 富士通株式会社 歪補償装置及び方法

Also Published As

Publication number Publication date
US8390376B2 (en) 2013-03-05
CN103201949B (zh) 2016-02-03
WO2012066382A1 (en) 2012-05-24
EP2641327B8 (en) 2014-12-10
EP2641327B1 (en) 2014-10-22
JP2013542696A (ja) 2013-11-21
CA2815438A1 (en) 2012-05-24
US20120119810A1 (en) 2012-05-17
EP2641327A1 (en) 2013-09-25
CN103201949A (zh) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5753272B2 (ja) タップ出力の正規化を伴う非線形モデル
EP2641325B1 (en) Orthogonal basis function set for ditigal predistorter
US20230370937A1 (en) Method and system for baseband predistortion linearization in multi-channel wideband communication systems
AU2010364182B2 (en) Configurable basis-function generation for nonlinear modeling
EP2641324B1 (en) Joint process estimator with variable tap delay line for use in power amplifier digital predistortion
JP2013542696A5 (ja)
KR20040071556A (ko) 복소 벡터 곱셈을 이용하는 다항식형 전치보상기 및 방법
US8957729B2 (en) Memory structure having taps and non-unitary delays between taps
KR20100016806A (ko) 확장 메모리 다항식을 이용한 디지털 전치 왜곡 장치 및 그방법
US8645884B2 (en) Multi-layer memory structure for behavioral modeling in a pre-distorter
Chang An efficient compensation of TWTA's nonlinear distortion in wideband OFDM systems

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150521

R150 Certificate of patent or registration of utility model

Ref document number: 5753272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees