JP5751547B2 - Method for forming spherical colonies - Google Patents

Method for forming spherical colonies Download PDF

Info

Publication number
JP5751547B2
JP5751547B2 JP2010138078A JP2010138078A JP5751547B2 JP 5751547 B2 JP5751547 B2 JP 5751547B2 JP 2010138078 A JP2010138078 A JP 2010138078A JP 2010138078 A JP2010138078 A JP 2010138078A JP 5751547 B2 JP5751547 B2 JP 5751547B2
Authority
JP
Japan
Prior art keywords
cells
culture
cell
spherical
colony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010138078A
Other languages
Japanese (ja)
Other versions
JP2012000050A (en
Inventor
秀明 各務
秀明 各務
美香 山崎
美香 山崎
秀樹 縣
秀樹 縣
祐輔 堀
祐輔 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
TES Holdings Co Ltd
Original Assignee
University of Tokyo NUC
TES Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, TES Holdings Co Ltd filed Critical University of Tokyo NUC
Priority to JP2010138078A priority Critical patent/JP5751547B2/en
Publication of JP2012000050A publication Critical patent/JP2012000050A/en
Application granted granted Critical
Publication of JP5751547B2 publication Critical patent/JP5751547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)

Description

本発明は、球状コロニーの形成方法に関し、特にその形成効率の向上と、球状コロニー形成性細胞の選択的培養に関する。   The present invention relates to a method for forming spherical colonies, and particularly relates to an improvement in the formation efficiency and selective culture of spherical colony-forming cells.

近年、再生医療の研究が盛んに行われているが、皮膚細胞に関しては、他の組織よりも逸早く培養細胞の臨床応用が行われてきた。特に、真皮においてコラーゲンを産生する線維芽細胞は増殖力が高く、培養された同細胞は、移植表皮作成の足場や人工真皮にかかる医療材料として利用される他、生体へ培養細胞を直接注入し、皮膚組織の修復や再建が行われている。   In recent years, research on regenerative medicine has been actively conducted, but regarding skin cells, clinical application of cultured cells has been performed faster than other tissues. In particular, fibroblasts that produce collagen in the dermis are highly proliferative, and the cultured cells can be used as scaffolds for creating transplanted epidermis and as medical materials for artificial dermis, as well as injecting cultured cells directly into the living body. Skin tissue repair and reconstruction have been carried out.

前記線維芽細胞の培養には、培養容器に接着・伸展し、細胞層を形成するという線維芽細胞の性質を利用し、通常、接着培養が採用される。このような培養形態は、培養した線維芽細胞を単積層(シート)の状態で使用する場合においては好都合であるが、同細胞を生体へ注入する場合は、接着した細胞を容器から剥離し、これを培養液中で懸濁して注入治療に適した細胞懸濁液とすることが必要となる。しかしながら、足場を失った単離線維芽細胞は、浮遊状態では長期間生存ができないばかりでなく、移植してもほとんど増殖が認められず、移植後の生着率も思わしくなかった。   For the culture of the fibroblasts, adhesion culture is usually employed by utilizing the property of fibroblasts that adhere to and spread in a culture vessel to form a cell layer. Such a culture form is convenient when the cultured fibroblasts are used in a single layer (sheet) state, but when the cells are injected into a living body, the adhered cells are detached from the container, It is necessary to suspend this in a culture solution to obtain a cell suspension suitable for injection treatment. However, the isolated fibroblasts that lost their scaffolds not only survived for a long time in a floating state, but also hardly proliferated even after transplantation, and the engraftment rate after transplantation was not satisfactory.

ところで、近年、真皮において、多分化能を持つ細胞集団が存在することが報告されている(非特許文献1)。皮膚由来幹/前駆細胞(Skin−derived precursor cells:SKPs)と呼ばれるこの集団は、成体からも採取可能な体性幹細胞の一種であり、皮膚をはじめ、神経、骨、軟骨、脂肪などの様々な細胞に分化できることが示されている。しかしながら、皮膚由来幹/前駆細胞の頻度は非常に低く、特に成体に関しては、これを効率よく培養することは困難であった。したがって、皮膚由来幹/前駆細胞を効率的に培養することができれば、様々な再生医療に対して有用な細胞源となると期待されている。   By the way, in recent years, it has been reported that a cell population having multipotency exists in the dermis (Non-patent Document 1). This group called skin-derived stem cells / progenitor cells (SKPs) is a kind of somatic stem cells that can be collected from adults as well as various types of skin, nerves, bones, cartilage, fats, etc. It has been shown that it can differentiate into cells. However, the frequency of skin-derived stem / progenitor cells is very low, and particularly for adults, it has been difficult to efficiently culture them. Therefore, if skin-derived stem / progenitor cells can be efficiently cultured, it is expected to be a useful cell source for various regenerative medicine.

前記皮膚由来幹/前駆細胞は、線維芽細胞と異なり、無血清培地中に浮遊した状態で、球状コロニー(sphere colony)と呼ばれる細胞集合体を形成しながら増殖するという性質を有する(非特許文献1)。この球状コロニーは、前述した単離細胞よりも細胞同士が一体化した構造をもち、コロニー中の各細胞が高い増殖力を維持していることが知られている。
なお、これら性質の違いを利用し、線維芽細胞と組織幹細胞とを分離することも試みられている。すなわち、線維芽細胞を培養器に接着させる一方で、浮遊培養を行い、形成された球状コロニーを回収することで、組織幹細胞濃度の高い細胞群が得られると考えられる。しかしながら、組織幹細胞は存在自体が非常に稀有なため、このようにして回収される組織幹細胞数は極めて少なく、単離された状態で利用するには、そもそも供給量が再生医療の需要に対応し切れないという問題がある。
また、このような皮膚由来幹/前駆細胞は、皮膚組織に分布している状態では、皮膚細胞へ分化し、同細胞源となり得ていると考えられるが、該幹細胞を単離・培養したものを注入治療などに利用する場合、その多分化能をコントロールする技術を要する。
Unlike fibroblasts, the skin-derived stem / progenitor cells have the property of proliferating while forming cell aggregates called sphere colonies in a state of floating in a serum-free medium (Non-patent Document) 1). It is known that this spherical colony has a structure in which the cells are integrated with each other than the isolated cells described above, and each cell in the colony maintains a high proliferation power.
It has been attempted to separate fibroblasts and tissue stem cells using the difference in these properties. That is, it is considered that a cell group having a high tissue stem cell concentration can be obtained by adhering fibroblasts to an incubator while performing suspension culture and collecting the formed spherical colonies. However, since tissue stem cells are very rare, the number of tissue stem cells recovered in this way is extremely small, and in order to use them in an isolated state, the supply amount originally corresponds to the demand for regenerative medicine. There is a problem that it cannot be cut.
In addition, when such skin-derived stem / progenitor cells are distributed in the skin tissue, it is considered that they can differentiate into skin cells and become the source of the cells. Is required for infusion therapy, etc., it requires technology to control its pluripotency.

Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A,Kaplan DR, Miller FD, Nat Cell Biol., 3:778-784, 2001Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD, Nat Cell Biol., 3: 778-784, 2001

上記した各細胞の性質と問題を考慮すれば、皮膚における再生医療への応用が既に確立し、且つ入手が容易で培養による増殖力も高い線維芽細胞を、前記皮膚由来幹/前駆細胞のように、輸送や注入操作、細胞増殖源などの臨床的使用に適した球状コロニー化することが理想的であると考えられる。さらには、このような球状コロニーを所望の目的に応じて作り分けることも求められているが、そのような方法は未だ実現していない。
本発明は前記問題に鑑みてなされたものであり、効率的に細胞の球状コロニーを形成する方法を提供することを目的とする。
Considering the properties and problems of each cell described above, fibroblasts that have already been established for application to regenerative medicine in the skin and that are easily available and have a high ability to grow by culturing, such as the above-mentioned skin-derived stem / progenitor cells, Spherical colonization suitable for clinical use such as transportation, injection operation, cell growth source, etc. is considered ideal. Furthermore, although it is also required to create such a spherical colony according to a desired purpose, such a method has not yet been realized.
This invention is made | formed in view of the said problem, and it aims at providing the method of forming the spherical colony of a cell efficiently.

上記課題を解決するために本発明者らが鋭意研究を行った結果、特定の条件で対象細胞を順次培養することにより、臨床的使用に適した球状コロニーが高効率で形成されることを見出した。さらに、培養条件の調整により、所望の目的に応じた細胞種、コロニーの大きさ、数、接着性の球状コロニーの作り分けが可能であることを見出し、本発明を完成するに至った。
すなわち、本発明に係る球状コロニーの製造方法は、下記(A)〜(B)工程を含むことを特徴とする。
(A)対象細胞を単離する工程、
(B)(A)工程後、前記対象細胞を回転・浮遊培養する工程。
As a result of intensive studies conducted by the present inventors in order to solve the above problems, it has been found that spherical colonies suitable for clinical use can be formed with high efficiency by sequentially culturing target cells under specific conditions. It was. Furthermore, by adjusting the culture conditions, it was found that cell types, colony sizes, numbers, and adherent spherical colonies according to the desired purpose can be created, and the present invention has been completed.
That is, the method for producing a spherical colony according to the present invention includes the following steps (A) to (B).
(A) a step of isolating the target cell;
(B) Rotating / floating culture of the target cell after the step (A).

また、前記製造方法においては、前記(A)工程において、単離した対象細胞をさらに接着培養することが好適である。
また、前記製造方法においては、前記(B)工程において、浮遊培養における細胞播種密度を1×10〜1×10の範囲で調整することが好適である。
また、前記製造方法においては、前記(B)工程において、浮遊培養期間を1〜3日の範囲で調整することが好適である。
また、前記製造方法においては、前記(B)工程において、浮遊培養における回転速度が1〜3rpmであることが好適である。
Moreover, in the said manufacturing method, it is suitable to adhere | attach culture | cultivate further the isolated object cell in the said (A) process.
Moreover, in the said manufacturing method, it is suitable to adjust the cell seeding density in a suspension culture in the range of 1 * 10 < 3 > -1 * 10 < 6 > in the said (B) process.
Moreover, in the said manufacturing method, it is suitable in the said (B) process to adjust a floating culture period in the range of 1-3 days.
Moreover, in the said manufacturing method, it is suitable in the said (B) process that the rotational speed in suspension culture is 1-3 rpm.

また、前記製造方法においては、前記対象細胞が、上皮細胞及び/又は間葉系細胞であることが好適である。
また、前記製造方法においては、前記対象細胞が、線維芽細胞及び/又は骨髄間質細胞であることが好適である。
また、前記製造方法においては、前記球状コロニーの少なくとも一部が、組織幹/前駆細胞を含むものであることが好適である。
また、前記製造方法においては、前記(B)工程において、浮遊培養中に懸濁操作を行うことが好適である。
さらに、本発明にかかる再生医療・細胞治療用球状コロニーは、前記製造方法によるものであることを特徴とする。
In the production method, the target cell is preferably an epithelial cell and / or a mesenchymal cell.
Moreover, in the said manufacturing method, it is suitable that the said object cell is a fibroblast and / or a bone marrow stromal cell.
Moreover, in the said manufacturing method, it is suitable that at least one part of the said spherical colony contains a tissue stem / progenitor cell.
Moreover, in the said manufacturing method, it is suitable to perform suspension operation in suspension culture in the said (B) process.
Furthermore, the spherical colony for regenerative medicine / cell therapy according to the present invention is characterized by the production method described above.

本発明の方法によれば、効率的に細胞の球状コロニーを形成することができる。該球状コロニーは、臨床的使用における細胞の輸送、注入操作、細胞増殖源として優れているため、再生医療・細胞治療への利用が期待できる。また、本発明によれば、通常球状コロニーを形成し難い細胞をはじめ、球状コロニーを形成するが頻度の少ない幹/前駆細胞についても効率的な球状コロニーを形成することができ、さらには、所望の目的に応じた大きさや接着しやすさと純度の球状コロニーを得ることが可能であるため、前記再生医療・細胞治療への高い貢献が望まれる。   According to the method of the present invention, spherical colonies of cells can be efficiently formed. Since the spherical colony is excellent as a cell transport, injection operation, and cell growth source in clinical use, it can be expected to be used for regenerative medicine and cell therapy. In addition, according to the present invention, it is possible to form efficient spherical colonies for stem / progenitor cells that form spherical colonies but are less frequent, including cells that are usually difficult to form spherical colonies. It is possible to obtain a spherical colony having a size, ease of adhesion, and purity according to the purpose, and thus high contribution to the regenerative medicine / cell therapy is desired.

球状コロニー(sphere colony)及び細胞凝集体(cell aggregate)の違いを示した図である。図1a中の矢印は球状コロニーを指し、図1b中の矢印は細胞凝集体を指す。It is the figure which showed the difference between a spherical colony (sphere colony) and a cell aggregate (cell aggregate). The arrow in FIG. 1a indicates a spherical colony, and the arrow in FIG. 1b indicates a cell aggregate. 単離細胞及び培養細胞における球状コロニー及び細胞凝集体の形成数(図2a)及びそれらの大きさの平均(図2b)を示したグラフである。It is the graph which showed the formation number (FIG. 2a) of the spherical colony and cell aggregate in an isolated cell and a cultured cell, and the average (FIG. 2b) of those magnitude | sizes. 皮膚由来幹/前駆細胞(Skin−derived precursor cells:SKPs)の球状コロニーを示す図である。It is a figure which shows the spherical colony of a skin origin stem / progenitor cell (Skin-derived precursor cells: SKPs). 細胞播種密度(1〜8×10)による球状コロニー及び細胞凝集体の形成数(図3a)及びそれらの大きさの平均(図3b)を示したグラフである。It is the graph which showed the formation number (FIG. 3a) of the spherical colony and cell aggregate by cell seeding density (1-8 * 10 < 5 >), and the average (FIG. 3b) of those magnitude | sizes. 浮遊培養期間(1〜3日)による球状コロニー及び細胞凝集体の形成数(図4a)及びそれらの大きさの平均(図4b)を示したグラフである。図3中の「3日あり」は、浮遊培養中に懸濁操作を行いながら3日間培養したサンプルを示す。It is the graph which showed the formation number (FIG. 4a) of the spherical colony and cell aggregate by a suspension culture period (1-3 days), and the average of those magnitude | sizes (FIG. 4b). “With 3 days” in FIG. 3 indicates a sample cultured for 3 days while performing a suspension operation in suspension culture. 接着培養後の浮遊培養における培地の種類(無血清培地、血清培地)による球状コロニー及び細胞凝集体の形成数(図5a)及びそれらの大きさの平均(図5b)を示したグラフである。It is the graph which showed the formation number (FIG. 5a) and the average (FIG. 5b) of the spherical colony and the cell aggregate by the kind of culture medium (serum-free medium, serum medium) in the floating culture after adhesion culture. 球状コロニー由来細胞及び接着培養による細胞の3次元ゲル培養10日目の蛍光顕微鏡写真である。It is the fluorescence micrograph of the three-dimensional gel culture of the cell by a spherical colony origin cell and an adhesion | attachment culture | cultivation on the 10th day. 球状コロニー由来細胞及び接着培養による細胞を移植したヌードマウスの2週間後の組織切片の蛍光顕微鏡写真である。It is a fluorescence micrograph of a tissue section two weeks after nude mice transplanted with spherical colony-derived cells and cells by adhesion culture.

以下、本発明の好適な実施形態について説明する。
培養細胞から球状コロニーを作成する場合の技術的困難さは、第一に培養細胞が球状コロニーを極めて形成し難いことにある。そもそも、細胞の球状コロニーの形成は偶然に起こることがほとんどであり、培養細胞からの球状コロニー形成を意図的に制御する技術は存在しなかった。そのため、培養中に球状コロニーが認められたとしても、その頻度は極僅かであった。
第二には、通常、球状コロニーは細胞同士が連続的に配置し、一つの構造を形成していることを特徴とするが、条件が適当でない場合、細胞が単に接着した細胞凝集体(cell aggregate)と呼ばれる状態となってしまうことにある。この状態でさらに培養すると、他の球状コロニーあるいは細胞凝集体が徐々に凝集体へ接合し、大きな細胞塊を形成してしまう。そうすると、その中央部には十分な酸素や栄養が供給されなくなり、多くの場合、これらの細胞は壊死することになる。
また、通常、球状コロニーは、単離した状態で浮遊する単離細胞や、前記細胞凝集体の中に混在しているため、これらの中から球状コロニーのみを得ることも困難であった。
本発明は、特定の工程に従って細胞培養を行うことにより、前記細胞塊を形成させず、且つ、単離細胞を可及的に除去した状態で注入等の細胞移植治療に適した球状コロニーを高頻度且つ高純度で得ようとするものである。
なお、治療によっては、単離細胞による治療効果が期待されることもある。したがって、本発明は、単離細胞が適切な割合で混合された状態で球状コロニーを得、該状態で細胞を使用することも意図している。
Hereinafter, preferred embodiments of the present invention will be described.
The technical difficulty in producing spherical colonies from cultured cells is that the cultured cells are extremely difficult to form spherical colonies. In the first place, the formation of spherical colonies of cells mostly occurred by chance, and there was no technique for intentionally controlling the formation of spherical colonies from cultured cells. Therefore, even if spherical colonies were observed during the culture, the frequency was very small.
Second, spherical colonies are usually characterized in that cells are continuously arranged to form a single structure, but if the conditions are not appropriate, cell aggregates (cells) to which the cells have simply adhered. a state called “aggregate). When further culturing in this state, other spherical colonies or cell aggregates are gradually joined to the aggregates to form a large cell mass. Then, sufficient oxygen and nutrients are not supplied to the central part, and in many cases, these cells are necrotized.
In addition, since spherical colonies are usually mixed in isolated cells floating in the isolated state and the cell aggregates, it is difficult to obtain only spherical colonies from these cells.
According to the present invention, by carrying out cell culture according to a specific process, a spherical colony suitable for cell transplantation treatment such as injection can be obtained without forming the cell mass and removing isolated cells as much as possible. It is to be obtained with high frequency and high purity.
Depending on the treatment, a therapeutic effect by the isolated cells may be expected. Accordingly, the present invention also contemplates obtaining spherical colonies with the isolated cells mixed at an appropriate ratio and using the cells in that state.

なお、本願において「球状コロニー」は、増殖した細胞群が、培地中で独立した球状の集団を形成したものを意味する。一般に、球状コロニー(sphere colony)という用語は、特に幹細胞や前駆細胞の集合体を指すものとして知られているが、本願による細胞集合体の形成は幹細胞や前駆細胞に限るものではないことから、本願においては前記用語を細胞全般に対して用いることとする。   In the present application, the “spherical colony” means a group of proliferated cells forming an independent spherical group in the medium. In general, the term spherical colony is particularly known to refer to an aggregate of stem cells and progenitor cells, but the formation of cell aggregates according to the present application is not limited to stem cells and progenitor cells, In the present application, the term is used for all cells.

本発明における球状コロニーの大きさは、使用する細胞種などにもよるが、例えば、哺乳類の線維芽細胞であれば、平均径50〜200μm程度の球状コロニーが、臨床的使用での移植細胞源に適する。一般に球状コロニーが小さすぎると、同コロニーに基づいた細胞の増殖効率が低すぎることがあり、球状コロニーが大きすぎると中心部の細胞が壊死してしまうことがある。
ただし、球状コロニーの大きさや1コロニー当たりの細胞数、球状コロニーと単離細胞との割合、コロニーを形成する細胞種などの条件は、球状コロニーを移植する組織や使用する細胞種によって異なるため、目的に応じて決定することが好ましい。これは、後述する本発明に係る方法において、細胞の密度、回転・浮遊培養期間、培地などの条件調整することによって行うことができる。すなわち、本発明に係る球状コロニーの製造方法は、球状コロニー形成細胞(sphere forming cells;SFCs)の選択的培養法を包含するものでもある。
The size of the spherical colony in the present invention depends on the cell type to be used. For example, in the case of mammalian fibroblasts, spherical colonies having an average diameter of about 50 to 200 μm are transplanted cell sources for clinical use. Suitable for. In general, if the spherical colony is too small, the proliferation efficiency of the cells based on the colony may be too low, and if the spherical colony is too large, the central cell may be necrotic.
However, conditions such as the size of the spherical colony, the number of cells per colony, the ratio of the spherical colony to the isolated cell, the cell type forming the colony, etc. vary depending on the tissue into which the spherical colony is transplanted and the cell type used, It is preferable to determine according to the purpose. This can be performed by adjusting conditions such as cell density, rotation / floating culture period, medium, etc. in the method according to the present invention described later. That is, the method for producing a spherical colony according to the present invention includes a selective culture method for spherical colony-forming cells (SFCs).

本発明にかかる球状コロニーの製造方法は、
(A)対象細胞を単離する工程と、
(B)(A)工程後、前記対象細胞を回転させながら浮遊培養する工程を含むものである。
まず、上記(A)及び(B)工程についてそれぞれ説明する。
The method for producing a spherical colony according to the present invention includes:
(A) isolating the target cell;
(B) After the step (A), the method includes a step of suspension culture while rotating the target cell.
First, the steps (A) and (B) will be described.

(A)工程
本発明にかかる球状コロニーの製造方法において、(A)工程は、対象細胞を単離することを表している。
本発明に使用する対象細胞の種類は限定されないが、特に、表皮細胞などを含む上皮細胞、線維芽細胞、骨髄間質細胞、骨芽細胞、心筋細胞、軟骨細胞、腱細胞、脂肪細胞などを含む間葉系細胞が好ましく、より好ましくは高い接着性を備えた線維芽細胞、骨髄間質細胞である。これらの対象細胞は、単独で用いても2種以上組み合わせて用いてもよい。また、前記対象細胞には、勿論、各組織に分布する幹細胞や前駆細胞も包含されるが、本発明の球状コロニーにおいて幹細胞や前駆細胞の存在は必須ではない。すなわち、例えば、皮膚の真皮組織から得た細胞(群)から本発明の方法により球状コロニーを得る場合、得られたコロニーの全てが線維芽細胞から形成されていても、同コロニーの一部又は全部が幹細胞や前駆細胞を含んでいてもよい。本発明の球状コロニーに含まれ得る幹細胞、前駆細胞としては、例えば、皮膚由来幹/前駆細胞(SKPs)が挙げられる。球状コロニーの少なくとも一部が、SKPsを含んでいると、同コロニーに基づく細胞の増殖が亢進する可能性がある。
なお、本発明に使用する対象細胞の採取源としては、例えば、ヒトなどの哺乳類が好適であるが、それ以外の生物であっても構わない。また、前記採取源由来の細胞株を用いてもよい。
(A) Process In the manufacturing method of the spherical colony concerning this invention, the (A) process represents isolating a target cell.
The type of target cells used in the present invention is not limited, and in particular, epithelial cells including epidermal cells, fibroblasts, bone marrow stromal cells, osteoblasts, cardiomyocytes, chondrocytes, tendon cells, adipocytes, etc. The mesenchymal cells are preferably, and more preferably fibroblasts and bone marrow stromal cells having high adhesion. These target cells may be used alone or in combination of two or more. The target cells naturally include stem cells and progenitor cells distributed in each tissue, but the presence of stem cells and progenitor cells is not essential in the spherical colony of the present invention. That is, for example, when obtaining a spherical colony by the method of the present invention from cells (group) obtained from the dermal tissue of the skin, even if all of the obtained colonies are formed from fibroblasts, All may contain stem cells and progenitor cells. Examples of stem cells and progenitor cells that can be included in the spherical colonies of the present invention include skin-derived stem / progenitor cells (SKPs). If at least a part of the spherical colony contains SKPs, the proliferation of cells based on the colony may be enhanced.
In addition, as a collection source of the target cells used in the present invention, for example, mammals such as humans are suitable, but other organisms may be used. Moreover, you may use the cell line derived from the said collection source.

また、対象細胞の単離に係る処理は、公知の方法により行うことができる。例えば、対象細胞を含む組織の切片に適宜洗浄及び消毒を施し、蛋白質分解酵素を含む溶液中でこれを処理することにより、組織は個々の細胞に分離される。蛋白質分解酵素としては、例えば、コラゲナーゼ、ディスパーゼ、ヒアルロニダーゼ、エラスターゼ、トリプシン、プロナーゼ等が挙げられ、例えば皮膚組織の場合、コラゲナーゼ、ディスパーゼが適する。また、EDTA等のキレート剤を細胞剥離に使用してもよい。
単離された細胞は、必要に応じて洗浄や、セルストレーナーによる分離を施し、(B)工程に供する。
Moreover, the process which concerns on isolation of an object cell can be performed by a well-known method. For example, the tissue is separated into individual cells by appropriately washing and disinfecting a tissue section containing the target cell and treating it in a solution containing a proteolytic enzyme. Examples of proteolytic enzymes include collagenase, dispase, hyaluronidase, elastase, trypsin, pronase and the like. For example, in the case of skin tissue, collagenase and dispase are suitable. A chelating agent such as EDTA may be used for cell detachment.
The isolated cells are washed or separated by a cell strainer as necessary, and are subjected to step (B).

また、上記(A)工程においては、単離された細胞を初代培養細胞として接着培養(初代培養)を行うことが好ましい。単離後に接着培養を行わなくても球状コロニーを得ることは可能であるが、(B)工程における浮遊培養の前に、平面培養(接着培養)を行っておくことで、球状コロニーの形成率をより向上させることができる。
前記接着培養は、単離された初代培養細胞を培養容器上に播種し、培養液又は培地中で培養することによって行う。
単離された細胞は、培養容器に播種されると、容器表面に接着し、伸展しながら増殖する。接着・伸展の形状は細胞種によって異なるが、通常、接着培養を続けることによって培養容器の表面には細胞の単層が形成される。
接着培養に使用する培養容器は、細胞が接着し得る材質・形状のものであれば特に限定されないが、一般的なものとして、ガラスないしプラスチック製の6ウェル、12ウェル、48ウェル、96ウェル等のプレート及びシャーレ等の培養皿やフラスコなどが挙げられる。また、コラーゲンなどを細胞接着の基質として用いてもよい。
In the step (A), it is preferable to perform adhesion culture (primary culture) using the isolated cells as primary culture cells. Although it is possible to obtain spherical colonies without performing adhesion culture after isolation, the formation rate of spherical colonies can be obtained by performing planar culture (adhesion culture) before floating culture in step (B). Can be further improved.
The adhesion culture is performed by seeding the isolated primary cultured cells on a culture vessel and culturing them in a culture solution or a medium.
When the isolated cells are seeded in a culture container, they adhere to the surface of the container and proliferate while spreading. Although the shape of adhesion / extension varies depending on the cell type, a cell monolayer is usually formed on the surface of the culture vessel by continuing the adhesion culture.
The culture vessel used for the adhesion culture is not particularly limited as long as it is made of a material and shape to which cells can adhere, but generally, glass or plastic 6-well, 12-well, 48-well, 96-well, etc. And culture dishes such as petri dishes and flasks. Collagen or the like may be used as a cell adhesion substrate.

培養液又は培地としては、無機塩類、各種アミノ酸、糖類、ビタミン等を含む基礎培地を使用することができる。一般に細胞培養に使用される基礎培地としては、例えば、Iscove改変Dulbecco培地(IMDM)、RPMI、DMEM、Fischer培地、α培地、Leibovitz培地、L−15、NCTC、F−10、F−12、MEM、McCoy培地等が挙げられる。
また、前記培養液又は培地には、患者本人の血清(自己血清)、ウシ胎児血清(FBS(FCS))、新生子ウシ血清(NCS)、子ウシ血清(CS)、ウマ血清(HS)等の血清、もしくはこれらの代替物質を添加することが好ましい。また、培養中の培養液、培地は、必要に応じて交換することが好適である。
As the culture solution or medium, a basal medium containing inorganic salts, various amino acids, sugars, vitamins and the like can be used. As the basal medium generally used for cell culture, for example, Iscove modified Dulbecco medium (IMDM), RPMI, DMEM, Fischer medium, α medium, Leibovitz medium, L-15, NCTC, F-10, F-12, MEM McCoy medium and the like.
In addition, the culture medium or medium includes the patient's own serum (autologous serum), fetal calf serum (FBS (FCS)), newborn calf serum (NCS), calf serum (CS), horse serum (HS), etc. It is preferable to add serum or a substitute substance thereof. In addition, it is preferable to replace the culture medium and medium during the culture as necessary.

使用する細胞種ごとの培養手順や条件は、公知の細胞培養方法に従えばよい。例えば、哺乳類細胞の場合、培養環境を体温に応じた約37℃とする他、培地のpH調整のため必要であれば5〜10%CO雰囲気下で培養する。
培養期間は、使用する細胞種や培養容器、培養条件などに応じて適宜設定することができ、培養容器表面の細胞密度が上昇し、おおよそ80〜90%コンフルエントの状態となるまでを培養の目安とする。
設定した期間培養を経た接着培養細胞は、トリプシン等の蛋白質分解酵素やキレート剤で処理し、培養容器から剥離する。剥離した細胞は、必要に応じて洗浄や、セルストレーナーによる分離を施し、(B)工程に供する。
The culture procedure and conditions for each cell type to be used may follow a known cell culture method. For example, in the case of mammalian cells, in addition to setting the culture environment to about 37 ° C. according to body temperature, the cells are cultured in a 5 to 10% CO 2 atmosphere if necessary for pH adjustment of the medium.
The culture period can be appropriately set according to the cell type, culture container, culture conditions, etc. used, and the standard of culture is until the cell density on the surface of the culture container increases and becomes approximately 80-90% confluent. And
Adherent cultured cells that have been cultured for a set period of time are treated with a proteolytic enzyme such as trypsin or a chelating agent, and detached from the culture vessel. The detached cells are washed or separated by a cell strainer as necessary, and are subjected to step (B).

なお、本発明において、上記接着培養は、培養細胞を継代する過程を含むことがある。
上記初代培養を継代する場合、初代培養細胞が完全なコンフルエントに達する前に培地を交換し、再播種して行う。
継代法は特に限定されないが、例えば、培養容器上に接着した初代培養細胞から培地を除去し、必要に応じて細胞を洗浄後、トリプシン等の蛋白質分解酵素やキレート剤を添加して培養容器に接着した細胞を剥離し、回収して再度細胞培養容器に播くことで1継代目の細胞が得られる。なお、継代細胞の播種数は、初代培養細胞を適宜確認して決定すればよく、公知の方法に従って、血清培地による酵素反応の停止や、遠心分離等による細胞の洗浄などの操作を行ってもよい。
In the present invention, the adhesion culture may include a process of subcultured cultured cells.
When the primary culture is subcultured, the culture medium is changed and reseeded before the primary cultured cells reach complete confluence.
The passage method is not particularly limited. For example, the culture medium is removed from the primary cultured cells adhered on the culture container, and the cells are washed if necessary, and then a protease such as trypsin or a chelating agent is added to the culture container. Cells that adhere to the cell are detached, recovered, and seeded again in a cell culture container to obtain cells for the first passage. The number of passage cells to be seeded may be determined by appropriately confirming the primary cultured cells. According to a known method, the enzyme reaction with the serum medium is stopped or the cells are washed by centrifugation or the like. Also good.

継代した細胞は、前述の接着培養と同様の方法・条件で、おおよそ80〜90%コンフルエントの状態となるまで培養を行う。前記状態まで培養した1継代目の細胞は、上記蛋白質分解酵素等の処理により培養容器から剥離し、必要に応じて洗浄や、セルストレーナーによる分離を施し、(B)工程に供する。本発明にかかる球状コロニーは、上記継代を行わなくても得ることができるが、対象細胞をより純化(不要な細胞を除去)させる目的で、継代を2回以上行ってから(B)工程に進んでもよい。ただし、継代に伴う細胞老化を考慮すれば、一般に継代は3回程度までとすることが好ましい。   The subcultured cells are cultured until approximately 80 to 90% confluent under the same methods and conditions as in the aforementioned adhesion culture. The first-passage cells cultured to the above state are detached from the culture vessel by treatment with the above-mentioned proteolytic enzyme, etc., washed or separated with a cell strainer as necessary, and subjected to step (B). Although the spherical colony concerning this invention can be obtained even if it does not perform the said subculture, after performing a subculture more than twice for the purpose of purifying a target cell more (removing an unnecessary cell) (B). You may proceed to the process. However, considering cell senescence associated with passage, it is generally preferable that passage is performed up to about 3 times.

(B)工程
本発明にかかる方法において、(B)工程は、前記(A)工程で得た対象細胞を回転させながら浮遊培養することを表している。
(A)工程において単離された対象細胞は、培養液又は培地中に懸濁し、培養容器中に播種して浮遊培養を開始する。
浮遊培養は培養容器を回転ないし攪拌しながら行う培養法であり、これにより、容器表面に接着せず培養液又は培地に浮遊した状態で培養細胞を増殖させることができる。本発明においては、特に、回転させながら培養することが好ましい。培養容器に播種された対象細胞は、回転させることで、単離した状態で浮遊したままの細胞と、浮遊状態で全方向に均一に増殖し、球状の集合体、すなわち球状コロニーを形成する細胞とに分かれる。
(B) Process In the method concerning this invention, the (B) process represents carrying out suspension culture, rotating the object cell obtained at the said (A) process.
The target cells isolated in the step (A) are suspended in a culture solution or medium, seeded in a culture container, and suspension culture is started.
Floating culture is a culture method that is performed while rotating or stirring a culture vessel, whereby cultured cells can be grown in a state of floating in a culture solution or medium without adhering to the surface of the vessel. In the present invention, it is particularly preferable to culture while rotating. The target cells seeded in the culture vessel are rotated so that the cells remain floating in the isolated state, and the cells that proliferate uniformly in all directions in the floating state to form spherical aggregates, that is, spherical colonies And divided.

(B)工程の浮遊培養に使用する培養容器は、浮遊培養に適したものであれば限定されず、例えば、フラスコやチューブ、浮遊培養用のシャーレやプレート等が挙げられる。本発明においては、下記細胞播種密度設定上の扱い易さから、特に14mL容量の浮遊培養用チューブの使用が好適である。
浮遊培養における細胞播種密度は、使用する細胞の種類や大きさにもよるが、1×10〜1×10cells/mLの範囲とすることで好適に球状コロニーを得られる。なお、例えば、線維芽細胞においては、細胞播種密度を特に3.5〜7.0×10cells/mLとすることで球状コロニーの形成効率をより向上させることができる。
前記密度範囲を超えると、形成される球状コロニーの数はやや減少するものの、コロニーの平均サイズはより大きくなる傾向がある。また、前記密度に満たない場合も球状コロニーの形成数は減少するが、より小サイズの球状コロニーが得られることがある。すなわち、本発明においては、細胞播種密度を調整することにより、所望の球状コロニーを得ることができる。
また、本工程の培養条件(温度、雰囲気等)は、上記接着培養や公知の培養条件に準じて設定することができるが、培養中の細胞は、ローテーター等により1〜3rpm、特に1.3〜2rpmの回転速度で浮遊させることが好ましい。前記回転速度が早すぎると球状コロニー形成の効率が低下することがあり、遅すぎると球状コロニーよりも細胞凝集体が形成される傾向がある。
The culture vessel used for the suspension culture in the step (B) is not limited as long as it is suitable for suspension culture, and examples thereof include flasks and tubes, petri dishes and plates for suspension culture, and the like. In the present invention, it is particularly preferable to use a suspension culture tube having a capacity of 14 mL because of ease of handling in setting the cell seeding density described below.
Although the cell seeding density in the suspension culture depends on the type and size of the cells used, spherical colonies can be suitably obtained by setting the cell seeding density in the range of 1 × 10 3 to 1 × 10 6 cells / mL. For example, in the case of fibroblasts, the formation efficiency of spherical colonies can be further improved by setting the cell seeding density to 3.5 to 7.0 × 10 4 cells / mL.
When the density range is exceeded, the number of spherical colonies formed is somewhat reduced, but the average size of the colonies tends to be larger. Also, when the density is less than the above, the number of spherical colonies formed is reduced, but smaller size colonies may be obtained. That is, in the present invention, a desired spherical colony can be obtained by adjusting the cell seeding density.
The culture conditions (temperature, atmosphere, etc.) of this step can be set according to the above-mentioned adhesion culture or known culture conditions, but the cells in culture are 1 to 3 rpm, particularly 1.3. It is preferable to float at a rotational speed of ˜2 rpm. If the rotational speed is too fast, the efficiency of spherical colony formation may be reduced, and if it is too slow, cell aggregates tend to be formed rather than spherical colonies.

また、本工程においては、浮遊培養期間を調整することによって球状コロニーの大きさ、接着性、純度を制御することができる。例えば、球状コロニーを選択的に培養する必要がある場合は、3日以上浮遊培養を行えば該コロニーを高純度で得ることができる。培養期間が3日未満の段階では、単離した細胞も相当数残存する。
さらに、前記培養中には懸濁操作を間歇的に行い、細胞集合体同士を分離させるとことが好ましい。3日以上に亘る培養では、培養中に細胞凝集体様の細胞塊の形成が確認されるが、これは形成初期であれば分離可能な状態であると考えられる。したがって、培養中に懸濁操作を行うことによって、前記細胞塊が凝集することを防ぎ、より多数のコロニーを得ることができるのである。なお、前記懸濁操作はピペッティングにより行うことが好ましい。
In this step, the size, adhesion, and purity of the spherical colonies can be controlled by adjusting the suspension culture period. For example, when it is necessary to selectively cultivate spherical colonies, the colonies can be obtained with high purity by carrying out suspension culture for 3 days or more. At a stage where the culture period is less than 3 days, a considerable number of isolated cells remain.
Furthermore, it is preferable to perform a suspension operation intermittently during the culture to separate the cell aggregates. In the culture over 3 days or more, the formation of cell aggregates like cell aggregates is confirmed during the culture. Therefore, by performing a suspension operation during culture, the cell mass can be prevented from aggregating and a larger number of colonies can be obtained. The suspension operation is preferably performed by pipetting.

浮遊培養期間が3日未満の場合、単離細胞と球状コロニーの混合物が得られる。また、球状コロニーについても、未成熟状態のものが得られる。例えば、1日程度の浮遊培養では、浮遊する多数の単離細胞に混ざって、細胞間の繋がりが緩く、高い接着能を保持した球状コロニーが認められる。この球状コロニーの培養を続けることで、徐々に接着し難い球状コロニーへと変化する。これを3日以上培養すると、球状コロニーの形成が進み、それに伴って単離細胞が減少するため、成熟した球状コロニーを選択的に回収することが可能となるのである。
上記の如く、3日未満の球状コロニーは未発達で大きさが小さく、接着しやすい状態を保っているため、移植後に直ちに生着する必要がある一部の細胞移植治療には有利である。一方、3日以上浮遊培養を行った球状コロニーは、接着しにくく浮遊状態を維持しやすいため、生着に時間がかかるものの、輸送や生体への注入には有利である。このように、本発明においては、浮遊培養期間を調整することにより、所望の球状コロニーを得ることができる。よって、本発明においては、目的に応じて浮遊培養期間を1〜3日間で調整することが好適である。
When the suspension culture period is less than 3 days, a mixture of isolated cells and spherical colonies is obtained. Also, spherical colonies can be obtained in an immature state. For example, in suspension culture for about one day, spherical colonies are observed that are mixed with a large number of floating isolated cells, loosely connected between cells, and retain high adhesion ability. By continuing the culture of this spherical colony, it gradually changes into a spherical colony that is difficult to adhere. When this is cultured for 3 days or more, the formation of spherical colonies proceeds, and the number of isolated cells decreases accordingly. Therefore, mature spherical colonies can be selectively recovered.
As described above, spherical colonies of less than 3 days are undeveloped, small in size, and easy to adhere, which is advantageous for some cell transplantation treatments that need to be engrafted immediately after transplantation. On the other hand, spherical colonies that have been subjected to suspension culture for 3 days or more are difficult to adhere and easily maintain a floating state, and thus take time to engraft, but are advantageous for transportation and injection into a living body. Thus, in the present invention, a desired spherical colony can be obtained by adjusting the suspension culture period. Therefore, in the present invention, it is preferable to adjust the suspension culture period to 1 to 3 days according to the purpose.

浮遊培養に使用する培養液又は培地は、細胞の浮遊培養に通常使用されるものであれば特に限定されないが、本発明においては、目的に応じて血清含有培地と無血清培地を使い分けることが好ましい。無血清培地を使用した場合、形成される球状コロニー数が多くなり、それぞれの球状コロニーのサイズはやや小さくなる傾向がある。血清含有培地の場合、球状コロニー形成数は無血清培地に比べてやや減少するが、比較的大きなサイズのコロニーを効率よく得ることが可能となる。すなわち、本発明においては、前記細胞密度に加え、浮遊培養における培地の血清を調整することによっても、球状コロニーの数及びサイズをコントロールすることができる。なお、無血清培地による球状コロニーは極めて小さく、前記細胞密度の変更で調整可能な球状コロニーのサイズよりも、さらに小さいコロニーを得ることができる。
なお、ここでの血清は、患者本人の血清(自己血清)、ウシ胎児血清(FBS(FCS))、新生子ウシ血清(NCS)、子ウシ血清(CS)、ウマ血清(HS)等の細胞培養に通常用いられる血清、もしくはこれらの代替物質を示し、適宜濃度調整して使用する。
The culture solution or medium used for suspension culture is not particularly limited as long as it is usually used for suspension culture of cells. In the present invention, it is preferable to use a serum-containing medium and a serum-free medium properly according to the purpose. . When a serum-free medium is used, the number of spherical colonies formed increases, and the size of each spherical colony tends to be slightly smaller. In the case of a serum-containing medium, the number of spherical colonies formed is slightly reduced as compared with a serum-free medium, but it becomes possible to efficiently obtain colonies having a relatively large size. That is, in the present invention, in addition to the cell density, the number and size of spherical colonies can be controlled by adjusting the serum of the medium in suspension culture. In addition, the spherical colony by a serum-free culture medium is very small, and a colony smaller than the size of the spherical colony which can be adjusted by the change of the cell density can be obtained.
The serum here refers to cells such as the patient's own serum (autologous serum), fetal bovine serum (FBS (FCS)), newborn calf serum (NCS), calf serum (CS), horse serum (HS) and the like. Serum normally used for culture, or an alternative substance thereof is shown, and the concentration is adjusted appropriately for use.

浮遊培養によって得られた本発明にかかる球状コロニーは、通常培養された細胞よりも浮遊状態で長期間生存することが可能である。すなわち、通常は細胞を剥離してからの輸送や注入までの時間に徐々に細胞が失われていくが、本発明による球状コロニーでは上記の理由から特に体内への注入を伴う処置に適する。さらに、注入後の生着率、生存率も大幅に向上することから、例えば皮膚や骨髄に対する現行の細胞移植治療や再生医療での使用に適する。   The spherical colony according to the present invention obtained by suspension culture can survive in a suspended state for a long period of time compared to cells cultured normally. That is, normally, cells are gradually lost during transport and injection after the cells are detached, but the spherical colonies according to the present invention are particularly suitable for treatments involving injection into the body for the reasons described above. Furthermore, since the engraftment rate and survival rate after injection are greatly improved, it is suitable for use in, for example, current cell transplantation treatment and regenerative medicine for skin and bone marrow.

以下、実施例を示して本発明をより具体的に説明するが、これらの実施例は本発明を限定するものではない。
まず、本実施例で行った細胞の培養方法を次の(1)〜(2)に示す。
(1)初代培養細胞培養(接着培養)
BALB/cAJclマウス(7週齢、オス、日本クレア社)にソムノペンチル(共立製薬株式会社製)を腹腔内に過量投与して犠牲死させた後、バリカンで毛を刈りとった。脂肪や血管などの皮下組織が混入しないように丁寧に背部皮膚組織を切除し、採取した組織(1cm程度)を12%イソジン溶液(明治製菓株式会社製)に90秒間浸漬し、消毒を行った。PBS(−)(日水製薬株式会社製)で洗浄した後、クリーンベンチ内で、1〜2mm程度の小片になるように細切した。この組織小片を10mg/mL濃度のコラゲナーゼ溶液(和光純薬工業株式会社製)とともに37℃、CO5%の条件下で1時間インキュベートし、酵素消化を行った。次に、4℃、1500rpmで5分間遠心分離し、上清の除去後、α−MEM培地(和光純薬工業株式会社製)5mLで洗浄する操作を2回繰り返した。その後、上清を除去し、血清入りα−MEM(α−MEM培地+10%FBS+ペニシリン/ストレプトマイシン/ファンギゾン(GIBCO製))を6mL加えて細胞を懸濁し、細胞懸濁液を6ウェルプレートに1mL/ウェルずつ播種した。細胞播種後、血清入りα−MEMを各ウェルに更に1mLずつ加えた後、37℃、CO5%にて培養を行った。培地交換は、週2回全量交換を行った。継代は、細胞が80〜90%コンフルエントに達した時点でトリプシンEDTA(GIBCO製)あるいはTrypLE Select(GIBCO製)を用いて行った。目視顕微鏡で細胞がはがれたことを確認できた時点で、血清入りα−MEMで反応を停止させ、4℃、1500rpmで5分間遠心分離後、上清を除去し、PBSで再懸濁した。血球計算板を用いて細胞数をカウントした後、再度遠心し、血清入り培地で懸濁した後、目的に応じた細胞数でプレートあるいはディッシュに再度播種し、37℃、5%COで培養を続けた。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, these examples do not limit the present invention.
First, the cell culture method performed in this example is shown in the following (1) to (2).
(1) Primary cell culture (adhesion culture)
A BALB / cAJcl mouse (7 weeks old, male, Nippon Claire) was sacrificed by overdose of somnopentyl (manufactured by Kyoritsu Pharmaceutical Co., Ltd.) intraperitoneally, and then hair was cut with a clipper. The back skin tissue was carefully excised so that the subcutaneous tissue such as fat and blood vessels was not mixed, and the collected tissue (about 1 cm) was immersed in a 12% isodine solution (manufactured by Meiji Seika Co., Ltd.) for 90 seconds for disinfection. . After washing with PBS (-) (manufactured by Nissui Pharmaceutical Co., Ltd.), it was cut into small pieces of about 1 to 2 mm in a clean bench. This tissue piece was incubated with a collagenase solution (manufactured by Wako Pure Chemical Industries, Ltd.) having a concentration of 10 mg / mL for 1 hour at 37 ° C. and 5% CO 2 to carry out enzyme digestion. Next, the operation of centrifuging at 4 ° C. and 1500 rpm for 5 minutes, removing the supernatant, and washing with 5 mL of α-MEM medium (manufactured by Wako Pure Chemical Industries, Ltd.) was repeated twice. Thereafter, the supernatant is removed, and 6 mL of serum-containing α-MEM (α-MEM medium + 10% FBS + penicillin / streptomycin / fungizone (GIBCO)) is added to suspend the cells, and the cell suspension is added to a 6-well plate at 1 mL. Seeded per well. After cell seeding, 1 mL of serum-added α-MEM was further added to each well, followed by culturing at 37 ° C. and 5% CO 2 . The medium was changed twice a week. Passage was performed using trypsin EDTA (GIBCO) or TrypLE Select (GIBCO) when the cells reached 80-90% confluence. When it was confirmed that the cells had peeled off with a visual microscope, the reaction was stopped with α-MEM containing serum, centrifuged at 4 ° C. and 1500 rpm for 5 minutes, and then the supernatant was removed and resuspended in PBS. Count the number of cells using a hemocytometer, re-centrifuge, suspend in serum-containing medium, re-inoculate the plate or dish with the number of cells according to the purpose, and culture at 37 ° C. and 5% CO 2 . Continued.

(2)接着培養後の回転・浮遊培養
血清入りα−MEMで接着培養後(すなわち、前記(1)の操作後)の細胞をトリプシンEDTAにて回収し、4℃1500rpmで5分間遠心分離した。洗浄後、70μmのセルストレーナーを通過させ、細胞数をカウントし、SKPs用無血清培地(D−MEM/F12+2%B−27+20ng/mLbFGF+20ng/mLEGF+ペニシリン/ストレプトマイシン/ファンギゾン)、あるいは、血清入りα−MEMで細胞を再懸濁した。一定の細胞数で14mLチューブ(Falcon製)に播種し、37℃、CO5%の条件下で1〜3日間ローテーター(BIO CRAFT製)(1.3rpm)培養を行い、球状コロニーを形成させた。
(2) Rotating / floating culture after adhesion culture Cells after adhesion culture in serum-containing α-MEM (that is, after the operation of (1) above) were collected with trypsin EDTA, and centrifuged at 1500 ° C. for 5 minutes. . After washing, the cells were passed through a 70 μm cell strainer, the number of cells was counted, and serum-free medium for SKPs (D-MEM / F12 + 2% B-27 + 20 ng / mLbFGF + 20 ng / mLEGF + penicillin / streptomycin / fungizone) or α-MEM containing serum The cells were resuspended. Inoculate a 14 mL tube (Falcon) with a certain number of cells, and perform rotator (manufactured by BIO CRAFFT) (1.3 rpm) for 1 to 3 days at 37 ° C. and 5% CO 2 to form spherical colonies. It was.

上記(2)における浮遊培養開始後、細胞の一部は増殖して球状コロニーを形成し、また一部は集合して細胞凝集体を形成した。本願においては、この細胞塊が、図1aに示すような球状の構造である場合を「球状コロニー」(図中の「sphere colony」)、図1bに示すような複数の球状コロニー又は細胞が集合して大きな細胞塊となった構造を「細胞凝集体」(図中の「cell aggregate」)とする。一定の構造や形態を取る球状コロニーでは、無制限に増殖することはなく、大きさも一定に保たれる。一方細胞凝集体は培養中に癒合して大きくなり、形態は一定でなく、大きさも無制限に増大する可能性がある。したがって、細胞凝集体は機能的な細胞の構造や単位ではなく、単に細胞や球状コロニー同士が接着した状態と考えられた。また、細胞凝集体は癒合を繰り返すことで巨大化し、内部に十分な酸素や栄養が供給されなくなるため、中央部の細胞が壊死することがあった。したがって、本願では図1aのごとき球状コロニーを効率的に形成し、図1bのごとき細胞凝集体をできるだけ形成しない条件を次の各試験により検討した。   After the start of suspension culture in (2) above, some of the cells grew to form spherical colonies, and some of them aggregated to form cell aggregates. In the present application, the case where the cell mass has a spherical structure as shown in FIG. 1a is a “spherical colony” (“sphere colony” in the figure), and a plurality of spherical colonies or cells as shown in FIG. The structure that has become a large cell mass is called “cell aggregate” (“cell aggregate” in the figure). Spherical colonies that take a certain structure and form do not grow indefinitely and the size is kept constant. On the other hand, cell aggregates coalesce and become large during culture, and the morphology is not constant and the size may increase without limitation. Therefore, it was considered that the cell aggregate was not a functional cell structure or unit, but a state where cells and spherical colonies were simply adhered to each other. In addition, cell aggregates become enormous by repeated fusion, and sufficient oxygen and nutrients are not supplied to the inside, so that cells in the center may be necrotized. Therefore, in the present application, the following tests examined the conditions in which spherical colonies as shown in FIG. 1a were efficiently formed and cell aggregates as shown in FIG. 1b were not formed as much as possible.

単離細胞と培養細胞の球状コロニー形成効率
上記(1)の操作で得た単離細胞を、そのまま回転・浮遊培養を行ったサンプル(単離細胞)、及び、上記(1)の操作で得た単離細胞を接着培養し、回転・浮遊培養を行ったサンプル(培養細胞)の位相差顕微鏡画像を3視野記録し、観察した。それぞれのサンプルにおける球状コロニー(sphere colony)及び細胞凝集体(cell aggregate)の数を図2aに、それらの大きさの平均を図2bに示す。
図2a及びbによって示されるとおり、前記単離細胞では明らかな球状コロニーの形成は認められなかったが、前記培養細胞では多数の球状コロニーの形成が認められた。
さらに詳細に試験を行った結果、上記のように成体の皮膚組織から得られる細胞を用いた場合、球状コロニーの頻度が極めて低くなるが、使用する細胞の種類や状態によっては、組織からの単離細胞からでも球状コロニーが形成されることが分かった。
なお、例えば、皮膚由来幹/前駆細胞(Skin−derived precursor cells:SKPs)では、接着培養や回転培養を経なくとも球状コロニーが形成される(図3)が、この場合、成体における細胞頻度が特に低いため効率的に該コロニーを得ることは難しい。
これに対し、本発明においては、単離した細胞に対し回転させながら浮遊培養を行うことによって、球状コロニーを得ることができる。また、特に通常浮遊増殖しない接着性の培養細胞は、接着培養後に回転させながら浮遊培養をすることが好適である。
Spherical colony formation efficiency of isolated cells and cultured cells The isolated cells obtained by the operation of (1) above are obtained by the sample (isolated cells) subjected to rotation / floating culture as it is and the operation of (1) above. The phase-contrast microscope images of the sample (cultured cells) obtained by adhesion culture of the isolated cells and rotation / floating culture were recorded and observed. The number of spherical colonies and cell aggregates in each sample is shown in FIG. 2a, and the average size is shown in FIG. 2b.
As shown by FIGS. 2a and 2b, no apparent spherical colony formation was observed in the isolated cells, but numerous spherical colony formations were observed in the cultured cells.
As a result of further detailed tests, when cells obtained from adult skin tissue as described above were used, the frequency of spherical colonies was extremely low, but depending on the type and state of the cells used, single cells from the tissue were used. It was found that spherical colonies were formed even from detached cells.
In addition, for example, in skin-derived stem / progenitor cells (SKPs), a spherical colony is formed without undergoing adhesion culture or rotation culture (FIG. 3). Since it is particularly low, it is difficult to efficiently obtain the colonies.
In contrast, in the present invention, spherical colonies can be obtained by performing suspension culture while rotating the isolated cells. In particular, it is preferable that the cultured cultured cells that do not normally proliferate in suspension are subjected to suspension culture while being rotated after adhesion culture.

細胞播種密度と球状コロニー形成効率
上記(1)の操作で接着培養を行った細胞をトリプシンEDTAにて回収し、細胞数をカウントした。血清入りα−MEMで再懸濁後、異なる細胞数(1、2、4、8×10cells/8.5mL)で14mLチューブに入れ、37℃、CO5%で1日間ローテーター(1.3rpm)による回転培養(浮遊培養)を行った。各播種密度による球状コロニー(sphere colony)及び細胞凝集体(cell aggregate)の形成数を図4aに、それらの大きさの平均を図4bに示す。なお、細胞のカウントは、次の方法で行った。
Cell seeding density and spherical colony formation efficiency Cells subjected to adhesion culture by the above operation (1) were collected with trypsin EDTA, and the number of cells was counted. After resuspension in serum-containing α-MEM, put in 14 mL tubes with different cell numbers (1, 2, 4, 8 × 10 5 cells / 8.5 mL), and rotate for 1 day at 37 ° C. and 5% CO 2. Rotational culture (floating culture) at 3 rpm). The number of spherical colonies and cell aggregates formed by each seeding density is shown in FIG. 4a, and the average size is shown in FIG. 4b. The cell count was performed by the following method.

<細胞数の測定>
細胞懸濁液から100μLを取り、同量のトリパンブルーと混合した。うち10μLをとり血球計算版にて位相差顕微鏡下で4カ所細胞数をカウントした。同様の測定を2回行い、平均値から細胞数を計算した。
<Measurement of cell number>
100 μL was taken from the cell suspension and mixed with the same amount of trypan blue. 10 μL of this was taken, and the number of cells at 4 locations was counted with a hemocytometer under a phase contrast microscope. The same measurement was performed twice, and the number of cells was calculated from the average value.

図4a及びbに示すとおり、細胞の播種密度は、球状コロニーの数や大きさへ明らかに影響を与えた。特に、浮遊培養開始時の細胞数が4×10/8.5mL(すなわち、細胞播種密度が4.7×10cells/mL)であるとき、適当な大きさの球状コロニーの数が多く形成された。さらなる試験の結果、本試験で用いた皮膚細胞(線維芽細胞)の場合、細胞播種密度が3.5〜7.0×10cells/mLであるときに、球状コロニーが特に効率的に形成された。
さらに詳細に調査したところ、本発明においては、1×10〜1×10cells/mLであれば好適に球状コロニーを得ることができることが分かった。
As shown in FIGS. 4a and b, the seeding density of the cells clearly affected the number and size of the spherical colonies. In particular, when the number of cells at the start of suspension culture is 4 × 10 5 /8.5 mL (that is, the cell seeding density is 4.7 × 10 4 cells / mL), the number of appropriately sized spherical colonies is large. Been formed. As a result of further tests, in the case of skin cells (fibroblasts) used in this test, spherical colonies are formed particularly efficiently when the cell seeding density is 3.5 to 7.0 × 10 4 cells / mL. It was done.
As a result of further detailed investigation, it was found that spherical colonies can be suitably obtained in the present invention if it is 1 × 10 3 to 1 × 10 6 cells / mL.

ピペッティングと球状コロニー形成効率
上記(1)の操作で接着培養を行った細胞をトリプシンEDTAにて回収し、細胞数をカウントした。血清入りα−MEMで再懸濁後、4.7×10cells/mLの細胞播種密度で14mLチューブに入れ、37℃、CO5%で1、2、3日間ローテーター(1.3rpm)による回転培養(浮遊培養)を行った。1〜3の各日数で培養を行った場合、及び、3日間ピペッティングを行いながら培養を行った場合(「3日あり」と表示)における球状コロニー(sphere colony)及び細胞凝集体(cell aggregate)の形成数を図5aに、それらの大きさの平均を図5bに示す。
図5a及びbに示すとおり、ピペッティングを行わない場合、球状コロニーの形成数が少ない、あるいは細胞凝集体が多いなどの問題があった。一方、ピペッティングを行いながら培養を行ったサンプルでは、球状コロニーが著しく増加し、細胞凝集体が少なかった。
したがって、本発明において、接着培養後に3日以上の浮遊培養を行うことが好適である。さらに、浮遊培養中の細胞をピペッティングで懸濁することがより好ましい。
Pipetting and spherical colony formation efficiency Cells subjected to adhesion culture by the above operation (1) were collected with trypsin EDTA, and the number of cells was counted. After resuspension with α-MEM containing serum, the cells were seeded at a cell seeding density of 4.7 × 10 4 cells / mL in a 14 mL tube, and rotator (1.3 rpm) at 37 ° C., 5% CO 2 for 1, 2, 3 days. Rotational culture (floating culture) was performed. In the case of culturing for 1 to 3 days, and when culturing with pipetting for 3 days (indicated as “3 days present”), spherical colonies and cell aggregates (cell aggregate) ) Is shown in FIG. 5a, and the average size is shown in FIG. 5b.
As shown in FIGS. 5a and 5b, when pipetting was not performed, there were problems such as a small number of spherical colonies formed or many cell aggregates. On the other hand, in the sample cultured while pipetting, spherical colonies increased remarkably and there were few cell aggregates.
Therefore, in the present invention, it is preferable to perform suspension culture for 3 days or more after adhesion culture. Furthermore, it is more preferable to suspend the cells in suspension culture by pipetting.

再浮遊時の培地の種類と球状コロニー形成効率
上記(1)の操作で接着培養を行った同数の細胞をSKPs用無血清培地(D−MEM/F12+2%B−27+20ng/mLbFGF+20ng/mLEGF+ペニシリン/ストレプトマイシン/ファンギゾン)、あるいは、血清入りα−MEMで再懸濁し、14mLチューブに入れ、37℃、CO5%で3日間ローテーター(1.3rpm)による回転培養(浮遊培養)を行った(細胞播種密度:4.7×10cells/mL)。無血清培地で浮遊培養を行った場合、及び、血清培地で浮遊培養を行った場合における球状コロニー(sphere colony)及び細胞凝集体(cell aggregate)の形成数を図6aに、それらの大きさの平均を図6bに示す。
図6a及びbに示すとおり、無血清培地で培養した場合、球状コロニーの数は多く、サイズは小さい傾向にあり、血清入りα−MEMで培養した場合には球状コロニーは少なく、サイズは大きくなる傾向にあった。
したがって、接着培養後の回転・浮遊培養は、その培地の選択によって、形成させる球状コロニーの数及び大きさの調整が可能であると示唆された。すなわち、本発明においては、培地調整により所望の治療に応じた球状コロニーの作成が可能である。
Type of medium at the time of re-suspension and efficiency of spherical colony formation The same number of cells subjected to adhesion culture by the operation of (1) above was used as serum-free medium for SKPs (D-MEM / F12 + 2% B-27 + 20 ng / mLbFGF + 20 ng / mLEGF + penicillin / streptomycin) / Fungizone) or resuspended in serum-containing α-MEM, placed in a 14 mL tube, and subjected to rotary culture (floating culture) with a rotator (1.3 rpm) at 37 ° C. and 5% CO 2 for 3 days (cell seeding) Density: 4.7 × 10 4 cells / mL). Fig. 6a shows the number of spherical colonies and cell aggregates formed in suspension culture in serum-free medium and in suspension culture in serum medium. The average is shown in FIG.
As shown in FIGS. 6a and b, when cultured in serum-free medium, the number of spherical colonies tends to be large and the size tends to be small. When cultured in serum-containing α-MEM, the number of spherical colonies is small and the size increases. There was a trend.
Therefore, it was suggested that the number and size of spherical colonies to be formed can be adjusted in the rotation / floating culture after the adhesion culture by selecting the medium. That is, in the present invention, it is possible to create a spherical colony corresponding to a desired treatment by adjusting the medium.

球状コロニー由来細胞と接着培養した細胞の性質
上記(1)の操作で得た培養細胞に下記PKH26による蛍光染色を施し、上記(2)の操作により3日間浮遊培養を行って球状コロニーを得た。次いで、回収した球状コロニーに対し、下記ゲルによる3次元培養を行った。このゲル培養は、皮膚結合組織のモデルとして広く使用されているものであり、結合組織への細胞移植として今回用いたものである。
また、上記(1)の操作で得た接着培養細胞に下記PKH26による蛍光染色を施し、懸濁したもの(浮遊培養を行わない)についても同様に3次元ゲル培養を行った。
球状コロニーを用いたサンプルの内、コロニー形成のための浮遊培養を10%FBS培地で行ったサンプル、及び、無血清培地で行ったサンプルに関し、それぞれの3次元ゲル培養10日目の蛍光顕微鏡写真を図7A及びBに示す。また、上記(1)の培養細胞を浮遊培養せずに懸濁したのみのサンプル(接着培養細胞由来)の3次元ゲル培養10日目の蛍光顕微鏡写真を図7Cに示す。図7A〜Cの写真は、同じサンプルを3ないし4視野で撮影したものである。
なお、PKHによる蛍光染色及びマトリゲル培養は、次の方法で行った。
Properties of cells cultured with spherical colony-derived cells The cultured cells obtained by the above operation (1) were fluorescently stained with the following PKH26, and suspended colony was performed for 3 days by the above operation (2) to obtain spherical colonies. . Subsequently, the collected spherical colonies were three-dimensionally cultured with the following gel. This gel culture is widely used as a model of skin connective tissue, and is used this time as a cell transplant to connective tissue.
In addition, the adherent cultured cells obtained by the above operation (1) were fluorescently stained with the following PKH26 and suspended (no suspension culture) was similarly subjected to three-dimensional gel culture.
Among samples using spherical colonies, fluorescence micrographs on the 10th day of each three-dimensional gel culture for samples obtained by suspension culture for colony formation in 10% FBS medium and samples obtained in serum-free medium. Is shown in FIGS. 7A and 7B. Further, FIG. 7C shows a fluorescence micrograph of a sample (derived from adherent cultured cells) on day 10 of three-dimensional gel culture in which the cultured cells of (1) are suspended without suspension culture. The photographs in FIGS. 7A to 7C are the same samples taken in 3 to 4 fields of view.
The fluorescent staining with PKH and the Matrigel culture were performed by the following method.

<PKH26による蛍光染色>
上記(1)の操作で得た培養細胞(2×10細胞)を軽く遠心し、PBSで2回洗浄した。400×gで5分間遠心した後、細胞ペレットに25μL以上の上清が残らないように上清を吸引した。その後、細胞ペレットに1mLのDiluent Cを加えて混合して得た細胞懸濁液に対し、直ちに染色を行った。
前記細胞懸濁液1mLと2×染色液(4μLのPKH26((No.P9691)を1mLのDilutent Cに添加して得た4×10−6Mの色素溶液)1mLをピペッティングで迅速に懸濁し、25℃で2〜5分間インキュベートした。反応停止のために、等量(2mL)の血清又はタンパク質溶液を反応液に添加し、1分間インキュベートした。
400×g、25℃で10分間遠心後、上清を除去し、10mLのPBSを添加して新しいチューブへ移した。続いて400×g、25℃で5分間遠心し、上清を除去し、10mLのPBSを添加する操作を2回以上行い、細胞を洗浄した。
<Fluorescent staining with PKH26>
The cultured cells (2 × 10 7 cells) obtained by the above operation (1) were lightly centrifuged and washed twice with PBS. After centrifugation at 400 × g for 5 minutes, the supernatant was aspirated so that no more than 25 μL of supernatant remained in the cell pellet. Thereafter, the cell suspension obtained by adding 1 mL of Diluent C to the cell pellet and mixing was immediately stained.
1 mL of the cell suspension and 1 mL of the 2 × stain solution (4 μL of PKH26 (4 × 10 −6 M dye solution obtained by adding (No. P9691) to 1 mL of Diluent C)) are rapidly suspended by pipetting. Turbid and incubated for 2-5 minutes at 25 ° C. To stop the reaction, an equal volume (2 mL) of serum or protein solution was added to the reaction and incubated for 1 minute.
After centrifugation at 400 × g and 25 ° C. for 10 minutes, the supernatant was removed, and 10 mL of PBS was added and transferred to a new tube. Subsequently, centrifugation was performed at 400 × g and 25 ° C. for 5 minutes, the supernatant was removed, and 10 mL of PBS was added twice or more to wash the cells.

<3次元ゲル培養>
マトリゲルを4℃で溶解し、操作は全て氷上で行った。
接着培養の細胞では、ウェル上に2.0×10ずつ播き、112.5μLの培地に懸濁した。一方、上記(2)の操作で得た球状コロニーを培地ごと遠心し、上清を取り除き、同様に112.5μLの培地に懸濁した。なお、球状コロニーを作製する際の細胞数は、接着培養を懸濁した際の細胞数(2.0×10)と一致させた。
ラウンドチューブを用い、コラーゲンタイプ1 182.25μLに滅菌済み1NNaOH4μLを加えてpHを調整し(赤変する)、M199(×10)20.25μLを加え、コラーゲンを中性にする。成長因子減少型マトリゲル135μLを懸濁し、さらに細胞懸濁液を混ぜた(この操作は、マトリゲルが硬化しないよう手早く行う)。その後、150μLずつ48ウェルディッシュ上に載せ、5%COインキュベータにて培養した。
<3D gel culture>
Matrigel was dissolved at 4 ° C., and all operations were performed on ice.
For cells in adhesion culture, 2.0 × 10 5 cells were seeded on each well and suspended in 112.5 μL of medium. On the other hand, the spherical colony obtained by the above operation (2) was centrifuged together with the medium, the supernatant was removed, and the suspension was similarly suspended in 112.5 μL of the medium. In addition, the cell number at the time of producing a spherical colony was made to correspond with the cell number (2.0 * 10 < 5 >) at the time of suspending adhesion culture.
Using a round tube, add 4 μL of sterilized 1N NaOH to 182.25 μL of collagen type 1 to adjust the pH (turn red), add 20.25 μL of M199 (× 10) to neutralize the collagen. 135 μL of growth factor-reduced Matrigel was suspended, and the cell suspension was further mixed (this operation is performed quickly so that Matrigel does not harden). Thereafter, 150 μL each was placed on a 48-well dish and cultured in a 5% CO 2 incubator.

10%FBS培地でローテーター培養し、球状コロニーとしたサンプルは、コロニーの周りの細胞が培養3日目にはすでにより増殖し始め、培養6日目の段階で周囲に広がっていた(図7A)。無血清培地でローテーター培養した球状コロニーを用いたサンプルは、コロニーは小さいものの、ゲル中で周囲の細胞が広がることが確認された(図7B)。
一方、ディッシュで培養し、単離(剥離)された細胞はゲルの中ではあまり増殖が見られなかった。さらに、培養を行うにつれて細胞の数に多少の減少が認められた(図7C)。すなわち、従来のように接着培養後、単離したのみの細胞では細胞源として十分な効果が得られなかった。
In the sample obtained by rotator culture in 10% FBS medium to form a spherical colony, the cells around the colony had already started to proliferate on the third day of culture and spread to the periphery at the stage of the sixth day of culture (FIG. 7A). . In the sample using spherical colonies cultured in a serum-free medium in a rotator, it was confirmed that surrounding cells spread in the gel although the colonies were small (FIG. 7B).
On the other hand, cells cultured in a dish and isolated (detached) did not show much growth in the gel. Furthermore, a slight decrease in the number of cells was observed as the culture was performed (FIG. 7C). In other words, cells that were isolated after adhesion culture as in the prior art did not provide a sufficient effect as a cell source.

以上の結果をさらに確認するため、上記の方法で調整され、PKH26で染色された血清入り培地による球状コロニー、無血清培地による球状コロニーをヌードマウス皮下へ注入し、2週間後に取り出した。浮遊培養を行わない接着培養由来細胞についても、移植直前にPKH26で染色を行った後、同様に移植した。移植細胞数は、接着培養由来の単離細胞は1×10で、球状コロニーについては培養開始時の細胞数を4×10とした。摘出組織は凍結切片とし、それぞれ蛍光顕微鏡下で観察を行った。各サンプルの顕微鏡写真を図8に示す。
図8に示すとおり、血清入りないし無血清培地での浮遊培養によって得た球状コロニーを用いた場合、コロニーの形状をたもったまま生着している部分と、コロニーから周囲へと細胞が増殖している部分とが見られたが、生着している細胞数はいずれも多かった。一方、接着培養由来細胞を用いた場合も細胞は生着しているものの、皮下結合組織に散在しており、生着率は高くなかった。
以上の結果から、本発明の球状コロニー由来細胞は、細胞移植治療に有用である。
In order to further confirm the above results, spherical colonies with serum-containing medium and serum-free medium, which were prepared by the above-described method and stained with PKH26, were injected subcutaneously into nude mice and taken out after 2 weeks. Adherent culture-derived cells not subjected to suspension culture were also transplanted in the same manner after staining with PKH26 immediately before transplantation. The number of transplanted cells was 1 × 10 6 for isolated cells derived from adhesion culture, and 4 × 10 5 at the start of culture for spherical colonies. The excised tissues were frozen sections and each was observed under a fluorescence microscope. A micrograph of each sample is shown in FIG.
As shown in FIG. 8, when a spherical colony obtained by floating culture in serum-containing or serum-free medium is used, the cells proliferate from the colony to the surroundings, while the colony remains in the shape of the colony. However, the number of engrafted cells was large. On the other hand, even when cells derived from adhesion culture were used, the cells were engrafted but scattered in the subcutaneous connective tissue, and the engraftment rate was not high.
From the above results, the spherical colony-derived cells of the present invention are useful for cell transplantation treatment.

Claims (4)

下記(A)〜(B)工程を含むことを特徴とする球状コロニーの製造方法。
(A)線維芽細胞を単離して接着培養する工程、
(B)(A)工程後、前記線維芽細胞培養容器から剥離して分離し細胞播種密度が1×10 〜1×10 cells/mlとなるように調整して、1〜3rpmの回転速度で回転・浮遊培養する工程。
The manufacturing method of the spherical colony characterized by including the following (A)-(B) process.
(A) a step of adhesion culture to isolate fibroblasts,
(B) After the step (A), the fibroblasts are separated from the culture vessel and separated , adjusted so that the cell seeding density is 1 × 10 3 to 1 × 10 6 cells / ml, and 1 to 3 rpm. The process of rotating and floating culture at a rotational speed of .
前記(B)工程において、浮遊培養期間を1〜3日の範囲で調整することを特徴とする請求項1に記載の球状コロニーの製造方法。 In the said (B) process, a floating culture period is adjusted in the range of 1-3 days, The manufacturing method of the spherical colony of Claim 1 characterized by the above-mentioned. 前記球状コロニーの少なくとも一部が、組織幹/前駆細胞を含むものであることを特徴とする請求項1又は2に記載の球状コロニーの製造方法。 The method for producing a spherical colony according to claim 1 or 2 , wherein at least a part of the spherical colony contains a tissue stem / progenitor cell. 前記(B)工程において、浮遊培養中に懸濁操作を行うことを特徴とする請求項1〜のいずれかに記載の球状コロニーの製造方法。 The method for producing a spherical colony according to any one of claims 1 to 3 , wherein in the step (B), a suspension operation is performed during suspension culture.
JP2010138078A 2010-06-17 2010-06-17 Method for forming spherical colonies Active JP5751547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010138078A JP5751547B2 (en) 2010-06-17 2010-06-17 Method for forming spherical colonies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010138078A JP5751547B2 (en) 2010-06-17 2010-06-17 Method for forming spherical colonies

Publications (2)

Publication Number Publication Date
JP2012000050A JP2012000050A (en) 2012-01-05
JP5751547B2 true JP5751547B2 (en) 2015-07-22

Family

ID=45532769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010138078A Active JP5751547B2 (en) 2010-06-17 2010-06-17 Method for forming spherical colonies

Country Status (1)

Country Link
JP (1) JP5751547B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112272699A (en) * 2018-07-06 2021-01-26 株式会社迈傲锐治 Method for producing cell sheet, myocardial cell sheet, and kit for producing myocardial cell sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779772A (en) * 1993-09-13 1995-03-28 W R Grace & Co Cell culture solution and preparation of spheroid using said cell culture solution

Also Published As

Publication number Publication date
JP2012000050A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5804385B2 (en) Cell preparation containing mesenchymal stem cells and method for producing the same
EP2422622B1 (en) Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions
CN105288737B (en) A kind of tissue engineering bone/cartilage compound rest and preparation method thereof
TWI535377B (en) Storage, culture and application of umbilical cord tissue and its derived cells
Shen et al. Implications of adipose-derived stromal cells in a 3D culture system for osteogenic differentiation: an in vitro and in vivo investigation
CN107075476B (en) Method for inducing three-dimensional osteogenic differentiation of stem cells using hydrogel
KR20130112028A (en) Serum-free chemically defined cell culture medium
CN104263699A (en) Culture method for large-scale preparation of clinical treatment level dermal multipotent stem cells for cell transplantation
WO2018182016A1 (en) Cell culturing using nanofibers
de Peppo et al. Modulating the biochemical and biophysical culture environment to enhance osteogenic differentiation and maturation of human pluripotent stem cell-derived mesenchymal progenitors
KR101175175B1 (en) Method for separating high activity stem cells form human stem cells and high activity stem cells separated by the method
CN106834223B (en) Method for inducing differentiation of umbilical cord mesenchymal stem cells into chondrocytes
PT106225B (en) EXCESSIVE EXPANSION PROCESS OF BIREMETICAL STEM CELLS
WO2009080794A1 (en) Method for preparing cell-specific extracellular matrices
US20160051586A1 (en) Methods of growing and preparing stem cells and methods of using the same
JP5751547B2 (en) Method for forming spherical colonies
KR20120019898A (en) Method for expansion of hematopoietic stem cells and progenitor cells using blood mononuclear cell sphere and stem and progenitor cells produced by the method
JP6598106B2 (en) Method for producing bone cell or bone derived from adipose-derived stem cell sheet
JPWO2015129902A1 (en) Fat-derived stem cell sheet having bone differentiation ability and method for producing the same
RU2620981C2 (en) Method of obtaining the culture of mesenchymal human stem cells from the perivascular space of the vein of umbilical cord
CN114990064B (en) Hematopoietic stem cells, preparation method and application thereof
JP4646600B2 (en) Method for culturing mesenchymal stem cells
Ha Biomimetic scaffolds for stem cell-based tissue engineering
WO2009151301A2 (en) Graft material for wound treatment and treatment method using vascular precursor cells derived from human embryonic stem cells
Tseng et al. Rabbit mesenchymal stem cells cultured in a dynamic culture system displayed superior cell proliferation and osteogenetic induction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150512

R150 Certificate of patent or registration of utility model

Ref document number: 5751547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250