JPWO2015129902A1 - Fat-derived stem cell sheet having bone differentiation ability and method for producing the same - Google Patents

Fat-derived stem cell sheet having bone differentiation ability and method for producing the same Download PDF

Info

Publication number
JPWO2015129902A1
JPWO2015129902A1 JP2016505358A JP2016505358A JPWO2015129902A1 JP WO2015129902 A1 JPWO2015129902 A1 JP WO2015129902A1 JP 2016505358 A JP2016505358 A JP 2016505358A JP 2016505358 A JP2016505358 A JP 2016505358A JP WO2015129902 A1 JPWO2015129902 A1 JP WO2015129902A1
Authority
JP
Japan
Prior art keywords
bone
adscs
sheet
cell
adipose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016505358A
Other languages
Japanese (ja)
Other versions
JP6525282B2 (en
Inventor
向 方
向 方
英樹 村上
英樹 村上
弘行 土屋
弘行 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Publication of JPWO2015129902A1 publication Critical patent/JPWO2015129902A1/en
Application granted granted Critical
Publication of JP6525282B2 publication Critical patent/JP6525282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0667Adipose-derived stem cells [ADSC]; Adipose stromal stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3821Bone-forming cells, e.g. osteoblasts, osteocytes, osteoprogenitor cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0654Osteocytes, Osteoblasts, Odontocytes; Bones, Teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/32Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Hematology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Botany (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Materials For Medical Uses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】骨組織再生用材料となり得る細胞構築物を作製するための簡便で安価な方法、及び該方法により得られる骨形成能を有する細胞構築物を提供すること。【解決手段】細胞分化誘導剤を含まない細胞培養培地にアスコルビン酸又はその塩を添加して調製した溶液を、スキャホールドを添加していない培養容器内に加え、該溶液中で、脂肪由来幹細胞を培養することを含む、骨分化能を有する単層の脂肪由来幹細胞シートの作製方法、並びに該方法で作製された脂肪由来幹細胞シート。【選択図】なしTo provide a simple and inexpensive method for producing a cell construct that can be used as a bone tissue regeneration material, and a cell construct having bone forming ability obtained by the method. A solution prepared by adding ascorbic acid or a salt thereof to a cell culture medium not containing a cell differentiation inducer is added to a culture vessel to which no scaffold is added. A method for producing a monolayer of adipose-derived stem cell sheet having the ability to differentiate into bone, and an adipose-derived stem cell sheet produced by the method. [Selection figure] None

Description

本願発明は、幹細胞の分化誘導の技術分野に関する。具体的には、本発明は、脂肪由来幹細胞から骨分化能を有する脂肪由来幹細胞シートを作製する方法、及び該方法で得られた脂肪由来幹細胞シートに関する。
なお、本出願は、参照によりここに援用されるところの、日本国特許出願の特願2014-038913からの優先権を請求する。
The present invention relates to the technical field of stem cell differentiation induction. Specifically, the present invention relates to a method for producing an adipose-derived stem cell sheet having bone differentiation ability from an adipose-derived stem cell, and an adipose-derived stem cell sheet obtained by the method.
This application claims priority from Japanese Patent Application No. 2014-038913, which is incorporated herein by reference.

(再生医療)
近年、再生医療が注目され、整形外科分野でも、骨再生を目的とした再生医療が実施されている。幹細胞を骨形成系列に分化させ、続いて骨再生に使用することは再生医療における主要な目標である。再生医療分野において、重要な3つのファクターである細胞、制御因子及び足場{以下、スキャホールド(scaffolds)という。}が、その地位を確立してきている(非特許文献1)。
骨髄間質細胞(bone marrow stromal cells;BMSCs)が骨再生に関して注目されており(非特許文献2)、そして胚性幹細胞(ESCs)が、再生幹細胞の材料でもあることから、次第に注目を集めている(非特許文献3)。人工多能性幹細胞(iPSCs)もまた、再生医療分野で注目を浴びており、再生幹細胞の有望な材料の1つと考えられている(非特許文献4)。
(Regenerative medicine)
In recent years, regenerative medicine has been attracting attention, and regenerative medicine for the purpose of bone regeneration has also been implemented in the field of orthopedics. Differentiating stem cells into the osteogenic lineage and subsequent use in bone regeneration is a major goal in regenerative medicine. In the field of regenerative medicine, three important factors are cells, regulatory factors, and scaffolds (hereinafter referred to as scaffolds). } Has established its position (Non-Patent Document 1).
Bone marrow stromal cells (BMSCs) are attracting attention regarding bone regeneration (Non-patent Document 2), and embryonic stem cells (ESCs) are also materials for regenerative stem cells, and are attracting attention. (Non-patent Document 3). Artificial pluripotent stem cells (iPSCs) are also attracting attention in the field of regenerative medicine, and are considered as one of promising materials for regenerative stem cells (Non-patent Document 4).

(骨芽細胞)
骨形成においては骨芽細胞が重要な役割を果たしている。骨芽細胞は、骨組織において骨形成を行う細胞であり、タンパク質等を産生及び分泌して骨基質をつくる。具体的には、骨芽細胞は、生体内でコラーゲン等の基質タンパク質を分泌し、そこに基質小胞(matrix vesicle)を作る。この基質小胞の周囲にリン酸カルシウムが沈着して骨の基質が完成し、骨芽細胞は最終的にはこの基質の中で骨細胞となる。
(Osteoblast)
Osteoblasts play an important role in bone formation. Osteoblasts are cells that form bone in bone tissue and produce and secrete proteins and the like to create a bone matrix. Specifically, osteoblasts secrete matrix proteins such as collagen in the living body and form matrix vesicles there. Calcium phosphate is deposited around the matrix vesicles to complete the bone matrix, and the osteoblasts eventually become bone cells in the matrix.

骨芽細胞は、間葉系幹細胞から分化するものであり、間葉系幹細胞にデキサメタゾン、β−グリセロリン酸、及びアスコルビン酸を作用させることにより分化誘導できることが開示されている(非特許文献5)。また、インビトロにおいて多能性幹細胞から分化させた間葉系幹細胞を、骨形成タンパク質(Bone Morphogenetic Protein;BMP)−4、アスコルビン酸−2−リン酸塩、デキサメタゾン及びβ−グリセロリン酸塩を含む培養培地を使用して、ゼラチンでコートした培養プレートで培養することにより、骨芽細胞に分化誘導できたことが開示されている(特許文献1)。   It is disclosed that osteoblasts are differentiated from mesenchymal stem cells and can be induced to differentiate by allowing dexamethasone, β-glycerophosphate, and ascorbic acid to act on mesenchymal stem cells (Non-patent Document 5). . In addition, a mesenchymal stem cell differentiated from a pluripotent stem cell in vitro is cultured containing bone morphogenetic protein (BMP) -4, ascorbic acid-2-phosphate, dexamethasone, and β-glycerophosphate. It has been disclosed that differentiation can be induced in osteoblasts by culturing in a culture plate coated with gelatin using a medium (Patent Document 1).

(脂肪由来幹細胞)
間葉系幹細胞の1つとして認められている脂肪由来幹細胞(adipose-derived stem cell;以下、ADSCsと略称することがある)も、BMSCs、ESCs及びiPSCsに加えて、骨再生医療における使用が検討されている(非特許文献6)。損傷を受けた組織及び臓器の修復及び再建へのADSCsの利用にはいくつかの選択肢がある。
(Adipose-derived stem cells)
Adipose-derived stem cells (hereinafter abbreviated as ADSCs), which are recognized as one of mesenchymal stem cells, are also being investigated for use in bone regenerative medicine in addition to BMSCs, ESCs, and iPSCs. (Non-Patent Document 6). There are several options for using ADSCs to repair and reconstruct damaged tissues and organs.

修復部位へADSCsを直接注入する方法(非特許文献7−10)が知られている。また、ADSCsをフィブリン糊などの生物学的接着剤に混ぜて修復部位に注入する方法が知られている。しかしながら、これら方法では皮質骨表面への細胞の生着や固定が困難であった。最近、壊死した大腿骨骨頭へのADSCs注入に関する良好な報告があった(非特許文献8)。それによれば、ADSCsを注入された大腿骨骨頭壊死例において、有望な骨形成が核磁気共鳴画像法(MRI)による検査により観察された。しかしながら、ADSCsを皮質骨に固定させることは未だに困難である。   A method of directly injecting ADSCs into a repair site (Non-patent Documents 7 to 10) is known. In addition, a method is known in which ADSCs are mixed with a biological adhesive such as fibrin glue and injected into a repair site. However, it has been difficult to engraft and fix cells on the cortical bone surface by these methods. Recently, there have been good reports on ADSCs injection into the necrotic femoral head (Non-patent Document 8). According to it, promising bone formation was observed in the case of femoral head necrosis injected with ADSCs by examination by nuclear magnetic resonance imaging (MRI). However, it is still difficult to fix ADSCs to cortical bone.

また、ADSCsを様々な担体と共に移植する方法が知られている。心血管疾患における幹細胞治療において、天然の生物分解性マトリクス(biodegradable matrixes)で構成されたスキャホールドを使用することにより、該治療の大きな制約であった細胞生着の不足を回避することができた(非特許文献11)。しかしながら、この様な方法によっても、細胞を移植部位に確実に固定することは困難であり、細胞が経時的に脱落する問題があった。   Also, methods for transplanting ADSCs with various carriers are known. In stem cell therapy in cardiovascular disease, by using scaffolds composed of natural biodegradable matrixes, it was possible to avoid the lack of cell engraftment, which was a major limitation of the therapy (Non-Patent Document 11). However, even with such a method, it is difficult to reliably fix the cells to the transplantation site, and there is a problem that the cells fall off over time.

一方、個々の分散状態にあるADSCs(以下、分散ADSCsということがある)がシート状を形成してなるADSCsシートが、心血管分野及び形成外科分野において、組織再生に一定の成果を挙げていることが報告されている(非特許文献12−21)。
現在利用できるADSCsシートは、大まかに2種類に分けることができ、一方は、CellSeed社の製品などのような特別な担体を支持体とするADSCsシート(非特許文献19−23)であり、もう一方は、コラーゲンタンパク質担体と共に移植部位に移植するADSCsシートである(非特許文献11、24)。
On the other hand, ADSCs sheets in which ADSCs in individual dispersed states (hereinafter sometimes referred to as dispersed ADSCs) form a sheet form have achieved certain results in tissue regeneration in the cardiovascular field and plastic surgery field. Has been reported (Non-Patent Documents 12-21).
Currently available ADSCs sheets can be roughly divided into two types, one of which is an ADSCs sheet (Non-patent Documents 19-23) using a special carrier such as a CellSeed product as a support. One is an ADSCs sheet transplanted to a transplant site together with a collagen protein carrier (Non-patent Documents 11 and 24).

(細胞シート)
細胞シートの製造方法は、様々な報告がある。例えば、軟骨細胞、軟骨前駆細胞、滑膜由来細胞、滑膜幹細胞、骨芽細胞、間葉系幹細胞、脂肪由来細胞、又は脂肪由来幹細胞を、支持体や担体上で培養することにより製造する方法が報告されている(特許文献2、3)。また、間葉系幹細胞、滑膜細胞、及び胚性幹細胞から選択される細胞を細胞培養支持体上で培養して、該培養した細胞を、シート状三次元構造体として作製する方法が報告されている(特許文献4)。さらに、脂肪細胞を含有する細胞シートを含む心臓疾患治療用移植材料を製造する方法であって、a)温度応答性高分子が被覆された細胞培養支持体上で、脂肪細胞を含有する細胞群を培養液中で培養する工程、b)培養液の温度を、上限臨界溶解温度以上又は下限臨界溶解温度以下とする工程、c)細胞群を、細胞培養支持体から細胞シートとして剥離する工程、さらに工程c)の前にd)培養液にアスコルビン酸又はその誘導体を加える工程を含む方法が開示されている(特許文献5)。
(Cell sheet)
There are various reports on methods for producing cell sheets. For example, a method for producing chondrocytes, cartilage precursor cells, synovial cells, synovial stem cells, osteoblasts, mesenchymal stem cells, fat-derived cells, or fat-derived stem cells by culturing them on a support or carrier. Have been reported (Patent Documents 2 and 3). Also reported is a method of culturing a cell selected from mesenchymal stem cells, synovial cells, and embryonic stem cells on a cell culture support and producing the cultured cells as a sheet-like three-dimensional structure. (Patent Document 4). Furthermore, a method for producing a transplant material for treating heart disease comprising a cell sheet containing a fat cell, wherein a) a group of cells containing a fat cell on a cell culture support coated with a temperature-responsive polymer B) a step of bringing the temperature of the culture solution above the upper critical solution temperature or lower than the lower critical solution temperature, c) a step of peeling the cell group from the cell culture support as a cell sheet, Furthermore, a method including a step of adding ascorbic acid or a derivative thereof to the culture broth before step c) is disclosed (Patent Document 5).

しかし、ADSCsシートの整形外科での使用を試みた例は報告されていない。本願発明者らは、骨塊を液体窒素中で凍結後に骨マトリクスを維持し、その後、それを元の位置に戻して固定する液体窒素療法を開発している(非特許文献25−27)。整形外科分野でのADSCsの応用は、分散ADSCsと他の物質、例えば標準生理食塩水、フィブリンゲル及びコラーゲンゲルなどとの混合物を海綿質骨に注入する(非特許文献8、28)といった方法により行われているのみである。
また、ADSCsとβ型リン酸三カルシウム(β−TCP)ベースの骨セメントスキャホールドとの併用が骨欠損に対して見込みがあるとの報告がある(非特許文献29、30)。
しかしながら、ADSCsは、整形外科分野においては、移植箇所で固定するためにフィブリン糊様の物質を構成成分とする混合物として使用されるため、そのような混合物に含まれるADSCsの濃度には制限がある。
However, there have been no reports of attempts to use ADSCs sheets in orthopedics. The inventors of the present application have developed liquid nitrogen therapy that maintains a bone matrix after freezing bone mass in liquid nitrogen and then fixes it back to its original position (Non-patent Documents 25-27). The application of ADSCs in the orthopedic field is based on a method in which a mixture of dispersed ADSCs and other substances such as standard saline, fibrin gel, and collagen gel is injected into cancellous bone (Non-patent Documents 8 and 28). It is only done.
In addition, it has been reported that the combined use of ADSCs and β-tricalcium phosphate (β-TCP) based bone cement scaffolds is promising for bone defects (Non-Patent Documents 29 and 30).
However, since ADSCs are used as a mixture containing a fibrin glue-like substance as a component in the orthopedic field in order to fix at an implantation site, the concentration of ADSCs contained in such a mixture is limited. .

国際公開第2004/106502号パンフレットInternational Publication No. 2004/106502 Pamphlet 特許第04921353号公報Japanese Patent No. 04921353 特許第04620110号公報Japanese Patent No. 04620110 特許第04943844号公報Japanese Patent No. 04943844 国際公開第2011/067983号パンフレットInternational Publication No. 2011/067983 Pamphlet

Danisovic L, Varga I, Zamborsky R, Boehmer D. (2012) The tissue engineering of articular cartilage: cells, scaffolds and stimulating factors. Exp Biol Med (Maywood). 237(1):10-7.Danisovic L, Varga I, Zamborsky R, Boehmer D. (2012) The tissue engineering of articular cartilage: cells, scaffolds and stimulating factors.Exp Biol Med (Maywood) .237 (1): 10-7. El Backly RM, Zaky SH, Muraglia A, Tonachini L, Brun F, et al. (2013) A platelet-rich plasma-based membrane as a periosteal substitute with enhanced osteogenic and angiogenic properties: a new concept for bone repair. Tissue Eng Part A. 19(1-2):152-65.El Backly RM, Zaky SH, Muraglia A, Tonachini L, Brun F, et al. (2013) A platelet-rich plasma-based membrane as a periosteal substitute with enhanced osteogenic and angiogenic properties: a new concept for bone repair.Tissue Eng Part A. 19 (1-2): 152-65. zur Nieden NI, Kempka G, Rancourt DE, Ahr HJ. (2005) Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol. 5:1.zur Nieden NI, Kempka G, Rancourt DE, Ahr HJ. (2005) Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages.BMC Dev Biol. 5: 1 . Hayashi T, Misawa H, Nakahara H, Noguchi H, Yoshida A, et al. (2012) Transplantation of osteogenically differentiated mouse iPS cells for bone repair. Cell Transplant. 21(2-3):591-600.Hayashi T, Misawa H, Nakahara H, Noguchi H, Yoshida A, et al. (2012) Transplantation of osteogenically differentiated mouse iPS cells for bone repair.Cell Transplant. 21 (2-3): 591-600. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-7.Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. (1999) Multilineage potential of adult human mesenchymal stem cells.Science 284: 143-7. Guasti L, Prasongchean W, Kleftouris G, Mukherjee S, Thrasher AJ, et al. (2012) High plasticity of pediatric adipose tissue-derived stem cells: too much for selective skeletogenic differentiation? Stem Cells Transl Med. 1(5):384-95.Guasti L, Prasongchean W, Kleftouris G, Mukherjee S, Thrasher AJ, et al. (2012) High plasticity of pediatric adipose tissue-derived stem cells: too much for selective skeletogenic differentiation? Stem Cells Transl Med. 1 (5): 384 -95. Yamamoto T, Gotoh M, Hattori R, Toriyama K, Kamei Y, et al. (2010) Periurethral injection of autologous adipose-derived stem cells for the treatment of stress urinary incontinence in patients undergoing radical prostatectomy: Report of two initial cases. International Journal of Urology 17: 75-82.Yamamoto T, Gotoh M, Hattori R, Toriyama K, Kamei Y, et al. (2010) Periurethral injection of autologous adipose-derived stem cells for the treatment of stress urinary incontinence in patients undergoing radical prostatectomy: Report of two initial cases. Journal of Urology 17: 75-82. Pak J. (2011) Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: a case series. Journal of Medical Case Reports. 5: 296.Pak J. (2011) Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: a case series. Journal of Medical Case Reports. 5: 296. Albersen M, Fandel T, Lin G, Wang G, Banie L, et al. (2010) Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury. The journal of sexual medicine. 7: 3331-40.Albersen M, Fandel T, Lin G, Wang G, Banie L, et al. (2010) Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury. sexual medicine. 7: 3331-40. Mazo M, Planat-Benard V, Abizanda G, Pelacho B, Leobon B, et al. (2008) Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. Eur J Heart Fail. 10(5):454-62.Mazo M, Planat-Benard V, Abizanda G, Pelacho B, Leobon B, et al. (2008) Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction.Eur J Heart Fail. 10 ( 5): 454-62. Arana M, Pena E, Abizanda G, Cilla M, Ochoa I, et al. (2013) Preparation and characterization of collagen-based ADSC-carrier sheets for cardiovascular application. Acta Biomater. 9(4):6075-83.Arana M, Pena E, Abizanda G, Cilla M, Ochoa I, et al. (2013) Preparation and characterization of collagen-based ADSC-carrier sheets for cardiovascular application. Acta Biomater. 9 (4): 6075-83. Stubbs SL, Crook JM, Morrison WA, Newcomb AE. (2011) Toward clinical application of stem cells for cardiac regeneration. Heart Lung Circ. 20(3):173-9.Stubbs SL, Crook JM, Morrison WA, Newcomb AE. (2011) Toward clinical application of stem cells for cardiac regeneration.Heart Lung Circ. 20 (3): 173-9. Lin YC, Grahovac T, Oh SJ, Ieraci M, Rubin JP, et al. (2013) Evaluation of a multi-layer adipose-derived stem cell sheet in a full-thickness wound healing model. Acta Biomater. 9(2):5243-50.Lin YC, Grahovac T, Oh SJ, Ieraci M, Rubin JP, et al. (2013) Evaluation of a multi-layer adipose-derived stem cell sheet in a full-thickness wound healing model. Acta Biomater. 9 (2): 5243-50. Leonardi D, Oberdoerfer D, Fernandes MC, Meurer RT, Pereira-Filho GA, et al. (2012) Mesenchymal stem cells combined with an artificial dermal substitute improve repair in full-thickness skin wounds. Burns. 38(8):1143-50. doi: 10.1016/j.burns.2012.07.028.Leonardi D, Oberdoerfer D, Fernandes MC, Meurer RT, Pereira-Filho GA, et al. (2012) Mesenchymal stem cells combined with an artificial dermal substitute improve repair in full-thickness skin wounds.Burns. 38 (8): 1143- 50.doi: 10.1016 / j.burns.2012.07.028. Wu Y, Wang J, Scott PG, Tredget EE. (2007) Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen. 15 Suppl 1:S18-26. doi: 10.1111/j.1524-475X.2007.00221.x.Wu Y, Wang J, Scott PG, Tredget EE. (2007) Bone marrow-derived stem cells in wound healing: a review.Wound Repair Regen. 15 Suppl 1: S18-26.doi: 10.1111 / j.1524-475X. 2007.00221.x. Kim H, Choi K, Kweon OK, Kim WH. (2012) Enhanced wound healing effect of canine adipose-derived mesenchymal stem cells with low-level laser therapy in athymic mice. J Dermatol Sci. 68(3):149-56. doi: 10.1016/j.jdermsci.2012.09.013. Epub 2012 Sep 28.Kim H, Choi K, Kweon OK, Kim WH. (2012) Enhanced wound healing effect of canine adipose-derived mesenchymal stem cells with low-level laser therapy in athymic mice. J Dermatol Sci. 68 (3): 149-56. doi: 10.1016 / j.jdermsci.2012.09.013. Epub 2012 Sep 28. Philandrianos C, Andrac-Meyer L, Mordon S, Feuerstein JM, Sabatier F, et al. (2012) Comparison of five dermal substitutes in full-thickness skin wound healing in a porcine model. Burns. 38(6):820-9. doi: 10.1016/j.burns.2012.02.008. Epub 2012 May 30.Philandrianos C, Andrac-Meyer L, Mordon S, Feuerstein JM, Sabatier F, et al. (2012) Comparison of five dermal substitutes in full-thickness skin wound healing in a porcine model. Burns. 38 (6): 820-9 doi: 10.1016 / j.burns.2012.02.008. Epub 2012 May 30. Hamdi H, Planat-Benard V, Bel A, Puymirat E, Geha R, et al. (2011) Epicardial adipose stem cell sheets results in greater post-infarction survival than intramyocardial injections. Cardiovasc Res. 91(3):483-91.Hamdi H, Planat-Benard V, Bel A, Puymirat E, Geha R, et al. (2011) Epicardial adipose stem cell sheets results in greater post-infarction survival than intramyocardial injections.Cardiovasc Res. 91 (3): 483-91 . Masuda S, Shimizu T, Yamato M, Okano T. (2008) Cell sheet engineering for heart tissue repair. Advanced drug delivery reviews 60, 277-85.Masuda S, Shimizu T, Yamato M, Okano T. (2008) Cell sheet engineering for heart tissue repair.Advanced drug delivery reviews 60, 277-85. Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, et al. (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature medicine 12, 459-65.Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, et al. (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction.Nature medicine 12, 459-65. Kaneshiro N, Sato M, Ishihara M, Mitani G, Sakai H, et al. (2007) Cultured articular chondrocytes sheets for partial thickness cartilage defects utilizing temperature-responsive culture dishes. European Cells and Materials 13, 87-92.Kaneshiro N, Sato M, Ishihara M, Mitani G, Sakai H, et al. (2007) Cultured articular chondrocytes sheets for partial thickness cartilage defects utilizing temperature-responsive culture dishes.European Cells and Materials 13, 87-92. Kikuchi A, Okuhara M, Karikusa F, Sakurai Y, Okano T. (1998) Two-dimensional manipulation of confluently cultured vascular endothelial cells using temperature-responsive poly (N-isopropylacrylamide)-grafted surfaces. Journal of Biomaterials Science, Polymer Edition 9(12), 1331-48.Kikuchi A, Okuhara M, Karikusa F, Sakurai Y, Okano T. (1998) Two-dimensional manipulation of confluently cultured vascular endothelial cells using temperature-responsive poly (N-isopropylacrylamide) -grafted surfaces. Journal of Biomaterials Science, Polymer Edition 9 (12), 1331-48. Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y. (1995) Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 16, 297-303.Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y. (1995) Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces.Biomaterials 16, 297-303. Zhao Y, Lin H, Zhang J, Chen B, Sun W, et al. (2009) Crosslinked three-dimensional demineralized bone matrix for the adipose-derived stromal cell proliferation and differentiation. Tissue Eng Part A. 15(1):13-21.Zhao Y, Lin H, Zhang J, Chen B, Sun W, et al. (2009) Crosslinked three-dimensional demineralized bone matrix for the adipose-derived stromal cell proliferation and differentiation.Tissue Eng Part A. 15 (1): 13 -twenty one. Tsuchiya H, Wan S. L, Sakayama K, Yamamoto N, Nishida H, et al. (2005) Reconstruction using an autograft containing tumour treated by liquid nitrogen. J Bone Joint Surg. 87-B: 218-25.Tsuchiya H, Wan S. L, Sakayama K, Yamamoto N, Nishida H, et al. (2005) Reconstruction using an autograft containing tumour treated by liquid nitrogen. J Bone Joint Surg. 87-B: 218-25. Hayashi K, Tsuchiya H, Yamamoto N, Takeuchi A, Tomita K. (2008) Functional outcome in patients with osteosarcoma around the knee joint treated by minimised surgery. Int Orthop. 32(1): 63-68.Hayashi K, Tsuchiya H, Yamamoto N, Takeuchi A, Tomita K. (2008) Functional outcome in patients with osteosarcoma around the knee joint treated by minimised surgery. Int Orthop. 32 (1): 63-68. Yamamoto N, Tsuchiya H, Tomita K. (2003) Effects of liquid nitrogen treatment on the proliferation of osteosarcoma and the biomechanical properties of normal bone. J Orthop Sci. 8(3):374-80.Yamamoto N, Tsuchiya H, Tomita K. (2003) Effects of liquid nitrogen treatment on the proliferation of osteosarcoma and the biomechanical properties of normal bone.J Orthop Sci. 8 (3): 374-80. Abudusaimi A, Aihemaitijiang Y, Wang YH, Cui L, Maimaitiming S, et al. (2011) Adipose-derived stem cells enhance bone regeneration in vascular necrosis of the femoral head in the rabbit. J Int Med Res. 39(5):1852-60.Abudusaimi A, Aihemaitijiang Y, Wang YH, Cui L, Maimaitiming S, et al. (2011) Adipose-derived stem cells enhance bone regeneration in vascular necrosis of the femoral head in the rabbit.J Int Med Res. 39 (5): 1852-60. Franceschi RT, Iyer BS, Cui Y. (1994) Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J Bone Miner Res. 9(6):843-54.Franceschi RT, Iyer BS, Cui Y. (1994) Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J Bone Miner Res. 9 (6): 843-54. Marino G, Rosso F, Cafiero G, Tortora C, Moraci M, et al. (2010) Beta-tricalcium phosphate 3D scaffold promote alone osteogenic differentiation of human adipose stem cells: in vitro study. J Mater Sci Mater Med. 21(1):353-63.Marino G, Rosso F, Cafiero G, Tortora C, Moraci M, et al. (2010) Beta-tricalcium phosphate 3D scaffold promote alone osteogenic differentiation of human adipose stem cells: in vitro study.J Mater Sci Mater Med. 21 (1 ): 353-63. Kundu AK, Putnam AJ. (2006) Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem Biophys Res Commun. 347(1):347-57.Kundu AK, Putnam AJ. (2006) Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem Biophys Res Commun. 347 (1): 347-57. Murad S, Grove D, Lindberg K A, Reynolds G, Sivarajah A, et al. (1981) Regulation of collagen synthesis by ascorbic acid. Proc Natl Acad Sci U S A. 78(5): 2879-82.Murad S, Grove D, Lindberg K A, Reynolds G, Sivarajah A, et al. (1981) Regulation of collagen synthesis by ascorbic acid.Proc Natl Acad Sci U S A. 78 (5): 2879-82. Kingham P J, Kalbermatten D F, Mahay D, Armstrong SJ, Wiberg M, et al. (2007) Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Experimental Neurology. 207: 267-74.Kingham P J, Kalbermatten D F, Mahay D, Armstrong SJ, Wiberg M, et al. (2007) Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro.Experimental Neurology.207: 267-74. Liu GB, Cheng YX, Feng YK, Pang CJ, Li Q, et al. (2011) Adipose-derived stem cells promote peripheral nerve repair. Arch Med Sci. 7(4): 592-6.Liu GB, Cheng YX, Feng YK, Pang CJ, Li Q, et al. (2011) Adipose-derived stem cells promote peripheral nerve repair. Arch Med Sci. 7 (4): 592-6. Natesan S, Baer DG, Walters TJ, Babu M, Christy RJ. (2010) Adipose-Derived Stem Cell Delivery into Collagen Gels Using Chitosan Microspheres. Tissue Eng Part A. 16(4): 1369-84.Natesan S, Baer DG, Walters TJ, Babu M, Christy RJ. (2010) Adipose-Derived Stem Cell Delivery into Collagen Gels Using Chitosan Microspheres.Tissue Eng Part A. 16 (4): 1369-84. Ciapetti G, Ambrosio L, Marletta G, Baldini N, Giunti A. (2006) Human bone marrow stromal cells: In vitro expansion and differentiation for bone engineering. Biomaterials. 27(36):6150-60.Ciapetti G, Ambrosio L, Marletta G, Baldini N, Giunti A. (2006) Human bone marrow stromal cells: In vitro expansion and differentiation for bone engineering. Biomaterials. 27 (36): 6150-60. Rebelatto CK, Aguiar AM, Moretao MP, Senegaglia AC, Hansen P, et al. (2008) Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med (Maywood). 233(7):901-13.Rebelatto CK, Aguiar AM, Moretao MP, Senegaglia AC, Hansen P, et al. (2008) Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue.Exp Biol Med (Maywood). 233 (7) : 901-13. Kim D, Monaco E, Maki A, de Lima AS, Kong HJ, et al. (2010) Morphologic and transcriptomic comparison of adipose- and bone-marrow-derived porcine stem cells cultured in alginate hydrogels. Cell Tissue Res. 341(3):359-70.Kim D, Monaco E, Maki A, de Lima AS, Kong HJ, et al. (2010) Morphologic and transcriptomic comparison of adipose- and bone-marrow-derived porcine stem cells cultured in alginate hydrogels.Cell Tissue Res. 341 (3 ): 359-70. Wen Y, Jiang B, Cui J, Li G, Yu M, et al. (2012) Superior osteogenic capacity of different mesenchymal stem cells for bone tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol. Jul 26. [Epub ahead of print]Wen Y, Jiang B, Cui J, Li G, Yu M, et al. (2012) Superior osteogenic capacity of different mesenchymal stem cells for bone tissue engineering.Oral Surg Oral Med Oral Pathol Oral Radiol. Jul 26. [Epub ahead of print] Zhang ZY, Teoh SH, Chong MS, Schantz JT, Fisk NM, et al. (2009) Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells. 27(1):126-37.Zhang ZY, Teoh SH, Chong MS, Schantz JT, Fisk NM, et al. (2009) Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells. 27 (1): 126-37 . Liu J, Wang X, Jin Q, Jin T, Chang S, et al. (2012) The stimulation of adipose-derived stem cell differentiation and mineralization by ordered rod-like fluorapatite coatings. Biomaterials. 33(20):5036-46.Liu J, Wang X, Jin Q, Jin T, Chang S, et al. (2012) The stimulation of adipose-derived stem cell differentiation and mineralization by ordered rod-like fluorapatite coatings. Biomaterials. 33 (20): 5036-46 . Iraj K, Arash Z, Mohammad B, Azim H, Reza M, et al. (2008) In vitro osteogenesis of rat adipose-derived stem cells: comparison with bone marrow stem cells. Arch Med Sci 2009; 5, 2: 149-55Iraj K, Arash Z, Mohammad B, Azim H, Reza M, et al. (2008) In vitro osteogenesis of rat adipose-derived stem cells: comparison with bone marrow stem cells. Arch Med Sci 2009; 5, 2: 149- 55 Ducy P, Schinke T, Karsenty G. (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science. 289(5484):1501-4Ducy P, Schinke T, Karsenty G. (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science. 289 (5484): 1501-4 Gentleman E, Lay AN, Dickerson DA, Nauman EA, Livesay GA, et al. (2003) Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials. 24(21):3805-13.Gentleman E, Lay AN, Dickerson DA, Nauman EA, Livesay GA, et al. (2003) Mechanical characterization of collagen fibers and scaffolds for tissue engineering.Biomaterials. 24 (21): 3805-13.

脂肪由来幹細胞(ADSCs)がインビトロ及びインビボのいずれにおいても骨芽細胞に分化誘導される可能性を有することが報告されている。しかしながら、分散ADSCsを骨再生及び骨再建に使用することは今までのところ困難であった。   It has been reported that adipose-derived stem cells (ADSCs) have the potential to be induced to differentiate into osteoblasts both in vitro and in vivo. However, it has so far been difficult to use dispersed ADSCs for bone regeneration and reconstruction.

本発明の課題は、ADSCsを利用して、骨組織再生用材料となり得る細胞構築物を作製するための簡便で安価な方法、及び該方法により得られる骨形成能を有する細胞構築物を提供することである。   An object of the present invention is to provide a simple and inexpensive method for producing a cell construct that can be a bone tissue regeneration material using ADSCs, and a cell construct having bone forming ability obtained by the method. is there.

本発明者らは、上記目的を達成すべく、鋭意研究を行った。そして、細胞培養培地にアスコルビン酸−2−リン酸のみを添加することにより調製した作製培地(fabricating medium)で、ADSCsを培養することにより、ADSCsシートが作製されること、並びに、このようにして作製されたADSCsシートは、骨分化誘導を実施したときに、従来の細胞培養培地で培養したADSCsと比較して、短期間で有効に骨誘導されることを見出した。
また、このような方法で作製されたADSCsシートはその力学的強度が高く、骨損傷部位に移植したときに、骨表面への生着が良く、インビボでも有効に骨分化が誘導されると考えることができる。
以上により、本発明は、これら知見により達成したものである。
The inventors of the present invention have intensively studied to achieve the above object. An ADSCs sheet is produced by culturing ADSCs in a production medium prepared by adding only ascorbic acid-2-phosphate to the cell culture medium. It was found that the produced ADSCs sheet was effectively induced in a short period of time when bone differentiation was induced, compared to ADSCs cultured in a conventional cell culture medium.
In addition, the ADSCs sheet prepared by such a method has high mechanical strength, and when transplanted to a bone damage site, the ADSCs sheet has good engraftment on the bone surface and is considered to induce bone differentiation effectively even in vivo. be able to.
As described above, the present invention has been achieved by these findings.

即ち、本発明は以下に関する。
1.細胞分化誘導剤を含まない細胞培養培地にアスコルビン酸又はその塩を添加して調製した溶液を、スキャホールドを添加していない培養容器内に加え、該溶液中で、脂肪由来幹細胞を培養することを含む、骨分化能を有する脂肪由来幹細胞シートの作製方法。
2.前記アスコルビン酸又はその塩が、50μM〜500μMの濃度になるように細胞培養培地に添加されることを特徴とする、前項1に記載の作製方法。
3.前記脂肪由来幹細胞を培養することが、脂肪由来幹細胞を3日〜15日間培養することである、前項1又は2に記載の作製方法。
4.前記脂肪由来幹細胞シートが単層の脂肪由来幹細胞シートである、前項1〜3のいずれか1に記載の作製方法。
5.前項1〜4のいずれか1に記載の作製方法により製造された、骨分化能を有する脂肪幹細胞シート。
6.前項5に記載の脂肪幹細胞シートを、骨分化誘導剤を含む細胞培養培地中で培養することを含む、骨芽細胞を含む細胞シートの作製方法。
7.前項5に記載の骨分化能を有する脂肪幹細胞シート又は前項6に記載の作製方法により製造された骨芽細胞を含む細胞シートを含む骨組織再生用材料。
8.前記骨組織再生用材料は、スキャホールドを含まないことを特徴とする、前項7に記載の骨組織再生用材料。
That is, the present invention relates to the following.
1. A solution prepared by adding ascorbic acid or a salt thereof to a cell culture medium not containing a cell differentiation inducer is added to a culture vessel to which no scaffold is added, and adipose-derived stem cells are cultured in the solution. A method for producing an adipose-derived stem cell sheet having bone differentiation ability.
2. 2. The production method according to item 1, wherein the ascorbic acid or a salt thereof is added to a cell culture medium so as to have a concentration of 50 μM to 500 μM.
3. The production method according to item 1 or 2, wherein culturing the adipose-derived stem cells is culturing the adipose-derived stem cells for 3 to 15 days.
4). 4. The production method according to any one of items 1 to 3, wherein the fat-derived stem cell sheet is a monolayer fat-derived stem cell sheet.
5. An adipose stem cell sheet having the ability to differentiate into bone, produced by the production method according to any one of items 1 to 4.
6). 6. A method for producing a cell sheet containing osteoblasts, comprising culturing the adipose stem cell sheet according to item 5 in a cell culture medium containing a bone differentiation-inducing agent.
7). A material for regenerating bone tissue comprising the adipose stem cell sheet having the ability to differentiate into bone according to item 5 or the cell sheet containing osteoblasts produced by the production method according to item 6 above.
8). 8. The bone tissue regeneration material according to item 7 above, wherein the bone tissue regeneration material does not include a scaffold.

本発明によれば、通常の細胞培養培地にアスコルビン酸又はその塩のみを添加して調製した溶液中で、細胞培養支持体を用いずに、ADSCsを培養することを含む、骨分化能を有するADSCsシートの作製方法、並びに該作製方法により得られる、骨分化能を有するADSCsシートを提供できる。   According to the present invention, it has bone differentiation ability including culturing ADSCs in a solution prepared by adding only ascorbic acid or a salt thereof to a normal cell culture medium without using a cell culture support. An ADSCs sheet production method and an ADSCs sheet obtained by the production method and having bone differentiation ability can be provided.

本発明によれば、骨再生及び骨再建のための骨組織再生用材料として使用することができるADSCsシートを提供することができる。
本発明のADSCsシートは、分散ADSCsと比較して、骨形成能が高く、迅速に骨形成が可能である。
また、分散ADSCsは骨組織再生部位におけるその固定及び増殖のためにフィブリン糊等の固定用材料やスキャホールドと共に使用される必要があったが、本発明のADSCsシートは、スキャホールドと共に使用してもよいが、その力学的強度が高いため、それら自身のみで移植部分に接着することができる。このように、ADSCsシートは骨分化能を有する細胞を含み、またそれ自身単独で修復部位に固定され得るため、骨組織再生用材料として、分散ADSCsと比較してより有用である。
ADVANTAGE OF THE INVENTION According to this invention, the ADSCs sheet | seat which can be used as a bone tissue reproduction | regeneration material for bone regeneration and bone reconstruction can be provided.
The ADSCs sheet of the present invention has higher bone forming ability and can rapidly form bone as compared with dispersed ADSCs.
In addition, the dispersed ADSCs need to be used together with a fixing material such as fibrin glue or a scaffold for fixation and proliferation at the bone tissue regeneration site, but the ADSCs sheet of the present invention is used together with the scaffold. However, because of its high mechanical strength, it can be adhered to the transplanted part by itself. Thus, the ADSCs sheet contains cells having the ability to differentiate into bone, and can be fixed to a repair site by itself. Therefore, the ADSCs sheet is more useful as a bone tissue regeneration material compared to dispersed ADSCs.

また、本発明に係る方法は、アスコルビン酸又はその塩の他に他の物質を使用せずに骨組織再生用材料となるADSCsシートを作製できるため、簡便かつ安価に実施できる。   In addition, the method according to the present invention can be carried out simply and inexpensively because an ADSCs sheet as a bone tissue regeneration material can be produced without using other substances in addition to ascorbic acid or a salt thereof.

ADSCsシートの組織学的形状と細胞密度を、顕微鏡下で、オーバーコンフルエント状態のADSCsと比較した結果を説明する図である。両者の組織学的形状と細胞密度には明らかな差異は認められなかった。パネルA、B及びCは、ADSCsシートをそれぞれ4倍、10倍及び20倍の倍率で観察した視野を示す。パネルDは、オーバーコンフルエント状態のADSCsを20倍の倍率で観察した視野を示す。It is a figure explaining the result of having compared the histological shape and cell density of an ADSCs sheet with ADSCs of an overconfluent state under a microscope. There was no obvious difference between their histological shape and cell density. Panels A, B and C show the field of view of the ADSCs sheet observed at 4 ×, 10 × and 20 × magnifications, respectively. Panel D shows the field of view of overconfluent ADSCs at 20x magnification. 骨誘導培地で培養したADSCsが骨芽細胞に分化誘導したことを説明する図である。骨芽細胞の検出はALP染色(Alkaline Phosphatase Staining;ALP staining)及びアリザリンレッド染色(Alizarin red staining)により行った。ADSCsは、骨誘導後2週間目からALP染色陽性を示し、3週間目からアリザリンレッド染色陽性を示した。図中、「ic」は骨誘導培地中のADSCs群を示し、「nc」は通常倍地中のADSCs群を示す。It is a figure explaining that ADSCs culture | cultivated with the osteoinduction culture medium induced differentiation to the osteoblast. Osteoblasts were detected by ALP staining (Alkaline Phosphatase Staining; ALP staining) and alizarin red staining. ADSCs showed positive ALP staining from 2 weeks after bone induction and positive alizarin red staining from 3 weeks. In the figure, “ic” indicates the ADSCs group in the osteoinduction medium, and “nc” indicates the ADSCs group in the normal medium. 骨誘導培地で培養したADSCsシートが骨芽細胞に分化誘導したことを説明する図である。骨芽細胞の検出はALP染色(ALP staining)及びアリザリンレッド染色(Alizarin red staining)により行った。ADSCsシートは、骨誘導後5日目からALP染色陽性を示し、7日目からアリザリンレッド染色陽性を示した。図中、「is」は骨誘導培地中のADSCsシート群を示し、「ns」は通常倍地中のADSCsシート群を示す。It is a figure explaining that the ADSCs sheet | seat culture | cultivated with the osteoinduction culture medium induced differentiation to the osteoblast. Osteoblasts were detected by ALP staining (ALP staining) and alizarin red staining. The ADSCs sheet was positive for ALP staining from day 5 after bone induction and positive for alizarin red staining from day 7. In the figure, “is” indicates the ADSCs sheet group in the osteoinduction medium, and “ns” indicates the ADSCs sheet group in the normal medium. 骨誘導培地で培養したADSCs及びADSCsシートそれぞれのALP活性(ALP activity)を示す図である。ALP活性は、1×10細胞当たりの活性で示した。パネルAは、経日的なALP活性曲線を示す。パネルBは、培養3日目、5日目、7日目、10日目のALP活性を、通常培地で培養した対照群と比較した結果を示す。図中、「is」は骨誘導培地中のADSCsシート群を示し、「ns」は通常培地中のADSCsシート群を示し、「ic」は骨誘導培地中のADSCsを示し、そして「nc」は通常培地中のADSCsを示す。 パネルAでは、◆、■、▲及び×はそれぞれis、ns、ic及びncを示す。パネルBでは、データは左側から順にis、ns、ic及びncである。It is a figure which shows ALP activity (ALP activity) of each of ADSCs and ADSCs sheet | seat culture | cultivated with the osteoinduction culture medium. ALP activity was expressed as activity per 1 × 10 5 cells. Panel A shows a daily ALP activity curve. Panel B shows the results of comparing the ALP activity on day 3, day 5, day 7 and day 10 of the culture with a control group cultured in a normal medium. In the figure, “is” indicates the ADSCs sheet group in the osteoinduction medium, “ns” indicates the ADSCs sheet group in the normal medium, “ic” indicates the ADSCs in the osteoinduction medium, and “nc” Shown are ADSCs in normal media. In panel A, ◆, ■, ▲, and x indicate is, ns, ic, and nc, respectively. In panel B, the data are is, ns, ic and nc in order from the left. ADSCsシートのALP活性は405 nm波長の吸光度により測定した。図のグラフは、異なるアスコルビン酸濃度の培地で作製されたADSCsシートの吸光度を、アスコルビン酸濃度50 μMで作製した場合と比較している。各日のアスコルビン酸濃度50 μMで作製したADSCsシートの吸光度を1とした。0dayはADSCsがオーバーコンフルエントに達した状態を意味し、ADSCsシート培地はその時点から測定に使用した。なお、各日数のグラフの左はアスコルビン酸濃度50 μM、中はアスコルビン酸濃度150 μM及び右はアスコルビン酸濃度450 μMを示す。The ALP activity of the ADSCs sheet was measured by absorbance at a wavelength of 405 nm. The graph of the figure compares the absorbance of ADSCs sheets prepared in media with different ascorbic acid concentrations with those prepared at ascorbic acid concentrations of 50 μM. The absorbance of the ADSCs sheet prepared at an ascorbic acid concentration of 50 μM on each day was 1. 0 day means that the ADSCs reached overconfluence, and the ADSCs sheet medium was used for the measurement from that point. In addition, the left of the graph of each day shows ascorbic acid concentration 50 μM, inside shows ascorbic acid concentration 150 μM, and right shows ascorbic acid concentration 450 μM.

(本発明の概要)
本発明は、骨分化能を有するADSCsシート(より詳細には、単層のADSCsシート)の作製方法、及び該作製方法で作製されたADSCsシートに関する。
本方法は、細胞分化誘導剤を含まない細胞培養培地にアスコルビン酸又はその塩を添加して調製した溶液を、細胞培養支持体を添加していない培養容器内に加え、該溶液中で、脂肪由来幹細胞を培養することを含む。
特に、ADSCsシートは骨形成用に使用することが好ましい。
(Outline of the present invention)
The present invention relates to a method for producing an ADSCs sheet having bone differentiation ability (more specifically, a single-layer ADSCs sheet), and an ADSCs sheet produced by the production method.
In this method, a solution prepared by adding ascorbic acid or a salt thereof to a cell culture medium not containing a cell differentiation inducer is added to a culture vessel to which a cell culture support is not added, Culturing the derived stem cells.
In particular, the ADSCs sheet is preferably used for bone formation.

本発明に係るADSCsシートの作製方法は、骨再生及び骨再建のための骨組織再生用材料として使用することができるADSCsシートを、簡便、迅速及び安価に作製できるという利点を有する。   The method for producing an ADSCs sheet according to the present invention has an advantage that an ADSCs sheet that can be used as a bone tissue regeneration material for bone regeneration and bone reconstruction can be produced simply, quickly, and inexpensively.

また、本発明に係る作製方法により作成されたADSCsシートは、骨分化能を有する細胞を含み、また、その力学的強度が高いため、それ自身を単独で修復部位に移植されたときにその部位に固定され得るという利点を有する。   In addition, the ADSCs sheet prepared by the preparation method according to the present invention includes cells having bone differentiation ability, and since the mechanical strength thereof is high, the site when the cell itself is transplanted to a repair site alone. It has the advantage that it can be fixed to.

本発明は、さらに、本発明の作製方法により作成されたADSCsシートを、骨分化誘導剤を含む細胞培養培地中で培養することを含む、骨芽細胞を含む細胞シートの作製方法を提供する。   The present invention further provides a method for producing a cell sheet containing osteoblasts, comprising culturing an ADSCs sheet produced by the production method of the present invention in a cell culture medium containing an osteoinduction agent.

(幹細胞)
「幹細胞(stem cell)」とは、複数系統の細胞に分化できる能力(多分化能)と、細胞分裂を経ても多分化能を維持できる能力(自己複製能)を併せ持つ細胞をいう。幹細胞は、発生の過程や組織・器官の維持において細胞を供給する役割を担っている。幹細胞には、全ての系統の細胞に分化することのできる胚性幹細胞、通常は分化系統が限定されている成体幹細胞(組織幹細胞、体性幹細胞)、胚体外組織を除く全ての系統に分化する多能性を有し、人工的に作製された人工多能性幹細胞等が知られている。
(Stem cell)
A “stem cell” refers to a cell that has both the ability to differentiate into cells of multiple lineages (multipotency) and the ability to maintain pluripotency even after cell division (self-renewal ability). Stem cells play a role in supplying cells in the process of development and maintenance of tissues and organs. Stem cells can be differentiated into embryonic stem cells that can differentiate into cells of all lineages, usually adult stem cells with limited differentiation lineages (tissue stem cells, somatic stem cells), and all lineages except extraembryonic tissues Artificially induced pluripotent stem cells having pluripotency and the like are known.

(脂肪由来幹細胞)
「脂肪由来幹細胞(adipose-derived stem cell;ADSCs)」は、脂肪組織に存在する幹細胞である。主に間葉系幹細胞で構成され、骨髄由来の幹細胞と同様に、骨芽細胞、軟骨細胞、心筋細胞、脂肪細胞、肝細胞、血管内皮細胞及びインスリン分泌細胞等の多種類の細胞に分化することができる多能性を有する。脂肪組織は採取が容易であり、また多量の幹細胞を含むため、ADSCsは容易かつ大量に調製することが可能である。
(Adipose-derived stem cells)
“Adipose-derived stem cells (ADSCs)” are stem cells present in adipose tissue. It is mainly composed of mesenchymal stem cells and differentiates into many types of cells such as osteoblasts, chondrocytes, cardiomyocytes, adipocytes, hepatocytes, vascular endothelial cells, and insulin-secreting cells, similar to bone marrow-derived stem cells. Have pluripotency. Since adipose tissue is easy to collect and contains a large amount of stem cells, ADSCs can be prepared easily and in large quantities.

(脂肪由来幹細胞の分離及び精製)
脂肪組織からのADSCsの分離及び精製は、従来報告された公知の方法を参考にして実施できる。例えば、文献Arterioscler Thromb Vasc Biol. 2009;29:1723-1729に記載の方法を用いることができる。あるいは、市販のヒトADSCs(例:Invitrogen社製品)を使用することもできる。
(Separation and purification of adipose-derived stem cells)
Separation and purification of ADSCs from adipose tissue can be performed with reference to known methods reported in the past. For example, the method described in the document Arterioscler Thromb Vasc Biol. 2009; 29: 1723-1729 can be used. Alternatively, commercially available human ADSCs (eg, Invitrogen product) can also be used.

(脂肪由来幹細胞シート)
「脂肪由来幹細胞シート(ADSCsシート)」は、個々別々の分散状態にあるADSCsがシート状を形成してなる細胞構築物をいう。
「単層の脂肪由来幹細胞シート」とは、ADSCsが一層のシート状態を形成してなり、重層構造や三次元構造を形成していない細胞構築物をいう。
(Adipose-derived stem cell sheet)
“Adipose-derived stem cell sheet (ADSCs sheet)” refers to a cell construct in which ADSCs in separate dispersion form a sheet.
“Single-layered adipose-derived stem cell sheet” refers to a cell construct in which ADSCs are formed in a single sheet state and do not form a multi-layer structure or a three-dimensional structure.

本明細書において、個々別々の分散状態にあるADSCsを単にADSCs又は分散ADSCsといい、シート状を形成してなるADSCsをADSCsシートという。   In the present specification, ADSCs that are in individual dispersed states are simply referred to as ADSCs or distributed ADSCs, and ADSCs formed in a sheet form are referred to as ADSCs sheets.

(脂肪由来幹細胞の由来)
ADSCs及びADSCsシートは、哺乳動物の脂肪由来のものであればいずれでもよく、哺乳動物として、ヒト、サル、ブタ、ブタ、ウマ、ウシ、ウサギ、ヒツジ、ヤギ、ネコ、イヌ、モルモット等を例示できる。
好ましくは、ヒトの脂肪由来のADSCs及びADSCsシートである。
さらに、ADSCs及びADSCsシートは、骨組織再生材料として使用される場合、同種ADSCs及び同種ADSCsシートであることが好ましく、自家ADSCs及び自家ADSCsシートであることがさらに好ましい。
同種ADSCs及び同種ADSCsシートとは、同じ動物種に由来するADSCs及びADSCsシートを意味する。
自家ADSCs及び自家ADSCsシートとは、骨組織再生を受ける対象自身に由来するADSCs及びADSCsシートを意味する。
(Derived from adipose-derived stem cells)
The ADSCs and ADSCs sheets may be any one derived from mammalian fat, and examples of mammals include humans, monkeys, pigs, pigs, horses, cows, rabbits, sheep, goats, cats, dogs, guinea pigs, etc. it can.
Preferred are human fat-derived ADSCs and ADSCs sheets.
Further, when the ADSCs and ADSCs sheets are used as a bone tissue regeneration material, the same kind of ADSCs and the same kind of ADSCs sheet are preferable, and it is more preferable that they are self ADSCs and self ADSCs sheets.
Homogeneous ADSCs and homologous ADSCs sheets mean ADSCs and ADSCs sheets derived from the same animal species.
In-house ADSCs and in-house ADSCs sheets mean ADSCs and ADSCs sheets derived from the subject who is subjected to bone tissue regeneration.

(骨分化能)
「骨分化能」とは、骨芽細胞、骨細胞又はそれらの前駆細胞に分化する能力をいう。すなわち、骨分化誘導条件下で、骨芽細胞、骨細胞又はそれらの前駆細胞に分化する能力をいう。骨分化誘導条件は、インビボ及びインビトロのいずれの条件下であってもよい。インビトロの骨分化誘導として、デキサメタゾン、β−グリセロリン酸、及びアスコルビン酸を含む培地での培養(非特許文献5)や、BMP−4、アスコルビン酸−2−リン酸塩、デキサメタゾン及びβ−グリセロリン酸塩を含む培養培地での培養を例示できる。
(Bone differentiation ability)
“Bone differentiation ability” refers to the ability to differentiate into osteoblasts, bone cells or their precursor cells. That is, it refers to the ability to differentiate into osteoblasts, bone cells or their progenitor cells under conditions that induce bone differentiation. The condition for inducing bone differentiation may be any of in vivo and in vitro conditions. For in vitro bone differentiation induction, culture in a medium containing dexamethasone, β-glycerophosphate and ascorbic acid (Non-patent Document 5), BMP-4, ascorbic acid-2-phosphate, dexamethasone and β-glycerophosphate Examples thereof include culture in a culture medium containing a salt.

(脂肪由来幹細胞シートの作製方法の特徴)
本発明の脂肪由来幹細胞シートの作製方法では、細胞培養支持体を添加していない培養容器内に、細胞分化誘導剤を含まない細胞培養培地にアスコルビン酸又はその塩を添加して調製した溶液を加え、該溶液中で、脂肪由来幹細胞を培養することを特徴とする。
(Characteristics of production method of adipose-derived stem cell sheet)
In the method for producing an adipose-derived stem cell sheet of the present invention, a solution prepared by adding ascorbic acid or a salt thereof to a cell culture medium not containing a cell differentiation inducer in a culture vessel to which no cell culture support is added. In addition, fat-derived stem cells are cultured in the solution.

細胞の培養に使用する容器は、細胞培養用に一般的に使用されているものであれば特に限定されず、シャーレやフラスコなどの細胞培養容器を例示できる。接着性の細胞であれば、このような細胞培養容器の壁面に接着して増殖し、浮遊性の細胞であれば、培養溶液中に遊離の状態で増殖する。このような細胞培養容器を基体と称することがある。   The container used for cell culture is not particularly limited as long as it is generally used for cell culture, and examples thereof include cell culture containers such as petri dishes and flasks. If it is an adhesive cell, it grows by adhering to the wall of such a cell culture container, and if it is a floating cell, it grows in a free state in the culture solution. Such a cell culture container may be referred to as a substrate.

(細胞培養支持体)
「細胞培養支持体」とは、細胞の付着及び増殖、あるいは細胞による三次元構造の構築を目的として基体に被覆又は積層されたコーティング材料で形成された構造体いう。細胞培養支持体として、高分子が架橋した三次元網目構造体であるハイドロゲルやコラーゲンマトリックス(非特許文献31)等を好ましく例示できる。本明細書において、「細胞培養支持体」と言う場合は、基体を含まない。
(Cell culture support)
“Cell culture support” refers to a structure formed of a coating material that is coated or laminated on a substrate for the purpose of cell attachment and proliferation, or construction of a three-dimensional structure of cells. Preferred examples of the cell culture support include hydrogel and collagen matrix (Non-patent Document 31), which are three-dimensional network structures in which polymers are crosslinked. In the present specification, the term “cell culture support” does not include a substrate.

細胞培養支持体を添加していない培養容器として、例えば通常市販されているシャーレや細胞培養フラスコ等を例示できる。   Examples of the culture container to which the cell culture support is not added include, for example, a commercially available petri dish or a cell culture flask.

(アスコルビン酸又はその塩)
本発明に係る方法で使用するアスコルビン酸は、L−アスコルビン酸又はその誘導体、例えばL−アスコルビン酸−2−グルコシドやL−アスコルビン酸−2−リン酸等であり、好ましくはL−アスコルビン酸−2−リン酸である。
アスコルビン酸の塩とは、ナトリウム塩又はカルシウム塩等の薬理学的に許容される塩であればいずれの塩であってもよい。
アスコルビン酸−2−リン酸は、間葉系細胞のコラーゲンタンパク質分泌を増加させるが、該細胞に他の影響は何ら与えないことが報告されている(非特許文献32)。
細胞培養培地に添加されるアスコルビン酸又はその塩は、最終濃度が10μM〜800μM、好ましくは50μM〜500μM、より好ましくは100μM〜200μM、最も好ましくは約150μMになるように細胞培養培地に添加する。
(Ascorbic acid or its salt)
Ascorbic acid used in the method according to the present invention is L-ascorbic acid or a derivative thereof such as L-ascorbic acid-2-glucoside, L-ascorbic acid-2-phosphate, etc., preferably L-ascorbic acid- 2-phosphoric acid.
The salt of ascorbic acid may be any salt as long as it is a pharmacologically acceptable salt such as sodium salt or calcium salt.
Ascorbic acid-2-phosphate has been reported to increase collagen protein secretion in mesenchymal cells, but has no other effect on the cells (Non-patent Document 32).
Ascorbic acid or a salt thereof added to the cell culture medium is added to the cell culture medium so that the final concentration is 10 μM to 800 μM, preferably 50 μM to 500 μM, more preferably 100 μM to 200 μM, and most preferably about 150 μM.

(細胞培養培地)
細胞培養培地は、ADSCsの培養に一般的に使用されている培養培地を使用することができる。例えば、ダルベッコ改変イーグル培地(Dulbecco's modified Eagle's medium;DMEM)を好ましく例示できるが、特に限定されない。
(Cell culture medium)
As the cell culture medium, a culture medium generally used for culturing ADSCs can be used. For example, Dulbecco's modified Eagle's medium (DMEM) can be preferably exemplified, but is not particularly limited.

(脂肪由来幹細胞の培養条件)
ADSCsの培養条件は一般的に知られている培養条件を採用することができる。
ADSCsシートの作製のためのADSCs培養日数は、3日〜15日、好ましくは4日〜13日、より好ましくは5日〜10日、さらに好ましくは7日〜10日、最も好ましくは7日間である。
(Culture conditions for adipose-derived stem cells)
As culture conditions for ADSCs, generally known culture conditions can be employed.
The number of days of ADSCs culture for preparing the ADSCs sheet is 3 to 15 days, preferably 4 to 13 days, more preferably 5 to 10 days, still more preferably 7 to 10 days, and most preferably 7 days. is there.

(骨芽細胞を含む細胞シート)
本発明に係る作製方法で作製された脂肪幹細胞シートを、骨分化誘導剤を含む細胞培養培地中で培養することにより、骨芽細胞を含む細胞シートを作製し提供することができる。
(Cell sheet containing osteoblasts)
A cell sheet containing osteoblasts can be produced and provided by culturing the adipose stem cell sheet produced by the production method according to the present invention in a cell culture medium containing an osteodifferentiation inducer.

(骨細胞分化誘導剤)
骨細胞分化誘導剤とは、幹細胞や骨系列前駆細胞を、骨芽細胞又は骨細胞に分化させ得る薬剤をいう。骨細胞分化誘導剤として、公知の骨細胞分化誘導剤をいずれも使用することができるが、デキサメタゾン、β−グリセロリン酸、及びアスコルビン酸を含む混合物、並びにBMP−4、アスコルビン酸−2−リン酸塩、デキサメタゾン及びβ−グリセロリン酸塩を含む混合物を好ましく例示できる。インビトロにおける骨細胞分化誘導は、骨細胞分化誘導剤を加えた培養培地中で、幹細胞や骨系列前駆細胞を、培養することにより実施できる。骨細胞分化誘導剤を加える培養培地は、一般的に使用されている培地であればいずれも使用できるが、α−最小必須培地(alpha-Minimum Essential Media;α−MEM)を好ましく例示できる。
培養条件は、骨分化誘導剤を含む細胞培養培地中で、本発明に係る作製方法で作製された脂肪幹細胞シートを培養し、該シート中での骨芽細胞の分化誘導を検出することにより適宜変更して設定することができる。
骨芽細胞の分化誘導の検出は、公知方法、例えばALP染色(ALP staining)やアリザリンレッド染色、あるいはALP活性の測定により実施することができる。
(Osteocyte differentiation inducer)
The bone cell differentiation-inducing agent refers to a drug that can differentiate stem cells and bone lineage progenitor cells into osteoblasts or bone cells. As a bone cell differentiation inducer, any known bone cell differentiation inducer can be used, but a mixture containing dexamethasone, β-glycerophosphate, and ascorbic acid, and BMP-4, ascorbic acid-2-phosphate Preferred examples include a mixture containing a salt, dexamethasone and β-glycerophosphate. Bone cell differentiation induction in vitro can be performed by culturing stem cells and bone lineage progenitor cells in a culture medium to which an osteoblast differentiation inducer is added. Any culture medium to which a bone cell differentiation inducer is added can be used as long as it is a commonly used medium, and an α-minimum essential medium (α-MEM) can be preferably exemplified.
The culture conditions are appropriately determined by culturing the adipose stem cell sheet produced by the production method according to the present invention in a cell culture medium containing an osteoinduction agent and detecting differentiation induction of osteoblasts in the sheet. Can be changed and set.
Detection of osteoblast differentiation induction can be performed by a known method such as ALP staining (ALP staining), alizarin red staining, or measurement of ALP activity.

(骨組織再生用材料)
骨組織再生用材料とは、骨再生及び骨再建のために使用する材料をいう。
本発明の骨組織再生用材料は、本発明の骨分化能を有する脂肪幹細胞シート、又は、本発明の骨芽細胞を含む細胞シート(又は、本発明に係る作製方法により製造された骨芽細胞を含む細胞シート)を含む。特に、本発明の骨組織再生用材料では、骨芽細胞を含む細胞シートが力学的強度を有しかつ自身単独で骨修復部位に固定されるので、スキャホールドを必要としないことが特徴である。
(Bone tissue regeneration material)
The bone tissue regeneration material refers to a material used for bone regeneration and bone reconstruction.
The bone tissue regeneration material of the present invention is an adipose stem cell sheet having the osteogenic potential of the present invention, or a cell sheet containing the osteoblast of the present invention (or an osteoblast produced by the production method according to the present invention). Cell sheet). In particular, the bone tissue regeneration material of the present invention is characterized in that a cell sheet containing osteoblasts has mechanical strength and is fixed to a bone repair site by itself, so that no scaffold is required. .

以下、実施例を示して本発明をより具体的に説明するが、本発明は以下に示す実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated more concretely, this invention is not limited at all by the Example shown below.

ヒト脂肪由来幹細胞(hADSCs)を使用し、これら細胞が骨芽細胞へ分化誘導される方法を検討した。   Using human adipose-derived stem cells (hADSCs), a method for inducing differentiation of these cells into osteoblasts was examined.

(材料)
ヒト脂肪由来幹細胞は、Life Technologies社より購入した。ADSCsの細胞表面タンパク質の特徴は、フローサイトメトリーにより解析しており、CD29、CD44、CD73、CD90、CD105及びCD166陽性であり、CD14、CD31、CD45及びLin1陰性である。
(material)
Human adipose-derived stem cells were purchased from Life Technologies. The characteristics of the cell surface proteins of ADSCs were analyzed by flow cytometry and are CD29, CD44, CD73, CD90, CD105 and CD166 positive and CD14, CD31, CD45 and Lin1 negative.

凍結保存されていたhADSCsを融解した後、10% 牛胎仔血清(FBS)(NICHIREI BIOSCIENCES社)及び1% ペニシリン−ストレプトマイシン溶液(P/S)(Wako Pure Chemical Industries社)を加えたDMEM(Wako Pure Chemical Industries, Ltd社)にけん濁し、37℃で1日間インキュベーションした。   After thawing the hADSCs that had been cryopreserved, DMEM (Wako Pure) supplemented with 10% fetal bovine serum (FBS) (NICHIREI BIOSCIENCES) and 1% penicillin-streptomycin solution (P / S) (Wako Pure Chemical Industries) Chemical Industries, Ltd.) and incubated at 37 ° C. for 1 day.

前記1日間のインキュベーション後、活性化したhADSCsの形態が円形から紡錘形に変化することが、光学顕微鏡により観察できた。これらの形態の変化は、細胞からのコラーゲン線維性タンパク質の分泌によるものであり、コラーゲン線維性タンパク質を分泌した細胞はシャーレの底に接着した。
シャーレは予備加温したリン酸緩衝生理食塩水(PBS)(Wako Pure Chemical Industries, Ltd.)で静かに3回すすぎ、非接着細胞を除去した。残っているhADSCsは10% FBS及び1% P/Sを加えたDMEM中で培養し(非特許文献33)、そしてそれらがシャーレの面積の90%を覆うように増殖するまで継代培養した。継代3代目のhADSCsを以降の実験で使用した。
It was possible to observe with an optical microscope that the morphology of the activated hADSCs changed from a circular shape to a spindle shape after the incubation for 1 day. These morphological changes were due to the secretion of collagen fibrillar protein from the cells, and the cells secreting the collagen fibrillar protein adhered to the bottom of the petri dish.
The petri dish was gently rinsed 3 times with pre-warmed phosphate buffered saline (PBS) (Wako Pure Chemical Industries, Ltd.) to remove non-adherent cells. The remaining hADSCs were cultured in DMEM supplemented with 10% FBS and 1% P / S (Non-patent Document 33) and subcultured until they grew to cover 90% of the petri dish area. The third passage of hADSCs was used in subsequent experiments.

(hADSCsの骨芽細胞への分化の誘導)
継代3代目のhADSCsが骨形成への分化能を維持しているか分析した。詳しくは、分化誘導のために、hADSCsを公知の骨誘導培地で培養した。骨誘導培地は、10% FBS、0.1μM デキサメタゾン、50μM アスコルビン酸−2−リン酸、10mM β−グリセロホスフェート、1% P/Sを含むα−MEM(Wako Pure Chemical Industries社)から成る(非特許文献6、34−37)。
10% FBS及び1% P/Sのみを含むα−MEM溶液を、各条件の対照培地として使用した。
以下、hADSCsを骨誘導培地で分化誘導した細胞群をhADSCs誘導群と称し、hADSCs対照培地で培養した細胞群をhADSCs対照群と称することがある。
(Induction of differentiation of hADSCs into osteoblasts)
It was analyzed whether the third generation of hADSCs maintained the ability to differentiate into bone formation. Specifically, hADSCs were cultured in a known osteoinduction medium for differentiation induction. The osteoinduction medium consists of α-MEM (Wako Pure Chemical Industries) containing 10% FBS, 0.1 μM dexamethasone, 50 μM ascorbic acid-2-phosphate, 10 mM β-glycerophosphate, 1% P / S (non-Wako Pure Chemical Industries). Patent Document 6, 34-37).
An α-MEM solution containing only 10% FBS and 1% P / S was used as a control medium for each condition.
Hereinafter, a group of cells in which differentiation of hADSCs is induced in an osteoinduction medium may be referred to as a hADSCs induction group, and a group of cells cultured in a hADSCs control medium may be referred to as a hADSCs control group.

(hADSCsの骨芽細胞への分化誘導の確認)
hADSCsからの骨芽細胞分化誘導の成否を、アルカリホスファターゼ染色及びアリザリンレッド染色による組織化学分析により検討した。
詳しくは、アルカリホスファターゼ染色は、骨芽細胞機能の亢進及び骨形成活性亢進の指標として使用されている。アリザリンレッド染色は石灰化の促進の指標として使用されている。したがって、これら染色により陽性が確認された細胞は、骨芽細胞あるいは骨細胞としての機能を有すると考えることができる。
(Confirmation of differentiation induction of hADSCs into osteoblasts)
The success or failure of osteoblast differentiation induction from hADSCs was examined by histochemical analysis with alkaline phosphatase staining and alizarin red staining.
Specifically, alkaline phosphatase staining is used as an indicator of increased osteoblast function and increased osteogenic activity. Alizarin red staining is used as an indicator of accelerated calcification. Therefore, the cells confirmed to be positive by these staining can be considered to have functions as osteoblasts or bone cells.

これら組織化学分析(非特許文献38―40)は、分化誘導培養期間中の1日目、3日目、5日目、7日目、10日目、2週間目及び3週間目に実施した。   These histochemical analyzes (Non-Patent Documents 38-40) were performed on the 1st day, 3rd day, 5th day, 7th day, 10th day, 2nd week and 3rd week during the differentiation induction culture period. .

アルカリホスファターゼ染色実施時、培地は除去し、細胞層をPBSで3回すすぎ、そして4% パラホルムアルデヒド−リン酸緩衝液(Wako Pure Chemical Industries, Ltd)で室温にて5分間固定した。
その後、細胞層を脱イオン水で洗浄した。次いで、固定した細胞を1-Step NBT/BCIP plus Suppressor Solution(Thermo Fisher Scientific社)でインキュベーションした。37℃で30分間インキュベーション後、細胞層を脱イオン水で洗浄し、そして裸眼及び光学顕微鏡の両方で観察した。
At the time of alkaline phosphatase staining, the medium was removed, the cell layer was rinsed 3 times with PBS, and fixed with 4% paraformaldehyde-phosphate buffer (Wako Pure Chemical Industries, Ltd) for 5 minutes at room temperature.
Thereafter, the cell layer was washed with deionized water. The fixed cells were then incubated with 1-Step NBT / BCIP plus Suppressor Solution (Thermo Fisher Scientific). After incubation at 37 ° C. for 30 minutes, the cell layer was washed with deionized water and observed with both the naked eye and light microscope.

アリザリンレッド染色の前に、細胞層をPBSで3回すすぎ、そして4% パラホルムアルデヒド−リン酸緩衝液(Wako Pure Chemical Industries社)で室温にて10分間固定した。その後、細胞層を脱イオン水で3回洗浄した。次いで、アリザリンレッド染色をオステオジェネシスアッセイキット(ECM815, Millipore社)を使用して、標準プロトコルにしたがって行った(非特許文献41)。   Prior to alizarin red staining, cell layers were rinsed 3 times with PBS and fixed with 4% paraformaldehyde-phosphate buffer (Wako Pure Chemical Industries) for 10 minutes at room temperature. The cell layer was then washed 3 times with deionized water. Subsequently, alizarin red staining was performed using an osteogenesis assay kit (ECM815, Millipore) according to a standard protocol (Non-patent Document 41).

(本発明のhADSCsシートの作製)
継代3代目のhADSCsを、10cm シャーレに1×10細胞/シャーレで播種し、10% FBS及び1% P/Sを添加したDMEM中でオーバーコンフルエントになるまで培養し、hADSCsシートを作製した。
作製培地は、10% FBS、50μM アスコルビン酸−2−リン酸、1% P/Sを含むものである。培地は1週間の間、3日毎に交換した。これが、本願においてADSCsシートを作製するために開発した重要工程である。hADSCsシートが作成されたかどうかを確認するために、試料を無作為に採取して検査した。
(Preparation of hADSCs sheet of the present invention)
The 3rd generation hADSCs were seeded in a 10 cm dish at 1 × 10 6 cells / dishlet and cultured in DMEM supplemented with 10% FBS and 1% P / S to prepare an hADSCs sheet. .
The production medium contains 10% FBS, 50 μM ascorbic acid-2-phosphate, 1% P / S. The medium was changed every 3 days for 1 week. This is an important process developed to produce ADSCs sheets in the present application. Samples were randomly taken and examined to see if hADSCs sheets were created.

(作製した細胞シートの骨芽細胞への分化の誘導)
hADSCsシートの骨分化を誘導するために、hADSCsシートを公知の誘導培地で培養した。
骨誘導培地は10% 、0.1μM デキサメタゾン、50μM アスコルビン酸−2−リン酸、10mM β−グリセロホスフェート、1% P/Sを含むα−MEMから成る。
10% FBS及び1% P/Sのみを含むα−MEM溶液を、各条件の対照培地として使用した。
以下、hADSCsシートを骨誘導培地で分化誘導した細胞群をhADSCsシート誘導群と称し、hADSCsシートを対照培地で培養した細胞群をhADSCsシート対照群と称することがある。
(Induction of differentiation of the produced cell sheet into osteoblasts)
In order to induce bone differentiation of the hADSCs sheet, the hADSCs sheet was cultured in a known induction medium.
The osteoinduction medium consists of α-MEM containing 10%, 0.1 μM dexamethasone, 50 μM ascorbic acid-2-phosphate, 10 mM β-glycerophosphate, 1% P / S.
An α-MEM solution containing only 10% FBS and 1% P / S was used as a control medium for each condition.
Hereinafter, a cell group in which the hADSCs sheet is differentiated with the osteoinduction medium may be referred to as a hADSCs sheet induction group, and a cell group in which the hADSCs sheet is cultured in a control medium may be referred to as a hADSCs sheet control group.

(hADSCsシートのALP染色キット及びアリザリンレッド染色キットによる染色)
hADSCsシートからの骨芽細胞分化誘導の成否を、アルカリホスファターゼ染色及びアリザリンレッド染色による組織化学分析により検討した。組織化学分析は、誘導培養期間中の1日目、3日目、5日目、7日目、10日目、2週間目及び3週間目に実施した。ALP染色及びアリザリンレッド染色は、上記した方法により実施した。
(Staining of hADSCs sheet with ALP staining kit and alizarin red staining kit)
The success or failure of the induction of osteoblast differentiation from the hADSCs sheet was examined by histochemical analysis using alkaline phosphatase staining and alizarin red staining. Histochemical analysis was performed on days 1, 3, 5, 7, 10, 10, 2 and 3 during the induction culture period. ALP staining and alizarin red staining were performed by the methods described above.

(ALP活性の定量及び統計解析)
hADSCs対照群、hADSCs誘導群、hADSCsシート対照群及びhADSCsシート誘導群のそれぞれについてALP活性を測定した。
ALP活性の測定はTRACP & ALP assay kit(MK301、TaKaRa Bio社)を使用して製造者使用説明書にしたがって行った。チェックポイントは、培養期間の1日目、3日目、5日目、7日目、10日目、2週間目及び3週間目に設定した。上記4群間のALP活性の差異の有意性は、スチューデントt−検定を使用した統計解析により評価した。p値が0.05以下のとき有意であると判定した。
(Quantification and statistical analysis of ALP activity)
ALP activity was measured for each of the hADSCs control group, the hADSCs induction group, the hADSCs sheet control group, and the hADSCs sheet induction group.
The ALP activity was measured using a TRACP & ALP assay kit (MK301, TaKaRa Bio) according to the manufacturer's instructions. Checkpoints were set on the 1st, 3rd, 5th, 7th, 10th, 2nd and 3rd weeks of the culture period. The significance of the difference in ALP activity between the four groups was evaluated by statistical analysis using Student's t-test. The p value was determined to be significant when it was 0.05 or less.

(結果)
hADSCs及びhADSCsシートを光学顕微鏡で観察した。そして、細胞形態の変化を、実験期間中、観察した。細胞数はオーバーコンフルエント状態になった後には変化しなかった。hADSCsシートの細胞形態がオーバーコンフルエント状態のhADSCsのものと同じであることが確認できた(図1)。
(result)
hADSCs and hADSCs sheets were observed with an optical microscope. Changes in cell morphology were then observed during the experiment. The cell number did not change after becoming overconfluent. It was confirmed that the cell morphology of the hADSCs sheet was the same as that of the hADSCs in an overconfluent state (FIG. 1).

hADSCs対照群とhADSCs誘導群との間のALP染色の結果の差異は、誘導開始後2週間目に認められ、そしてこれら2群間のアリザリンレッド染色の結果の差異は3週間目に認められた(図2)。
これに対し、hADSCsシート対照群とhADSCsシート誘導群との間の差異はALP染色では5日目に、そしてアリザリンレッド染色では7日目に認められた(図3)。
A difference in the results of ALP staining between the hADSCs control group and the hADSCs induction group was observed 2 weeks after initiation of induction, and a difference in the results of alizarin red staining between these 2 groups was observed at 3 weeks. (FIG. 2).
In contrast, a difference between the hADSCs sheet control group and the hADSCs sheet induction group was found on day 5 for ALP staining and on day 7 for alizarin red staining (FIG. 3).

ALP染色及びアリザリンレッド染色のいずれにおいても、その染色濃度は経時的に濃くなった。それぞれ対応する染色チェックポイントで、hADSCsシート誘導群のALP染色及びアリザリンレッド染色の濃度は、hADSCs誘導群のものより濃かった(図2、3)。   In both ALP staining and alizarin red staining, the staining concentration increased with time. At each corresponding staining checkpoint, the concentration of ALP staining and alizarin red staining in the hADSCs sheet induction group was higher than that in the hADSCs induction group (FIGS. 2 and 3).

hADSCs誘導群のALP活性の平均値は、hADSCsのALP活性が骨誘導の5日後から急増したことを示す(図4)。Life Technologies社の使用者説明書と一致して、この増加は14日目に最高値に達し、他の研究による報告と一致する(非特許文献42)。hADSCs対照群のALP活性は、実験期間全体にわたって低値の範囲にとどまっていた。   The average value of ALP activity in the hADSCs induction group shows that the ALP activity of hADSCs increased rapidly from 5 days after bone induction (FIG. 4). Consistent with Life Technologies user instructions, this increase reached a maximum on day 14 and is consistent with reports from other studies (42). The ALP activity in the hADSCs control group remained in the low range throughout the experimental period.

hADSCsシート誘導群及びhADSCsシート対照群はいずれも1日目に、hADSCs誘導群及びhADSCs対照群とそれぞれ比較して高いALP活性を示した(P<0.05)。特に、hADSCsシート誘導群は、hADSCs誘導群より極めて高い値を示した(P<0.05)。hADSCsシート誘導群のALP活性の直線的増加は1日目から始まり、そして10日目に最高近くに達した。しかしながら、hADSCsシート誘導群のALP活性は14日目及び21日目でも未だ増加していた。hADSCsシート対照群のALP活性は、hADSCsシート誘導群と比較して、実験期間全体にわたって低値の範囲にとどまっていたが、その値はhADSCs対照群のものよりずっと大きかった(P<0.05)(図4)。   Both the hADSCs sheet induction group and the hADSCs sheet control group showed higher ALP activity on the first day compared with the hADSCs induction group and the hADSCs control group, respectively (P <0.05). In particular, the hADSCs sheet induction group showed a significantly higher value than the hADSCs induction group (P <0.05). The linear increase in ALP activity in the hADSCs sheet-induced group began on day 1 and reached a maximum on day 10. However, the ALP activity in the hADSCs sheet-induced group was still increased on the 14th and 21st days. The ALP activity of the hADSCs sheet control group remained in the low range over the entire experimental period compared to the hADSCs sheet induction group, but the value was much greater than that of the hADSCs control group (P <0.05). (FIG. 4).

このように、ADSCsシート誘導群のALP活性が、各時点で分散ADSCs群のものより高かったことから、ADSCsシートが分散ADSCsと比較して骨形成により有効かつ迅速に作用することが確認された。
すなわち、本発明のADSCsシートの移植片は移植後に、個々別々の分散細胞よりもより早く骨形成にその役割を果たすことができるという利点を有するため、臨床治療に有用である。
Thus, since the ALP activity of the ADSCs sheet induction group was higher than that of the dispersed ADSCs group at each time point, it was confirmed that the ADSCs sheet acts more effectively and rapidly on bone formation than the dispersed ADSCs. .
That is, the ADSCs sheet graft of the present invention is useful for clinical treatment because it has the advantage that it can play its role in bone formation sooner after transplantation than individual discrete dispersed cells.

(添加するアスコルビン酸濃度の最適化)
上記実施例1において、骨分化能を有する脂肪幹細胞シート及び骨芽細胞を含む細胞シートは優れた骨分化誘導能を有することを確認した。さらに、本実施例では、最適な添加するアスコルビン酸濃度を検討した。詳細は、以下の通りである。
(Optimization of added ascorbic acid concentration)
In Example 1 above, it was confirmed that the adipose stem cell sheet having the ability to differentiate into bone and the cell sheet containing osteoblasts have an excellent ability to induce bone differentiation. Further, in this example, the optimum concentration of ascorbic acid to be added was examined. Details are as follows.

(ALP活性の確認)
50 μM、150 μM又は450 μMのアスコルビン酸濃度の培地条件で作製したADSCsシートのALP活性を405 nm波長の吸光度により測定した。150 μMアスコルビン酸含有培地で作製したADSCsシートは、50 μM及び450 μMのアスコルビン酸含有培地で作製したADSCsシートと比較して、ALP活性が高かった(参照:図5)。
これにより、ADSCsシート培地のアスコルビン酸濃度の最適な範囲は、50 μM〜500 μMの範囲、より好ましくは100 μM〜200 μMであることを確認した。
なお、アスコルビン酸濃度50 μMでは、ADSCsシート作製に通常7日間かかる。しかし、アスコルビン酸濃度150 μMでは、ADSCsシート作製は約5日間から作製できた。
(Confirmation of ALP activity)
The ALP activity of ADSCs sheets prepared under medium conditions of 50 μM, 150 μM or 450 μM ascorbic acid concentration was measured by absorbance at 405 nm wavelength. ADSCs sheets prepared with 150 μM ascorbic acid-containing medium had higher ALP activity than ADSCs sheets prepared with 50 μM and 450 μM ascorbic acid-containing media (see FIG. 5).
Thereby, it was confirmed that the optimal range of the ascorbic acid concentration of the ADSCs sheet medium is in the range of 50 μM to 500 μM, more preferably 100 μM to 200 μM.
When the ascorbic acid concentration is 50 μM, ADSCs sheet production usually takes 7 days. However, at an ascorbic acid concentration of 150 μM, ADSCs sheets could be produced from about 5 days.

(ADSCsシートの強度の確認)
各培養日数において、ADSCsシートの強度を確認した。50 μM、150μM及び450 μMのアスコルビン酸濃度のいずれの場合においても、力学的強度を有しかつ破れにくいことを確認した。特に、50 μMアスコルビン酸濃度ではスクレーパーでゆっくりそっと剥ぎ取らなければならないのに対して、150 μM及び450 μMアスコルビン酸濃度ではピンセット(トゥイザーズ)でつまんで持ち上げることができた。すなわち、アスコルビン酸濃度150 μM及び450 μMでは、アスコルビン酸濃度50 μMと比較して、優れた力学的強度を有していることを確認した。
これにより、ADSCsシートが力学的強度を有しかつ自身単独で骨修復部位に固定されるので、スキャホールドを必要としないことを確認した。
(Confirmation of ADSCs sheet strength)
In each culture day, the strength of the ADSCs sheet was confirmed. It was confirmed that each of the ascorbic acid concentrations of 50 μM, 150 μM and 450 μM had mechanical strength and was not easily torn. In particular, the 50 μM ascorbic acid concentration had to be gently peeled off with a scraper, whereas the 150 μM and 450 μM ascorbic acid concentrations could be picked up with tweezers (twisers). That is, it was confirmed that the ascorbic acid concentrations of 150 μM and 450 μM have excellent mechanical strength compared to the ascorbic acid concentration of 50 μM.
This confirmed that the ADSCs sheet has mechanical strength and is fixed to the bone repair site by itself, so that no scaffold is required.

(総論)
本発明のADSCsシートの骨分化が早いのは、コラーゲン分泌が高いためであると考えられる。アスコルビン酸−2−リン酸は、間葉系細胞のコラーゲンタンパク質分泌を増加させることが報告されており(非特許文献32)、また、コラーゲンタンパク質は骨形成系列において細胞シートの良好な天然担体と考えられている(非特許文献31)。
本発明のADSCsシートは、コラーゲンタンパク質の分泌のゆえに、著しい力学的強度を示し、それらは従来の実験用ピンセット及び従来の外科用具類で直接持つことができる(非特許文献43、44)という利点を有する。この点からも、本発明のADSCsシートはインビトロ・インビボでの骨再生及び骨再建に高い有効性を有する。
(General)
It is considered that the bone differentiation of the ADSCs sheet of the present invention is fast because collagen secretion is high. Ascorbic acid-2-phosphate has been reported to increase collagen protein secretion in mesenchymal cells (Non-patent Document 32), and collagen protein is a natural carrier that has a good cell sheet in the osteogenic series. It is considered (Non-Patent Document 31).
The ADSCs sheets of the present invention exhibit significant mechanical strength due to the secretion of collagen proteins, and they can be directly held by conventional laboratory tweezers and conventional surgical instruments (Non-patent Documents 43 and 44). Have Also from this point, the ADSCs sheet of the present invention has high effectiveness for bone regeneration and bone reconstruction in vitro and in vivo.

本発明は、骨組織再生分野、例えば整形外科分野において、骨再生及び骨再建のための材料及びその迅速で有効な作製方法を提供するものであり、このような分野において極めて有用である。   The present invention provides a material for bone regeneration and bone reconstruction and a rapid and effective production method thereof in the field of bone tissue regeneration, for example, orthopedics, and is extremely useful in such a field.

Claims (8)

細胞分化誘導剤を含まない細胞培養培地にアスコルビン酸又はその塩を添加して調製した溶液を、スキャホールドを添加していない培養容器内に加え、該溶液中で、脂肪由来幹細胞を培養することを含む、骨分化能を有する脂肪由来幹細胞シートの作製方法。   A solution prepared by adding ascorbic acid or a salt thereof to a cell culture medium not containing a cell differentiation inducer is added to a culture vessel to which no scaffold is added, and adipose-derived stem cells are cultured in the solution. A method for producing an adipose-derived stem cell sheet having bone differentiation ability. 前記アスコルビン酸又はその塩が、50μM〜500μMの濃度になるように細胞培養培地に添加されることを特徴とする、請求項1に記載の作製方法。   The production method according to claim 1, wherein the ascorbic acid or a salt thereof is added to the cell culture medium so as to have a concentration of 50 μM to 500 μM. 前記脂肪由来幹細胞を培養することが、脂肪由来幹細胞を3日〜15日間培養することである、請求項1又は2に記載の作製方法。   The production method according to claim 1 or 2, wherein culturing the adipose-derived stem cells is culturing the adipose-derived stem cells for 3 to 15 days. 前記脂肪由来幹細胞シートが単層の脂肪由来幹細胞シートである、請求項1〜3のいずれか1に記載の作製方法。   The production method according to any one of claims 1 to 3, wherein the fat-derived stem cell sheet is a monolayer fat-derived stem cell sheet. 請求項1〜4のいずれか1項に記載の作製方法により製造された、骨分化能を有する脂肪幹細胞シート。   The adipose stem cell sheet | seat which has the bone differentiation ability manufactured by the preparation method of any one of Claims 1-4. 請求項5に記載の脂肪幹細胞シートを、骨分化誘導剤を含む細胞培養培地中で培養することを含む、骨芽細胞を含む細胞シートの作製方法。   A method for producing a cell sheet containing osteoblasts, comprising culturing the adipose stem cell sheet according to claim 5 in a cell culture medium containing a bone differentiation-inducing agent. 請求項5に記載の骨分化能を有する脂肪幹細胞シート又は請求項6に記載の作製方法により製造された骨芽細胞を含む細胞シートを含む骨組織再生用材料。   A material for regenerating bone tissue comprising the adipose stem cell sheet having the ability to differentiate into bone according to claim 5 or the cell sheet containing osteoblasts produced by the production method according to claim 6. 前記骨組織再生用材料は、スキャホールドを含まないことを特徴とする、請求項7に記載の骨組織再生用材料。   The bone tissue regeneration material according to claim 7, wherein the bone tissue regeneration material does not include a scaffold.
JP2016505358A 2014-02-28 2015-02-28 Fat-derived stem cell sheet having osteogenic potential and method for producing the same Active JP6525282B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014038913 2014-02-28
JP2014038913 2014-02-28
PCT/JP2015/056005 WO2015129902A1 (en) 2014-02-28 2015-02-28 Adipose-derived stem cell sheet having bone differentiation potential, and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2015129902A1 true JPWO2015129902A1 (en) 2017-03-30
JP6525282B2 JP6525282B2 (en) 2019-06-05

Family

ID=54009214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016505358A Active JP6525282B2 (en) 2014-02-28 2015-02-28 Fat-derived stem cell sheet having osteogenic potential and method for producing the same

Country Status (2)

Country Link
JP (1) JP6525282B2 (en)
WO (1) WO2015129902A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019075101A1 (en) * 2017-10-10 2019-04-18 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Ex vivo derived tissues comprising multilayers of adipose-derived stem cells and uses thereof
JP2020162565A (en) * 2019-03-29 2020-10-08 国立大学法人金沢大学 Bone three-dimensional structure derived from fat-derived stem cell sheet, and method of preparing the structure

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ACTA BIOMATERIALIA, vol. vol.9, JPN6015019595, 2013, pages 6075 - 6083 *
BIOMATERIALS, vol. vol.35, JPN6015019593, 24 January 2014 (2014-01-24), pages 3516 - 3526 *
PLOS ONE, vol. vol.9 no.2 e88874, JPN6015019589, 19 February 2014 (2014-02-19), pages 1 - 6 *

Also Published As

Publication number Publication date
WO2015129902A1 (en) 2015-09-03
JP6525282B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
Bunpetch et al. Strategies for MSC expansion and MSC-based microtissue for bone regeneration
Yorukoglu et al. A concise review on the use of mesenchymal stem cells in cell sheet-based tissue engineering with special emphasis on bone tissue regeneration
Wang et al. Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium
Tang et al. Human induced pluripotent stem cell-derived mesenchymal stem cell seeding on calcium phosphate scaffold for bone regeneration
Wu et al. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation
Parker et al. Adipose-derived stem cells for the regeneration of damaged tissues
La Noce et al. Dental pulp stem cells: state of the art and suggestions for a true translation of research into therapy
Wang et al. Osteogenic differentiation of human umbilical cord mesenchymal stromal cells in polyglycolic acid scaffolds
Guasti et al. Chondrogenic differentiation of adipose tissue-derived stem cells within nanocaged POSS-PCU scaffolds: a new tool for nanomedicine
Carvalho et al. Undifferentiated human adipose‐derived stromal/stem cells loaded onto wet‐spun starch–polycaprolactone scaffolds enhance bone regeneration: Nude mice calvarial defect in vivo study
JP6152985B2 (en) Scaffold-free self-organized 3D artificial tissue and bone composite for osteochondral regeneration
Fang et al. A novel method to apply osteogenic potential of adipose derived stem cells in orthopaedic surgery
Danišovič et al. Comparative analysis of mesenchymal stromal cells from different tissue sources in respect to articular cartilage tissue engineering
Longo et al. Stem cells from umbilical cord and placenta for musculoskeletal tissue engineering
Black et al. Characterisation and evaluation of the regenerative capacity of Stro-4+ enriched bone marrow mesenchymal stromal cells using bovine extracellular matrix hydrogel and a novel biocompatible melt electro-written medical-grade polycaprolactone scaffold
Pipino et al. Osteogenic differentiation of amniotic fluid mesenchymal stromal cells and their bone regeneration potential
Liu et al. Differentiation of rabbit bone mesenchymal stem cells into endothelial cells in vitro and promotion of defective bone regeneration in vivo
Wei et al. Enhanced osteogenic behavior of ADSCs produced by deproteinized antler cancellous bone and evidence for involvement of ERK signaling pathway
Srinivasan et al. Comparative craniofacial bone regeneration capacities of mesenchymal stem cells derived from human neural crest stem cells and bone marrow
JP6525282B2 (en) Fat-derived stem cell sheet having osteogenic potential and method for producing the same
KR101799653B1 (en) Adhesive matrix for cell culture and manufacturing method thereof
JP6598106B2 (en) Method for producing bone cell or bone derived from adipose-derived stem cell sheet
Ninu et al. Isolation, proliferation, characterization and in vivo osteogenic potential of bone-marrow derived mesenchymal stem cells (rBMSC) in rabbit model
WO2014115562A1 (en) Creation of three-dimensional artificial tissue from pluripotent stem cell-derived cells, and osteochondral regeneration treatment using said artificial tissue
US20240052313A1 (en) Chondrogenic human mesenchymal stem cell (msc) sheets

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6525282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250