JP5747325B2 - Method for producing oxygen-containing compound having 3 or more carbon atoms - Google Patents

Method for producing oxygen-containing compound having 3 or more carbon atoms Download PDF

Info

Publication number
JP5747325B2
JP5747325B2 JP2011108832A JP2011108832A JP5747325B2 JP 5747325 B2 JP5747325 B2 JP 5747325B2 JP 2011108832 A JP2011108832 A JP 2011108832A JP 2011108832 A JP2011108832 A JP 2011108832A JP 5747325 B2 JP5747325 B2 JP 5747325B2
Authority
JP
Japan
Prior art keywords
catalyst
ethanol
zinc
reaction
acetone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011108832A
Other languages
Japanese (ja)
Other versions
JP2012240913A (en
Inventor
正和 岩本
正和 岩本
卓宏 柿沼
卓宏 柿沼
洋 大橋
洋 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Idemitsu Kosan Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Tokyo Institute of Technology NUC filed Critical Idemitsu Kosan Co Ltd
Priority to JP2011108832A priority Critical patent/JP5747325B2/en
Publication of JP2012240913A publication Critical patent/JP2012240913A/en
Application granted granted Critical
Publication of JP5747325B2 publication Critical patent/JP5747325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、触媒存在下でエタノールと水とから炭素数3以上の含酸素化合物を製造する方法に関する。   The present invention relates to a method for producing an oxygen-containing compound having 3 or more carbon atoms from ethanol and water in the presence of a catalyst.

触媒を用いてエタノールを反応させ、炭素数3以上の含酸素化合物、特にアセトンに転換する方法は、古くからよく知られている。
アセトンは、近代化学工業では、主にナフサの熱分解等で生成するプロピレンから製造されているが、石油資源の枯渇あるいは大気中への化石原料起源の二酸化炭素放出を抑制するための方策として、バイオマス原料からの製造方法が見直されている。
エタノールは、バイオマスの発酵等により容易に製造できるため、エタノールからのアセトン合成は、エタノールの転換反応として有用である。
A method of reacting ethanol with a catalyst to convert it into an oxygen-containing compound having 3 or more carbon atoms, particularly acetone, has been well known for a long time.
Acetone is manufactured in the modern chemical industry mainly from propylene produced by thermal decomposition of naphtha, etc., but as a measure to suppress the depletion of petroleum resources or the release of carbon dioxide originating from fossil raw materials to the atmosphere, Manufacturing methods from biomass raw materials are being reviewed.
Since ethanol can be easily produced by fermentation of biomass or the like, acetone synthesis from ethanol is useful as an ethanol conversion reaction.

ここで、非特許文献1では、鉄及びアルカリ土類金属からなる酸化物触媒を用いてエタノールを反応させた場合、収率約70%でアセトンが得られることが記載されているが、触媒寿命が短いことが記載されている。   Here, Non-Patent Document 1 describes that when ethanol is reacted using an oxide catalyst made of iron and an alkaline earth metal, acetone is obtained in a yield of about 70%. Is described as short.

非特許文献2及び非特許文献3には、亜鉛及びアルカリ土類金属(Ca)からなる酸化物触媒を用いたエタノールからのアセトン合成反応が記載されており、亜鉛に対するアルカリ土類金属のモル比が0.1の場合に、最も高いアセトン収率(91%)が得られるが、アルカリ土類金属のモル比を0.1より増大させた場合には、アセトン収率が急激に低下することが示されている。しかし、これら文献での反応成績は、反応開始後30分の成績であり、触媒寿命に関する詳細な記載はない。また、アルカリ金属(Na、K)を添加した触媒も記載されているが、アセトン収率は低い。   Non-Patent Document 2 and Non-Patent Document 3 describe an acetone synthesis reaction from ethanol using an oxide catalyst composed of zinc and an alkaline earth metal (Ca), and the molar ratio of the alkaline earth metal to zinc. Is 0.1, the highest acetone yield (91%) is obtained, but when the alkaline earth metal molar ratio is increased from 0.1, the acetone yield decreases rapidly. It is shown. However, the reaction results in these documents are the results for 30 minutes after the start of the reaction, and there is no detailed description regarding the catalyst life. Moreover, although the catalyst which added the alkali metal (Na, K) is described, the acetone yield is low.

また、非特許文献4は、鉄と、種々の金属からなる酸化物触媒を用いたエタノールの反応について検討したものである。鉄と亜鉛とを組み合わせた場合に、最も高いアセトン収率が得られているが、アルカリ土類金属(Ca、Ba)及びアルカリ金属(Na、K)を添加した触媒では、アセトン収率は低い。また、鉄と亜鉛からなる触媒を用いた連続反応を行っているが、約24時間で、アセトン収率は86%から57%に低下している。   Non-Patent Document 4 investigates the reaction of ethanol using iron and an oxide catalyst made of various metals. When iron and zinc are combined, the highest acetone yield is obtained, but with the addition of alkaline earth metals (Ca, Ba) and alkali metals (Na, K), the acetone yield is low. . Moreover, although the continuous reaction using the catalyst which consists of iron and zinc is performed, the acetone yield has fallen from 86% to 57% in about 24 hours.

その他、銅触媒(非特許文献5)、鉄−ジルコニウム触媒(特許文献1)等が報告されているが、いずれも活性が不十分、あるいは長期の劣化に関する検討は行われておらず、これらのエタノールから炭素数3以上の含酸素化合物、特にアセトンを高収率で安定的に製造する方法は未だ確立されていない。   In addition, a copper catalyst (Non-patent Document 5), an iron-zirconium catalyst (Patent Document 1), and the like have been reported, but none of them are insufficient in activity or have been studied for long-term deterioration. A method for stably producing an oxygen-containing compound having 3 or more carbon atoms, particularly acetone, from ethanol in a high yield has not yet been established.

特開2009−209059号公報JP 2009-209059 A

Journal of the Indian Chemical Society,Industrial and News Edition,第16巻,109〜113ページ(1953年)Journal of the Indian Chemical Society, Industrial and News Edition, Vol. 16, pp. 109-113 (1953) Journal of the Chemical Society,Chemical Communications,1987年,394〜395ページ(1987年)Journal of the Chemical Society, Chemical Communications, 1987, pp. 394-395 (1987) Applied Catalysis,第52巻,237〜248ページ(1989年)Applied Catalysis, 52, 237-248 (1989) Journal of Materials Chemistry,第4巻,853〜858ページ(1994年)Journal of Materials Chemistry, Vol. 4, pp. 853-858 (1994) Applied Catalysis A:General,第172巻,117〜129ページ(1998年)Applied Catalysis A: General, 172, 117-129 (1998)

上述のように、長時間にわたり安定してエタノールを反応させ、炭素数3以上の含酸素化合物、特にアセトンを高収率で製造する方法は確立されていなかった。
従って、本発明は、長時間にわたり安定してエタノールを反応させ、炭素数3以上の含酸素化合物、特にアセトンを高収率で製造する炭素数3以上の含酸素化合物の製造方法を提供することを目的とする。
As described above, a method for producing ethanol with a high yield of an oxygen-containing compound having 3 or more carbon atoms, particularly acetone, by reacting ethanol stably for a long time has not been established.
Accordingly, the present invention provides a method for producing an oxygen-containing compound having 3 or more carbon atoms, particularly an acetone-containing oxygen compound having 3 or more carbon atoms, in which ethanol is reacted stably over a long period of time to produce acetone in a high yield. With the goal.

本発明者らは、前記課題を解決すべく鋭意研究を進めた結果、特定の組成の触媒を用いることにより、長期間にわたり安定してエタノールを反応できることを見出し、本発明を完成した。すなわち本発明は下記の通りである。   As a result of diligent research to solve the above problems, the present inventors have found that ethanol can be stably reacted over a long period of time by using a catalyst having a specific composition, and the present invention has been completed. That is, the present invention is as follows.

[1] 触媒存在下でエタノールと水とからアセトン及び2−ペンタノンを製造する方法であって、
前記触媒が、鉄と、亜鉛と、アルカリ金属及び/又はアルカリ土類金属とを含有し、かつ亜鉛に対するアルカリ金属及び/又はアルカリ土類金属のモル比が0.2〜2であることを特徴とするアセトン及び2−ペンタノンの製造方法。
[2] 鉄に対する亜鉛のモル比が、0.01〜10である[1]に記載のアセトン及び2−ペンタノンの製造方法。
] 前記エタノールと水とが含水エタノールに由来する[1]または[2]に記載のアセトン及び2−ペンタノンの製造方法。
[1] A method for producing acetone and 2-pentanone from ethanol and water in the presence of a catalyst,
The catalyst contains iron, zinc, alkali metal and / or alkaline earth metal, and the molar ratio of alkali metal and / or alkaline earth metal to zinc is 0.2 to 2. A process for producing acetone and 2-pentanone .
[2] The method for producing acetone and 2-pentanone according to [1], wherein the molar ratio of zinc to iron is 0.01 to 10.
[ 3 ] The method for producing acetone and 2-pentanone according to [1] or [2] , wherein the ethanol and water are derived from hydrous ethanol.

本発明によれば、エタノールを反応させて、炭素数3以上の含酸素化合物、特にアセトンを高収率で長時間にわたり安定して製造する方法が提供される。
これにより、バイオマスを有効に利用して有用な化学品の製造を実施でき、化石資源の消費抑制及び大気中への化石原料起源の二酸化炭素の放出抑制に貢献することができる。
According to the present invention, there is provided a method for stably producing an oxygen-containing compound having 3 or more carbon atoms, particularly acetone, in a high yield for a long time by reacting with ethanol.
This makes it possible to produce useful chemicals by effectively using biomass, and to contribute to the suppression of fossil resource consumption and the suppression of the release of carbon dioxide originating from fossil raw materials into the atmosphere.

本発明の炭素数3以上の含酸素化合物の製造方法は、特定の触媒存在下でエタノールと水とから炭素数3以上の含酸素化合物を製造する。
当該触媒としては、鉄と、亜鉛と、アルカリ金属及び/又はアルカリ土類金属とを含有してなり、亜鉛に対するアルカリ金属及び/又はアルカリ土類金属のモル比(以下、「M/Zn」(M:アルカリ金属及び/又はアルカリ土類金属)ということがある)が0.2〜2となっている。
The method for producing an oxygen-containing compound having 3 or more carbon atoms of the present invention produces an oxygen-containing compound having 3 or more carbon atoms from ethanol and water in the presence of a specific catalyst.
The catalyst contains iron, zinc, and an alkali metal and / or alkaline earth metal. The molar ratio of the alkali metal and / or alkaline earth metal to zinc (hereinafter referred to as “M / Zn” ( M: alkali metal and / or alkaline earth metal) is 0.2 to 2.

本反応における従来の知見(非特許文献2及び非特許文献3)では、アルカリ金属を導入すると活性が低下し、またアルカリ土類金属の亜鉛に対するモル比を0.1より増大させた場合、活性・選択性が急激に低下することが知られている。   According to the conventional knowledge in this reaction (Non-Patent Document 2 and Non-Patent Document 3), the activity decreases when an alkali metal is introduced, and the activity is increased when the molar ratio of alkaline earth metal to zinc is increased from 0.1.・ It is known that selectivity decreases rapidly.

これらの知見からすると、本発明のM/Znの範囲は特異的なものであるといえる。本発明の触媒では、M/Znが0.2より少ない場合、及びモル比が2より大きい場合には、活性及び選択性が低下するため、効率が悪くなる。当該M/Znは、0.2〜1であることが好ましい。   From these findings, it can be said that the range of M / Zn of the present invention is unique. In the catalyst of the present invention, when M / Zn is less than 0.2 and when the molar ratio is larger than 2, the activity and selectivity are lowered, so that the efficiency is deteriorated. The M / Zn is preferably 0.2-1.

また、触媒中の鉄に対する亜鉛のモル比は、0.01〜10であることが好ましく、0.02〜5であることがより好ましく、0.05〜1であることがさらに好ましい。当該モル比が0.01〜10であることで、副反応を抑制しアセトン選択率を向上させることができる。   Further, the molar ratio of zinc to iron in the catalyst is preferably 0.01 to 10, more preferably 0.02 to 5, and further preferably 0.05 to 1. By the said molar ratio being 0.01-10, a side reaction can be suppressed and acetone selectivity can be improved.

本発明に係る触媒は、上述の成分比率範囲内の組成とすれば、どのような方法でも調製できる。
例えば、上記成分比率に調製した鉄、亜鉛、アルカリ金属及び/又はアルカリ土類金属の塩を溶解させた水溶液に、アンモニア水等の塩基を滴下して沈殿を形成させ、濾過後焼成する方法や、市販の酸化鉄の粉末に、亜鉛の塩、アルカリ金属塩及び/又はアルカリ土類金属塩の水溶液を含浸させた後に焼成する方法、等で調製することができる。
The catalyst according to the present invention can be prepared by any method as long as it has a composition within the above-mentioned component ratio range.
For example, a method in which a base such as aqueous ammonia is dropped into an aqueous solution in which a salt of iron, zinc, alkali metal and / or alkaline earth metal prepared to the above component ratio is dissolved, and a method of firing after filtration, The powder may be prepared by impregnating a commercially available iron oxide powder with an aqueous solution of a zinc salt, an alkali metal salt and / or an alkaline earth metal salt, followed by firing.

このようにして調製した触媒粉末は、一般的なバインダー(シリカ、アルミナ、ケイ酸塩等)と混練し成型することによって、固定床反応器で使用可能な成型触媒となる。   The catalyst powder thus prepared becomes a molded catalyst that can be used in a fixed bed reactor by kneading and molding with a general binder (silica, alumina, silicate, etc.).

本発明での反応に使用するエタノールは、発酵法その他、種々の方法で製造される一般的なエタノールを使用することが可能で、水やアセトアルデヒド等の不純物を含んでいてもよい。   As ethanol used for the reaction in the present invention, general ethanol produced by various methods such as fermentation can be used, and it may contain impurities such as water and acetaldehyde.

エタノールと水との比率は、水を含んでいるとアセトン選択率が向上するため、エタノールに対する水のモル比率は、0.1〜10であることが好ましく、0.5〜5であることがより好ましく、1〜3であることがさらに好ましい。
これらの比率よりも高い純度のエタノールを使用する場合、上述の比率となるように、エタノールを水で希釈するか、あるいは別途、水をリアクターに供給するのがよい。
When the ratio of ethanol and water contains water, acetone selectivity is improved. Therefore, the molar ratio of water to ethanol is preferably 0.1 to 10, and preferably 0.5 to 5. More preferably, it is more preferably 1 to 3.
When ethanol having a purity higher than these ratios is used, it is preferable to dilute ethanol with water or supply water separately to the reactor so that the above ratio is obtained.

本発明に係る反応は、固定床、移動床、流動床等どのような形式でも実施できるが、成型した触媒を管状反応器に充填して、エタノールと水とを供給する固定床流通式で実施されることが好ましい。   The reaction according to the present invention can be carried out in any form such as a fixed bed, moving bed, fluidized bed, etc., but is carried out in a fixed bed flow system in which a molded catalyst is filled into a tubular reactor and ethanol and water are supplied. It is preferred that

当該反応における空間速度は、400〜6500h-1とすることが好ましく400〜4000h-1とすることがより好ましい。 The space velocity in the reaction, it is more preferable that it is a preferred 400~4000H -1 to 400~6500h -1.

反応温度は250〜600℃であることが好ましく、300〜550℃であることがより好ましく、350〜550℃であることがさらに好ましい。
反応圧力は、減圧、常圧、加圧のいずれでも実施できるが、常圧〜やや加圧の雰囲気で実施されることが好ましい。
また、本反応は、窒素、水素、炭化水素ガス等の共存下でも実施することができる。
The reaction temperature is preferably 250 to 600 ° C, more preferably 300 to 550 ° C, and further preferably 350 to 550 ° C.
The reaction pressure can be any of reduced pressure, normal pressure, and increased pressure, but it is preferably performed in an atmosphere of normal pressure to slightly increased pressure.
This reaction can also be carried out in the presence of nitrogen, hydrogen, hydrocarbon gas or the like.

(実施例1)
(1)触媒調製
硝酸亜鉛六水和物(和光純薬工業製、Zn(NO32・6H2O、純度99.0%以上)3.74g、硝酸ストロンチウム(和光純薬工業製、Sr(NO32、純度98.0%以上)1.09gをイオン交換水4.00gに溶解させ、亜鉛とストロンチウムを含む水溶液を調製した。
Example 1
(1) Catalyst preparation Zinc nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Zn (NO 3 ) 2 .6H 2 O, purity 99.0% or more) 3.74 g, strontium nitrate (manufactured by Wako Pure Chemical Industries, Sr (NO 3 ) 2 , purity 98.0% or more) 1.09 g was dissolved in 4.00 g of ion-exchanged water to prepare an aqueous solution containing zinc and strontium.

定温乾燥器にて120℃で18時間以上乾燥した酸化水酸化鉄(関東化学製、FeO(OH)、純度95.0%以上)10.03gに、先に調製した亜鉛とストロンチウムを含む水溶液を添加してスラリー状とし、この状態で5分間こねてスラリー状物質を作製した。   An aqueous solution containing zinc and strontium prepared in advance to 10.03 g of iron oxide hydroxide (manufactured by Kanto Chemical Co., FeO (OH), purity 95.0% or more) dried at 120 ° C. for 18 hours or more in a constant temperature dryer It was added to form a slurry, and kneaded for 5 minutes in this state to prepare a slurry-like substance.

作製したスラリー状物質を、マッフル炉にて200cm3/min.の空気流通下、120℃(5℃/min.で昇温)で6時間乾燥し、さらに600℃(5℃/min.で昇温)で3時間焼成を行って、鉄、亜鉛、ストロンチウムを含有する赤褐色の固体(SrO/ZnO/Fe23触媒)を得た。 The produced slurry-like substance was placed in a muffle furnace at 200 cm 3 / min. In an air stream, dried at 120 ° C. (heated at 5 ° C./min.) For 6 hours, and further fired at 600 ° C. (heated at 5 ° C./min.) For 3 hours to obtain iron, zinc and strontium. A reddish brown solid (SrO / ZnO / Fe 2 O 3 catalyst) was obtained.

(2)分析方法
得られた触媒中の元素組成分析は、ICP(誘導結合プラズマ)発光分光分析法により行った。ICP発光分光分析法による組成分析は、島津製ICPE−9000型ICP発光分光分析装置で行った。測定試料としては、分析しようとする触媒をフッ化水素酸と塩酸との混酸で溶解し、酸溶液としたものを用いた。
測定結果から、触媒中の亜鉛に対するストロンチウムのモル比は0.39、触媒中の鉄に対する亜鉛のモル比は0.12であった。
(2) Analysis method Elemental composition analysis in the obtained catalyst was performed by ICP (inductively coupled plasma) emission spectroscopy. The composition analysis by ICP emission spectroscopic analysis was performed with an ICPE-9000 type ICP emission spectroscopic analyzer manufactured by Shimadzu. As a measurement sample, an acid solution was prepared by dissolving the catalyst to be analyzed with a mixed acid of hydrofluoric acid and hydrochloric acid.
From the measurement results, the molar ratio of strontium to zinc in the catalyst was 0.39, and the molar ratio of zinc to iron in the catalyst was 0.12.

(3)炭素数3以上の含酸素化合物の製造
当該製造に用いた反応管は二重構造をしており、外側はSUS316製の管(φ27.2×t5.5mm)、内側は石英製の電気溶融管(φ15×t2.0mm)であり、その内側に石英製の熱電対用内挿管(φ3.5×t1.0mm)を有する。
(3) Production of oxygen-containing compound having 3 or more carbon atoms The reaction tube used for the production has a double structure, the outside is a tube made of SUS316 (φ27.2 × t5.5 mm), and the inside is made of quartz. It is an electric melting tube (φ15 × t2.0 mm), and has a quartz thermocouple insertion tube (φ3.5 × t1.0 mm) inside thereof.

触媒を粉砕し、300〜600μmに分級した後、この触媒(粉砕品)2.00gを、反応管に充填し、触媒層の上下に石英ウールを詰めて触媒を保持した。触媒層の高さは、3.0cmであった。   After pulverizing the catalyst and classifying it to 300 to 600 μm, 2.00 g of this catalyst (pulverized product) was filled in a reaction tube, and quartz wool was filled above and below the catalyst layer to hold the catalyst. The height of the catalyst layer was 3.0 cm.

触媒を充填した上記反応管に、窒素を18.2cm3/min.(25℃、1気圧換算、以下同じ)で流しながら外部加熱によって触媒層の温度を400℃まで昇温し、そのまま1時間保持した。
その後、常圧で反応管入口側から、エタノール、水、窒素を、33:50:17のモル比となるように連続的に供給して反応を行った(入口側全ガス流量:18.3cm3/min.)。
Into the reaction tube filled with the catalyst, nitrogen was supplied at 18.2 cm 3 / min. The temperature of the catalyst layer was raised to 400 ° C. by external heating while flowing at 25 ° C., converted to 1 atm (the same applies hereinafter), and held there for 1 hour.
Thereafter, the reaction was carried out by continuously supplying ethanol, water, and nitrogen at a normal pressure from the reaction tube inlet side so as to have a molar ratio of 33:50:17 (inlet side total gas flow rate: 18.3 cm). 3 / min.).

反応開始から1時間後、反応管出口ガスを、オンラインガスクロマトグラフ装置で分析したところ、エタノールの転化率は100%であり、ペンタノン類を含む炭素数3以上の含酸素化合物の収率は、反応開始から1時間後で88%、アセトン収率は84%であった。   One hour after the start of the reaction, the reaction tube outlet gas was analyzed with an on-line gas chromatograph. As a result, the conversion rate of ethanol was 100%, and the yield of oxygen-containing compounds with 3 or more carbon atoms including pentanones One hour after the start, the yield was 88% and the acetone yield was 84%.

その後、触媒層の温度を400℃に保持したまま、原料の供給を100時間継続し、同様に反応管出口ガスを分析した。反応開始から100時間経過後もエタノール転化率は100%であり、ペンタノン類を含む炭素数3以上の含酸素化合物の収率100時間後で90%、アセトン収率は84%であった。   Thereafter, the supply of the raw material was continued for 100 hours while maintaining the temperature of the catalyst layer at 400 ° C., and the reaction tube outlet gas was similarly analyzed. Even after 100 hours from the start of the reaction, the ethanol conversion was 100%, the yield of oxygen-containing compounds having 3 or more carbon atoms including pentanones was 90% after 100 hours, and the acetone yield was 84%.

ここで、エタノール転化率、アセトン収率、ペンタノン類を含む炭素数3以上の含酸素化合物の収率は、式(1)〜(5)により算出した(モル量で計算)。   Here, the ethanol conversion rate, the acetone yield, and the yield of the oxygen-containing compound having 3 or more carbon atoms including pentanones were calculated according to the formulas (1) to (5) (calculated by molar amount).

エタノール転化率
=100×(反応器入口エタノール量−反応器出口エタノール量)/反応器入口エタノール量 ・・・式(1)
Ethanol conversion rate = 100 × (reactor inlet ethanol amount−reactor outlet ethanol amount) / reactor inlet ethanol amount (1)

アセトン収率
=100×反応器出口アセトン量/(反応器入口エタノール量/2) ・・・式(2)
Acetone yield = 100 × reactor outlet acetone amount / (reactor inlet ethanol amount / 2) Formula (2)

なお、上記式は、次の反応式に基づくものである。
2C25OH+H2O→CH3COCH3+4H2+CO2 ・・・式(3)
すなわち、転化率100%、選択率100%の場合、エタノール2モルからアセトン1モルが生成することになる。
The above formula is based on the following reaction formula.
2C 2 H 5 OH + H 2 O → CH 3 COCH 3 + 4H 2 + CO 2 Formula (3)
That is, when the conversion is 100% and the selectivity is 100%, 1 mol of acetone is produced from 2 mol of ethanol.

2−ペンタノン収率
=100×反応器出口2−ペンタノン量/(反応器入口エタノール量/3)・・・式(4)
2-pentanone yield = 100 × reactor outlet 2-pentanone amount / (reactor inlet ethanol amount / 3) Formula (4)

なお、上記式は、次の反応式に基づくものである。
3C25OH→CH3CO(CH22CH3+4H2+CO2 ・・・式(5)
The above formula is based on the following reaction formula.
3C 2 H 5 OH → CH 3 CO (CH 2 ) 2 CH 3 + 4H 2 + CO 2 Formula (5)

炭素数3以上の含酸素化合物の収率は、式(2)と式(4)で求めた収率の和により算出した。   The yield of the oxygen-containing compound having 3 or more carbon atoms was calculated by the sum of the yields obtained from the formulas (2) and (4).

(実施例2)
実施例1において硝酸ストロンチウムの代わりに、硝酸カルシウム四水和物(和光純薬工業製、Ca(NO32・4H2O、純度99.9%以上)を使用した以外は同様な方法により、鉄、亜鉛、カルシウムを含有する触媒(CaO/ZnO/Fe23触媒)を得た。触媒中の亜鉛に対するカルシウムのモル比は0.45、鉄に対する亜鉛のモル比は0.12であった。
(Example 2)
In Example 1, in place of strontium nitrate, calcium nitrate tetrahydrate (manufactured by Wako Pure Chemical Industries, Ca (NO 3 ) 2 .4H 2 O, purity 99.9% or more) was used in the same manner. Thus, a catalyst (CaO / ZnO / Fe 2 O 3 catalyst) containing iron, zinc and calcium was obtained. The molar ratio of calcium to zinc in the catalyst was 0.45, and the molar ratio of zinc to iron was 0.12.

この触媒2.00gを実施例1と同様に反応管に充填し、触媒層の温度を400℃に保持し、エタノール、水、窒素を、33:50:17のモル比となるように連続的に供給して反応を行った(入口側全ガス流量:19.3cm3/min.)。 In the same manner as in Example 1, 2.00 g of this catalyst was charged into a reaction tube, the temperature of the catalyst layer was maintained at 400 ° C., and ethanol, water, and nitrogen were continuously added so that the molar ratio was 33:50:17. And the reaction was carried out (total gas flow rate on the inlet side: 19.3 cm 3 / min.).

反応開始から1時間後、反応出口ガスを分析したところ、エタノールの転化率は98%、ペンタノン類を含む炭素数3以上の含酸素化合物の収率は91%、アセトン収率は85%であった。   One hour after the start of the reaction, the reaction outlet gas was analyzed. As a result, the conversion rate of ethanol was 98%, the yield of oxygen-containing compounds having 3 or more carbon atoms including pentanones was 91%, and the acetone yield was 85%. It was.

(実施例3)
実施例1において硝酸ストロンチウムの代わりに、硝酸バリウム(和光純薬工業製、Ba(NO32、純度99.0%以上)を使用した以外は同様な方法により、鉄、亜鉛、バリウムを含有する触媒(BaO/ZnO/Fe23触媒)を得た。
触媒中亜鉛に対するバリウムのモル比は0.38、鉄に対する亜鉛のモル比は0.12であった。
(Example 3)
In Example 1, instead of strontium nitrate, barium nitrate (manufactured by Wako Pure Chemical Industries, Ba (NO 3 ) 2 , purity 99.0% or more) was used, and iron, zinc and barium were contained in the same manner. Catalyst (BaO / ZnO / Fe 2 O 3 catalyst) was obtained.
The molar ratio of barium to zinc in the catalyst was 0.38, and the molar ratio of zinc to iron was 0.12.

この触媒2.11gを実施例1と同様に反応管に充填し、触媒層の温度を400℃に保持し、エタノール、水、窒素を、33:50:17のモル比となるように連続的に供給して反応を行った(入口側全ガス流量:37.1cm3/min)。 2.11 g of this catalyst was charged into a reaction tube in the same manner as in Example 1, the temperature of the catalyst layer was maintained at 400 ° C., and ethanol, water, and nitrogen were continuously added so that the molar ratio was 33:50:17. And the reaction was carried out (total gas flow rate on the inlet side: 37.1 cm 3 / min).

反応開始から1時間後、反応出口ガスを分析したところ、エタノールの転化率は99%、ペンタノン類を含む炭素数3以上の含酸素化合物の収率は90%、アセトン収率は86%であった。   One hour after the start of the reaction, the reaction outlet gas was analyzed. As a result, the conversion rate of ethanol was 99%, the yield of oxygen-containing compounds having 3 or more carbon atoms including pentanones was 90%, and the acetone yield was 86%. It was.

(実施例4)
実施例1において硝酸ストロンチウムの代わりに、硝酸リチウム(Aldrich製、LiNO3、純度99.99%以上)を使用した以外は同様な方法により、鉄、亜鉛、リチウムを含有する触媒(LiO/ZnO/Fe23触媒)を得た。
触媒中亜鉛に対するリチウムのモル比は0.43、鉄に対する亜鉛のモル比は0.11であった。
Example 4
In Example 1, a catalyst containing iron, zinc, and lithium (LiO / ZnO /) was used in the same manner except that lithium nitrate (made by Aldrich, LiNO 3 , purity 99.99% or more) was used instead of strontium nitrate. Fe 2 O 3 catalyst) was obtained.
The molar ratio of lithium to zinc in the catalyst was 0.43, and the molar ratio of zinc to iron was 0.11.

この触媒0.353gを実施例1と同様に反応管に充填し、触媒層の温度を450℃に保持し、エタノール、水、窒素を、33:50:17のモル比となるように連続的に供給して反応を行った(入口側全ガス流量:18.3cm3/min.)。 0.353 g of this catalyst was charged into a reaction tube in the same manner as in Example 1, the temperature of the catalyst layer was maintained at 450 ° C., and ethanol, water, and nitrogen were continuously added so that the molar ratio was 33:50:17. And the reaction was carried out (total gas flow rate on the inlet side: 18.3 cm 3 / min.).

反応開始から1時間後、反応出口ガスを分析したところ、エタノールの転化率は97%、ペンタノン類を含む炭素数3以上の含酸素化合物の収率は91%、アセトン収率は89%であった。   One hour after the start of the reaction, the reaction outlet gas was analyzed. As a result, the conversion rate of ethanol was 97%, the yield of oxygen-containing compounds having 3 or more carbon atoms including pentanones was 91%, and the acetone yield was 89%. It was.

(実施例5)
実施例1において硝酸ストロンチウムの代わりに、硝酸ナトリウム(Aldrich製、NaNO3、純度99.995%以上)を使用した以外は同様な方法により、鉄、亜鉛、ナトリウムを含有する触媒(NaO/ZnO/Fe23触媒)を得た。
触媒中の亜鉛に対するナトリウムのモル比は0.40、鉄に対する亜鉛のモル比は0.11であった。
(Example 5)
In Example 1, instead of strontium nitrate, sodium nitrate (manufactured by Aldrich, NaNO 3 , purity: 99.995% or more) was used in the same manner to obtain a catalyst (NaO / ZnO / Fe 2 O 3 catalyst) was obtained.
The molar ratio of sodium to zinc in the catalyst was 0.40, and the molar ratio of zinc to iron was 0.11.

この触媒0.356gを実施例1と同様に反応管に充填し、触媒層の温度を500℃に保持し、エタノール、水、窒素を、33:50:17のモル比となるように連続的に供給して反応を行った(入口側全ガス流量:18.3cm3/min.)。 0.356 g of this catalyst was charged into a reaction tube in the same manner as in Example 1, the temperature of the catalyst layer was maintained at 500 ° C., and ethanol, water, and nitrogen were continuously added so that the molar ratio was 33:50:17. And the reaction was carried out (total gas flow rate on the inlet side: 18.3 cm 3 / min.).

反応開始から1時間後、反応出口ガスを分析したところ、エタノールの転化率は98%、ペンタノン類を含む炭素数3以上の含酸素化合物の収率は91%、アセトン収率は89%であった。   One hour after the start of the reaction, the reaction outlet gas was analyzed. As a result, the conversion rate of ethanol was 98%, the yield of oxygen-containing compounds containing 3 or more carbon atoms including pentanones was 91%, and the acetone yield was 89%. It was.

(比較例1)
実施例1で使用したものと同じ酸化水酸化鉄10.03gに、イオン交換水4.00gを添加してスラリー状としその状態で5分間こねてスラリー状物質を作製した。
(Comparative Example 1)
To 10.03 g of the same iron oxide hydroxide as used in Example 1, 4.00 g of ion-exchanged water was added to form a slurry, and kneaded for 5 minutes to prepare a slurry-like substance.

作製したスラリー状物質を、実施例1と同様にして乾燥、焼成し赤褐色の固体(Fe23触媒)を得た。 The prepared slurry was dried and fired in the same manner as in Example 1 to obtain a reddish brown solid (Fe 2 O 3 catalyst).

得られた赤褐色固体を粉砕し300〜600μmに分級し、この触媒(粉砕品)0.353gを実施例1と同様に反応管に充填し、触媒層の温度を400℃に保持し、エタノール、水、窒素を、33:50:17のモル比となるように連続的に供給して反応を行った(入口側全ガス流量:19.3cm3/min.)。 The obtained reddish brown solid was pulverized and classified to 300 to 600 μm, 0.353 g of this catalyst (pulverized product) was charged into the reaction tube in the same manner as in Example 1, the temperature of the catalyst layer was maintained at 400 ° C., ethanol, Reaction was carried out by continuously supplying water and nitrogen at a molar ratio of 33:50:17 (inlet-side total gas flow rate: 19.3 cm 3 / min.).

反応開始から1時間後、反応出口ガスを分析したところ、エタノールの転化率は62%、ペンタノン類を含む炭素数3以上の含酸素化合物の収率は66%、アセトン収率は44%であった。   One hour after the start of the reaction, the reaction outlet gas was analyzed. As a result, the conversion rate of ethanol was 62%, the yield of oxygenated compounds containing 3 or more carbon atoms including pentanones was 66%, and the acetone yield was 44%. It was.

(比較例2)
酸化水酸化鉄と硝酸亜鉛六水和物とを用い、硝酸ストロンチウムは使用しない他は、実施例1と同様な方法で、鉄、亜鉛を含有する触媒(ZnO/Fe23触媒)を得た。
触媒中の鉄に対する亜鉛のモル比は0.13であった。
(Comparative Example 2)
A catalyst (ZnO / Fe 2 O 3 catalyst) containing iron and zinc was obtained in the same manner as in Example 1 except that iron oxide hydroxide and zinc nitrate hexahydrate were used and strontium nitrate was not used. It was.
The molar ratio of zinc to iron in the catalyst was 0.13.

この触媒0.354gを実施例1と同様に反応管に充填し、触媒層の温度を450℃に保持し、エタノール、水、窒素を、33:50:17のモル比となるように連続的に供給して反応を行った(入口側全ガス流量:37.5cm3/min.) 0.354 g of this catalyst was charged into a reaction tube in the same manner as in Example 1, the temperature of the catalyst layer was maintained at 450 ° C., and ethanol, water, and nitrogen were continuously added so that the molar ratio was 33:50:17. (The inlet side total gas flow rate: 37.5 cm 3 / min.)

反応開始から1時間後、反応出口ガスを分析したところ、エタノールの転化率は99%、アセトン収率は81%であった。
その後、触媒層の温度を450℃に保持したまま、原料の供給を19時間継続し、同様に反応管出口ガスを分析したところ、エタノール転化率は73%であり、アセトン収率は52%に低下していた。また、ペンタノン類を含む炭素数3以上の含酸素化合物の収率も、反応開始から1時間後87%、19時間後57%に低下していた。
One hour after the start of the reaction, the reaction outlet gas was analyzed. As a result, the ethanol conversion was 99% and the acetone yield was 81%.
Thereafter, the feed of the raw material was continued for 19 hours while maintaining the temperature of the catalyst layer at 450 ° C., and the reaction tube outlet gas was similarly analyzed. As a result, the ethanol conversion was 73% and the acetone yield was 52%. It was falling. The yield of oxygen-containing compounds having 3 or more carbon atoms including pentanones was also reduced to 87% after 1 hour and 57% after 19 hours from the start of the reaction.

(比較例3)
硝酸亜鉛六水和物10.03gをイオン交換水50.12gに溶解させた亜鉛を含む水溶液に、水酸化アンモニウム溶液(Aldrich、NH4OH、28.0〜30.0%)を滴下しpH=7.0に調整し白色懸濁液を得た。吸引濾過により得た固形物を定温乾燥器にて120℃で24時間乾燥し、白色の水酸化亜鉛を得た。
(Comparative Example 3)
Ammonium hydroxide solution (Aldrich, NH 4 OH, 28.0 to 30.0%) was added dropwise to an aqueous solution containing zinc in which 10.03 g of zinc nitrate hexahydrate was dissolved in 50.12 g of ion-exchanged water. = 7.0 to obtain a white suspension. The solid substance obtained by suction filtration was dried at 120 ° C. for 24 hours in a constant temperature dryer to obtain white zinc hydroxide.

水酸化亜鉛3.50gと、水酸化カルシウム(和光純薬工業製、Ca(OH)2、99.9%)0.292gをイオン交換水1.00gを加えながら混ぜ合わせた。得られた白色固体をマッフル炉にて200cm3/min.の空気流通下、80℃(5℃/min.で昇温)で6時間乾燥し、さらに500℃(5℃/min.で昇温)で3時間焼成を行って、亜鉛、カルシウムを含有する白色の固体(CaO/ZnO触媒)を得た。触媒中の亜鉛に対するカルシウムのモル比は0.10であった。 3.50 g of zinc hydroxide and 0.292 g of calcium hydroxide (manufactured by Wako Pure Chemical Industries, Ca (OH) 2 , 99.9%) were mixed together while adding 1.00 g of ion-exchanged water. The obtained white solid was subjected to 200 cm 3 / min. In a muffle furnace. Under an air flow, dried at 80 ° C. (heated at 5 ° C./min.) For 6 hours, and further calcined at 500 ° C. (heated at 5 ° C./min.) For 3 hours to contain zinc and calcium. A white solid (CaO / ZnO catalyst) was obtained. The molar ratio of calcium to zinc in the catalyst was 0.10.

この触媒0.400gを実施例1と同様に反応管に充填し、触媒層の温度を500℃に保持し、エタノール、水、窒素を、33:49:18のモル比となるように連続的に供給して反応を行った(入口側全ガス流量:37.5cm3/min.)
反応開始から1時間後、反応出口ガスを分析したところ、エタノールの転化率は55%、アセトン収率は18%であった。
In the same manner as in Example 1, 0.400 g of this catalyst was charged into a reaction tube, the temperature of the catalyst layer was maintained at 500 ° C., and ethanol, water, and nitrogen were continuously added so that the molar ratio was 33:49:18. (The inlet side total gas flow rate: 37.5 cm 3 / min.)
One hour after the start of the reaction, when the reaction outlet gas was analyzed, the ethanol conversion was 55% and the acetone yield was 18%.

Claims (3)

触媒存在下でエタノールと水とからアセトン及び2−ペンタノンを製造する方法であって、
前記触媒が、鉄と、亜鉛と、アルカリ金属及び/又はアルカリ土類金属とを含有し、かつ亜鉛に対するアルカリ金属及び/又はアルカリ土類金属のモル比が0.2〜2であることを特徴とするアセトン及び2−ペンタノンの製造方法。
A process for producing acetone and 2-pentanone from ethanol and water in the presence of a catalyst,
The catalyst contains iron, zinc, alkali metal and / or alkaline earth metal, and the molar ratio of alkali metal and / or alkaline earth metal to zinc is 0.2 to 2. A process for producing acetone and 2-pentanone .
鉄に対する亜鉛のモル比が、0.01〜10である請求項1に記載のアセトン及び2−ペンタノンの製造方法。 The method for producing acetone and 2-pentanone according to claim 1, wherein the molar ratio of zinc to iron is 0.01 to 10. 前記エタノールと水とが含水エタノールに由来する請求項1または2に記載のアセトン及び2−ペンタノンの製造方法。 The method for producing acetone and 2-pentanone according to claim 1 or 2 , wherein the ethanol and water are derived from hydrous ethanol.
JP2011108832A 2011-05-13 2011-05-13 Method for producing oxygen-containing compound having 3 or more carbon atoms Active JP5747325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011108832A JP5747325B2 (en) 2011-05-13 2011-05-13 Method for producing oxygen-containing compound having 3 or more carbon atoms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011108832A JP5747325B2 (en) 2011-05-13 2011-05-13 Method for producing oxygen-containing compound having 3 or more carbon atoms

Publications (2)

Publication Number Publication Date
JP2012240913A JP2012240913A (en) 2012-12-10
JP5747325B2 true JP5747325B2 (en) 2015-07-15

Family

ID=47462992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011108832A Active JP5747325B2 (en) 2011-05-13 2011-05-13 Method for producing oxygen-containing compound having 3 or more carbon atoms

Country Status (1)

Country Link
JP (1) JP5747325B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244797A1 (en) * 2021-05-19 2022-11-24 株式会社日本触媒 Method for producing isopropyl alcohol
WO2024029604A1 (en) * 2022-08-03 2024-02-08 株式会社日本触媒 Method for producing acetone

Also Published As

Publication number Publication date
JP2012240913A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
KR101294592B1 (en) Catalyst for oxidative coupling reaction of methane, method for preparing the same, and method for oxidative coupling reaction of methane using the same
CN111229263B (en) Hydroxyapatite-based catalyst, preparation and application thereof
JP5747325B2 (en) Method for producing oxygen-containing compound having 3 or more carbon atoms
JP5747326B2 (en) Propylene production method
CN113663665A (en) Organic sulfur hydrolysis catalyst suitable for Claus process and preparation method and application thereof
Nuhu et al. Methanol oxidation on Au/TiO 2 catalysts
JP2009248044A (en) Catalyst for synthesizing chlorine, method for manufacturing the same and method for synthesizing chlorine by using the same
CN112619664A (en) Copper-manganese-based catalyst for catalytic hydrolysis of organic sulfur and preparation method and application thereof
WO2018015363A2 (en) A catalyst composition for direct synthesis of vinyl chloride from ethylene
WO2012143766A1 (en) The method of obtaining ternary chemical compounds based on iron oxide and copper oxide
JP6751043B2 (en) Tantalum nitride manufacturing method
CN112569988B (en) Composition containing precipitated epsilon/epsilon' iron carbide and theta iron carbide, preparation method, catalyst, application and Fischer-Tropsch synthesis method
JP6384664B2 (en) Method for producing isobutanol
EP2509921B1 (en) The method of obtaining ternary chemical compounds based on iron oxide and manganese oxide
JP2017001010A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using the catalyst
JP6264283B2 (en) Method for producing acrylonitrile
KR102531947B1 (en) Catalyst for methane synthesis and preparation method thereof
CN112569977B (en) Composition containing precipitated type χ -iron carbide and theta-iron carbide, preparation method, catalyst, application and Fischer-Tropsch synthesis method
JP2006016345A (en) Method for producing propylene
CN112569981B (en) Composition containing precipitated theta iron carbide, preparation method thereof, catalyst and application thereof, and Fischer-Tropsch synthesis method
CN112569983B (en) Supported χ -iron carbide-containing composition, preparation method thereof, catalyst and application thereof, and Fischer-Tropsch synthesis method
CN112569984B (en) Supported theta iron carbide-containing composition, preparation method thereof, catalyst and application thereof, and Fischer-Tropsch synthesis method
JP5831925B2 (en) Propylene production method
US6875723B2 (en) Process for the production of iron oxide containing catalysts
CN112569989B (en) Composition containing X iron carbide and theta iron carbide, preparation method, catalyst, application and Fischer-Tropsch synthesis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150421

R150 Certificate of patent or registration of utility model

Ref document number: 5747325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533