JP5831925B2 - Propylene production method - Google Patents

Propylene production method Download PDF

Info

Publication number
JP5831925B2
JP5831925B2 JP2011108830A JP2011108830A JP5831925B2 JP 5831925 B2 JP5831925 B2 JP 5831925B2 JP 2011108830 A JP2011108830 A JP 2011108830A JP 2011108830 A JP2011108830 A JP 2011108830A JP 5831925 B2 JP5831925 B2 JP 5831925B2
Authority
JP
Japan
Prior art keywords
indium
catalyst
reaction
acetone
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011108830A
Other languages
Japanese (ja)
Other versions
JP2012240912A (en
Inventor
正和 岩本
正和 岩本
卓宏 柿沼
卓宏 柿沼
洋 大橋
洋 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Idemitsu Kosan Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Tokyo Institute of Technology NUC filed Critical Idemitsu Kosan Co Ltd
Priority to JP2011108830A priority Critical patent/JP5831925B2/en
Publication of JP2012240912A publication Critical patent/JP2012240912A/en
Application granted granted Critical
Publication of JP5831925B2 publication Critical patent/JP5831925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、アセトンと水素分子とを反応させてプロピレンを製造するための方法に関する。   The present invention relates to a method for producing propylene by reacting acetone with hydrogen molecules.

アセトンは、現在、クメン法フェノール合成の副生成物としての生産が多く、市場の状況によって、余剰のアセトンの処理が問題となる場合が生じている。このため、アセトンの再利用法として、石油化学工場で生成する余剰の水素を用いてアセトンを水素化し、さらに脱水反応を行うことでプロピレンとすることが行われている。   Acetone is currently produced as a by-product of cumene phenol synthesis, and there are cases where the treatment of excess acetone becomes a problem depending on market conditions. For this reason, as a method of reusing acetone, hydrogenation of acetone using surplus hydrogen produced in a petrochemical factory and further dehydration reaction are carried out to produce propylene.

特許文献1では銅を含む水添触媒及び固体酸物質の存在下で、特許文献2では銀元素を含む触媒と脱水触媒との存在下で、ケトン(アセトン)と水素とを反応させるオレフィン(プロピレン)の製造方法を開示している。
しかし、特許文献1の固体酸物質は触媒上に炭素付着を引き起こすため、触媒の繰り返し再生が必要となる。
また、特許文献2は、より具体的には、銀、13族元素(特にインジウム)および固体酸を含有する触媒を用いる方法を開示しているが、銀や固体酸を含まない場合にプロピレンが得られるかどうかについては開示していない。
In Patent Document 1, an olefin (propylene) that reacts a ketone (acetone) with hydrogen in the presence of a hydrogenation catalyst containing copper and a solid acid substance, and in Patent Document 2 in the presence of a catalyst containing silver element and a dehydration catalyst. ) Is disclosed.
However, since the solid acid substance of Patent Document 1 causes carbon adhesion on the catalyst, it is necessary to repeatedly regenerate the catalyst.
Further, Patent Document 2 discloses a method using a catalyst containing silver, a group 13 element (particularly indium) and a solid acid, more specifically, but propylene is not contained when silver or a solid acid is not contained. It is not disclosed whether it can be obtained.

WO2010/064500A1号公報WO2010 / 064500A1 WO2010/106966A1号公報WO2010 / 106966A1

上述のように、従来技術でのアセトンをプロピレンに変換する方法は、多段階工程や再生工程を含む複雑なプロセスであり、簡素で効率的にプロピレンを製造する方法は確立されていない。
従って本発明は、簡易なプロセスにより、アセトンと水素分子とを反応させて効率的にプロピレンを製造するプロピレンの製造方法を提供することを目的とする。
As described above, the conventional method for converting acetone to propylene is a complicated process including a multi-step process and a regeneration process, and a method for producing propylene simply and efficiently has not been established.
Accordingly, an object of the present invention is to provide a method for producing propylene, in which propylene is efficiently produced by reacting acetone and hydrogen molecules by a simple process.

本発明者らは、上記目的を達成すべく鋭意研究を進めた結果、アセトンと水素分子とを反応させてプロピレンを製造する際に、特定の元素を含む触媒を存在させることで、簡素で効率的にプロピレンを製造できることを見出し本発明を完成した。
すなわち本発明は下記の通りである。
As a result of diligent research to achieve the above object, the present inventors have made it simple and efficient by making a catalyst containing a specific element present when propylene is produced by reacting acetone with hydrogen molecules. The present invention has been completed by finding that propylene can be produced in a practical manner.
That is, the present invention is as follows.

[1] インジウム含有触媒の存在下でアセトンと水素分子とを反応させてプロピレンを製造する方法であって、前記インジウム含有触媒が、インジウム酸化物及びインジウムを含む複合酸化物のいずれかであるプロピレンの製造方法。
[2] インジウム含有触媒の存在下でアセトンと水素分子とを反応させてプロピレンを製造する方法であって、前記インジウム含有触媒が、担体上にインジウムを担持してなり、当該インジウムが触媒全体の質量に対し元素として1質量%以上含み、かつ銀を含有しないことを特徴とするプロピレンの製造方法。
[3] 前記インジウム含有触媒が、周期表で4族及び8〜13族(インジウムを除く)から選ばれる1種以上の金属を元素としてさらに含有する[1]又は[2]に記載のプロピレンの製造方法。
[4] アセトンの水素化反応と、アセトンの水素化物の脱水反応とが同一の反応領域で進行する[1]〜[3]のいずれかに記載のプロピレンの製造方法。
[5] 反応系に水を共存させる[1]〜[4]のいずれかに記載のプロピレンの製造方法。
[1] Propylene is produced by reacting acetone and hydrogen molecules in the presence of an indium-containing catalyst, wherein the indium-containing catalyst is any one of indium oxide and a composite oxide containing indium. Manufacturing method.
[2] A method for producing propylene by reacting acetone and hydrogen molecules in the presence of an indium-containing catalyst, wherein the indium-containing catalyst carries indium on a carrier, and the indium mass to look containing 1 wt% or more as the element, and method for producing propylene characterized that you do not contain silver.
[3] The propylene according to [1] or [2], wherein the indium-containing catalyst further contains one or more metals selected from Group 4 and Group 8 to 13 (excluding indium) as an element in the periodic table. Production method.
[4] The method for producing propylene according to any one of [1] to [3], wherein the hydrogenation reaction of acetone and the dehydration reaction of the hydride of acetone proceed in the same reaction region.
[5] The method for producing propylene according to any one of [1] to [4], wherein water is allowed to coexist in the reaction system.

本発明によれば、簡易なプロセスにより、アセトンと水素分子とを反応させて効率的にプロピレンを製造するプロピレンの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of propylene which reacts acetone and a hydrogen molecule with a simple process and manufactures propylene efficiently can be provided.

本発明は、所定のインジウム含有触媒の存在下でアセトンと水素分子とを反応させてプロピレンを製造する。インジウム含有触媒を用いることで、アセトンの水素化反応と、アセトンの水素化物の脱水反応とを、簡便な操作で実施することができる。その結果、反応工程が実質的に一段となり、非常に簡素で効率的な製造プロセスとすることができる。   In the present invention, propylene is produced by reacting acetone and hydrogen molecules in the presence of a predetermined indium-containing catalyst. By using the indium-containing catalyst, the hydrogenation reaction of acetone and the dehydration reaction of the hydride of acetone can be carried out with simple operations. As a result, the reaction process becomes substantially one step, and a very simple and efficient manufacturing process can be achieved.

インジウム含有触媒としては、インジウム酸化物及びインジウムを含む複合酸化物のいずれかからなる触媒(以下、「第1のインジウム含有触媒」ということがある)、又は担体上にインジウムを担持してなり、当該インジウムが触媒全体の質量に対し元素として1質量%以上含む触媒(以下、「第2のインジウム含有触媒」ということがある)を用いる。   As the indium-containing catalyst, a catalyst made of any of indium oxide and a composite oxide containing indium (hereinafter sometimes referred to as “first indium-containing catalyst”), or indium supported on a carrier, A catalyst containing 1% by mass or more of the indium as an element with respect to the total mass of the catalyst (hereinafter, sometimes referred to as “second indium-containing catalyst”) is used.

ここで、第1のインジウム含有触媒の好適な一例として、酸化インジウム(In23)が挙げられる。酸化インジウムの種類としては、立方晶又はアモルファス等を例示することができる。第1のインジウム含有触媒におけるインジウムの含有量(酸化物換算)は、1〜100質量%であることが好ましく、20〜100質量%であることがより好ましい。1〜100質量%であることで触媒活性やプロピレンの選択性を高い状態とすることができる。 Here, as a preferable example of the first indium-containing catalysts include indium oxide (In 2 O 3). Examples of the type of indium oxide include cubic or amorphous. The indium content (as oxide) in the first indium-containing catalyst is preferably 1 to 100% by mass, and more preferably 20 to 100% by mass. The catalyst activity and propylene selectivity can be made high by being 1 to 100% by mass.

第1のインジウム含有触媒は、金属成分を含む塩(硝酸塩、硫酸塩、塩化物など)を空気中でそのまま焼成する方法や、該金属成分を含む水溶液に、アンモニア水等の塩基を滴下して沈殿を形成させ、濾過後焼成する方法により得ることができる。   The first indium-containing catalyst includes a method in which a salt containing a metal component (nitrate, sulfate, chloride, etc.) is baked as it is in air, or a base such as ammonia water is dropped into an aqueous solution containing the metal component. It can be obtained by a method of forming a precipitate and baking after filtration.

また、第2のインジウム含有触媒中のインジウムの含有量は、1質量%以上であり、2質量%以上であることが好ましい。1質量%より少ない場合は、触媒活性やプロピレンの選択性が低くなる。
担体としては、アルミナ、シリカ、シリカアルミナ、ジルコニア、酸化亜鉛、チタニア、マグネシア等が挙げられる。第2のインジウム含有触媒は通常の含浸法により調製することができる。
The indium content in the second indium-containing catalyst is 1% by mass or more, and preferably 2% by mass or more. When it is less than 1% by mass, the catalytic activity and propylene selectivity are lowered.
Examples of the carrier include alumina, silica, silica alumina, zirconia, zinc oxide, titania, magnesia and the like. The second indium-containing catalyst can be prepared by a normal impregnation method.

触媒の活性や選択性を調整するために、インジウム以外の金属を、周期表で4族及び8〜13族(インジウムを除く)から選ばれる1種以上の金属を元素としてさらに含有することが好ましい。この場合、これらの金属は金属酸化物として含まれることが好ましい。   In order to adjust the activity and selectivity of the catalyst, it is preferable that a metal other than indium further contains one or more metals selected from Group 4 and Groups 8 to 13 (excluding indium) as elements in the periodic table. . In this case, these metals are preferably contained as metal oxides.

本発明に係るインジウム含有触媒は、所望の粒径(例えば、篩い分けにより300〜600μmの粒径)として使用したり、これをスラリー状として乾燥等を行って使用したり、又は、粘土鉱物等のバインダーと混合・成型した形状で使用したりすることができる。
当該インジウム含有触媒存在下で行う反応における反応形式は特に制約はないが、固定床流通式で実施されることが好ましい。固定床流通式で反応を行う場合、本発明に係るインジウム含有触媒を反応管内に固定し、アセトンと水素とを反応管内に供給することで反応を行う。このときの反応温度は、300〜600℃とすることが好ましく、350〜550℃とすることがより好ましい。また、反応圧力に特に制約はないが、0〜1MPa(ゲージ圧)とすることが好ましく、0〜0.2MPa(ゲージ圧)とすることがより好ましい。
The indium-containing catalyst according to the present invention can be used as a desired particle size (for example, a particle size of 300 to 600 μm by sieving), or can be used by drying it as a slurry, or clay minerals, etc. It can be used in a shape mixed and molded with a binder.
The reaction mode in the reaction performed in the presence of the indium-containing catalyst is not particularly limited, but is preferably carried out in a fixed bed flow type. When the reaction is performed in a fixed bed flow type, the reaction is performed by fixing the indium-containing catalyst according to the present invention in the reaction tube and supplying acetone and hydrogen into the reaction tube. The reaction temperature at this time is preferably 300 to 600 ° C, and more preferably 350 to 550 ° C. Moreover, although there is no restriction | limiting in particular in reaction pressure, it is preferable to set it as 0-1 MPa (gauge pressure), and it is more preferable to set it as 0-0.2 MPa (gauge pressure).

当該反応における空間速度は、500〜5000h-1とすることが好ましく、500〜1000h-1とすることがより好ましい。 The space velocity in the reaction is preferably set to 500~5000H -1, and more preferably a 500~1000h -1.

また、アセトンは、水(水蒸気)と共に反応管内へ供給されることが好ましく、アセトンに対する水の比率は0.1〜10とすることが好ましく、1〜5とすることがより好ましい。水(水蒸気)を供給することで、触媒上への炭素付着及び触媒の還元を抑制することができる。
なお、当該反応管には窒素やヘリウム等のキャリアガスを供給してもよい。
Acetone is preferably supplied into the reaction tube together with water (water vapor), and the ratio of water to acetone is preferably 0.1 to 10, and more preferably 1 to 5. By supplying water (steam), carbon adhesion on the catalyst and reduction of the catalyst can be suppressed.
Note that a carrier gas such as nitrogen or helium may be supplied to the reaction tube.

以上のようにして、アセトンの水素化反応と、アセトンの水素化物の脱水反応とが同一の反応領域(本発明に係るインジウム含有触媒)で進行するため、反応工程が実質的に一段となり、非常に簡素で効率的な製造プロセスとすることができる。   As described above, since the hydrogenation reaction of acetone and the dehydration reaction of the hydride of acetone proceed in the same reaction region (the indium-containing catalyst according to the present invention), the reaction process is substantially one-step, A simple and efficient manufacturing process can be achieved.

(実施例1)
定温乾燥器にて120℃で18時間以上乾燥した酸化インジウム(関東化学製、In23、純度99.9%以上)10.00gに、イオン交換水4.53gを添加してスラリー状としその状態で5分間こねて、スラリー状物質を作製した。
Example 1
To 10.00 g of indium oxide (Kanto Chemical Co., In 2 O 3 , purity 99.9% or more) dried at 120 ° C. for 18 hours or more in a constant temperature dryer, 4.53 g of ion-exchanged water is added to form a slurry. In this state, kneading was performed for 5 minutes to prepare a slurry-like substance.

作製したスラリー状物質を、マッフル炉にて空気200cm3/min.中、800℃(1℃/minで昇温)で5時間焼成を行い、黄色の固体(In23触媒)を得た。 The produced slurry-like substance was air 200 cm 3 / min. In a muffle furnace. The mixture was calcined at 800 ° C. (heated at 1 ° C./min) for 5 hours to obtain a yellow solid (In 2 O 3 catalyst).

当該製造に用いた反応管は二重構造をしており、外側はSUS316製の管(φ27.2×t5.5mm)、内側は石英製の電気溶融管(φ15×t2.0mm)であり、その内側に石英製の熱電対用内挿管(φ3.5×t1.0mm)を有する。   The reaction tube used for the production has a double structure, the outside is a tube made of SUS316 (φ27.2 × t5.5 mm), the inside is an electric melting tube made of quartz (φ15 × t2.0 mm), Inside, there is an inner tube (φ3.5 × t1.0 mm) made of quartz for thermocouple.

触媒は、焼成後の黄色固体を粉砕し300〜600μmに分級して用いた。この触媒(粉砕品)1.60gを、反応管に充填し、触媒層の上下に石英ウールを詰めて触媒を保持した。触媒層の高さは、1.9cmであった。   The catalyst was used after pulverizing the yellow solid after calcination and classifying it to 300 to 600 μm. 1.60 g of this catalyst (pulverized product) was filled in a reaction tube, and quartz wool was filled above and below the catalyst layer to hold the catalyst. The height of the catalyst layer was 1.9 cm.

触媒を充填した上記反応管に、窒素を13.9cm3/min.(25℃、1気圧換算、以下同じ)で流しながら外部加熱によって触媒層の温度を525℃まで昇温し、そのまま1時間保持した。
その後、常圧で反応管入口側から、アセトン、水素、窒素、水を、4.2:30.3:55.2:10.3のモル比となるように連続的に供給して反応を行った(入口側全ガス流量:13.8cm3/min.)。
The reaction tube filled with the catalyst was charged with nitrogen at 13.9 cm 3 / min. The temperature of the catalyst layer was raised to 525 ° C. by external heating while flowing at 25 ° C., converted to 1 atm (the same applies hereinafter), and held for 1 hour.
Thereafter, acetone, hydrogen, nitrogen and water are continuously supplied from the inlet side of the reaction tube at normal pressure so that the molar ratio is 4.2: 30.3: 55.2: 10.3. (Inlet side total gas flow rate: 13.8 cm 3 / min.)

反応開始から1時間後、反応管出口ガスを、オンラインガスクロマトグラフ装置で分析したところ、アセトンの転化率は99%であり、プロピレン収率は78%であった。
その後、触媒層の温度を525℃に保持したまま、原料の供給を100時間継続し、同様に反応管出口ガスを分析した。反応開始から100時間経過後もアセトン転化率は99%であり、プロピレン収率は85%となった。
プロピレン収率がやや増加したのは、反応の継続によって副生成物の生成が減少し、プロピレン選択率がやや増大したためである。
One hour after the start of the reaction, the reaction tube outlet gas was analyzed with an on-line gas chromatograph. As a result, the conversion of acetone was 99% and the propylene yield was 78%.
Thereafter, the supply of the raw material was continued for 100 hours while maintaining the temperature of the catalyst layer at 525 ° C., and the reaction tube outlet gas was similarly analyzed. Even after 100 hours from the start of the reaction, the acetone conversion was 99%, and the propylene yield was 85%.
The reason why the propylene yield increased slightly was that by-product formation decreased as the reaction continued, and propylene selectivity increased slightly.

(実施例2)
触媒は、実施例1で使用した触媒と同一のものを使用した。触媒1.60g(触媒層高さ1.9cm)を、反応管に充填し、触媒層の上下に石英ウールを詰めて触媒を保持した。
(Example 2)
The same catalyst as that used in Example 1 was used. 1.60 g of catalyst (catalyst layer height 1.9 cm) was filled in a reaction tube, and quartz wool was filled above and below the catalyst layer to hold the catalyst.

触媒を充填した上記反応管に、窒素を13.9cm3/min.で流しながら外部加熱によって触媒層の温度を525℃まで昇温し、そのまま1時間保持した。 The reaction tube filled with the catalyst was charged with nitrogen at 13.9 cm 3 / min. The temperature of the catalyst layer was raised to 525 ° C. by external heating while flowing in, and held there for 1 hour.

その後、常圧で反応管入口側から、アセトン、水素、窒素を、5.1:70.0:24.9のモル比となるように連続的に供給して反応を行った(入口側全ガス流量:14.0cm3/min.)。 Thereafter, acetone, hydrogen, and nitrogen were continuously supplied from the inlet side of the reaction tube at normal pressure so as to have a molar ratio of 5.1: 70.0: 24.9. gas flow rate: 14.0cm 3 / min)..

反応開始から1時間後、反応管出口ガスを、オンラインガスクロマトグラフ装置で分析したところ、アセトンの転化率は100%であり、プロピレン収率は90%であった。
その後、触媒層の温度を525℃に保持したまま、原料の供給を60時間継続し、同様に反応管出口ガスを分析した。反応開始から60時間経過後、アセトン転化率は97%であり、プロピレン収率は91%となった。プロピレン収率がやや増加したのは、反応の継続によって副生成物の生成が減少し、プロピレン選択率がやや増大したためである。
One hour after the start of the reaction, the reaction tube outlet gas was analyzed with an on-line gas chromatograph. As a result, the conversion of acetone was 100% and the propylene yield was 90%.
Thereafter, the supply of the raw material was continued for 60 hours while maintaining the temperature of the catalyst layer at 525 ° C., and the reaction tube outlet gas was similarly analyzed. After 60 hours from the start of the reaction, the acetone conversion was 97%, and the propylene yield was 91%. The reason why the propylene yield increased slightly was that by-product formation decreased as the reaction continued, and propylene selectivity increased slightly.

(実施例3)
定温乾燥器にて120℃で18時間以上乾燥したアルミナ担体(日揮ユニバーサル社製、Al23、NA−3)4.01gに、硝酸インジウム三水和物(和光純薬工業製、In(NO33・3H2O、98%以上)0.656gをイオン交換水3.79gに溶解させたインジウム水溶液を滴下した。12時間以上室温で静置後、マッフル炉にて200cm3/min.の空気流通下、600℃(1℃/min.で昇温)で3時間焼成を行って、インジウムを含有したアルミナ触媒を得た。触媒中のインジウム含有量は、金属換算で4.9質量%であった。
得られた触媒中の元素組成分析は、ICP(誘導結合プラズマ)発光分光分析法により行った。ICP発光分光分析法による組成分析は、島津製ICPE−9000型ICP発光分光分析装置で行った。測定試料としては、分析しようとする触媒をフッ化水素酸と塩酸との混酸で溶解し、酸溶液としたものを用いた。
(Example 3)
To 4.01 g of an alumina support (manufactured by JGC Universal, Al 2 O 3 , NA-3) dried at 120 ° C. for 18 hours or more in a constant temperature dryer, indium nitrate trihydrate (Wako Pure Chemical Industries, In ( NO 3) 3 · 3H 2 O , 98% or higher) 0.656 g was added dropwise indium aqueous solution prepared by dissolving in deionized water 3.79 g. After leaving still at room temperature for 12 hours or more, 200 cm 3 / min. Was fired at 600 ° C. (temperature increase at 1 ° C./min.) For 3 hours to obtain an alumina catalyst containing indium. The indium content in the catalyst was 4.9% by mass in terms of metal.
Elemental composition analysis in the obtained catalyst was performed by ICP (inductively coupled plasma) emission spectroscopy. The composition analysis by ICP emission spectroscopic analysis was performed with an ICPE-9000 type ICP emission spectroscopic analyzer manufactured by Shimadzu. As a measurement sample, an acid solution was prepared by dissolving the catalyst to be analyzed with a mixed acid of hydrofluoric acid and hydrochloric acid.

300〜600μmに分級したインジウム含有アルミナ触媒0.500g(触媒層高さ1.7cm)を実施例1と同様に反応管に充填した。
触媒を充填した上記反応管に、窒素を14.3cm3/min.で流しながら外部加熱によって触媒層の温度を525℃まで昇温し、そのまま1時間保持した。その後0.1MPa(ゲージ圧)に加圧し、反応管入口側から、アセトン、水素、窒素、水を、5.1:29.8:54.9:10.2のモル比となるように連続的に供給して反応を行った(入口側全ガス流量:14.3cm3/min.)
In the same manner as in Example 1, 0.500 g of the indium-containing alumina catalyst classified to 300 to 600 μm (1.7 cm in catalyst layer height) was filled in the reaction tube.
The reaction tube filled with the catalyst was charged with nitrogen at 14.3 cm 3 / min. The temperature of the catalyst layer was raised to 525 ° C. by external heating while flowing in, and held there for 1 hour. Thereafter, the pressure was increased to 0.1 MPa (gauge pressure), and acetone, hydrogen, nitrogen, and water were continuously supplied from the reaction tube inlet side so as to have a molar ratio of 5.1: 29.8: 54.9: 10.2. The reaction was carried out by supplying continuously (total gas flow rate on the inlet side: 14.3 cm 3 / min.)

反応開始から1時間後、反応管出口ガスを、オンラインガスクロマトグラフ装置で分析したところ、アセトンの転化率は99%であり、プロピレン収率は81%であった。   One hour after the start of the reaction, the reaction tube outlet gas was analyzed by an on-line gas chromatograph. As a result, the conversion of acetone was 99% and the propylene yield was 81%.

その後、触媒層の温度を525℃に保持したまま、原料の供給を100時間継続し、同様に反応管出口ガスを分析した。反応開始から100時間経過後もアセトン転化率は98%であり、プロピレン収率は86%となった。
プロピレン収率がやや増加したのは、反応の継続によって副生成物の生成が減少し、プロピレン選択率がやや増大したためである。
Thereafter, the supply of the raw material was continued for 100 hours while maintaining the temperature of the catalyst layer at 525 ° C., and the reaction tube outlet gas was similarly analyzed. Even after 100 hours from the start of the reaction, the acetone conversion was 98%, and the propylene yield was 86%.
The reason why the propylene yield increased slightly was that by-product formation decreased as the reaction continued, and propylene selectivity increased slightly.

Claims (4)

インジウム含有触媒の存在下でアセトンと水素分子とを反応させてプロピレンを製造する方法であって、
前記インジウム含有触媒が、インジウム酸化物及びインジウムを含む複合酸化物のいずれかであるプロピレンの製造方法。
A method for producing propylene by reacting acetone and hydrogen molecules in the presence of an indium-containing catalyst,
A method for producing propylene, wherein the indium-containing catalyst is any one of indium oxide and a complex oxide containing indium.
インジウム含有触媒の存在下でアセトンと水素分子とを反応させてプロピレンを製造する方法であって、
前記インジウム含有触媒が、担体上にインジウムを担持してなり、当該インジウムが触媒全体の質量に対し元素として1質量%以上含み、かつ銀を含有しないことを特徴とするプロピレンの製造方法。
A method for producing propylene by reacting acetone and hydrogen molecules in the presence of an indium-containing catalyst,
A method for producing propylene, wherein the indium-containing catalyst comprises indium supported on a carrier, and the indium contains 1% by mass or more as an element with respect to the total mass of the catalyst and does not contain silver.
前記インジウム含有触媒が、周期表で4族及び8〜13族(インジウム及び銀を除く)から選ばれる1種以上の金属を元素としてさらに含有する請求項1又は2に記載のプロピレンの製造方法。 The method for producing propylene according to claim 1 or 2, wherein the indium-containing catalyst further contains one or more metals selected from Group 4 and Group 8 to 13 (excluding indium and silver ) as an element in the periodic table. 反応系に水を共存させる請求項1〜3のいずれか1項に記載のプロピレンの製造方法。   The method for producing propylene according to any one of claims 1 to 3, wherein water is allowed to coexist in the reaction system.
JP2011108830A 2011-05-13 2011-05-13 Propylene production method Active JP5831925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011108830A JP5831925B2 (en) 2011-05-13 2011-05-13 Propylene production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011108830A JP5831925B2 (en) 2011-05-13 2011-05-13 Propylene production method

Publications (2)

Publication Number Publication Date
JP2012240912A JP2012240912A (en) 2012-12-10
JP5831925B2 true JP5831925B2 (en) 2015-12-09

Family

ID=47462991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011108830A Active JP5831925B2 (en) 2011-05-13 2011-05-13 Propylene production method

Country Status (1)

Country Link
JP (1) JP5831925B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5898558B2 (en) * 2012-04-27 2016-04-06 国立大学法人東京工業大学 Method for producing olefin production catalyst, olefin production catalyst, and olefin production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0922145B1 (en) * 2008-12-01 2017-12-05 Mitsui Chemicals, Inc. OLEFIN PRODUCTION PROCESS
EP2431347B1 (en) * 2009-03-16 2018-03-07 Mitsui Chemicals, Inc. Process for production of olefins
JP5747326B2 (en) * 2011-05-13 2015-07-15 国立大学法人東京工業大学 Propylene production method

Also Published As

Publication number Publication date
JP2012240912A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
Olah et al. Single step bi-reforming and oxidative bi-reforming of methane (natural gas) with steam and carbon dioxide to metgas (CO-2H2) for methanol synthesis: self-sufficient effective and exclusive oxygenation of methane to methanol with oxygen
CN104148069B (en) Quaternary platinum-based catalyst used for production of propylene through propane dehydrogenation, and preparation method and application thereof
CN104941668B (en) Nano-complex catalyst reacted for oxidative dehydrogenation of ethane and preparation method thereof
RU2658005C2 (en) Carbonylation method
US20180273454A1 (en) Multicomponent heterogeneous catalysts for direct co2 hydrogenation to methanol
CN104190461B (en) Preparation method of CLSTON catalyst for catalyzing visual light to decompose water to prepare hydrogen
RU2446010C2 (en) Method of producing hydrogen via direct decomposition of natural gas and lpg
Duan et al. Vapor-phase catalytic dehydration of 2, 3-butanediol into 3-buten-2-ol over Sc2O3
JP5747326B2 (en) Propylene production method
JP5831925B2 (en) Propylene production method
WO2021045101A1 (en) Methane producing method and production system
KR20150087557A (en) Metal-doped titanium oxide nanowire catalyst, preparing method of the same and method for oxidative coupling reaction of methane using the same
CN104066506B (en) Copper-zirconia catalyst and use and manufacture method
JP5831329B2 (en) Composite oxide catalyst
JP5747325B2 (en) Method for producing oxygen-containing compound having 3 or more carbon atoms
KR102346850B1 (en) Catalyst composition for conversion of sulfur trioxide and process for hydrogen production
JP2017178885A (en) Process for producing hydrocarbon
KR102448519B1 (en) Method of conversion of sulfur trioxide and hydrogen production
JP5517681B2 (en) Method for producing aromatic compound
JP7328549B2 (en) Ammonia dehydrogenation reaction catalyst, method for producing ammonia dehydrogenation reaction catalyst, and method for producing hydrogen using ammonia dehydrogenation reaction catalyst
CN105712857A (en) Method for preparing anhydrous formaldehyde by dehydrogenation of absolute methanol
WO2023199557A1 (en) Catalyst for liquefied petroleum gas synthesis, and method for producing liquefied petroleum gas
JP6384664B2 (en) Method for producing isobutanol
CN108380201A (en) Solid acid catalyst for aldol condensation acrylic acid and preparation method thereof and application method
CN113559862B (en) Atomic-grade auxiliary-modified CuO composite mesomorphic catalyst and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151022

R150 Certificate of patent or registration of utility model

Ref document number: 5831925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250