JP5745789B2 - Solid phase diffusion bonding method of die casting mold material - Google Patents

Solid phase diffusion bonding method of die casting mold material Download PDF

Info

Publication number
JP5745789B2
JP5745789B2 JP2010157067A JP2010157067A JP5745789B2 JP 5745789 B2 JP5745789 B2 JP 5745789B2 JP 2010157067 A JP2010157067 A JP 2010157067A JP 2010157067 A JP2010157067 A JP 2010157067A JP 5745789 B2 JP5745789 B2 JP 5745789B2
Authority
JP
Japan
Prior art keywords
die
temperature
load force
casting
casting mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010157067A
Other languages
Japanese (ja)
Other versions
JP2012016743A (en
Inventor
雅史 宮地
雅史 宮地
勇 古川
勇 古川
林 富雄
富雄 林
和雄 西舘
和雄 西舘
博徳 岸田
博徳 岸田
文雄 河原
文雄 河原
光輝 柴野
光輝 柴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
MEC International Co Ltd
Original Assignee
Toyota Motor Corp
MEC International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, MEC International Co Ltd filed Critical Toyota Motor Corp
Priority to JP2010157067A priority Critical patent/JP5745789B2/en
Publication of JP2012016743A publication Critical patent/JP2012016743A/en
Application granted granted Critical
Publication of JP5745789B2 publication Critical patent/JP5745789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、ダイカスト金型材の固相拡散接合方法に関する。   The present invention relates to a method for solid phase diffusion bonding of die casting mold materials.

ダイカスト金型に溶湯金属を圧入することにより、ダイカスト製品を生産する鋳造方式(ダイカスト)は公知である。ダイカスト金型材としては、例えば、ダイス鋼のSKD61材が知られている。複雑な形状のダイカスト金型は、ダイカスト金型材同士を接合して形成され、接合されたダイカスト金型材には母材と同等の接合強度が求められる。   A casting method (die casting) for producing a die-cast product by press-fitting molten metal into a die-casting die is known. As a die-cast mold material, for example, SKD61 material of die steel is known. A die-cast mold having a complicated shape is formed by bonding die-cast mold materials to each other, and the bonded die-cast mold material is required to have a bonding strength equivalent to that of the base material.

ダイカスト金型材等の金属材の接合方法として、例えばパルス通電接合方法が公知である。特許文献1は、金属部材の接合面を突き合わせた状態で部材を昇温させ、変態点または固溶化処理温度を挟んで降温させる昇降温操作を複数回繰り返して接合を行うパルス通電接合方法を開示している。   As a method for joining metal materials such as die casting mold materials, for example, a pulse current joining method is known. Patent Document 1 discloses a pulse energization joining method in which a member is heated in a state in which the joining surfaces of metal members are abutted, and a temperature increasing / decreasing operation is performed a plurality of times to lower the temperature with a transformation point or a solution treatment temperature interposed therebetween. doing.

しかし、ダイカスト金型材等の金属材の表面には酸化皮膜が存在する。ここで、例えば特許文献1のパルス通電接合方法によってダイカスト金型材同士を昇温して接合するとき、接合面の酸化皮膜がガス化し、ダイカスト金型材同士を接合したときに接合面の間で残留ガスとなり、接合されたダイカスト金型材の接合強度が低下する。   However, an oxide film is present on the surface of a metal material such as a die-cast mold material. Here, for example, when the die casting mold materials are heated and bonded together by the pulse current bonding method of Patent Document 1, the oxide film on the bonding surfaces is gasified and remains between the bonding surfaces when the die casting mold materials are bonded to each other. The gas becomes gas, and the bonding strength of the bonded die-cast mold material decreases.

一方、接合する部材同士を密着させ、前記部材の周囲の雰囲気を真空に制御し、部材同士を押圧しながら部材を昇温する接合方法であって、接合面との接合面とに生じる原子の拡散を利用して接合する固相拡散接合方法も公知である。   On the other hand, it is a bonding method in which members to be bonded are brought into close contact with each other, the atmosphere around the members is controlled to a vacuum, and the temperature of the members is increased while pressing the members. A solid phase diffusion bonding method for bonding by using diffusion is also known.

しかし、従来の固相拡散接合方法によってダイカスト金型材の接合面を突き合わせた状態で昇温しながら高い押圧力を加えると、接合面に塑性変形が生じて、接合されたダイカスト金型材の接合強度が低下する。   However, if a high pressing force is applied while raising the temperature while the bonded surfaces of the die casting molds are in contact with each other by the conventional solid phase diffusion bonding method, plastic deformation occurs on the bonded surfaces, and the bonding strength of the bonded die casting mold materials Decreases.

特開2005−262244号公報JP 2005-262244 A

本発明の課題は、接合強度を高めることができるダイカスト金型材の固相拡散接合方法を提供することである。   An object of the present invention is to provide a solid phase diffusion bonding method of a die casting mold material that can increase bonding strength.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

即ち、請求項1においては、ダイカスト金型材同士を密着させ、該ダイカスト金型材同士を昇温しながら密着方向へ押圧するダイカスト金型材の固相拡散接合方法であって、前記ダイカスト金型材同士を突き合わせた状態で、該ダイカスト金型材の周囲の雰囲気を真空とし、該ダイカスト金型材を昇温させ、前記ダイカスト金型材が所定の温度にまで昇温した後に、該ダイカスト金型材同士を第二荷重力にて押圧し、該ダイカスト金型材が第一温度に達すると終了する初期工程と、前記ダイカスト金型材を第一温度に維持しつつ該ダイカスト金型材同士を前記第二荷重力にて押圧する第一工程と、前記第一工程の後に該ダイカスト金型材を降温させ第二温度に維持しつつ該ダイカスト金型材同士を第一荷重力にて押圧する第二工程とを複数回繰り返す接合工程と、を具備し、前記第一温度は、前記第二温度よりも高く、前記ダイカスト金型材同士の接合面の表面に存在する酸化皮膜がガス化する温度であるものとし、前記第一荷重力は、前記第二荷重力よりも大きいものとするものである。 That is, in claim 1, a die-casting die material solid-phase diffusion bonding method in which die-casting die materials are brought into close contact with each other and pressed in the adhering direction while heating the die-casting die materials, and the die-casting die materials are joined together. in a state in which abutted, the atmosphere around the die-casting die material is a vacuum, the die-casting die material is allowed to warm, and after the die-casting die material is heated to a predetermined temperature, the second load the die-casting die material together Pressing with a force and ending when the die-cast mold material reaches the first temperature, and pressing the die-cast mold materials with the second load force while maintaining the die-cast mold material at the first temperature A first step and a second step of pressing the die casting mold materials together with a first load force while lowering the temperature of the die casting mold material and maintaining the temperature at the second temperature after the first step. And the first temperature is higher than the second temperature, and is a temperature at which the oxide film present on the surface of the bonding surface between the die-cast mold materials is gasified, The first load force is greater than the second load force.

請求項2においては、請求項1記載のダイカスト金型材の固相拡散接合方法であって、前記ダイカスト金型材はSKD61とし、前記第一温度は1030℃以上かつ1050℃以下とし、前記第二温度は620℃以上かつ830℃以下とするものである。   In Claim 2, It is a solid phase diffusion bonding method of the die-casting die material of Claim 1, Comprising: The said die-casting die material is SKD61, Said 1st temperature shall be 1030 degreeC or more and 1050 degrees C or less, and said 2nd temperature Is 620 ° C. or higher and 830 ° C. or lower.

本発明のダイカスト金型材の固相拡散接合方法によれば、接合強度を高めることができる。   According to the solid phase diffusion bonding method of the die casting mold material of the present invention, the bonding strength can be increased.

本発明の実施形態である固相拡散接合方法を実施するための接合設備を示した構成図。The block diagram which showed the joining equipment for enforcing the solid phase diffusion joining method which is embodiment of this invention. 同じく固相拡散接合方法のフローを示したフロー図。The flowchart which similarly showed the flow of the solid phase diffusion bonding method. 同じく固相拡散接合方法における温度および圧力の時系列変化を示したグラフ図。Similarly, the graph which showed the time-sequential change of the temperature and pressure in a solid phase diffusion bonding method. 初期工程の状態変化を示した模式図。The schematic diagram which showed the state change of the initial stage process. 接合工程の状態変化を示した模式図。The schematic diagram which showed the state change of the joining process. 結晶化工程の状態変化を示した模式図。The schematic diagram which showed the state change of the crystallization process.

本実施形態の固相拡散接合方法は、ダイカスト金型材として使用するSKD61材である部材A・部材Bを接合する方法である。固相拡散接合とは、接合する部材Aと部材Bとを密着させ、部材Aおよび部材Bの周囲の雰囲気を真空に制御し、部材Aと部材Bとを押圧しながら部材Aおよび部材Bを昇温する接合方法であって、接合面AFとの接合面BFとに生じる原子の拡散を利用して接合する方法である。   The solid phase diffusion bonding method of this embodiment is a method of bonding member A and member B, which are SKD61 materials used as a die casting mold material. In solid phase diffusion bonding, the members A and B to be bonded are brought into close contact with each other, the atmosphere around the members A and B is controlled to a vacuum, and the members A and B are pressed while pressing the members A and B. This is a bonding method that raises the temperature, and is a method of bonding by utilizing diffusion of atoms generated on the bonding surface BF with the bonding surface AF.

図1を用いて、本実施形態の固相拡散接合方法を実施する接合設備10について説明する。
接合設備10は、加圧装置20と、ヒータ30と、支持台40と、制御装置50と、試験室60と、を具備している。試験室60内には、加圧装置20と、ヒータ30と、支持台40と、が配置されており、加圧装置20と支持台40との間に、接合対象となる部材Aおよび部材Bが配置されている。具体的には、部材Bが支持台40上に載置され、部材Aの接合面AFと部材Bの接合面BFとを突き合わせた状態で、部材Aが部材Bの上方に配置されている。さらに、部材Aの上方に加圧装置20が配置されている。
With reference to FIG. 1, a bonding facility 10 that performs the solid phase diffusion bonding method of the present embodiment will be described.
The joining facility 10 includes a pressurizing device 20, a heater 30, a support base 40, a control device 50, and a test chamber 60. In the test chamber 60, the pressurizing device 20, the heater 30, and the support base 40 are arranged, and the member A and the member B to be joined between the pressurization device 20 and the support base 40. Is arranged. Specifically, the member A is placed on the support base 40 and the member A is disposed above the member B in a state where the joining surface AF of the member A and the joining surface BF of the member B are abutted. Further, a pressurizing device 20 is disposed above the member A.

加圧装置20は、部材Aに荷重力Fを付与することで、部材Aの接合面AFが部材Bの接合面BFを密着方向へ押圧するように構成された装置である。ヒータ30は、部材Aおよび部材Bの周囲(側方)に配置され、部材Aおよび部材Bを昇温するものである。制御装置50は、加圧装置20と、ヒータ30・30と、に接続されている。   The pressurizing device 20 is a device configured to apply the load force F to the member A so that the joining surface AF of the member A presses the joining surface BF of the member B in the close contact direction. The heater 30 is disposed around (side) the member A and the member B, and raises the temperature of the member A and the member B. The control device 50 is connected to the pressurizing device 20 and the heaters 30 and 30.

制御装置50は、図示しない真空装置で試験室60内を減圧してその真空度Pを制御することで、部材Aおよび部材Bの周囲の雰囲気の真空度Pを制御し、加圧装置20を制御して部材Aに付与する荷重力Fを調整することで接合面AFの接合面BFに作用する押圧力を調整し、ヒータ30・30のONまたはOFFを制御することによって部材Aおよび部材Bの温度Tを調整する機能を有する。   The control device 50 controls the degree of vacuum P around the members A and B by controlling the degree of vacuum P by reducing the pressure in the test chamber 60 using a vacuum device (not shown). The pressing force acting on the joining surface BF of the joining surface AF is adjusted by adjusting the load force F to be applied to the member A, and the members A and B are controlled by controlling the ON / OFF of the heaters 30 and 30. It has a function of adjusting the temperature T.

図2を用いて、本実施形態の固相拡散接合方法のフローについて説明する。
本実施形態のダイカスト金型材の接合方法は、初期工程S100と、接合工程S200と、結晶化工程S300と、を具備している。
The flow of the solid phase diffusion bonding method of the present embodiment will be described with reference to FIG.
The die casting die material joining method of the present embodiment includes an initial step S100, a joining step S200, and a crystallization step S300.

初期工程S100は、制御装置50の制御により、試験室60内の真空度Pを真空度P0に制御し、部材Aおよび部材Bをヒータ30によって昇温し、部材Aおよび部材Bを所定の温度にまで昇温した後に加圧装置20によって部材Aに荷重力Fを付与する工程である。   In the initial step S100, under the control of the control device 50, the degree of vacuum P in the test chamber 60 is controlled to the degree of vacuum P0, the temperature of the members A and B is raised by the heater 30, and the members A and B are kept at a predetermined temperature. This is a step of applying a load force F to the member A by the pressurizing device 20 after the temperature is raised to.

接合工程S200は、制御装置50の制御により、部材Aおよび部材Bをヒータ30によって昇温して第一温度T1に維持しつつ、加圧装置20によって部材Aに付与する荷重力Fを第二荷重力F2とする第一工程、並びに、部材Aおよび部材Bをヒータ30により第二温度T2としつつ、部材Aに付与する荷重力Fを第一荷重力F1とする第二工程を、交互に複数回繰り返す工程である。
ここで、第一温度T1は第二温度T2よりも高く、第一荷重力F1は第二荷重力F2よりも大きいものである。
In the joining step S200, under the control of the control device 50, the member A and the member B are heated by the heater 30 and maintained at the first temperature T1, and the load force F applied to the member A by the pressurizing device 20 is second. The first step of setting the load force F2 and the second step of setting the load force F applied to the member A to the first load force F1 while the members A and B are set to the second temperature T2 by the heater 30 are alternately performed. It is a process repeated several times.
Here, the first temperature T1 is higher than the second temperature T2, and the first load force F1 is larger than the second load force F2.

結晶化工程S300は、制御装置50の制御により、ヒータ30にて昇温される部材Aおよび部材Bを第一温度T1に維持し、加圧装置20によって部材Aに付与する荷重力Fを第三荷重力F3に維持した状態で、所定時間経過させる工程である。   In the crystallization step S300, under the control of the control device 50, the member A and the member B heated by the heater 30 are maintained at the first temperature T1, and the load force F applied to the member A by the pressurizing device 20 is the first. This is a step of allowing a predetermined time to elapse while maintaining the three load forces F3.

図3を用いて、本実施形態の固相拡散接合方法における温度Tおよび荷重力Fの時系列変化について説明する。
図3は、部材Aおよび部材Bの温度T(図3における太実線)、加圧装置20が部材Aに付与する荷重力F(図3における太破線)、および部材Aおよび部材Bの周囲の雰囲気の真空度P(図3における太二点鎖線)、の時系列変化を示している。なお、温度T、荷重力F、および真空度Pについては、それぞれ図3のグラフで矢印の向きほど温度T、荷重力F、および真空度Pが高いものとしている。
With reference to FIG. 3, the time series change of the temperature T and the load force F in the solid phase diffusion bonding method of the present embodiment will be described.
3 shows the temperature T of the members A and B (thick solid line in FIG. 3), the load force F applied by the pressure device 20 to the member A (thick broken line in FIG. 3), and the surroundings of the members A and B The time-series change of the degree of vacuum P of the atmosphere (thick two-dot chain line in FIG. 3) is shown. In addition, about the temperature T, the load force F, and the degree of vacuum P, it is assumed that the temperature T, the load force F, and the degree of vacuum P are higher in the direction of the arrow in the graph of FIG.

ここで、本実施形態において、第一温度T1とは、SKD61材の融点手前の温度で1030℃〜1050℃までの範囲の1050℃としている。第二温度T2とは、SKD61材のパーライト析出温度(変態点)の620℃から830℃までの範囲である750℃としている。第一荷重力F1とは、25MPa以上かつ50MPa以下の50MPaとしている。第二荷重力F2とは、10MPa以下の10MPaとしている。第三荷重力F3とは、2MPa以下の2MPaとしている。   Here, in the present embodiment, the first temperature T1 is set to 1050 ° C. in the range from 1030 ° C. to 1050 ° C. at the temperature before the melting point of the SKD61 material. The second temperature T2 is 750 ° C., which is a range from 620 ° C. to 830 ° C. of the pearlite precipitation temperature (transformation point) of the SKD61 material. The first load force F1 is 50 MPa which is 25 MPa or more and 50 MPa or less. The second load force F2 is 10 MPa which is 10 MPa or less. The third load force F3 is 2 MPa, which is 2 MPa or less.

初期工程S100の温度Tおよび荷重力Fの時系列変化について説明する。
まず、試験室60内、すなわち部材Aおよび部材Bの周囲の雰囲気は真空度P0に制御される。そして、部材Aおよび部材Bの周囲が真空度P0に保たれた状態において、部材Aおよび部材Bはヒータ30によって昇温される。さらに、部材Aおよび部材Bがヒータ30によって所定の温度にまで昇温された後に、加圧装置20によって部材Aに荷重力Fが第二荷重力F2(10MPa)となるまで付与される。初期工程S100は、部材Aおよび部材Bが第一温度T1(1050℃)に達すると終了する。
A time series change of the temperature T and the load force F in the initial step S100 will be described.
First, the atmosphere in the test chamber 60, that is, around the members A and B is controlled to a degree of vacuum P0. The members A and B are heated by the heater 30 in a state where the surroundings of the members A and B are maintained at the degree of vacuum P0. Further, after the temperature of the members A and B is raised to a predetermined temperature by the heater 30, the load force F is applied to the member A by the pressure device 20 until the load force F becomes the second load force F2 (10 MPa). The initial step S100 ends when the members A and B reach the first temperature T1 (1050 ° C.).

接合工程S200の温度Tおよび荷重力Fの時系列変化について説明する。
初期工程S100において、部材Aおよび部材Bが第一温度T1(1050℃)に維持された状態で、加圧装置20によって部材Aに付与する荷重力Fが第二荷重力F2(10MPa)に維持される。
A time series change of the temperature T and the load force F in the joining step S200 will be described.
In the initial step S100, the load force F applied to the member A by the pressure device 20 is maintained at the second load force F2 (10 MPa) while the member A and the member B are maintained at the first temperature T1 (1050 ° C.). Is done.

次に、部材Aおよび部材Bが第二温度T2(750℃)に降温され、第二温度T2(750℃)が維持される。部材Aおよび部材Bの第二温度T2(750℃)への降温が開始されると、加圧装置20によって部材Aに付与する荷重力Fが第一荷重力F1(50MPa)まで大きくされ、その第一荷重力F1(50MPa)が維持される。
部材Aおよび部材Bが第二温度T2(750℃)に所定時間維持された後、再度第一温度T1(1050℃)まで昇温され、第一温度T1(1050℃)が維持される。部材Aおよび部材Bが第一温度T1(1050℃)に昇温されるまでに、部材Aに付与する荷重力Fが、再度第二荷重力F2(10MPa)まで小さくされ、維持される。
Next, the members A and B are cooled to the second temperature T2 (750 ° C.), and the second temperature T2 (750 ° C.) is maintained. When the temperature decrease of the member A and the member B to the second temperature T2 (750 ° C.) is started, the load force F applied to the member A by the pressurizing device 20 is increased to the first load force F1 (50 MPa), The first load force F1 (50 MPa) is maintained.
After the members A and B are maintained at the second temperature T2 (750 ° C.) for a predetermined time, the temperature is raised again to the first temperature T1 (1050 ° C.), and the first temperature T1 (1050 ° C.) is maintained. Until the temperature of the member A and the member B is raised to the first temperature T1 (1050 ° C.), the load force F applied to the member A is again reduced to the second load force F2 (10 MPa) and maintained.

つまり、上述のような部材Aおよび部材Bの温度が第一温度T1(1050℃)とされ、かつ部材Aに付与する荷重力Fが第二荷重力F2(10MPa)とされる第一工程と、部材Aおよび部材Bの温度が第二温度T2(750℃)とされ、かつ部材Aに付与する荷重力Fが第一荷重力F1(50MPa)とされる第二工程とが、交互に繰り返される。   That is, the first step in which the temperature of the member A and the member B as described above is the first temperature T1 (1050 ° C.) and the load force F applied to the member A is the second load force F2 (10 MPa). The second step in which the temperature of the member A and the member B is the second temperature T2 (750 ° C.) and the load force F applied to the member A is the first load force F1 (50 MPa) is alternately repeated. It is.

本実施形態では、第一温度T1(1050℃)かつ第二荷重力F2(10MPa)とされる第一工程と、第二温度T2(750℃)かつ第一荷重力F1(50MPa)とされる第二工程とが、交互に3回以上繰り返される。なお、接合工程S200においては、部材Aおよび部材Bの周囲の雰囲気は真空度P0に維持される。   In the present embodiment, the first temperature T1 (1050 ° C.) and the second load force F2 (10 MPa), the second temperature T2 (750 ° C.) and the first load force F1 (50 MPa). The second step is alternately repeated three times or more. In the bonding step S200, the atmosphere around the members A and B is maintained at the degree of vacuum P0.

結晶化工程S300の温度Tおよび荷重力Fの時系列変化について説明する。
接合工程S200において第一温度T1(1050℃)まで昇温された部材Aおよび部材Bは、そのまま第一温度T1(1050℃)として維持される。一方、接合工程S200において加圧装置20によって第三荷重力F3(2MPa)まで小さくされた荷重力Fは、そのまま第三荷重力F3(2MPa)として維持される。なお、結晶化工程S300においては、部材Aおよび部材Bの周囲の雰囲気は真空度P0に維持される。
A time series change of the temperature T and the load force F in the crystallization step S300 will be described.
The members A and B that have been heated to the first temperature T1 (1050 ° C.) in the joining step S200 are maintained as they are as the first temperature T1 (1050 ° C.). On the other hand, the load force F reduced to the third load force F3 (2 MPa) by the pressure device 20 in the joining step S200 is maintained as the third load force F3 (2 MPa) as it is. In the crystallization step S300, the atmosphere around the members A and B is maintained at the degree of vacuum P0.

図4を用いて、初期工程S100での接合面AFおよび接合面BFの状態について説明する。
図4は、部材Aの接合面AFと、部材Bの接合面BFと、が密着している状態の一部を示している。
昇温前の接合面AFおよび接合面BFの表面にはそれぞれ酸化皮膜11が存在しており、互いに突き合わせられた部材Aの接合面AFと部材Bの接合面BFとの間には、隙間15が存在している。
The state of the joint surface AF and the joint surface BF in the initial step S100 will be described with reference to FIG.
FIG. 4 shows a part of the state where the joining surface AF of the member A and the joining surface BF of the member B are in close contact with each other.
The oxide film 11 exists on the surfaces of the bonding surface AF and the bonding surface BF before the temperature rise, and a gap 15 is formed between the bonding surface AF of the member A and the bonding surface BF of the member B that are abutted with each other. Is present.

ここで、初期工程S100において、部材Aおよび部材Bはヒータ30によって昇温されるため酸化皮膜11はガス化され、ガス化された酸化被膜11の成分は隙間15に排出される。そして、部材Aおよび部材Bの周囲が真空度P0に保たれているため、この酸化皮膜11がガス化したガス成分は、隙間15から部材Aおよび部材Bの外部へ排出される。このとき、部材Aには加圧装置20による荷重力Fが未だ付与されていないため、酸化皮膜11がガス化したガス成分は、隙間15から部材Aおよび部材Bの外部へ排出されやすくなっている。   Here, in the initial step S <b> 100, since the temperature of the member A and the member B is raised by the heater 30, the oxide film 11 is gasified, and the components of the gasified oxide film 11 are discharged into the gap 15. And since the circumference | surroundings of the member A and the member B are maintained by the degree of vacuum P0, the gas component which this oxide film 11 gasified is discharged | emitted from the clearance gap 15 to the exterior of the member A and the member B. At this time, since the load force F by the pressurizing device 20 is not yet applied to the member A, the gas component gasified by the oxide film 11 is easily discharged from the gap 15 to the outside of the member A and the member B. Yes.

このようにして、初期工程S100では、接合面AFおよび接合面BFの表面に存在する酸化皮膜11がガス化して部材Aおよび部材Bの外部に排出される。
そして、酸化皮膜11が隙間15から部材Aおよび部材Bの外部に排出された後に、加圧装置20による第二荷重力F2(10MPa)が部材Aに付与される。
従って、初期工程S100において、部材Aに荷重力Fを付与する際には、部材Aおよび部材Bは、少なくとも接合面AFおよび接合面BFの表面に存在する酸化皮膜11がガス化する温度にまで昇温されている必要がある。
Thus, in the initial step S100, the oxide film 11 present on the surfaces of the bonding surface AF and the bonding surface BF is gasified and discharged to the outside of the members A and B.
And after the oxide film 11 is discharged | emitted from the clearance gap 15 to the exterior of the member A and the member B, the 2nd load force F2 (10 Mpa) by the pressurization apparatus 20 is provided to the member A. FIG.
Therefore, when applying the load force F to the member A in the initial step S100, the member A and the member B are at least up to a temperature at which the oxide film 11 existing on the surfaces of the bonding surface AF and the bonding surface BF is gasified. The temperature needs to be raised.

図5を用いて、接合工程S200における接合面AFと接合面BFとの接合部の結晶挙動状態について説明する。
図5は、部材Aの接合面AFと、部材Bの接合面BFと、が接合して、界面Dとなっていく状態変化の一部を示している。
With reference to FIG. 5, the crystal behavior state of the joint between the joint surface AF and the joint surface BF in the joining step S200 will be described.
FIG. 5 shows a part of the state change in which the joining surface AF of the member A and the joining surface BF of the member B are joined to form the interface D.

接合工程S200において、部材Aおよび部材Bの温度が第一温度T1(1050℃)となり、かつ部材Aに付与される荷重が第二荷重力F2(10MPa)となる第一工程と、部材Aおよび部材Bの温度が第二温度T2(750℃)となり、かつ部材Aに付与される荷重が第一荷重力F1(50MPa)となる第二工程とが、交互に繰り返されることにより、接合面AFと接合面BFとの接合部では、以下のステージST(2−1)、ステージST(2−2)、およびステージST(2−3)に示すように結晶挙動状態が変化する。   In the joining step S200, the temperature of the member A and the member B becomes the first temperature T1 (1050 ° C.), and the load applied to the member A becomes the second load force F2 (10 MPa); The second step in which the temperature of the member B becomes the second temperature T2 (750 ° C.) and the load applied to the member A becomes the first load force F1 (50 MPa) is alternately repeated, so that the joint surface AF At the junction between the junction surface BF and the junction surface BF, the crystal behavior changes as shown in the following stage ST (2-1), stage ST (2-2), and stage ST (2-3).

接合工程S200では、部材Aおよび部材Bが、部材Aおよび部材Bの第一温度T1(1050℃)に維持され、次に部材Aに付与される荷重力Fが、部材Aおよび部材Bの荷重力F2(10MPa)まで維持され、部材Aに付与される荷重力Fが、部材Aおよび部材Bの塑性変形寸前の荷重力F1(50MPa)まで大きくされるときには、部材Aおよび部材Bは第二温度T2(750℃)まで降温される。まずステージST(2−1)として、接合面AFおよび接合面BFが軟化し、隙間15が潰れ始めて表面が平坦化する。   In the joining step S200, the member A and the member B are maintained at the first temperature T1 (1050 ° C.) of the member A and the member B, and then the load force F applied to the member A is the load of the member A and the member B. When the load force F applied to the member A is maintained up to the force F2 (10 MPa) and increased to the load force F1 (50 MPa) immediately before the plastic deformation of the member A and the member B, the member A and the member B are in the second state. The temperature is lowered to a temperature T2 (750 ° C.). First, as the stage ST (2-1), the bonding surface AF and the bonding surface BF are softened, the gap 15 starts to be crushed, and the surface is flattened.

次に、ステージST(2−2)においては、隙間15が潰れるに従い、接合面AFと接合面BFとの密着する部分の面積が大きくなって界面Dとなり、接合面AFと接合面BFとに残存していた酸化皮膜11が接合面AFおよび接合面BFから部材Aおよび部材Bの内部に拡散し始める。   Next, in the stage ST (2-2), as the gap 15 is crushed, the area of the portion where the bonding surface AF and the bonding surface BF are in close contact with each other is increased to become the interface D, and the bonding surface AF and the bonding surface BF are separated. The remaining oxide film 11 begins to diffuse into the members A and B from the bonding surface AF and the bonding surface BF.

さらに、ステージST(2−3)においては、接合面AFと接合面BFとの密着が進み、酸化皮膜11の部材Aおよび部材Bの内部への拡散が進行し、部材Aおよび部材Bの金属基体がそれぞれ接合面AFおよび接合面BFに露出し、原子拡散しやすい界面Dとなる。   Further, in stage ST (2-3), the adhesion between the joining surface AF and the joining surface BF advances, the diffusion of the oxide film 11 into the members A and B progresses, and the metal of the members A and B is promoted. The base body is exposed to the bonding surface AF and the bonding surface BF, respectively, and becomes an interface D that easily diffuses atoms.

そして、第一温度T1(1050℃)かつ第二荷重力F2(10MPa)とされる第一工程と、第二温度T2(750℃)かつ第一荷重力F1(50MPa)とされる第二工程とを交互に繰り返す、すなわち、部材Aおよび部材Bの接合部に対して、変態点である第
二温度T2(750℃)を往来する温度変化と、加圧変化と、を繰り返し付与することで、ステージST(2−1)からステージST(2−3)までの状態変化が繰り返される。すなわち、接合面AFおよび接合面BFは平坦化し、接合面AFおよび接合面BFの表面に存在していた酸化皮膜11は、部材Aおよび部材Bの内部に拡散し、接合面AFと接合面BFとは界面Dとなる。
And the 1st process made into 1st temperature T1 (1050 degreeC) and 2nd load force F2 (10 MPa), and the 2nd process made into 2nd temperature T2 (750 degreeC) and 1st load force F1 (50 MPa). Are repeated alternately, that is, by repeatedly applying a temperature change and a pressure change to and from the second temperature T2 (750 ° C.), which is the transformation point, to the joint between the member A and the member B. The state change from stage ST (2-1) to stage ST (2-3) is repeated. That is, the bonding surface AF and the bonding surface BF are flattened, and the oxide film 11 existing on the surfaces of the bonding surface AF and the bonding surface BF is diffused into the members A and B, and the bonding surface AF and the bonding surface BF. Becomes the interface D.

図6を用いて、結晶化工程S300の結晶挙動状態について説明する。
図6は、界面Dを通過して結晶化が進行する状態変化の一部を示している。
The crystal behavior state in the crystallization step S300 will be described with reference to FIG.
FIG. 6 shows a part of a state change in which crystallization proceeds through the interface D.

ステージST(3−1)においては、部材Aおよび部材Bの金属基体は、原子拡散が進行し、結晶中の原子の配置構造が安定する一つの角度が120度となる立方体構造に収束しながら結晶化が始まる。   In stage ST (3-1), the metal bases of member A and member B are converged to a cubic structure in which one angle at which atom diffusion proceeds and the arrangement structure of atoms in the crystal is stable becomes 120 degrees. Crystallization begins.

ステージST(3−2)においては、安定した結晶CrAが結晶CrC、CrEを侵食し結晶CrGとして成長している。また、結晶CrBが結晶CrDを侵食し結晶CrFに成長している。このように、各結晶は、界面Dを通過しながら成長することで、界面Dは消滅し、部材Aと部材Bとは同一部材となる。   In stage ST (3-2), stable crystal CrA erodes crystals CrC and CrE and grows as crystal CrG. Further, the crystal CrB erodes the crystal CrD and grows into the crystal CrF. As described above, each crystal grows while passing through the interface D, so that the interface D disappears, and the member A and the member B become the same member.

このようにして、結晶化工程S300では、接合面AFと接合面BFとは、第一温度T1かつ第三荷重力F3に維持されることで原子拡散および結晶化が促進される。   Thus, in the crystallization step S300, the bonding surface AF and the bonding surface BF are maintained at the first temperature T1 and the third load force F3, thereby promoting atomic diffusion and crystallization.

このような構成とすることで、以下の効果が得られる。
すなわち、部材Aの接合面AFと、部材Bの接合面BFと、の間に存在する酸化皮膜11を初期工程S100において部材Aおよび部材Bの外部に排出し、部材Aおよび部材Bの外部に排出されなかった酸化皮膜11を接合工程S200において部材Aおよび部材Bの内部に拡散させることで、接合面AFと接合面BFとの間から酸化皮膜11を完全に除去し、部材Aと部材Bの接合強度を高めることができ、ひいては部材Aと部材Bとの接合時に母材同等の強度が得られる。
By adopting such a configuration, the following effects can be obtained.
That is, the oxide film 11 existing between the bonding surface AF of the member A and the bonding surface BF of the member B is discharged to the outside of the member A and the member B in the initial step S100, and is discharged to the outside of the member A and the member B. The oxide film 11 that has not been discharged is diffused into the members A and B in the joining step S200, whereby the oxide film 11 is completely removed from between the joining surface AF and the joining surface BF, and the member A and the member B are removed. Therefore, the strength equivalent to that of the base material can be obtained when the members A and B are joined.

A 部材
AF 接合面
B 部材
BF 接合面
D 界面
S100 初期工程
S200 接合工程
S300 結晶工程
T1 第一温度
T2 第二温度
F1 第一荷重力
F2 第二荷重力
F3 第三荷重力
A member AF joint surface B member BF joint surface D interface S100 initial process S200 joint process S300 crystallization process T1 first temperature T2 second temperature F1 first load force F2 second load force F3 third load force

Claims (2)

ダイカスト金型材同士を密着させ、該ダイカスト金型材同士を昇温しながら密着方向へ押圧するダイカスト金型材の固相拡散接合方法であって、
前記ダイカスト金型材同士を突き合わせた状態で、該ダイカスト金型材の周囲の雰囲気を真空とし、該ダイカスト金型材を昇温させ、前記ダイカスト金型材が所定の温度にまで昇温した後に、該ダイカスト金型材同士を第二荷重力にて押圧し、該ダイカスト金型材が第一温度に達すると終了する初期工程と、
前記ダイカスト金型材を第一温度に維持しつつ該ダイカスト金型材同士を前記第二荷重力にて押圧する第一工程と、前記第一工程の後に該ダイカスト金型材を降温させ第二温度に維持しつつ該ダイカスト金型材同士を第一荷重力にて押圧する第二工程とを複数回繰り返す接合工程と、
を具備し、
前記第一温度は、前記第二温度よりも高く、前記ダイカスト金型材同士の接合面の表面に存在する酸化皮膜がガス化する温度であるものとし、
前記第一荷重力は、前記第二荷重力よりも大きいものとする、
ダイカスト金型材の固相拡散接合方法。
It is a solid phase diffusion bonding method for die casting mold materials, in which die casting mold materials are brought into close contact with each other, and the die casting mold materials are pressed in the adhering direction while heating the die casting mold materials,
It abutted the die-casting die material together, the atmosphere around the die-casting die material is a vacuum, the die-casting die material is allowed to warm, and after the die-casting die material is heated to a predetermined temperature, the die casting Pressing the mold materials with a second load force , and an initial process that ends when the die-cast mold material reaches the first temperature ;
A first step of pressing the die-casting die materials with the second load force while maintaining the die-casting die material at a first temperature, and a temperature lowering of the die-casting die material after the first step is maintained at a second temperature. And a joining step that repeats the second step of pressing the die-casting mold members together with the first load force a plurality of times,
Comprising
The first temperature is higher than the second temperature, and is a temperature at which an oxide film existing on the surface of the joint surface between the die casting mold materials is gasified,
The first load force is greater than the second load force.
Solid phase diffusion bonding method for die casting mold materials.
請求項1記載のダイカスト金型材の固相拡散接合方法であって、
前記ダイカスト金型材はSKD61とし、
前記第一温度は1030℃以上かつ1050℃以下とし、
前記第二温度は620℃以上かつ830℃以下とする、
ダイカスト金型材の固相拡散接合方法。
A method for solid phase diffusion bonding of a die-casting die material according to claim 1,
The die casting mold material is SKD61,
Said 1st temperature shall be 1030 degreeC or more and 1050 degrees C or less,
The second temperature is 620 ° C. or more and 830 ° C. or less.
Solid phase diffusion bonding method for die casting mold materials.
JP2010157067A 2010-07-09 2010-07-09 Solid phase diffusion bonding method of die casting mold material Expired - Fee Related JP5745789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010157067A JP5745789B2 (en) 2010-07-09 2010-07-09 Solid phase diffusion bonding method of die casting mold material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010157067A JP5745789B2 (en) 2010-07-09 2010-07-09 Solid phase diffusion bonding method of die casting mold material

Publications (2)

Publication Number Publication Date
JP2012016743A JP2012016743A (en) 2012-01-26
JP5745789B2 true JP5745789B2 (en) 2015-07-08

Family

ID=45602379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010157067A Expired - Fee Related JP5745789B2 (en) 2010-07-09 2010-07-09 Solid phase diffusion bonding method of die casting mold material

Country Status (1)

Country Link
JP (1) JP5745789B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116689932B (en) * 2023-08-02 2023-10-31 杭州沈氏节能科技股份有限公司 Diffusion welding method of micro-channel heat exchanger and welded product

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825553B2 (en) * 1977-02-10 1983-05-27 三菱重工業株式会社 Diffusion welding method for iron-based materials
JPS5728689A (en) * 1980-07-25 1982-02-16 Hitachi Ltd Method for diffusion joining
JPH11151581A (en) * 1997-11-19 1999-06-08 Denso Corp Joining method for steel material and manufacture of metallic mold
JP2005254244A (en) * 2004-03-09 2005-09-22 High Energy Accelerator Research Organization Method for manufacturing accelerating tube of electron/positron collider
JP2005262244A (en) * 2004-03-17 2005-09-29 Suwa Netsukogyo Kk Method for joining metallic member by pulse energization
JP4590014B2 (en) * 2007-08-02 2010-12-01 株式会社Mole’S Act Method for joining steel members and method for strengthening joining force in joined body comprising steel members
JP5198458B2 (en) * 2007-09-14 2013-05-15 セイコーエプソン株式会社 Method for joining steel members, method for strengthening joining force in joined bodies composed of steel members, steel products and die-cast products

Also Published As

Publication number Publication date
JP2012016743A (en) 2012-01-26

Similar Documents

Publication Publication Date Title
US11279082B2 (en) Generative manufacturing of components with a heatable building platform and apparatus for implementing this method
CN103547402A (en) Friction bonding method and bonding structure
JP7201570B2 (en) Resistance spot welding method
JP2009138266A (en) Amorphous metal glass powder sintered compact having high density, and the sintered compact
CN103260809B (en) The conjugant of conductive material
JP2011528995A5 (en)
CA3036000A1 (en) Techniques and assemblies for joining components
JP5745789B2 (en) Solid phase diffusion bonding method of die casting mold material
CN103692094A (en) Method and device for welding studs by applying resistor-electric arc composite heat source
JP6528938B2 (en) Forging apparatus and method of manufacturing forged product
CN112296616A (en) Method for producing a plate heat exchanger and plate heat exchanger
JPH05131279A (en) Joining method for metal by using amorphous metal
CN108382020B (en) Low stress bonding of silicon or germanium components
JPS58187284A (en) Diffusion welding method for structure element consisting of high heat-resistant metallic material
JP2006507128A (en) Method for joining two or more components together
US20200353571A1 (en) Device for manufacturing electric component and method for manufacturing electric component
JP6675622B1 (en) Electronic component sintering apparatus and method
JP2000301355A (en) Eutectic press-contacting method of same kind of metallic member and its eutoctic press-contacting device
KR101421133B1 (en) Heat Adhesion System And Method For Plastic Element Using Selective Heating
JP7201569B2 (en) Resistance spot welding method
JP4229452B2 (en) Method of raising temperature in heating cylinder of metal forming machine
CN105799143B (en) Thermoplastic material bending shaping method based on hot-bar equipment
JP2012054350A5 (en)
CN109352984A (en) Increasing material manufacturing method and associated components
JP3348822B2 (en) Manufacturing method of bonded steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150507

R151 Written notification of patent or utility model registration

Ref document number: 5745789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees