以下、図面を参照しながら、本発明に係るミリ波伝送装置、ミリ波伝送方法、およびミリ波伝送システムの実施形態について説明する。
なお、説明は以下の順序で行なう。
1.第1の実施例:基本
2.第2の実施例:複数の伝送路
3.第3の実施例:結合媒体で結合
4.第4の実施例:加算回路(周波数多重)
5.第5の実施例:フィードバック経路あり
6.第6の実施例:マイクロストリップ線路+導波管構造
7.第7の実施例:上部グランド層+アンテナ構造
8.第8の実施例:結合回路が多層構造
<第1の実施例>
図1は、第1の実施例としてのミリ波伝送装置100の構成例を示すブロック図である。図1に示すミリ波伝送装置100は、搬送周波数が30GHz〜300GHzのミリ波の信号を高速に伝送する画像処理装置などに適用可能な装置である。
ミリ波伝送装置100は、第1の信号生成部21、第2の信号生成部22、信号入力用の端子201、図2(2)に示すような基板10との結合回路205、誘電体素材で構成された有体物(たとえば回路基板)を利用した伝送線路206、基板10との結合回路207、および信号出力用の端子211を備えて構成される。信号生成部21および信号生成部22は半導体集積回路の一例であるCMOS−IC装置から構成される。これらの各部材は同一の電子機器内に配置される。
信号入力用の端子201に接続された第1の信号生成部21は、入力信号Sinを信号処理してミリ波の信号Sを生成するため、たとえば、変調回路202、周波数変換回路203、および増幅器204を有して構成される。信号入力用の端子201には変調回路202が接続され、入力信号Sinを変調するようになされる。変調回路202にはたとえば位相変調回路が使用される。変調回路202と周波数変換回路203は纏めていわゆるダイレクトコンバーション方式のものにしてもよい。
変調回路202には周波数変換回路203が接続され、変調回路202によって変調された後の入力信号Sinを周波数変換してミリ波の信号Sを生成する。ここにミリ波の信号Sとは、30GHz〜300GHzの範囲のある周波数の信号をいう。周波数変換回路203には、増幅器204が接続され、周波数変換後のミリ波の信号Sを増幅するようになされる。
増幅器204には第1の信号結合部の一例を構成する結合回路205が接続され、信号生成部21によって生成されたミリ波の信号を所定の誘電率εを有する有体物(誘電体素材で構成された有体物)の一端に送信する。結合回路205は、ミリ波の信号Sの波長λに基づく所定の長さ、たとえば、600μm程度を有したアンテナ部材から構成され、誘電率εの有体物に結合される。結合回路205は、比帯域(=信号帯域/動作中心周波数)が10%〜20%程度であれば、共振構造などを利用しても容易に実現できる場合が多い。この実施形態で有体物には、誘電率εを有した基板10の一領域が使用され、誘電率εを有した基板10の一領域は伝送線路206を構成する。伝送線路206内にはミリ波の電磁波S’が伝搬するようになる。誘電正接 tanδが大きい場合は、伝送線路206は損失が相対的に大きくなるため反射も減衰するので、誘電正接 tanδが小さい場合よりも好ましい。
因みに、本明細書では、使用周波数帯における誘電正接 tanδの大小の区別を次のように扱うことにする。誘電正接 tanδが小さい誘電体素材としては、 tanδが概ね0.001以下のもので、一例として、テフロン(登録商標)樹脂やシリコーン系の樹脂が該当する。誘電正接 tanδが大きい誘電体素材としては、 tanδが概ね0.01以上のもので、一例として、ガラスエポキシ系(tanδ≒0.02〜0.03)、アクリル系、ポリエチレン系の樹脂が該当する。
伝送線路206には第2の信号結合部の一例を構成する結合回路207が結合され、伝送線路206の他端からミリ波の信号Sに基づく電磁波S’を受信する。結合回路207は、ミリ波の信号Sの波長λに基づく所定の長さ、たとえば、600μm程度を有したアンテナ部材から構成される。アンテナ部材には、プローブアンテナ(ダイポールなど)、ループアンテナ、小型アパーチャ結合素子(スロットアンテナなど)が使用される。
結合回路207には第2の信号生成部22が接続され、結合回路207によって受信したミリ波の信号を信号処理(特に復調処理)して伝送対象の入力信号Sinに対応した出力信号Sout を生成する。信号生成部22は、たとえば、増幅器208、周波数変換回路209、および復調回路210を有して構成される。周波数変換回路209と復調回路210は纏めていわゆるダイレクトコンバーション方式のものにしてもよい。結合回路207には増幅器208が接続され、受信後のミリ波の信号を増幅器208で増幅するようになされる。
増幅器208には、周波数変換回路209が接続され、増幅後のミリ波の信号Sを周波数変換回路209で周波数変換する。周波数変換回路209には復調回路210が接続され、周波数変換後の出力信号を復調回路210で復調するようになされる。
このミリ波伝送装置100では、図1に示した信号入力用の端子201、信号生成部21、結合回路205は、信号送信用の第1の電子部品#Aを構成する。また、結合回路207、信号生成部22、信号出力用の端子211は、信号受信用の第2の電子部品#Bを構成する。
信号生成部21および信号生成部22は半導体集積回路の一例であるCMOS−IC装置から構成された各別のミリ波通信用の電子部品#A,#Bとして提供され、これらの電子部品#Aや電子部品#Bが誘電率εを有した基板10上に実装される。電子部品#A,#Bは、同一の基板10における同一の面に配置されることに限らず互いに異なった面(つまり表裏)に配置してもよい。
図示していないが、回路基板10上には、ミリ波通信用の電子部品#A,#Bの他に、ベースバンド領域での信号処理に使用される抵抗素子や容量素子やトランスなどの受動素子やトランジスタや半導体集積回路など能動素子が搭載される。
ここで、第1の実施例の仕組みでは、第1の信号生成部21および第1の信号結合部の一例を構成する結合回路205が設けられた電子部品#Aが配置された基板10の第1の領域と、第2の信号生成部22および第2の信号結合部の一例を構成する結合回路207が設けられた電子部品#Bが配置された基板10の第2の領域との間の伝送線路206が基板10内に構成されることから、基板10上の両者間でのミリ波伝送を考慮しなくてよい。このため、基板10上の電子部品#A,#B間のスペースには、たとえば、部品の大きさを問わず、ベースバンド領域での信号処理に使用される電子部品(受動素子や能動素子)を搭載できる(後述の図12を参照)。
上述のような入力信号Sinを周波数変換してデータ伝送するという手法は、放送や無線通信で一般的に用いられている。これらの用途では、(1)どこまで通信できるか(熱雑音に対してのS/Nの問題)、(2)反射、マルチパスにどう対応するか、(3)妨害や他チャンネルとの干渉をどう抑えるかなどの問題に対応できるような比較的複雑な送信器や受信器などが用いられている。本実施形態で使用する信号生成部21および信号生成部22は、放送や無線通信で一般的に用いられる複雑な送信器や受信器などの使用周波数に比べて、より高い周波数帯のミリ波帯で使用され、波長λが短いため、周波数の再利用がし易く、近傍で多くのデバイス間での通信をするのに適したものが使用される。
図2は、基板10上のミリ波伝送装置100の構成例を示す図である。この実施例では、熱雑音に対するS/Nのマージンが増加するため、ミリ波帯で通常使用されない損失の大きいガラスエポキシ系の樹脂基板などを用い、反射、マルチパス、妨害および干渉も低減できるようにした。
図2に示すミリ波伝送装置100は、電子部品#Aから電子部品#Bに信号が伝送されるものである。このミリ波伝送装置100では、図1に示した信号生成部21、結合回路205、および信号入力用の端子201を備えた信号送信用の第1の電子部品#Aと、結合回路207、信号生成部22、および信号出力用の端子211を備えた信号受信用の第2の電子部品#Bとを実装した誘電率εの基板10を備え、基板10にはガラスエポキシ樹脂を絶縁ベースとした両面銅箔基板が使用される。ガラスエポキシ樹脂の誘電率εは4.0〜5.0程度である(1MHz)。
伝送線路206は、電子部品#Aおよび電子部品#Bが実装されたガラスエポキシ樹脂基板に画定される伝送領域Iによって構成される。伝送線路206には、通常のプリント配線基板に使われているガラスエポキシ基板のような誘電正接 tanδが0.01以上で、従来、ミリ波帯では伝送損失が大きく、ミリ波伝送に適していないとされていた損失の大きい基板10が使用される。
この例の伝送領域Iは、図2(1)に示す基板10を貫通する中空円筒状の複数の開孔部(以下スルーホール10aという)によって画定される。たとえば、電子部品#Aおよび電子部品#Bとの間の基板10において、ミリ波の信号Sに基づく電磁波S’を伝搬させたい方向に沿って、複数のスルーホール10aを線状に二列形成する(有指向性)。1つのスルーホール10aと隣接するスルーホール10aとの間の配置ピッチpをたとえば、p=λ/2以下に設定する。1つのスルーホール10aと対峙するスルーホール10aとの間の幅を伝送領域Iの幅wとすると、wはλ/2以上に設定する。スルーホール10aは、中空円筒状の部材の他に導電性の円柱状部材を使用してもよい。導電性の円柱状部材を接地などすることで、誘電体導波路としての位相を調整できるようになる。
このように伝送領域Iは、二列に並んだ開孔部列(以下スルーホールフェンス部10bという)によって画定される。もちろん、基板10の途中に、リピータのような衝立部品を配置して、ミリ波の信号Sに基づく電磁波S’の伝送範囲を制御するようにしてもよい。もちろん、電子部品#Aを中心にして電子部品#Bや、他の複数の電子部品#Bで一斉にミリ波の信号Sに基づく電磁波S’を受信する場合には、電磁波S’の伝送方向を無指向性とするために、スルーホールフェンス部10bを省略してもよい。
ミリ波伝送装置100では、結合回路205を構成する、図2(2)に示すアンテナ部材11から基板10内に送信された信号に基づく電磁波S’を、結合回路207を構成する同図に示すアンテナ部材12によって受信する。アンテナ部材11は図1に示した電子部品#Aの増幅器204に接続され、基板10上または基板10の内部に配設され、基板10内に向けて電磁波S’を輻射するようになされる。アンテナ部材11はたとえば、基板10内に開口された穴部10cに配置される。アンテナ部材11には、波長λの1/2程度以上のものが使用される。波長λの1/2程度以上のアンテナ体が実装できると、導波管や誘電体線路などの導波構造も容易に実現できるようになる。導波構造を用いると、放送や無線通信機器での上記(1)、(2)および(3)の課題を著しく緩和できるようになる。
アンテナ部材12は電子部品#Bの増幅器208に接続され、基板10上または基板10の内部に配設され、基板10内から電磁波S’を受信するようになされる。アンテナ部材12も、基板10内に開口された穴部10dに配置される。これにより、スルーホールフェンス部10bによって画定された伝送領域I内に電子部品#Aから送信された電磁波S’を封じ込めることができる。しかも、伝送領域I内に封じ込まれた電磁波S’を電子部品#Bのアンテナ部材12で受信できるようになる。
続いて、信号生成部21における増幅器204や信号生成部22における増幅器208の内部構成例について説明する。図3は、増幅器204などの内部構成例を示す回路図である。この実施例で、図3に示す増幅器204などは、図1に示した信号生成部21,22に適用可能な増幅回路であって、ドライバ用の3個のアンプAMP1〜AMP3と、終段用のアンプAMP4が直列に接続されて構成される。
アンプAMP1は、2個のnチャネル型の電界効果トランジスタ(以下単にトランジスタFET1,FET2という)、抵抗R11、カップリングコンデンサ(以下単に容量C11という)、2個の電解コンデンサ(以下単に容量C12,C13という)、ゲート放電用のコンデンサ(以下単に容量C14という)、入力(負荷)用のインダクタンスL12、出力(負荷)用のインダクタンスL13を有して構成される。
容量C11の一端は、周波数変換回路203に接続され、周波数変換後のミリ波の信号Sが供給される。容量C11の他端は、トランジスタFET1のゲートに接続されるとともに、インダクタンスL12の一端に接続される。インダクタンスL12の他端は、ゲート電圧供給源Vgに接続されるとともに容量C12の一端に接続される。容量C12の他端およびトランジスタFET1のソースは接地される。
トランジスタFET1のドレインとトランジスタFET2のソースとは接続される。トランジスタFET2のドレインにはインダクタンスL13の一端が接続される。インダクタンスL13の他端にはVdd電源および容量C13の一端が接続され、ドレイン電圧がトランジスタFET2のドレインに供給される。容量C13の他端は接地され、電荷を蓄積するように動作する。
トランジスタFET2のゲートとVdd電源との間には抵抗R11が接続され、抵抗R11で分圧したゲート電圧が供給される。トランジスタFET2のゲートと接地間には容量C14が接続され、ゲート電圧を充放電するように動作する。トランジスタFET2のドレインにはカップリングコンデンサ(以下単に容量C21という)の一端が接続される。
容量C21の他端には、次段のアンプAMP2が接続される。アンプAMP2も、2個のnチャネル型の電界効果トランジスタ(以下単にトランジスタFET3,FET4という)、抵抗R21、容量C21、2個の電解コンデンサ(以下単に容量C22,C23という)、ゲート放電用のコンデンサ(以下単に容量C24という)、入力(負荷)用のインダクタンスL22、出力(負荷)用のインダクタンスL23を有して構成される。
前段のトランジスタFET2のドレインに接続された容量C21の他端は、トランジスタFET3のゲートに接続されるとともに、インダクタンスL22の一端に接続される。インダクタンスL22の他端は、ゲート電圧供給源Vgに接続されるとともに容量C22の一端に接続される。容量C22の他端およびトランジスタFET3のソースは接地される。
トランジスタFET3のドレインとトランジスタFET4のソースとは接続される。トランジスタFET4のドレインにはインダクタンスL33の一端が接続される。インダクタンスL33の他端にはVdd電源および容量C33の一端が接続され、ドレイン電圧がトランジスタFET4のドレインに供給される。容量C23の他端は接地され、電荷を蓄積するように動作する。
トランジスタFET2のゲートとVdd電源との間には抵抗R21が接続され、抵抗R21で分圧したゲート電圧が供給される。トランジスタFET4のゲートと接地間には容量C24が接続され、ゲート電圧を充放電するようになされる。トランジスタFET2のドレインにはカップリングコンデンサ(以下単に容量C31という)の一端が接続される。
容量C31の他端には、次段のアンプAMP3が接続される。アンプAMP3も、2個のnチャネル型の電界効果トランジスタ(以下単にトランジスタFET5,FET6という)、抵抗R31、容量C31、2個の電解コンデンサ(以下単に容量C32,C33という)、ゲート放電用のコンデンサ(以下単に容量C34という)、入力(負荷)用のインダクタンスL32、出力(負荷)用のインダクタンスL33を有して構成される。
前段のトランジスタFET4のドレインに接続された容量C31の他端は、トランジスタFET5のゲートに接続されるとともに、インダクタンスL32の一端に接続される。インダクタンスL32の他端は、ゲート電圧供給源Vgに接続されるとともに容量C32の一端に接続される。容量C32の他端およびトランジスタFET5のソースは接地される。
トランジスタFET5のドレインとトランジスタFET6のソースとは接続される。トランジスタFET6のドレインにはインダクタンスL33の一端が接続される。インダクタンスL33の他端にはVdd電源および容量C33の一端が接続され、ドレイン電圧がトランジスタFET6のドレインに供給される。容量C33の他端は接地され、電荷を蓄積するようになされる。
トランジスタFET6のゲートとVdd電源との間には抵抗R31が接続され、抵抗R31で分圧したゲート電圧が供給される。トランジスタFET6のゲートと接地間には容量C34が接続され、ゲート電圧を充放電するようになされる。トランジスタFET6のドレインにはカップリングコンデンサ(以下単に容量C41という)の一端が接続される。
容量C41の他端には、終段のアンプAMP4が接続される。アンプAMP4は、1個のnチャネル型の電界効果トランジスタ(以下単にトランジスタFET7という)、容量41,C51、2個の電解コンデンサ(以下単に容量C42,C43という)、入力(負荷)用のインダクタンスL41,L42、出力(負荷)用のインダクタンスL33および、バイアス電圧発生用のインダクタンスL44を有して構成される。
前段のトランジスタFET6のドレインに接続された容量C41の他端はインダクタンスL41に接続され、インダクタンスL41の他端がトランジスタFET7のゲートに接続されるとともに、インダクタンスL42の一端に接続される。インダクタンスL42の他端は、ゲート電圧供給源Vgに接続されるとともに容量C42の一端に接続される。トランジスタFET7のソースはインダクタンスL44の一端に接続される。インダクタンスL44の他端および容量C42の他端は接地される。
トランジスタFET7のドレインにはインダクタンスL43の一端が接続される。インダクタンスL43の他端にはVdd電源および容量C43の一端が接続され、ドレイン電圧がトランジスタFET7のドレインに供給される。容量C43の他端は接地され、電荷を蓄積するようになされる。トランジスタFET7のドレインには容量C51の一端が接続される。容量C51の他端は、結合回路206のアンテナ部材11など(図2(2)参照)に接続される。
これらにより増幅器204などが構成され、周波数変換後のミリ波の信号SをアンプAMP1〜AMP3で順次増幅し、さらに、最終段のアンプAMP4から結合回路205のアンテナ部材11などへ増幅後のミリ波の信号Sを送出するようになされる。これにより、増幅後のミリ波の信号をアンテナ部材11などを介して所定の誘電率εを有する有体物(誘電体素材で構成された有体物)の一端に送信することができる。
図4は、増幅器204の通過特性例Ia’を示す周波数特性図である。図4において、縦軸は増幅器204の通過特性dB(S(2,1))である。横軸は搬送周波数(freq,GHz)であり、目盛りは10GHz単位である。
図4に示す増幅器204の通過特性例Ia’は、図3に示した増幅器204の3段のドライバ用のアンプAMP1〜AMP3および最終段のアンプAMP4で順次増幅されるミリ波の信号の通過特性dB(S(2,1)である。増幅器204の通過特性dB(S(2,1)は、搬送周波数を1GHzから100GHzに至り、1GHzずつ増加した場合、通過利得が増加している。実測結果によれば、図中、S21に示す搬送周波数=60GHz時の通過特性dB(S(2,1))における通過利得(ゲイン)は21.764dBとなっている。
続いて、テフロン(登録商標)樹脂製とガラスエポキシ樹脂製の2つの基板10をミリ波伝送装置100に適用した場合について、その損失の大小および反射特性を(AgilentAdvancedDesignSystem :ADS)によるシミュレーションに基づいて比較する。図5はミリ波伝送装置100におけるミリ波伝送例を示すシミュレーション回路図である。
図5に示すシミュレーションによれば、伝送線路206として、厚さ100μmのガラスエポキシ樹脂製の基板10上に、厚さt=18μm、長さL=100mm、幅W=170μmのマイクロストリップラインを配設した場合と、厚さ100μmのテフロン(登録商標)樹脂製の基板10上に、同じ厚さtで、同じ長さLで、幅W=170μm+αのマイクロストリップラインを配設した場合とについて、電子回路#Aの結合回路205の出力インピーダンスを特性インピーダンスZo=50Ωとし、電子回路#Bの結合回路207の入力インピーダンスを特性インピーダンスZo=50Ωとし、搬送周波数を0GHzから100GHzに至り、1GHzずつ増加した場合について、伝送線路206の損失の大小および反射特性を検証した結果が得られている。
図6は、テフロン(登録商標)樹脂製の基板10上の伝送線路206の通過特性例および反射特性例を示す周波数特性図である。テフロン(登録商標)樹脂製の基板10は誘電正接が tanδ=0.001の場合であり、伝送線路206をマイクロストリップラインにより構成した場合である。δは誘電体の損失角である。図6において、縦軸は通過特性dB(S(2,1))と反射特性dB(S(1,1))である。横軸は搬送周波数(freq,GHz)であり、目盛りは5GHz単位である。
図6に示す伝送線路206の通過特性例Iaは、テフロン(登録商標)樹脂製の基板10上の電子回路#Aから電子回路#Bへのミリ波の信号Sに基づく電磁波S’の通過特性dB(S(2,1)である。テフロン(登録商標)樹脂製の基板10上の伝送線路206の通過特性dB(S(2,1)は、搬送周波数を1GHzから100GHzに至り、1GHzずつ増加した場合、ほとんど損失がない。シミュレーション結果によれば、図中、m1に示す搬送周波数=60GHz(2Gbps)時の通過特性dB(S(2,1))における通過利得(ゲイン)は−5.150dBである。
また、図6に示す反射特性例IIaは、テフロン(登録商標)樹脂製の基板10上の電子回路#Aから電子回路#Bを見たとき、電子回路#Aへ反射されるミリ波の信号Sに基づく電磁波S’の反射特性dB(S(1,1))である。テフロン(登録商標)樹脂製の基板10上の伝送線路206の搬送周波数を1GHzから100GHzに至り、1GHzずつ増加した場合の反射特性例IIaによれば、図中、波形状の定在波が立っている。このように、誘電正接 tanδ=0.001のテフロン(登録商標)樹脂製の基板10は、通過特性例Iaに示すように損失が小さいものの、反射特性例IIaに示すように定在波が立ち易すい。
図7は、ガラスエポキシ樹脂製の基板10上の伝送線路206の通過特性例および反射特性例を示す周波数特性図である。通常のプリント配線基板に使用されているガラスエポキシ樹脂製の基板10は、誘電正接がたとえば、 tanδ=0.03であり、伝送線路206をマイクロストリップラインにより構成した場合である。δは誘電体の損失角である。図7においても、縦軸は通過特性dB(S(2,1))と反射特性dB(S(1,1))である。横軸は搬送周波数(freq,GHz)であり、目盛りは10GHz単位である。
図7に示す通過特性例Ibは、ガラスエポキシ樹脂製の基板10上の電子回路#Aから電子回路#Bへのミリ波の信号Sに基づく電磁波S’の通過特性dB(S(2,1)である。ガラスエポキシ樹脂製の基板10上の伝送線路206の通過特性dB(S(2,1)は、搬送周波数を1GHzから100GHzに至り、1GHzずつ増加した場合、テフロン(登録商標)樹脂製の基板10に比べて、損失が大きい。シミュレーション結果によれば、図中、m1に示す搬送周波数=60GHz時の通過利得(ゲイン)は−31.141dBである。
また、図7に示す反射特性例IIbは、ガラスエポキシ樹脂製の基板10上の電子回路#Aから電子回路#Bを見たとき、電子回路#Aへ反射されるミリ波の信号Sに基づく電磁波S’の反射特性dB(S(1,1))である。ガラスエポキシ樹脂製の基板10上の伝送線路206の反射特性例IIbによれば、その搬送周波数を1GHzから100GHzに至り、1GHzずつ増加した場合、図中、反射波は減衰し定在波が立ち難くなっている。このように、誘電正接 tanδ=0.03のガラスエポキシ樹脂製の基板10は、反射特性例IIbに示すように定在波が立ち難く、伝送損失特性例Ibに示すように損失が大きいものである。したがって、このようなガラスエポキシ樹脂製の基板10は、従来、ミリ波帯での信号伝送には使用されていなかった。
しかし、誘電正接が0.03程度の損失の大きな基板10であって、伝送線路206の長さがL=10cm程度の距離であれば、ミリ波の信号送信用の信号生成部21を有したCMOS−IC装置および、ミリ波の信号受信用の信号生成部22を有したCMOS−IC装置を基板10に実装することで、熱雑音に比べて、ミリ波基板内通信処理を実行するのに十分な信号強度を得ることができる。
一方、伝送線路206の伝送帯域をBHzとし、ボルツマン定数をkとし、温度をTとし、熱雑音による雑音電力をPとすると、雑音電力PはP=kTBとなり、1GHz当たりの雑音電力はRMS値で−84dBmとなる。RMS値は、抵抗と温度、測定周波数帯域幅の関数から得られる抵抗素子の熱雑音電圧と等価雑音電流から得られる。CMOS−IC装置で、たとえば、60GHz帯で低雑音用の増幅器204,208を構成しようとした場合、6dB程度の雑音指数を有する増幅器204,208などを容易に実現できる。実際に、ミリ波の信号受信用の信号生成部22を構成する場合であって、10dBのマージンを設定したとしても、ノイズフロアは−84dBm+10dB+6dB=―68dBとなる。
また、搬送周波数=60GHzで0dBmの出力を得る増幅器204,208などをCMOS−IC装置に構成することは、容易に設計できる。したがって、図7に示したガラスエポキシ樹脂製の基板10上の伝送線路206の伝送損失が31dBであったとしても、S/N比は(0dBm−31dB)−68dB=37dBとなり、伝送線路206の長さL=10cm程度の距離で、通信するのに十分のS/N比がとれる。
この0dBm出力を必要最低減のS/N比に制御すれば、周辺回路(領域)への妨害を最小限にすることが可能となる。ガラスエポキシ樹脂製の基板10のように、誘電正接 tanδが大きければ、基板10に形成された伝送線路206を伝搬するミリ波の電磁波S’は基板内で減衰するため、その信号に関連しない他の電子部品への妨害を大きく低減できるようになる。また、送信側の消費電力も抑制できるようになる。
このような損失の大きい伝送線路206では、搬送周波数が増加するに従って、伝送損失が増加し、反射波は減衰して行くので、反射波による定在波の悪影響も低減できるようになる。この例では、周波数変換回路203で入力信号Sinをミリ波の信号Sへ周波数変換し、周波数変換回路209で増幅器208による増幅後のミリ波の信号を周波数変換することで、(信号帯域)/(中心周波数)の比を小さくできるようになるので、ミリ波の信号送信用の信号生成部21およびミリ波の信号受信用の信号生成部22も構成し易くなる。
続いて、ミリ波伝送方法について説明する。図8は、ミリ波伝送装置100における電子部品#Aから電子部品#Bへの通信例を示す動作フローチャートである。この例で、誘電正接 tanδ(誘電率ε)の基板10内にミリ波を伝送するミリ波伝送装置100は、図2に示したように、ガラスエポキシ樹脂製の基板10上の領域(ア)内に、COMS−IC装置から成る電子部品#Aおよび電子部品#Bが実装され、電子部品#Aおよび電子部品#B間が損失の大きい伝送線路206で結合されている。
これを動作条件にして、ミリ波伝送装置100における電子部品#Aは、入力信号Sinを信号処理してミリ波の信号Sを生成するために、図8に示すフローチャートのステップST11で、信号生成部21の変調回路202が入力信号Sinに基づき位相変調処理などを実行する。入力信号Sinは図示しない下位の信号処理回路から端子201に供給される。
次に、ステップST12で周波数変換回路203は変調回路202によって位相変調などがなされた後の入力信号Sinを周波数変換してミリ波の信号Sを生成する。その後、ステップST13で増幅器204はミリ波の信号Sを増幅する。そして、ステップST14で結合回路205は、増幅器204によって増幅されたミリ波(信号処理後のミリ波)の信号を誘電正接 tanδの基板10に画定された伝送線路206の一端に送信する。伝送線路206の内部にはミリ波の信号Sに基づく電磁波S’が伝搬して行く。
一方、電子部品#Bは、ミリ波の信号Sに基づく電磁波S’を受信処理して出力信号Sout を生成するために、図8に示すフローチャートのステップST21で、結合回路207は、誘電正接 tanδの基板10の伝送線路206の他端からミリ波の信号Sに基づく電磁波S’を受信する。その後、ステップST22で増幅器208はミリ波の信号を増幅する。そして、ステップST23で周波数変換回路208は増幅器208によって増幅された後のミリ波の信号Sを周波数変換する。その後、ステップST24で復調回路210は、周波数変換後の出力信号を復調するようになされる。復調後の出力信号Sout は端子211から図示しない上位の信号処理回路に出力される。
このように第1の実施例としてのミリ波伝送装置100およびミリ波伝送方法によれば、誘電体素材で構成された有体物を使用した基板10上に、入力信号Sinをミリ波帯の信号に周波数変換する機能を備えたMOS−IC装置を実装し、ミリ波伝送装置100では、入力信号Sinが信号生成部21によってミリ波帯の信号に周波数変換され、ミリ波帯域で損失の大きい基板10の伝送線路206にミリ波の信号Sに基づく電磁波S’を伝送するようになされる。
好ましくは、基板10をなす誘電体素材で構成された有体物としては、誘電正接 tanδが、小さいものではなく、大きいものを使用することで、損失が大きい伝送線路206となるようにする。損失の大きい伝送線路206では、搬送周波数が増加するに従って、伝送損失が増加し、反射波は減衰して行くので、損失の大きな誘電率εの基板10を介して非常に高速な信号を伝送できるようになる。しかも、誘電率εの基板10のある局所的な範囲のみを伝送路として使用することで(この例では基板10に構成した伝送線路206で)、高速通信処理が可能となる。また、誘電体素材で構成された有体物の一例である誘電率εを有する基板10の局所的な範囲以外は、減衰が大きくなり、通信用の基板10の他の場所、あるいは、誘電率εの基板10の通信領域以外への妨害を大きく低減できるようになった。また、基板10の損失が大きい影響で、基板10以外への妨害も小さくなる。これにより、妨害、反射の少ない高速信号の伝送システムを実現できるようになった。
特に、入手が容易で低コストである損失が小さくない(誘電正接 tanδが中〜大の)誘電体材料を含むガラスエポキシ樹脂製などの回路基板に送信用および受信用の電子部品を搭載してシステムを構成してもミリ波帯での信号伝送を問題なく実現できるという点で第1の実施例の仕組みが果たす効果は大きい。
[第1比較例]
図8A〜図8Bは、第1の実施例に対する第1比較例を説明する図である。ここで、図8Aは、第1比較例の高速ベースバンド信号伝送装置の構成例を示すブロック図である。図8Bは高速ベースバンド信号の伝送例を説明する図である。
近年、映画映像やコンピュータ画像などの情報量の膨大化に伴い、ベースバンド信号を高速に伝送する装置が使用される場合が多くなってきた。この種の高速ベースバンド信号伝送装置には、ミリ波などの高速のベースバンド信号をエラーなく伝送することが要求される。
たとえば、図8Aに示す第1比較例の高周波伝送装置1は、信号送信用のIC部品2と、信号受信用のIC部品3とが伝送損失を小さくするために、誘電体損失の少ない基板上に実装される。IC部品2は信号入力用の端子101、波形成形部102、および基板との結合回路103を有して構成される。
IC部品3は基板との結合回路105、波形成形部106および信号出力用の端子107を有して構成される。IC部品2の結合回路103と、IC部品3の結合回路105との間には、損失の小さい伝送線路104が配置され、IC部品2からIC部品3へ、たとえば、映画映像やコンピュータ画像などの膨大な情報量の高速のベースバンド信号を伝送するようになされる。
「損失の小さい伝送線路104」とは、伝送線路104をなす部材(この例では基板)の誘電正接 tanδが、第1の実施例で使用している基板10をなす誘電体素材の誘電正接 tanδよりも小さいことを意味する。
図8B(1)には、高速ベースバンド信号の伝送例を示す波形図が示され、図8B(2)には、ベースバンドスペクトラム(周波数特性)が示されている。図8B(1)に示す波形例において、横軸は時間tであり、縦軸は振幅aである。図中、Tsはシンボル区間である。ベースバンド信号の時間波形をS(t)として、時間波形S(t)は、式(1)で表現される。
式(1)の時間波形S(t)をフーリエ変換ペアで示すと、式(2)で定義される。
図8B(2)に示すベーススペクトラムにおいて、横軸は周波数tであり、縦軸は振幅である。時間波形S(t)の周波数特性は、式(3)で表現される。
図中、Fsはシンボル周波数である。信号送信用のIC部品2は、信号受信用のIC部品3でシンボル間干渉が起きないように、少なくとも、0Hz〜(1/2)・(1/Ts)Hzの信号をIC部品3に送る(ナイキスト定理)。たとえば、IC部品2からIC部品3へ、伝送データレート=10Gbpsのバイナリーデータを送る場合、シンボル周波数Fsは1/Tsで与えられるから、Fs=10GHzである。
ベースバンド信号伝送では、0Hz〜(1/2)・(10GHz)、すなわち、0Hz〜5GHzの信号を送ることで、シンボル間干渉を生じないようにしている。ここで0Hzの信号の波長λは無限大、真空中での光速をc=3×108m/sとすると、5GHzの信号の波長λは、c/Fsで与えられ、λ=3×108/5×109=6cmであり、高周波伝送装置1によれば、大変広いレンジの波長λを扱って高速のベースバンド信号を伝送するようになされる。
基板上の信号処理速度の高速化が進む中で、第1比較例の高周波伝送装置1や、ミリ波帯の信号伝送技術などを応用して妨害の少ない高速なミリ波信号伝送システムを基板内あるいは基板上に構築しようとした場合に、次のような問題が懸念される。
i.第1比較例の高周波伝送装置1によれば、伝送損失を小さくするために、信号送信用のIC部品2と、信号受信用のIC部品3とを誘電体損失の少ない基板上に実装しなければならない。誘電体損失の少ない基板などは、特殊であり、高価であるという問題がある。
ii.今後、基板上の信号は、ますます高速化して行く傾向にあるが、これに伴い基板上のIC部品2などから発生する信号が、お互いに干渉して妨害になってくると予想される。したがって、ミリ波などの高速のベースバンド信号をIC部品2からIC部品3などへエラーなく伝送することが困難になってくる。
図8Bに示した10Gbpsのバイナリーデータの伝送例によれば、無限大(0Hz)から6cm(5GHz)の波長に渡って、1/2波長の倍数の構造的な共振、電気的な共振および反射を抑えることは、機構設計および電気設計において容易なことではない。この問題は、伝送データレートが上昇すれば、上昇するほど、これらの設計の困難性が増加してくる。これにより、高速信号を処理する基板の設計が困難になる。
iii.映画映像やコンピュータ画像などの情報量の膨大化に伴い、ベースバンド信号の帯域が広くなるに従って、(1)基板から外部への不要輻射だけでなく、(2)反射があると受信側でシンボル間での干渉による伝送エラー、(3)妨害の飛び込みによる伝送エラーも問題となってくる。
iv.一般的に、ベースバンド信号帯域における不要輻射には、熱雑温によるノイズフロアからの制限のみならず、伝送される信号以外にも、様々な信号妨害源が含まれる。たとえば、CPUからのクロック信号による妨害、放送、通信などからの妨害、モータのノイズ放電によるサージなどの妨害信号や、信号線路(伝送線路)上のインピーダンスの不整合などによる反射などによるものが不要輻射の主な原因となる。共振や反射があると、それは放射を伴い易く、電磁誘導障害(EMI)の問題も深刻となる。
v.さらに、特許文献1に見られるような誘電体導波管線路と、特許文献2に見られるような無線方式のミリ波通信システムとを参考にして、新たな有体物内伝送方式のミリ波信号伝送装置を構成しようとした場合、何らの工夫無しに、単に、損失の少ない誘電体導波管線路と、ミリ波の信号の送受信機能を備えたミリ波通信システムとを組み合わせただけでは、誘電体導波管線路のある局所的な範囲のみで、高速な通信処理を行なうことや、誘電体導波管線路の局所的な範囲以外への妨害を低減することが困難となる。
vi.因みに、搬送周波数が増加しても、あまり伝送損失が増加しない誘電体導波管線路は、反射波が増加する傾向にある。この反射波を低減しようとすると誘電体導波管線路の構造が複雑化するおそれがある。
[第1比較例と第1の実施例との対比]
図9は、第1の実施例のミリ波伝送装置100によるミリ波伝送の効果を第1比較例との対比で説明する図である。ここでは、第1比較例の高周波伝送装置1により高速のデータバンド信号を伝送するのではなく、高速ベースバンド信号を第1の実施例のミリ波伝送装置100によりミリ波の信号Sに周波数変換して伝送する場合のメリットについて説明する。
図9(1)には、周波数変換後のミリ波帯の信号Sの伝送例を示す波形図が示され、図9(2)には、そのミリ波帯の信号Sのスペクトラム(周波数特性)が示されている。
図9(1)に示す波形例において、横軸は時間tであり、縦軸は振幅aである。Sは、周波数変換後のミリ波帯の信号波形を示している。図9(2)に示すミリ波帯の信号Sのスペクトラムにおいて、横軸は周波数tであり、縦軸は振幅である。図中、Fsはシンボル周波数であり、Fs=10GHzである。
この例では、伝送データレート=10Gbpsのバイナリーデータの伝送例について、第1比較例の高周波伝送装置1と、第1の実施例のミリ波伝送装置100とを比較する。高周波伝送装置1によれば、図8B(2)で説明したようにバイナリーデータをベースバンドとして、波長λ=無限大(0Hz)から6cm(5GHz)を注意しながらアンテナなどの構造設計および電気設計をしなければならない。
これに対して、第1の実施例のミリ波伝送装置100によれば、バイナリーデータをミリ波帯に周波数変換して電子部品#Aから電子部品#Bへ伝送する。たとえば、中心周波数F0を60GHzに設定すると、ナイキストの定理により、シンボル間干渉がない伝送を行なうためには、シンボル周波数Fs=55GHz((=60GHz−(Fs/2))からシンボル周波数Fs=65GHz(=60GHz+(Fs/2))の信号Sを伝送するようになる。
真空中の波長λは、真空中での光速をc=3×108m/sとすると、Fs=55GHzのとき、c/Fs=3×108/55×109≒5.5mmである。Fs=65GHzのときは、3×108/65×109=4.6mmとなる。したがって、ミリ波伝送装置100によれば、波長λ=4.6mmから5.5mmの範囲に注意してアンテナなどの構造設計および電気設計をすればよく、高周波伝送装置1に比べて取り扱い易い。
このように、第1の実施例によれば、電子部品#A−電子部品#B間でミリ波伝送システムを構築できるようになる。なお、電子部品#A−電子部品#B間の通信距離が近い場合は、図1に示した供給側の増幅器204および受信側の増幅器208を省略してもよい。
<第2の実施例>
続いて、図10〜図12を参照して、第2の実施例としてのミリ波伝送システム200について説明する。図10は第2の実施例としてのミリ波伝送システム200の構成例を示すブロック図である。図10に示すミリ波伝送システム200は、第1のミリ波伝送体の一例を構成するミリ波伝送装置100aと、第2のミリ波伝送体の一例を構成するミリ波伝送装置100bを備えて構成される。
ミリ波伝送装置100aは電子部品#Aおよび電子部品#Bを備えて構成される。ミリ波伝送装置100aについては第1の実施例で説明したミリ波伝送装置100が使用されるので、その説明を省略する。ミリ波伝送装置100bは電子部品#Cおよび電子部品#Dを備えて構成される。図10に示すミリ波伝送システム200によれば、電子部品#Aから電子部品#Bにミリ波の信号Sに基づく電磁波S’が伝送され、同一基板10上の独立した別の場所にある電子部品#Cから電子部品#Dにミリ波の信号Sに基づく電磁波S’が伝送されるシステムが構築される。
ミリ波伝送装置100bは、信号送信用の電子部品#Cを構成する第3の信号生成部23および信号入力用の端子221と、基板10との結合回路225と、誘電体素材で構成された有体物(たとえば回路基板)を利用した伝送線路226と、基板10との結合回路227と、信号受信用の電子部品#Dを構成する第4の信号生成部24、および信号出力用の端子231とを備えて構成される。
信号生成部23および信号生成部24は半導体集積回路の一例であるCMOS−IC装置から構成された各別のミリ波通信用の電子部品#A,#Bとして提供され、これらの電子部品#Aや電子部品#Bが誘電率εを有した基板10上に実装される。電子部品#A,#Bは、基板10における同一の面に配置されることに限らず互いに異なった面(つまり表裏)に配置してもよい。
信号入力用の端子221に接続された第3の信号生成部23は、入力信号Sinを信号処理してミリ波の信号Sを生成するため、たとえば、変調回路222、周波数変換回路223、および増幅器224を有して構成される。信号入力用の端子221には変調回路222が接続され、入力信号Sinを変調するようになされる。変調回路222にはミリ波伝送装置100aと同様にして位相変調回路が使用される。変調回路222と周波数変換回路223は纏めていわゆるダイレクトコンバーション方式のものにしてもよい。
変調回路222には周波数変換回路223が接続され、変調回路222によって変調された後の入力信号Sinを30GHz〜300GHzの範囲の周波数に変換してミリ波の信号Sを生成する。周波数変換回路223には、増幅器224が接続され、周波数変換後のミリ波の信号Sを増幅するようになされる。
増幅器224には第3の信号結合部の一例を構成する結合回路225が接続され、信号生成部23によって生成されたミリ波の信号を所定の誘電率εを有する有体物(誘電体素材で構成された有体物)の一端に送信する。結合回路225は、ミリ波の信号Sの波長λに基づく所定の長さ、たとえば、600μm程度を有したアンテナ部材から構成されて誘電率εの有体物に結合される。この実施例でも有体物には、誘電率εを有した基板10の一領域が使用され、誘電率εを有した基板10の一領域は伝送線路226を構成する。伝送線路226内にもミリ波の電磁波S’が伝搬するようになる。誘電正接 tanδが大きい場合は、伝送線路226は損失が相対的に大きくなるため反射も減衰するので、誘電正接 tanδが小さい場合よりも好ましい。
伝送線路226には第4の信号結合部の一例を構成する結合回路227が結合され、伝送線路226の他端からミリ波の信号Sに基づく電磁波S’を受信する。結合回路227は、ミリ波の信号Sの波長λに基づく所定の長さ、たとえば、600μm程度を有したアンテナ部材から構成される。アンテナ部材には第1の実施例と同様にして、プローブアンテナ(ダイポールなど)、ループアンテナ、小型アパーチャ結合素子(スロットアンテナなど)が使用される。
結合回路227には第4の信号生成部24が接続され、結合回路227によって受信したミリ波の信号Sに基づく電磁波S’を信号処理(特に復調処理)して電子部品#Cが扱う伝送対象の入力信号Sinに対応した出力信号Sout を生成する。信号生成部24は、たとえば、増幅器228、周波数変換回路229、および復調回路230を有して構成される。周波数変換回路229と復調回路230は纏めていわゆるダイレクトコンバーション方式のものにしてもよい。結合回路227には増幅器228が接続され、受信後のミリ波の信号を増幅器228で増幅するようになされる。
増幅器228には、周波数変換回路229が接続され、増幅後のミリ波の信号Sを周波数変換回路229で周波数変換する。周波数変換回路229には復調回路230が接続され、周波数変換後の出力信号を復調回路230で復調するようになされる。
この例でも、信号生成部23および信号生成部24は半導体集積回路の一例であるCMOS−IC装置から構成された各別のミリ波通信用の電子部品#C,#Dとして提供され、これらの電子部品#Cおよび電子部品#Dがミリ波伝送装置100aを構成する電子部品#Aおよび電子部品#Bとともに誘電率εを有した基板10上に実装される。電子部品#C,#Dは、同一の基板10における同一の面に配置されることに限らず互いに異なった面(つまり表裏)に配置してもよい。
図示していないが、回路基板10上には、ミリ波通信用の電子部品#A,#B,#C,#Dの他に、ベースバンド領域での信号処理に使用される抵抗素子や容量素子やトランスなどの受動素子やトランジスタや半導体集積回路など能動素子が搭載される。
たとえば、基板10上の電子部品#A,#B間のスペースには、たとえば、部品の大きさを問わず、ベースバンド領域での信号処理に使用される電子部品(受動素子や能動素子)を搭載できる(後述の図12を参照)。同様に、第3の信号生成部23および第3の信号結合部の一例を構成する結合回路225が設けられた電子部品#Cが配置された基板10の第3の領域と、第4の信号生成部24および第4の信号結合部の一例を構成する結合回路227が設けられた電子部品#Dが配置された基板10の第4の領域との間の伝送線路226が基板10内に構成されることから、基板10上の両者間でのミリ波伝送を考慮しなくてよい。このため、電子部品#C,#D間の基板10上のスペースには、たとえば、部品の大きさを問わず、ベースバンド領域での信号処理に使用される電子部品(受動素子や能動素子)を搭載できる(後述の図12を参照)。
以上の説明から理解されるように、第2の実施例のミリ波伝送システム200は、ミリ波伝送装置100aとミリ波伝送装置100bが、同一の基板10に搭載されて構成されている。この場合、ミリ波伝送装置100aの伝送線路206とミリ波伝送装置100bの伝送線路226の間に、基板10の一領域や両者間の空間などによって結合媒体243が形成される。そのため、ミリ波伝送装置100aとミリ波伝送装置100bの間での干渉(通信妨害)が懸念される。
しかしながら、基板10の誘電正接 tanδが小さくない(大きい)場合は、ミリ波伝送装置100aの伝送線路206から結合媒体243を通じてミリ波伝送装置100bの伝送線路226へのミリ波の漏れは、基板10の内部の損失が大きいことで減衰する。また、両者間の空間に形成される結合媒体243を通じての結合状態は小さいと言える。これらのことから、第2の実施例において、基板10の誘電正接 tanδが小さくない(大きい)場合には、ミリ波による妨害を極めて低減できるようになる。
加えて、第2の実施例の仕組みでは、同一の基板10上に搭載されたミリ波伝送装置100aとミリ波伝送装置100bの間はある程度の距離を離すことになるし、その間のスペースにおける自由区間でのミリ波伝送も考慮しなくてよい。このため、ミリ波伝送装置100a,100b間のスペースには、たとえば、部品の大きさを問わず、ベースバンド領域での信号処理に使用される受動素子(抵抗素子や容量素子やトランスなど)や能動素子(トランジスタや半導体集積回路など)を搭載できる(後述の図12を参照)。
図11は、ミリ波伝送システム200における4つの電子部品#A,#B,#C,#Dの配置例を示す平面図である。図11に示す基板10には、2つの領域(ア)および(イ)が割り当てられる。領域(ア)には、電子部品#Aおよび電子部品#Bが所定の距離、たとえば、数mm〜数十cm程度離して縦方向に配置される。
同図に示す領域(イ)には、電子部品#Cおよび電子部品#Dが所定の離隔距離L、たとえば、L=数mm〜数十cm程度離して縦方向に配置される。領域(ア)の電子部品#Aと領域(イ)の電子部品#Cとの配置間隔Labは、たとえば、Lab=縦方向の離隔距離Lの約3倍程度に設定されて、領域(ア)に電子部品#Aが配置され、領域(イ)に電子部品#Cがその横方向に配置される。また、領域(ア)の電子部品#Bと領域(イ)の電子部品#Dも、たとえば、上述の縦方向の離隔距離Lの約3倍程度を有して横方向に配置される。3倍程度離せば、仮に電子部品#A−#B間から電子部品#C−#D間へミリ波の信号Sに基づく電磁波S’が漏れ出したとしても、これを途中で減衰させることができる。
このようなミリ波伝送システム200においては、損失の大きな基板10の内部および、その空間などの結合媒体243を通じての結合状態を小さくすることができ、損失の少ない基板に比べて、電子部品#A−#B間、電子部品#C−#D間の両通信時のアイソレーションを大きく改善できるようになる。
図11では示していないが、領域(ア)の電子部品#Aと領域(イ)の電子部品#Cとの間には、後述の図12のように、ベースバンド領域での信号処理に使用される電子部品(受動素子や能動素子)を搭載できる。
図12は、ミリ波伝送システム200における電子部品#A,#B,#C,#Dおよび伝送線路206,226の実装例を示す斜視図である。図12に示すミリ波伝送装置100aは、領域(ア)に信号送信用の電子部品#Aおよび信号受信用の電子部品#Bが実装され、電子部品#Aから電子部品#Bにミリ波の信号を伝送するようになされる。
このミリ波伝送装置100aおいて、電子部品#Aは、図10に示した信号生成部21、結合回路205および信号入力用の端子201を備え、電子部品#Bは、結合回路207、信号生成部22および信号出力用の端子211を備えて構成される。電子部品#Aと電子部品#Bとが誘電率εの基板10に実装される。この例でも、領域(ア)を画定するためのスルーホールフェンス部10bを設けてもよい(図2(1)参照)。
基板10上の電子部品#Aと電子部品#Bとの間には伝送線路206が配置される。伝送線路206には、電子部品#Aおよび電子部品#Bが実装された、損失の大きいガラスエポキシ樹脂製の基板10の内部に画定され、図2(1)に示したような伝送領域Iを構成するようになる。この例でも伝送線路206は、図12には図示しないが、たとえば、基板10を貫通する複数のスルーホール10aによって画定される(図2(1)参照)。伝送線路206の作り方はあくまでも一例である。
また、ミリ波伝送装置100bおいて、電子部品#Cは、図10に示した信号入力用の端子221、信号生成部23および結合回路225を備え、電子部品#Dは、結合回路227、信号生成部24および信号出力用の端子231を備えて構成される。電子部品#Cと電子部品#Dとは電子部品#Aと電子部品#Bと同様にして、誘電率εの同一の基板10に実装される。この例でも、領域(イ)を画定するためのスルーホールフェンス部10bを設けてもよい(図2(1)参照)。
基板10上の電子部品#Cと電子部品#Dとの間には伝送線路226が配置される。伝送線路226には、電子部品#Cおよび電子部品#Dが実装された、損失の大きいガラスエポキシ樹脂製の同一の基板10の内部に画定され、図2(1)に示したような伝送領域Iを構成するようになる。この例でも伝送線路226は、図12には図示しないが、たとえば、基板10を貫通する複数のスルーホール10aによって画定される(図2(1)参照)。伝送線路226の作り方はあくまでも一例である。
同一の基板10上に搭載されたミリ波伝送装置100aが配置された領域(ア)とミリ波伝送装置100bが配置された領域(イ)の間には、ベースバンド領域での信号処理に使用される抵抗素子280や容量素子282やトランス284などの受動素子やトランジスタ290や半導体集積回路292など能動素子が搭載されている。
このように第2の実施例に係るミリ波伝送システム200によれば、ミリ波伝送装置100aとミリ波伝送装置100bとが損失の大きいガラスエポキシ樹脂製の同一の基板10上に配置され、領域(ア)で電子部品#Aから電子部品#Bにミリ波の信号Sに基づく電磁波S’を伝送し、同一基板10上の独立した別の場所にある領域(イ)で電子部品#Cから電子部品#Dにミリ波の信号Sに基づく電磁波S’を伝送するようになされる。
したがって、基板10の損失を利用して同一基板10上においても、領域(ア)における電子部品#Aから電子部品#Bへの搬送周波数の設定と、領域(イ)における電子部品#Cから電子部品#Dへの搬送周波数の設定とを同一にしても領域(ア),(イ)間での通信妨害の問題が起きないので、搬送周波数の再利用が容易になる。
[第2比較例]
図12Aは、第2の実施例に対する第2比較例を説明する図である。ここで、図12Aは、第2比較例の高速ベースバンド信号伝送システムの構成例を示すブロック図である。
第2比較例の高周波伝送システム20は、図8Aに示した第1比較例の高周波伝送装置1を同一基板上に複数個併設したものである。つまり、第2比較例の高周波伝送システム20は、同一基板上に図8Aに示したような第1比較例の高周波伝送装置1や、高周波伝送装置1と同じ機能を有した他の高周波伝送装置6を実装して使用される。
IC部品4は信号入力用の端子111、波形成形部112、および基板との結合回路113を有して構成される。IC部品5は基板との結合回路115、波形成形部116、および信号出力用の端子117を有して構成される。IC部品4の結合回路113と、IC部品5の結合回路115との間には、損失の小さい伝送線路114が配置され、IC部品4からIC部品5へ、高周波伝送装置1と独立して映画映像やコンピュータ画像などの膨大な情報量の高速のベースバンド信号を伝送するようになされる。
「損失の小さい伝送線路114」とは、伝送線路114をなす部材(この例では基板)の誘電正接 tanδが、第1の実施例で使用している基板10をなす誘電体素材の誘電正接 tanδよりも小さいことを意味する。
以上の説明から理解されるように、第2比較例の高周波伝送システム20は、高周波伝送装置1と高速ベースバンド信号伝送装置2が、損失の小さい同一の基板に搭載されて構成されている。この場合、高周波伝送装置1の伝送線路104と高速ベースバンド信号伝送装置2の伝送線路114の間に、損失の小さい基板の一領域や両者間の空間などによって結合媒体143が形成される。そのため、損失の小さい同一基板上に複数の高速ベースバンド信号伝送装置を搭載する場合は、高速ベースバンド信号伝送装置間での干渉(通信妨害)が起こる。
伝送線路104と伝送線路114とは損失の小さい基板内および自由空間を通じて結合され、低い周波数の信号を伝送する場合、自由空間における損失は小さく、誘電体損失の影響も少ない。自由空間における伝送損失は周波数の2乗に比例する。しかし、損失の小さい伝送線路114が実装された基板上のIC部品4やIC部品5などの側は、伝送線路114は、伝送線路104からの妨害、すなわち、IC部品2からの信号による妨害を受け易く、周波数が低いベースバンド信号の妨害は減衰し難いことも、伝送エラーの原因となっている。このように、第2比較例では、高速ベースバンド信号は、反射、妨害、比帯域(=必要帯域/動作中心周波数)が大きいなどの問題を抱えている。
これに対して、第2の実施例の仕組みでは、好ましくは、基板10をなす誘電体素材で構成された有体物としては、誘電正接 tanδが、小さいものではなく、大きいものを使用することで、損失が大きい結合媒体243となるようにする。これにより、同一基板上に複数のミリ波伝送装置100を搭載する場合でも、妨害、反射の少ない高速信号の伝送システムを実現できるようになった。
<第3の実施例>
続いて、図13〜15を参照して、第3の実施例としてのミリ波伝送システム300について説明する。なお、第1および第2の実施例と同じ名称のものは同じ機能を有するためその説明を省略する。
図13は、第3の実施例としてのミリ波伝送システム300の構成例を示すブロック図である。この実施例では、同一基板上に複数のミリ波伝送装置100を配置して、さらに、ミリ波の信号を伝搬する結合媒体で結合してミリ波の信号Sに基づく電磁波S’を伝搬するようになされる。
図13に示すミリ波伝送システム300は、ミリ波伝送装置100cとミリ波伝送装置100dとが基板10の同一平面に配置され、基板10とは別の層または同一層に、結合媒体の一例を構成する低損失の導波構造341が設けられるものである。ミリ波伝送装置100cとミリ波伝送装置100dとは、たとえば、導波管により接続される(図15参照)。ミリ波伝送装置100c,100dやそれらを接続する導波管などの各部材は同一の電子機器内に配置される。
「低損失の導波構造341」とは、導波構造341で形成される導波路をなす部材(自由空間の場合の空気を含む)の誘電正接 tanδが、第3の実施例で使用する基板10をなす誘電体素材の誘電正接 tanδよりも小さいことを意味する。
ミリ波伝送装置100cは誘電率εの基板10上に電子部品#Aおよび電子部品#Bを備えて構成される。ミリ波伝送装置100cの信号送信用の電子部品#Aは、信号生成部25および信号入力用の端子301と、基板10との結合回路305とを有して構成される。基板10には損失が大きい伝送線路306が構成される。信号生成部25は、変調回路302、周波数変換回路303および増幅器304を有して構成される。
信号受信用の電子部品#Bは、基板10との結合回路307、信号生成部26、および信号出力用の端子311とを備えて構成される。信号生成部26は、増幅器308、周波数変換回路309、および復調回路310を有して構成される。信号生成部25および信号生成部26は半導体集積回路の一例であるCMOS−IC装置から構成される。
ミリ波伝送装置100dは、誘電率εの基板10上に電子部品#Cおよび電子部品#Dを備えて構成される。信号送信用の電子部品#Cは、信号入力用の端子321、信号生成部27、および基板10との結合回路325を有して構成される。信号生成部27は、変調回路322、周波数変換回路323、および増幅器324を有して構成される。
好ましくは、基板10をなす誘電体素材で構成された有体物としては、誘電正接 tanδが、小さいものではなく、大きいもの(たとえばガラスエポキシ樹脂)を使用することで、損失が大きい伝送線路306,326となるようにする。
信号受信用の電子部品#Dは、基板10との結合回路327と、信号生成部28および信号出力用の端子331とを有して構成される。信号生成部28は増幅器328、周波数変換回路329および復調回路330を有して構成される。信号生成部27および信号生成部28は半導体集積回路の一例であるCMOS−IC装置から構成される。
低損失の導波構造341は、たとえば、導波管により構成され、電子部品#A側の基板10との結合回路305と電子部品#D側の基板10との結合回路327の間を接続するようになされる。
このように、図13に示すミリ波伝送システム300によれば、電子部品#Aから電子部品#Bにミリ波の信号Sに基づく電磁波S’が伝送され、同一基板10上の独立した別の場所にある電子部品#Cから電子部品#Dにミリ波の信号Sに基づく電磁波S’が伝送され、さらに、電子部品#Aから電子部品#Dに低損失の導波構造341を通してミリ波の信号Sに基づく電磁波S’が伝送可能なシステムが構築される。
図14は、ミリ波伝送システム300における4つの電子部品#A,#B,#C,#Dおよび導波構造341の配置例を示す平面図である。図14に示す損失が大きい基板10には、2つの領域(ア)および(イ)が割り当てられる。領域(ア)には、第2の実施例と同様にして、電子部品#Aおよび電子部品#Bが所定の距離、たとえば、数mm〜数十cm程度離して縦方向に配置される。
同図に示す領域(イ)にも、第2の実施例と同様にして、電子部品#Cおよび電子部品#Dが所定の離隔距離L、たとえば、L=数mm〜数十cm程度離して縦方向に配置される。領域(ア)の電子部品#Aと領域(イ)の電子部品#Cとの配置間隔Labは、たとえば、Lab=縦方向の離隔距離Lの約3倍程度に設定されて、領域(ア)に電子部品#Aが配置され、領域(イ)に電子部品#Cがその横方向に配置される。また、領域(ア)の電子部品#Bと領域(イ)の電子部品#Dも、たとえば、上述の縦方向の離隔距離Lの約3倍程度を有して横方向に配置される。
導波構造341は結合媒体の一例を構成し、損失が大きい基板10とは別の層であって、2つの領域(ア)および(イ)を導波管が橋架するように配置される。導波管には内部に空間を有した金属管または導電性の樹脂管が使用される。導波管の自由空間は誘電率ε0を有してミリ波の信号Sに基づく電磁波S’を伝搬する。ε0は真空の誘電率であり、ε0=8.854187817×10^(−12)(F/m)である。導波構造341は、その導波路部分がミリ波帯で損失の大きい基板10の材質と比べて損失の少ない(異なる)材質で構成されているものとするとよい。このようなミリ波伝送システム300においては、領域(ア)の電子部品#Aから領域(イ)の電子部品#Dに低損失の導波構造341を通してミリ波の信号Sに基づく電磁波S’を伝送可能なシステムを構築できるようになる。もちろん、導波構造341は、金属壁中空の導波管以外にも、比誘電率をεrとしたとき、誘電率ε=ε0・εrの誘電体線路で構成される場合もある。
図15は、ミリ波伝送システム300における電子部品#A,#B,#C,#D、伝送線路306,326および導波構造341の実装例を示す斜視図である。図15に示すミリ波伝送システム300において、ミリ波伝送装置100cは、領域(ア)に信号送信用の電子部品#Aおよび信号受信用の電子部品#Bが実装され、電子部品#Aから電子部品#Bにミリ波の信号を伝送するようになされる。
このミリ波伝送装置100cおいて、電子部品#Aは、図13に示した信号入力用の端子301、信号生成部25および結合回路305を備え、電子部品#Bは、結合回路307、信号生成部26および信号出力用の端子311を備えて構成される。電子部品#Aと電子部品#Bとが誘電率εの基板10に実装される。この例でも、領域(ア)を画定するためのスルーホールフェンス部10bを設けてもよい(図2(1)参照)。
基板10上の電子部品#Aと電子部品#Bとの間には伝送線路306が配置される。伝送線路306には、電子部品#Aおよび電子部品#Bが実装された、損失の大きいガラスエポキシ樹脂製の基板10の内部に画定され、図2(1)に示したような伝送領域Iを構成するようになる。この例でも伝送線路306は、図15には図示しないが、基板10を貫通する複数のスルーホール10aによって画定される(図2(1)参照)。
また、ミリ波伝送装置100dにおいて、電子部品#Cは、図13に示した信号入力用の端子321、信号生成部27および結合回路325を備え、電子部品#Dは、結合回路327、信号生成部28および信号出力用の端子331を備えて構成される。電子部品#Cと電子部品#Dとは電子部品#Aと電子部品#Bと同様にして、誘電率εの同一の基板10に実装される。この例でも、領域(イ)を画定するためのスルーホールフェンス部10bを設けてもよい(図2(1)参照)。
基板10上の電子部品#Cと電子部品#Dとの間には伝送線路326が配置される。伝送線路326には、電子部品#Cおよび電子部品#Dが実装された、損失の大きいガラスエポキシ樹脂製の同一の基板10の内部に画定され、図2(1)に示したような伝送領域Iを構成するようになる。この例でも伝送線路326は、図15には図示しないが、基板10を貫通する複数のスルーホール10aによって画定される(図2(1)参照)。スルーホール10aは、上部導体層と下部導体層とを電気的に接続するコンタクトホールであって、導電材料が充填されたものでもよい。導電材料が充填されたコンタクトホールは、導電層間を接続する円柱状の複数の導電部材の一例を構成する。
さらに、基板10上において、電子部品#Aと電子部品#Dとの間には低損失の導波構造341が配置されている。
このように、第3の実施例としてのミリ波伝送システム300によれば、図15に示した領域(ア)の電子部品#Aと、領域(イ)の電子部品#Dとの間に低損失の導波構造341が配置され、導波構造341を通してミリ波の信号Sに基づく電磁波S’が電子部品#Aから電子部品#Dへ伝搬するようになされる。したがって、領域(ア)と領域(イ)の間の干渉を小さく抑えることができ、しかも、領域(ア)と領域(イ)の間で、高速のミリ波の信号Sを送受信できるようになる。
これにより、基板10上の局所の通信範囲のいくつかを結びたいときに、基板10の上部または基板10の内部、あるいは、その下部に、ミリ波帯域での損失の少ない導波構造341を設けて、複数の局所間で高速ミリ波通信を実現できるようなる。また、基板10の上部あるいは下部に設けた導波構造341を可動、あるいは可変方式とすることで、基板10上の電子部品#A,#B,#C,#Dのどれとどれを選択するかを制御することで、通信先の選択に基づいて通信処理をできるようになる。
<第4の実施例>
続いて、図16および図17を参照して、第4の実施例としてのミリ波伝送装置400について説明する。図16は、第4の実施例としてのミリ波伝送装置400の構成例を示すブロック図である。図16に示す信号多重機能付きのミリ波伝送装置400は、複数、たとえば、3個のミリ波伝送装置400a,400b,400cと、加算回路431と、基板10との結合回路405と、伝送線路432とを有して構成され、ミリ波伝送装置400a,400b,400cから供給されるミリ波の信号S1,S2,S3を加算して伝送線路432に出力するようになされる。
好ましくは、基板10をなす誘電体素材で構成された有体物としては、誘電正接 tanδが、小さいものではなく、大きいものを使用することで、損失が大きい伝送線路432となるようにする。
ミリ波伝送装置400aは、信号入力1用の端子401および信号生成部41を有して構成され、周波数帯域F1のミリ波の信号S1を加算回路431に出力するようになされる。信号生成部41は、変調回路402、周波数変換回路403、および増幅器404を有して構成される。
変調回路402は、入力信号Sin1を変調して変調後の入力信号Sin1を周波数変換回路403に出力する。変調回路402には第1〜第3の実施例と同様にして位相変調回路などが使用される。変調回路402には周波数変換回路403が接続され、変調回路402によって変調された後の入力信号Sin1を周波数帯域F1の範囲の周波数に変換してミリ波の信号S1を生成する。周波数変換回路403には、増幅器404が接続され、周波数変換後のミリ波の信号S1を増幅するようになされる。
ミリ波伝送装置400bは、信号入力2用の端子411および信号生成部42を有して構成され、周波数帯域F1とは異なる周波数帯域F2のミリ波の信号S2を加算回路431に出力するようになされる。信号生成部42は、変調回路412、周波数変換回路413および増幅器414を有して構成される。
変調回路412は、入力信号Sin2を変調して変調後の入力信号Sin2を周波数変換回路413に出力する。変調回路412には第1〜第3の実施例と同様にして位相変調回路などが使用される。変調回路412には周波数変換回路413が接続され、変調回路412によって変調された後の入力信号Sin2を周波数帯域F2の範囲の周波数に変換してミリ波の信号S2を生成する。周波数変換回路413には、増幅器414が接続され、周波数変換後のミリ波の信号S2を増幅するようになされる。
ミリ波伝送装置400cは、信号入力3用の端子421および信号生成部43を有して構成され、周波数帯域F1,F2とは異なる周波数帯域F3のミリ波の信号S3を加算回路431に出力するようになされる。信号生成部43は、変調回路422、周波数変換回路423および増幅器424を有して構成される。
変調回路422は、入力信号Sin3を変調して変調後の入力信号Sin3を周波数変換回路423に出力する。変調回路422には第1〜第3の実施例と同様にして位相変調回路などが使用される。変調回路422には周波数変換回路423が接続され、変調回路422によって変調された後の入力信号Sin3を周波数帯域F3の範囲の周波数に変換してミリ波の信号S3を生成する。周波数変換回路423には、増幅器424が接続され、周波数変換後のミリ波の信号S3を増幅するようになされる。
上述の3つの増幅器404,414,424には加算回路431が接続され、周波数帯域F1のミリ波の信号S1、周波数帯域F2のミリ波の信号S2、および周波数帯域F3のミリ波の信号S3を周波数多重処理するようになされる。加算回路431には基板10との結合回路405が接続され、周波数多重処理後の周波数帯域F1+F2+F3のミリ波の信号S=S1+S2+S3に基づく電磁波S’を伝送線路432に送信するようになされる。結合回路405は伝送線路432に配置され、ミリ波の信号Sに基づく周波数帯域F1+F2+F3の電磁波S’を伝搬する。伝送線路432は基板10の内部に設けられる。
好ましくは、基板10をなす誘電体素材で構成された有体物としては、誘電正接 tanδが、小さいものではなく、大きいものを使用することで、損失が大きい伝送線路432となるようにする。
図17はミリ波伝送装置400における周波数帯域例を示すグラフ図である。図17に示すグラフ図において、縦軸はミリ波の信号Sの振幅である。横軸は、搬送周波数GHzである。F1,F2,F3は周波数帯域である。周波数帯域F1のミリ波の信号S1は、周波数変換回路403で生成され、その後、ミリ波伝送装置400aの増幅器404から加算回路431へ出力される。
周波数帯域F2のミリ波の信号S2は、周波数変換回路413で生成され、その後、ミリ波伝送装置400bの増幅器414から加算回路431へ出力される。周波数帯域F3のミリ波の信号S3は、周波数変換回路423で生成され、その後、ミリ波伝送装置400cの増幅器424から加算回路431へ出力される。
このように第4の実施例としてのミリ波伝送装置400によれば、ミリ波伝送装置400aに周波数変換回路403が設けられ、ミリ波伝送装置400bに周波数変換回路413が設けられ、ミリ波伝送装置400cに周波数変換回路423が設けられ、加算回路431で、周波数帯域F1のミリ波の信号S1、周波数帯域F2のミリ波の信号S2および周波数帯域F3のミリ波の信号S3を周波数多重処理するようになされる。
したがって、信号送信用のミリ波伝送装置400と、信号受信用のミリ波伝送装置との間で周波数多重通信処理を実行することが可能となる。もちろん、帯域通過型のミリ波の信号S=S1+S2+S3に基づく電磁波S’を受信する信号受信用のミリ波伝送装置には、周波数分離回路が設けられる。このような帯域通過型のミリ波の信号Sに基づく電磁波S’を受信する場合、信号受信用のミリ波伝送装置では、DC接続することなく、基板10上にカップリングのための基板10との結合回路を配置することで、帯域通過型のミリ波の信号S=S1+S2+S3を容易に取り出すことができる。しかも、同じ伝送線路432の伝送スピードを向上できるようになる。これにより、信号多重機能付きのミリ波伝送システムを構築できるようになる。
<第5の実施例>
続いて、図18および図19を参照して、第5の実施例としてのミリ波伝送装置500について説明する。図18は、第5の実施例としてのミリ波伝送装置500の構成例を示すブロック図である。この実施例では、通信処理を実行する信号送信用の電子部品#A、信号受信用の電子部品#B間でフィードバック経路を備え、増幅器504の利得を制御可能に構成されている。
図18に示すミリ波伝送装置500は、電子部品#A,#B、伝送線路506、およびDC/低周波数伝送線路522(図ではDC/低周波数伝送線路と記す)を有して構成される。
好ましくは、基板10をなす誘電体素材で構成された有体物としては、誘電正接 tanδが、小さいものではなく、大きいものを使用することで、損失が大きい伝送線路506となるようにする。
電子部品#Aは、信号入力用の端子501、信号生成部51、結合回路505、および利得制御回路521を有して構成される。信号生成部51は、信号入力用の端子501に接続され、入力信号Sinを信号処理してミリ波の信号Sを生成するため、たとえば、変調回路502、周波数変換回路503、増幅器504、および利得制御回路521を有して構成される。端子501には変調回路502が接続され、入力信号Sinを変調するようになされる。変調回路502には第1〜第4の実施例と同様にして位相変調回路が使用される。
変調回路502には周波数変換回路503が接続され、変調回路502によって変調された後の入力信号Sinを周波数変換してミリ波の信号Sを生成する。周波数変換回路503には、増幅器504が接続され、周波数変換後のミリ波の信号Sを増幅するようになされる。
増幅器504には結合回路505が接続され、信号生成部51によって生成されたミリ波の信号を所定の誘電率εを有する有体物(誘電体素材で構成された有体物)の一端に送信する。結合回路505は、ミリ波の信号Sの波長λに基づく所定の長さ、たとえば、600μm程度を有したアンテナ部材から構成されて誘電率εの基板10に結合される。この例でも基板10は損失が大きい伝送線路506を構成する。伝送線路506内にはミリ波の電磁波S’が伝搬するようになる。
また、電子部品#Bは、結合回路507、信号生成部52、信号出力用の端子511、および信号品質判定回路523を有して構成される。上述の伝送線路506には結合回路507が結合され、伝送線路506の他端からミリ波の信号Sに基づく電磁波S’を受信する。結合回路507は、ミリ波の信号Sの波長λに基づく所定の長さ、たとえば、600μm程度を有したアンテナ部材から構成される。アンテナ部材には第1および第2の実施例と同様にして、プローブアンテナ(ダイポールなど)、ループアンテナ、小型アパーチャ結合素子(スロットアンテナなど)が使用される。
結合回路507には信号生成部52が接続され、結合回路507によって受信した電磁波S’に基づくミリ波の信号を信号処理して出力信号Sout を生成する。信号生成部52は、たとえば、増幅器508、周波数変換回路509、復調回路510、および信号品質判定回路523を有して構成される。結合回路507には増幅器508が接続され、受信後のミリ波の信号を増幅器508で増幅するようになされる。
増幅器508には、周波数変換回路509が接続され、増幅後のミリ波の信号Sを周波数変換回路509で周波数変換する。周波数変換回路509には復調回路510が接続され、周波数変換後の出力信号を復調回路510で復調するようになされる。
信号品質判定回路523が監視する信号としては、たとえば、復調回路510の出力信号(端子511への出力信号Sout )とする第1例、復調回路510における処理過程の途中段階の信号とする第2例、周波数変換回路509の出力信号とする第3例のなどが原理的には考えられ、信号品質判定回路523の構成もそれぞれに応じた構成する。たとえば、第2例の場合、復調回路は本来の復調処理以外に、振幅判定、利得制御などの機能ブロックが設けられ、信号品質判定回路523の制御動作もそれに対応したものとなる。以下では、理解・説明のし易さから第3例を採用する場合で説明を続ける。
周波数変換回路509には、信号品質判定回路523も接続され、周波数変換後の出力信号を信号品質判定回路523で監視して信号品質を判定する。たとえば、信号品質判定回路523は、周波数変換後の出力信号の出力レベルVxと判別基準となる閾値レベルVthとを比較する。出力レベルVxが閾値レベルVth以下の場合は、現状の利得を増加する旨の品質判定信号Sf(情報)を出力する。出力レベルVxが閾値レベルVthを越える場合は、現状の利得を減少する旨の品質判定信号Sfを出力する。
信号品質判定回路523には直流または低周波数に対応した伝送線路522が接続され、信号品質判定回路523から出力される品質判定信号Sfを電子部品#A側にフィードバックするようになされる。直流または低周波数に対応した伝送線路522には通常のプリント配線が使用される。これは、品質判定信号Sfは、定期的または不定期に電子部品#B側の信号入力レベルを調整する際に必要とされ、電子部品#Bから電子部品#Aへリアルタイムに高速にフィードバックする性質の信号ではないので、直流または低周波の信号が伝送可能な通常のプリント配線を使用すれば良いことによる。
直流または低周波数に対応した伝送線路522には、利得制御回路521が接続され、伝送線路522によって伝送される品質判定信号Sfに基づいて増幅器504の利得を制御する。たとえば、利得制御回路521は品質判定信号Sfが現状の利得を増加する情報である場合は、増幅器504の利得を増加するようにバイアス電流などを調整するようになされる。また、品質判定信号Sfが現状の利得を減少する情報である場合は、増幅器504の利得を減少するようにバイアス電流などを調整するようになされる。
上述の信号生成部51、信号生成部52、利得制御回路521、および信号品質判定回路523は半導体集積回路の一例であるCMOS−IC装置から構成され、これらの電子部品#Aや電子部品#Bなどが誘電率εを有した基板10上に実装される。
続いて、ミリ波伝送装置500の動作例について説明する。図19は、ミリ波伝送装置500における利得制御例を示す動作フローチャートである。この実施例では、信号受信用の電子部品#Bから信号送信用の電子部品#Aへ、受信レベルや、受信エラーなどの情報を直流あるいは低い周波数に乗せて伝送線路522を経由して返信し、利得制御回路521で増幅器504の出力レベルを最適化する例を挙げる。
これらを利得制御条件にして、ミリ波伝送装置500における電子部品#Aは、入力信号Sinを信号処理してミリ波の信号Sを生成するために、図19に示す動作フローチャートのステップST31で、信号生成部51の変調回路502が入力信号Sinに基づき位相変調処理などを実行する。入力信号Sinは図示しない下位の信号処理回路から端子201に供給される。
次に、ステップST32で周波数変換回路503は変調回路502によって位相変調などがなされた信号を周波数変換する。その後、ステップST33で増幅器504はミリ波の信号Sを増幅する。そして、ステップST34で結合回路505は、増幅器504によって増幅されたミリ波(信号処理後のミリ波)の信号を誘電正接 tanδの基板10に画定された伝送線路506の一端に送信する。伝送線路506の内部にはミリ波の信号Sに基づく電磁波S’が伝搬して行く。
一方、電子部品#Bは、ミリ波の信号Sに基づく電磁波S’を受信処理して出力信号Sout を生成するために、図19Bに示すフローチャートのステップST41で、結合回路507は、誘電正接 tanδの基板10の伝送線路506の他端からミリ波の信号Sに基づく電磁波S’を受信する。その後、ステップST42で増幅器508はミリ波の信号を増幅する。そして、ステップST43で周波数変換回路509は増幅器508によって増幅された後のミリ波の信号Sを周波数変換する。その後、ステップST44で復調回路510は、周波数変換後の出力信号を復調するようになされる。復調後の出力信号Sout は端子511から図示しない上位の信号処理回路に出力される。
これとともに、ステップST45で信号品質判定回路523は、周波数変換回路509の出力信号を監視して信号品質を判定する。たとえば、信号品質判定回路523は、周波数変換後の信号の出力レベルVxと判別基準となる閾値レベルVthとを比較する。出力レベルVxが閾値レベルVth以下の場合は、現状の利得を増加する旨の品質判定信号Sf(情報)を伝送線路522を介して利得制御回路521に供給する。出力レベルVxが閾値レベルVthを越える場合は、現状の利得を減少する旨の品質判定信号Sfを伝送線路522を介して利得制御回路521に供給する。
品質判定信号Sfを受信した電子部品#Aでは、ステップST35で利得制御回路521は、伝送線路522によって伝送されてきた品質判定信号Sfに基づいて増幅器504の利得を制御する。たとえば、利得制御回路521は品質判定信号Sfが現状の利得を増加する情報である場合は、ステップST33に戻って、増幅器504の利得を増加するようにバイアス電流などを調整する。また、品質判定信号Sfが現状の利得を減少する情報である場合は、増幅器504の利得を減少するようにバイアス電流などを調整するようになされる。これにより、増幅器504の出力信号は、電子部品#A,#B間の信号品質が良好で、かつ、他の電子部品への干渉を抑制するような適正レベルに保たれる。
このように、第5の実施例としてのミリ波伝送装置500によれば、電子部品#Aに利得制御回路521を備えるとともに、電子部品#Bに信号品質判定回路523を備えている。信号品質判定回路523は、受信レベルや、受信エラーなどの情報を直流あるいは低い周波数に乗せて、信号受信用の電子部品#Bから信号送信用の電子部品#Aへ伝送線路522(フィードバック経路)を経由して返信する。利得制御回路521では増幅器504の出力レベルを制御するようになされる。
この利得制御によって、他の電子部品などの局所間の通信の干渉を制御できるようになるので、電子部品#Aと電子部品#Bとの接続の品質を良好に保ちつつ、他の電子部品への通信妨害を最低位に抑制できるようになる。この効果に加えて、通信電力を最適に調整することができ、通信範囲を制御できるようになる。また、増幅器504を出力イネーブルスイッチのように取り扱うことも可能となる。
なお、前記の説明では、信号送信用の信号生成部51の側において利得制御回路521により増幅器508を制御して利得制御を行なうようにしていたが、利得制御の仕組みはこの例に限らない。たとえば、ミリ波伝送装置500において、信号受信用の信号生成部52の前に、切り変え可能な減衰器を配置し、または、増幅器508のバイアス変更(調整)などにより、受信入力の感度を変更(調整)するようにする利得制御回路を信号生成部52の入力調整を行なう機能部として、電子部品#Bに設けてもよい。信号生成部52の入力調整(受信側での利得制御)と、信号送信用の信号生成部51の側の利得制御(送信側での利得制御)とを組み合わせてミリ波伝送装置500を構成してもよい。もちろん、ミリ波伝送装置100,400,500および、ミリ波伝送システム200,300などを組み合わせて多機能型のミリ波伝送システムを構成することも可能となる。
特許文献2に見られるような無線方式のミリ波通信システムによれば、ミリ波送信手段のアンテナから輻射したミリ波の信号(信号波)をミリ波受信手段のアンテナに再現性良く伝搬するように調整できるが、ミリ波などのベースバンド信号を高速に伝送する場合、反射波が伝送エラーの一つの原因になり得る。
これに対して、第5の実施例では、ミリ波伝送の基本部分は第1の実施例と同様の仕組みを採用しており、送信対象信号(Sin)に関してのミリ波伝送については第1の実施例と同様の効果を享受できるので、反射波による伝送エラーの問題は軽減・解消される。
<第6の実施例>
続いて、図20〜図22を参照して、第6の実施例としてのミリ波伝送装置600について説明する。図20は、第6の実施例としてのミリ波伝送装置600の構成例(その1)を示す平面図(図20(1))、および、そのX1−X矢視断面図(図20(2))である。この実施例でミリ波伝送装置600の結合回路205は、図2(2)に示したアンテナ部材11に代わって、マイクロストリップ線路251および導波管構造252から構成される。
図20に示すミリ波伝送装置600は、基板10上に、CMOSチップ250、マイクロストリップ線路251、および導波管天板部253が設けられて構成される。CMOSチップ250は、図1に示した変調回路202、周波数変換回路203、および増幅器204などを有する信号生成部21を半導体トランジスタ回路により集積したものである。結合回路205およびCMOSチップ250は電子部品#Aなどを構成する。
図20(2)において、基板10上の全面には導電性のグランド層10eが設けられる。グランド層10e上には、損失の大きい伝送線路206を構成する絶縁性の誘電体層10fが設けられる。誘電体層10fには、ガラスエポキシ樹脂(FR4)が使用され、その誘電率は4.9であり、その誘電正接は0.025である。誘電体層10f上には導電性のマイクロストリップ線路251、導波管天板部253、および配線パターン254が設けられる。配線パターン254は銅箔などより構成され、CMOSチップ250の複数の電極に各々接続される。たとえば、配線パターン254とCMOSチップ250とがバンプ電極をフリップチップ法によりボンディングされる。
ミリ波伝送装置600の結合回路205は、マイクロストリップ線路251および導波管構造252から構成される。マイクロストリップ線路251は銅箔などにより構成されて基板10上に配設され、図1に示した電子部品#Aの増幅器204と、導波管天板部253との間を直接接続し、導波管構造252に向けてミリ波の信号Sに基づく電磁波S’を伝送するようになされる。増幅器204の出力端子と、マイクロストリップ線路251とはバンプ電極を介したフリップチップ法によりボンディングされる。もちろん、これに限られることはなく、他の方法、たとえば、ワイヤーによりボンディングする方法を採ってもよい。
この例の導波管構造252によれば、グランド層10eの天板部投影領域Icと導波管天板部253と、コンタクトホール10a’から導波管が構成される。コンタクトホール10a’は、天板部投影領域Icと導波管天板部253とを電気的に接続し、電磁波S’の進行方向を画定するように、たとえば、柵状に二列に配設される。二列に並んだコンタクトホール10a’の列(以下コンタクトホールフェンス部10b’という)によって画定される。すなわち、グランド層10eの天板部投影領域Icと導波管天板部253と左右のコンタクトホール10a’10a’とにより四面が電気的にシールドされ、内部に誘電体が充填された導波管構造252を採ることができる。
これにより、マイクロストリップ線路251と導波管構造252とを直接結合することができ、ミリ波の信号Sに基づく電磁波S’を誘電体層10fに送出できるようになる。導波管天板部253が設けられていない基板10上の誘電体層10fの部分は、損失の大きい伝送線路206を構成する誘電体伝送路となる。導波管構造252を用いると、第1の実施例で説明した放送や無線通信機器における不要輻射および伝送エラーなどの課題を著しく緩和できるようになる。
図21は、ミリ波伝送装置600の構成例(その2)を示す斜視図である。図21に示すミリ波伝送装置600は、電子部品#Aと電子部品#Bとを損失が大きい伝送線路206で接続したミリ波伝送例を示す斜視図である。この例では、上述した結合回路205の構造を電子部品#B側の結合回路207に応用したものである。
ミリ波伝送装置600の結合回路207は、図2(2)に示したアンテナ部材11に代わって、マイクロストリップ線路251および導波管構造252から構成される。マイクロストリップ線路251は銅箔などにより構成されて基板10上に配設され、図1に示した電子部品#Bの増幅器208と、導波管天板部253との間を直接接続し、導波管構造252から電磁波S’に基づくミリ波の信号Sを受信するようになされる。
このように電子部品#A側のマイクロストリップ線路251および導波管構造252から構成される結合回路205と、伝送線路206と、電子部品#B側のマイクロストリップ線路251および導波管構造252から構成される結合回路207とにより、シンプルなハイパスフィルタ素子255を基板10上に構成できるようになる。ハイパスフィルタ素子255は、2つの電子部品#A,#B間を電気的に接続するようになる。
図22は、ミリ波伝送装置600のハイパスフィルタ素子255の通過特性例および反射特性例を示す周波数特性図である。図22において、縦軸はハイパスフィルタ素子255の通過特性S(2,1)dBと反射特性S(1,1)dBである。横軸は搬送周波数(GHz)であり、目盛りは1GHz単位である。図中、 IIIaはハイパスフィルタ素子255の通過特性例を示すものである。この通過特性例によれば、ミリ波伝送装置600の結合回路205,207を各々マイクロストリップ線路251および導波管構造252により構成し、伝送線路206を誘電体層10fで構成した場合である。
ハイパスフィルタ素子255の通過特性S(2,1)dBは、誘電率が4.9で、誘電正接が tanδ=0.025のハイパスフィルタ素子255(FR4)を介して電子部品#A側のCMOSチップ250から電子部品#B側のCMOSチップ250’へ伝送されるミリ波の信号Sに基づく電磁波S’の通過特性である。通過特性S(2,1)dBは、搬送周波数を0GHzから80GHzに至り、1GHzずつ増加した場合である。このシミュレーション結果によれば、ミリ波の信号Sに基づく映像データは、電子部品#A,#B間において、搬送周波数が40.0GHz〜75GHzの範囲の通過損失が約4.0dBである。
また、図中、 IIIbはハイパスフィルタ素子255の反射特性例を示すものである。ハイパスフィルタ素子255の反射特性S(1,1)dBは、誘電率が4.9で、誘電正接が tanδ=0.025のハイパスフィルタ素子255を介して電子部品#A側のCMOSチップ250から電子部品#B側のCMOSチップ250’へ伝送されるミリ波の信号Sに基づく電磁波S’の反射特性である。
反射特性S(1,1)dBは、搬送周波数を10GHzから80GHzに至り、1GHzずつ増加した場合である。このシミュレーション結果によれば、反射損失は40dB以上を実現している。また、搬送周波数が40.0GHz〜75GHzの範囲で、反射損失が10dB以上となっている。
このような損失の大きいハイパスフィルタ素子255では、搬送周波数が増加するに従って、伝送損失が増加し、反射波は減衰して行くので、反射波による定在波の悪影響も低減できるようになる。この例では、周波数変換回路203で入力信号Sinをミリ波の信号Sへ周波数変換し、周波数変換回路209で増幅器208による増幅後のミリ波の信号を周波数変換することで、(信号帯域)/(中心周波数)の比を小さくできるようになるので、ミリ波の信号送信用の信号生成部21およびミリ波の信号受信用の信号生成部22も構成し易くなる。
このように、第6の実施例としてのミリ波伝送装置600によれば、電子部品#A側の結合回路205および電子部品#B側の結合回路207の各々が、図2(2)に示したアンテナ部材11に代わって、マイクロストリップ線路251および導波管構造252から構成されるものである。
したがって、電子部品#A側のマイクロストリップ線路251および導波管構造252から構成される結合回路205と、伝送線路206と、電子部品#B側のマイクロストリップ線路251および導波管構造252から構成される結合回路207とにより、シンプルなハイパスフィルタ素子255を基板10上に構成できるようになる。ハイパスフィルタ素子255は、搬送周波数が増加するに従って、伝送損失が増加し、反射波は減衰して行くので、反射波による定在波の悪影響も低減できるようになる。
<第7の実施例>
図23は、第7の実施例としてのミリ波伝送装置700の構成例を示す平面図(図23(1))およびそのX2−X2矢視断面図(図23(2))である。この実施例では、ミリ波伝送装置700の結合回路205は、図21に示したマイクロストリップ線路251に代わって、上部グランド層10g、アンテナ構造256、スロット孔257および導波管構造252から構成される。
図23(1)に示すミリ波伝送装置700は、基板10上に、下部のグランド層10e、上部グランド層10g、導波管構造252、およびCMOSチップ259が設けられて構成される。CMOSチップ259は、図1に示した変調回路202、周波数変換回路203、および増幅器204などを有する信号生成部21を半導体トランジスタ回路により集積したものである。結合回路205およびCMOSチップ259は電子部品#A’を構成する。
CMOSチップ259は第6の実施例で説明したCMOSチップ250と異なり、アンテナ構造256を有している。アンテナ構造256は、搬送周波数の波長をλとしたとき、λ/2の長さのアンテナ部材56から構成される。アンテナ部材56はCMOSチップ259の所定の面に露出して構成される。
図23(2)において、基板10上の全面には導電性の層間グランド層10eが設けられる。グランド層10e上には、損失の大きい伝送線路206を構成する絶縁性の誘電体層10fが設けられる。誘電体層10fには、ガラスエポキシ樹脂(FR4)が使用され、その誘電率は4.9であり、その誘電正接は0.025である。誘電体層10f上には導電性の上部グランド層10gが設けられる。
上部グランド層10gには、所定の幅および長さを有した開口部から成るスロット孔257が設けられている。このスロット孔257に対してアンテナ部材56が直交するように、CMOSチップ259が上部グランド層10gに接着剤258を介して接着され、基板10に固定されている。
ミリ波伝送装置700の結合回路205は、アンテナ部材56、上部グランド層10gに開口されたスロット孔257および、導波管構造252から構成される。層間グランド層10eと上部グランド層10gとは銅箔などにより構成されて基板10上に配設され、電子部品#A’の増幅器204(図1参照)に接続されたアンテナ部材56からスロット孔257を介して導波管構造252に向けてミリ波の信号Sに基づく電磁波S’を伝送するようになされる。増幅器204の出力端子と、アンテナ部材56とは、たとえば、ワイヤーによりボンディングされる。
この例の導波管構造252によれば、層間グランド層10eと上部グランド層10gと、コンタクトホール10a’から導波管が構成される。コンタクトホール10a’は、層間グランド層10eと上部グランド層10gとを電気的に接続し、電磁波S’の進行方向を画定するように、第6の実施例と同様にして、柵状に二列に配設される。二列に並んだコンタクトホール10a’の列(コンタクトホールフェンス部10b’という)によって画定される。
すなわち、層間グランド層10eと上部グランド層10gと左右のコンタクトホール10a’10a’とにより、第6の実施例と同様にして、四面が電気的にシールドされ、内部に誘電体が充填された導波管構造252を採ることができる。上部グランド層10gが設けられていない基板10上の誘電体層10fの部分は、損失の大きい伝送線路206を構成する誘電体伝送路となる。
このように、第7の実施例としてのミリ波伝送装置700によれば、電子部品#A側の結合回路205が、図21に示したマイクロストリップ線路251に代わって、上部グランド層10g、アンテナ構造256、スロット孔257、および導波管構造252から構成されるものである。
したがって、電子部品#A’の増幅器204(図1参照)に接続されたアンテナ部材56と、スロット孔257を介して導波管構造252とを空間的に接続することができ、ミリ波の信号Sに基づく電磁波S’を誘電体層10fに送出できるようになる。導波管構造252を用いると、第6の実施例でと同様にして、放送や無線通信機器における不要輻射および伝送エラーなどの課題を著しく緩和できるようになる。
<第8の実施例>
続いて、図24〜図29を参照して、第8の実施例としてのミリ波伝送装置800について説明する。図24は、第8の実施例としてのミリ波伝送装置800の構成例(その1)を示す平面図(図24(1))およびそのX3−X3矢視断面図(図24(2))である。この実施例では、結合回路205,207が多層構造を有し、基板10の厚み方向にスロット孔257を介して電磁波S’を伝搬できるようにした。
図24(1)に示すミリ波伝送装置800は、基板10上に、層間グランド層10e、CMOSチップ250、マイクロストリップ線路251および導波管天板部253が設けられて構成される。CMOSチップ250は、第6の実施例と同様にして、図1に示した変調回路202、周波数変換回路203、および増幅器204などを有する信号生成部21を半導体トランジスタ回路により集積したものである。結合回路205およびCMOSチップ250は電子部品#Aなどを構成する。
図24(2)において、基板10上の全面には導電性の層間グランド層10eが設けられる。層間グランド層10e上には、損失の大きい伝送線路206を構成する絶縁性の誘電体層10fが設けられる。基板10の下面は導電性の下部グランド層10hを有している。層間グランド層10eと下部グランド層10hとの間は絶縁性の誘電体層10iが設けられている。各々の誘電体層10f,10iには、ガラスエポキシ樹脂(FR4)が使用され、その誘電率は4.9であり、その誘電正接は0.025である。
誘電体層10f上には導電性のマイクロストリップ線路251、導波管天板部253、および配線パターン254が設けられる。配線パターン254は銅箔などより構成され、CMOSチップ250の複数の電極に各々接続される。配線パターン254とCMOSチップ250とは、第6の実施例と同様にして、バンプ電極をフリップチップ法によりボンディングされる。
ミリ波伝送装置800の結合回路205は、マイクロストリップ線路251、導波管構造252’およびスロット孔257から構成される。マイクロストリップ線路251は第6の実施例と同様にして、銅箔などにより構成されて基板10上に配設され、図1に示した電子部品#Aの増幅器204と、導波管天板部253との間を直接接続し、導波管構造252’に向けてミリ波の信号Sに基づく電磁波S’を伝送するようになされる。増幅器204の出力端子と、マイクロストリップ線路251とはバンプ電極を介したフリップチップ法によりボンディングされる。もちろん、これに限られることはなく、他の方法、たとえば、ワイヤーによりボンディングする方法を採ってもよい。
この例の導波管構造252’によれば、層間グランド層10eの天板部投影領域Icと、下部グランド層10hの天板部投影領域Icと、導波管天板部253とがコンタクトホール10a’を介して接続された二層の導波管によって構成される。コンタクトホール10a’は、層間グランド層10eおよび下部グランド層10hの各々の天板部投影領域Icと導波管天板部253とを電気的に接続し、電磁波S’の進行方向を画定するように、たとえば、柵状に二列に配設される。
二列に並んだコンタクトホール10a’の列(コンタクトホールフェンス部10b’という)によって上層および下層の二層構造が画定される。すなわち、層間グランド層10eおよび下部グランド層10hの各々の天板部投影領域Icと導波管天板部253と左右のコンタクトホール10a’10a’とにより七面または八面が電気的にシールドされ、内部に誘電体が充填された導波管構造252’を採ることができる。
この例で、層間グランド層10eの所定の位置にはスロット孔257が開口され、上層の誘電体層10fから下層の誘電体層10iへ、また、下層の誘電体層10iから上層の誘電体層10fへ電磁波S’を導くようになされる。これにより、マイクロストリップ線路251と導波管構造252’とを直接結合することができ、ミリ波の信号Sに基づく電磁波S’を誘電体層10fに送出できるようになる。しかも、結合回路205が二層構造を有しており、スロット孔257を介して下層の誘電体層10i(基板10の厚み方向)に電磁波S’を導けるようにした。
なお、導波管天板部253が設けられていない基板10上の誘電体層10fの部分や、層間グランド層10eと下部グランド層10hの間の誘電体層10iは、損失の大きい伝送線路206を構成する誘電体伝送路となる。導波管構造252’を用いると、第1の実施例で説明した不要輻射および伝送エラーなどの課題を著しく緩和できるようになる。
図25は、ミリ波伝送装置800の構成例(その2)を示す平面図である。図26は、その構成例(その3)を示すX4−X4矢視断面図である。
この実施例では、基板10の一方の面に2つの電子部品#A,#Bが設けられ、その他方の面に2つの電子部品#C,#Dが設けられ、多層構造の結合回路205,207、および損失が大きい伝送線路206で4つの電子部品#1〜#4を結合する。そして、電子部品#A側の層間グランド層のスロット孔257を介して電磁波S’を下層の誘電体層10iに伝搬し、さらに、電子部品#D側の層間グランド層のスロット孔257を介して電磁波S’を元の上層の誘電体層10fに伝搬できるようにした。なお、この例では導波管天板部253が省略されるものである。
図25に示すミリ波伝送装置800は、図24に示した電子部品#A側の多層構造の結合回路205を電子部品#C側の結合回路205に応用するとともに、電子部品#B,D側の結合回路207に応用したものである。
ミリ波伝送装置800の電子部品#B側の結合回路207は、図2(2)に示したアンテナ部材11に代わって、マイクロストリップ線路251および導波管構造252’から構成される。マイクロストリップ線路251は銅箔などにより構成されて基板10上に配設され、図1に示した電子部品#Bの増幅器208(図10参照)と、導波管天板部253との間を直接接続し、導波管構造252から電磁波S’に基づくミリ波の信号Sを受信するようになされる。
ミリ波伝送装置800の電子部品#C側の結合回路205は、図26に示すように、マイクロストリップ線路251および導波管構造252’から構成される。マイクロストリップ線路251は銅箔などにより構成されて基板10下に配設され、たとえば、図10に示した電子部品#Cの増幅器224(図10参照)に直接接続され、導波管構造252’からミリ波の信号Sに基づく電磁波S’を送信するようになされる。
ミリ波伝送装置800の電子部品#D側の結合回路207は、図26に示すように、マイクロストリップ線路251および導波管構造252’から構成される。マイクロストリップ線路251は銅箔などにより構成されて基板10下に配設され、たとえば、図10に示した電子部品#Dの増幅器228(図10参照)に直接接続され、導波管構造252’から電磁波S’に基づくミリ波の信号Sを受信するようになされる。
このように電子部品#A側のマイクロストリップ線路251および導波管構造252’から構成される結合回路205と、上層の誘電体層10fによる伝送線路206と、電子部品#B側のマイクロストリップ線路251および導波管構造252’から構成される結合回路207と、電子部品#C側のマイクロストリップ線路251および導波管構造252’から構成される結合回路205と、下層の誘電体層10iによる伝送線路206と、電子部品#D側のマイクロストリップ線路251および導波管構造252’から構成される結合回路207と、電子部品#A,C側の層間グランド層10eに開口されたスロット孔257と、電子部品#B,D側の層間グランド層10eに開口されたスロット孔257とにより、多層構造のハイパスフィルタ素子255’を構成できるようになる。
多層構造のハイパスフィルタ素子255’によれば、電子部品#A側の層間グランド層のスロット孔257を介して電磁波S’を下層の誘電体層10iに伝搬し、さらに、電子部品#D側の層間グランド層のスロット孔257を介して電磁波S’を元の上層の誘電体層10fに伝搬できるようになる。
なお、図25に示す反射防止用のスロット孔260は、図26に示すように層間グランド層10eに開口される。この例では、電子部品#A,#C側のスロット孔257の外側と、電子部品#B,#D側のスロット孔257の外側に各々配置される。スロット孔260はスロット孔257と同様にして矩形状を有しており、その大きさは、スロット孔257よりも幅および長さとも長く設定される。スロット孔260は、上層の誘電体層10fに伝搬する電磁波S’や、下層の誘電体層10iに伝搬する電磁波S’などの拡散(反射)を防止するようになされる。
図27および図28は、ハイパスフィルタ素子255’における電磁波S’の伝搬例(その1,2)を示す断面図である。この例では、搬送周波数によって電子部品#Aから異なったポート(電子部品#B,C,Dなど)へ電磁波S’が伝搬する場合を示している。
図27(1)に示すハイパスフィルタ素子255’によれば、搬送周波数が40GHzである場合、電子部品#Aから電子部品#Bへ電磁波S’が伝搬する。電子部品#A側の結合回路205を構成するマイクロストリップ線路251にミリ波の信号が流れると、このミリ波の信号に基づく電磁波S’が導波管構造252’から上層の誘電体層10fによる伝送線路206に伝搬される。
電子部品#B側の結合回路207では、上層の伝送線路206に伝搬される電磁波S’が導波管構造252’により受信され、電磁波S’に基づくミリ波の信号がそのマイクロストリップ線路251に流れる。ミリ波の信号は、そのマイクロストリップ線路251から電子部品#B側の増幅器208(図10参照)に入力される。
図27(2)に示すハイパスフィルタ素子255’によれば、搬送周波数が60GHzである場合、電子部品#A,C側の層間グランド層10eに開口されたスロット孔257と、電子部品#B,D側の層間グランド層10eに開口されたスロット孔257とを介して、電子部品#Aから電子部品#Bへ電磁波S’が伝搬する。
電子部品#A側の結合回路205を構成するマイクロストリップ線路251にミリ波の信号が流れると、この信号Sに基づく電磁波S’が、電子部品#A,C側のスロット孔257を介して、その導波管構造252’から下層の誘電体層10iによる伝送線路206に伝搬される。
電子部品#B側の結合回路207では、下層の伝送線路206に伝搬される電磁波S’が、電子部品#B,D側のスロット孔257を介して、その導波管構造252’により受信され、電磁波S’に基づくミリ波の信号がそのマイクロストリップ線路251に流れる。ミリ波の信号は、そのマイクロストリップ線路251から電子部品#B側の増幅器208(図10参照)に入力される。
このように、多層構造のハイパスフィルタ素子255’によれば、搬送周波数=40GHzや、60GHzなどのように選択すると、電子部品#A,C側のスロット孔257を介して電磁波S’を下層の誘電体層10iに伝搬し、さらに、電子部品#B,D側の層間グランド層のスロット孔257を介して電磁波S’を元の上層の誘電体層10fに伝搬できるようになる。
図28(1)に示すハイパスフィルタ素子255’によれば、所定の搬送周波数fx(20GHz<fx<80GHz)を選択した場合、電子部品#Aから電子部品#Dへ電磁波S’が伝搬する。電子部品#A側の結合回路205を構成するマイクロストリップ線路251にミリ波の信号が流れると、このミリ波の信号に基づく電磁波S’が、電子部品#A,C側のスロット孔257を介して、その導波管構造252’から下層の誘電体層10iによる伝送線路206に伝搬される。
電子部品#D側の結合回路207では、下層の伝送線路206に伝搬される電磁波S’が導波管構造252’により受信され、電磁波S’に基づくミリ波の信号がそのマイクロストリップ線路251に流れる。ミリ波の信号は、そのマイクロストリップ線路251から電子部品#D側の増幅器228(図10参照)に入力される。
図28(2)に示すハイパスフィルタ素子255’によれば、所定の搬送周波数fx(20GHz<fx<80GHz)を選択した場合、電子部品#Aから電子部品#B,#Dへ、および、電子部品#Cから電子部品#B,#Dへ電磁波S’が各々伝搬する。電子部品#A側の結合回路205を構成するマイクロストリップ線路251にミリ波の信号が流れると、このミリ波の信号に基づく電磁波S’が、導波管構造252’から上層の誘電体層10fによる伝送線路206に伝搬されるとともに、電子部品#A,C側のスロット孔257を介して、その導波管構造252’から下層の誘電体層10iによる伝送線路206に伝搬される。
電子部品#B側の結合回路207では、上層の伝送線路206に伝搬される電磁波S’が導波管構造252’により受信され、電磁波S’に基づくミリ波の信号がそのマイクロストリップ線路251に流れる。ミリ波の信号は、そのマイクロストリップ線路251から電子部品#B側の増幅器208(図10参照)に入力される。
電子部品#D側の結合回路207では、下層の伝送線路206に伝搬される電磁波S’が導波管構造252’により受信され、電磁波S’に基づくミリ波の信号がそのマイクロストリップ線路251に流れる。ミリ波の信号は、そのマイクロストリップ線路251から電子部品#D側の増幅器228(図10参照)に入力される。
また、電子部品#C側の結合回路205では、マイクロストリップ線路251にミリ波の信号が流れると、このミリ波の信号に基づく電磁波S’が、導波管構造252’から下層の誘電体層10iによる伝送線路206に伝搬されるとともに、電子部品#B,D側のスロット孔257を介して、その導波管構造252’から上層の誘電体層10fによる伝送線路206に伝搬される。これにより、上層のマイクロストリップ線路251に流れるミリ波の信号を電子部品#B側の増幅器208に入力し、下層のマイクロストリップ線路251に流れるミリ波の信号を電子部品#D側の増幅器228に入力できるようになる(図10参照)。
図29は、ミリ波伝送装置800のハイパスフィルタ素子255’の通過特性例および反射特性例を示す周波数特性図である。図29において、縦軸はハイパスフィルタ素子255’の通過特性S(2,1)dBと反射特性S(1,1)dBである。横軸は搬送周波数(GHz)であり、目盛りは1GHz単位である。図中、IVaはハイパスフィルタ素子255’の通過特性例を示すものである。この通過特性例によれば、ミリ波伝送装置800の結合回路205,207を各々マイクロストリップ線路251および導波管構造252’により構成し、上層の伝送線路206を誘電体層10fで構成し、下層の伝送線路206を誘電体層10iで構成した場合である。
ハイパスフィルタ素子255’の通過特性S(2,1)dBは、誘電率が4.9で、誘電正接が tanδ=0.025のハイパスフィルタ素子255’(FR4)を介して電子部品#A側のCMOSチップ250から電子部品#B側(#D)のCMOSチップ250’へ伝送されるミリ波の信号の通過特性である。通過特性S(2,1)dBは、搬送周波数を0GHzから80GHzに至り、1GHzずつ増加した場合である。このシミュレーション結果によれば、ミリ波の信号に基づく映像データは、電子部品#A,#B(#D)間において、搬送周波数が44.0GHz〜56GHzの範囲の通過損失が約4.0dBである。
また、図中、IVbはハイパスフィルタ素子255’の反射特性例を示すものである。ハイパスフィルタ素子255’の反射特性S(1,1)dBは、誘電率が4.9で、誘電正接が tanδ=0.025のハイパスフィルタ素子255’を介して電子部品#A側のCMOSチップ250から電子部品#B(#D)側のCMOSチップ250’へ伝送されるミリ波の信号の反射特性である。
反射特性S(1,1)dBは、搬送周波数を0GHzから80GHzに至り、1GHzずつ増加した場合である。このシミュレーション結果によれば、反射損失は35dB以上を実現している。また、搬送周波数が40.0GHz〜60GHzの範囲で、反射損失が5dB以上となっている。
このような損失の大きいハイパスフィルタ素子255’では、搬送周波数が増加するに従って、伝送損失が増加し、反射波は減衰して行くので、反射波による定在波の悪影響も低減できるようになる。この例では、周波数変換回路203で入力信号Sinをミリ波の信号Sへ周波数変換し、周波数変換回路209で増幅器208による増幅後のミリ波の信号を周波数変換することで、(信号帯域)/(中心周波数)の比を小さくできるようになるので、ミリ波の信号送信用の信号生成部21および、ミリ波の信号受信用の信号生成部22も構成し易くなる。
このように、第8の実施例としてのミリ波伝送装置800によれば、電子部品#A,#C側の結合回路205と、電子部品#B,#D側の結合回路207とが多層構造を有し、層間グランド層10eにはスロット孔257が開口され、上層の誘電体層10fから下層の誘電体層10iへ、また、下層の誘電体層10iから上層の誘電体層10fへ電磁波S’を導くようになされる。
したがって、上層のマイクロストリップ線路251と導波管構造252’とを直接結合することができ、ミリ波の信号Sに基づく電磁波S’を誘電体層10fに送出できるようになる。下層のマイクロストリップ線路251と導波管構造252’とを直接結合することができ、ミリ波の信号Sに基づく電磁波S’を誘電体層10iに送出できるようになる。しかも、結合回路205が二層構造を有しており、スロット孔257を介して下層の誘電体層10i(基板10の厚み方向)に電磁波S’を伝搬できるようになる。また、スロット孔257を介して上層の誘電体層10f(基板10の厚み方向)に電磁波S’を伝搬できるようになる。
以上、本発明について実施形態を用いて説明したが、本発明の技術的範囲は前記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で前記実施形態に多様な変更または改良を加えることができ、そのような変更または改良を加えた形態も本発明の技術的範囲に含まれる。
また、前記の実施形態は、クレーム(請求項)に係る発明を限定するものではなく、また実施形態の中で説明されている特徴の組合せの全てが発明の解決手段に必須であるとは限らない。前述した実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜の組合せにより種々の発明を抽出できる。実施形態に示される全構成要件から幾つかの構成要件が削除されても、効果が得られる限りにおいて、この幾つかの構成要件が削除された構成が発明として抽出され得る。
たとえば、前記実施形態の仕組みでは、ミリ波伝送に関わる送信側と受信側の各部材を同一の基板に搭載し、かつその基板がミリ波伝送路として機能する有体物を兼用する構成にしている。ミリ波信号に基づく送受信間の電磁波は基板内に閉じ込められて伝送されるため、電子機器内において、ミリ波帯での信号伝送を、妨害を減らしつつ、不都合なく行なうことができるようになる。
このことは、特に、ミリ波伝送路として機能する有体物をなす基板を構成する誘電体素材の誘電正接が相対的に大きい場合により効果的である。
すなわち、前記実施形態で説明したミリ波伝送装置およびミリ波伝送方法によれば、誘電体素材で構成された有体物(所定の誘電率εを有する有体物)の一端から供給されたミリ波の信号を有体物の他端から受信して、ミリ波の信号を信号処理して出力信号を生成するようになされる。
誘電体素材の誘電正接が相対的に大きく、損失の大きい有体物では、搬送周波数が増加するに従って、伝送損失が増加し、反射波は減衰して行くので、損失の大きな誘電体素材で構成された有体物を介して非常に高速な信号を伝送できるようになる。しかも、有体物のある局所的な範囲のみにより高速通信処理が可能となる。誘電体素材で構成された有体物の局所的な範囲以外は、減衰が大きくなり、有体物外への妨害を大きく減らすことができる。
前記実施形態で説明したミリ波伝送システムによれば、前記実施形態で説明したミリ波伝送装置およびミリ波伝送方法が備えられ、誘電体素材で構成された有体物(所定の誘電率を有する有体物)の一端から供給されたミリ波の信号を有体物の他端から受信して、ミリ波の信号を信号処理して出力信号を生成するようになされる。
この構成によって、損失の大きい有体物では、搬送周波数が増加するに従って、伝送損失が増加し、反射波は減衰して行くので、損失の大きな誘電体素材で構成された有体物を介して非常に高速な信号を伝送できるようになる。しかも、高速なベースバンド信号などの伝送が可能となることから、有体物のある局所的な範囲のみによる高速な双方向通信処理が可能となる。誘電体素材で構成された有体物の局所的な範囲以外は、減衰が大きくなり、有体物外への妨害を大きく減らすことができる。
なお、前記実施形態では、所定の誘電率εを有する有体物(誘電体素材で構成された有体物)に関しては、ガラスエポキシ系の樹脂で構成された基板10について説明したが、誘電体素材で構成された有体物は、これに限定されない。たとえば、アクリル系やポリエチレン系の樹脂製の集光シートや導電/絶縁シート、アクリル棒やアクリル板、ポリエチレンやポリエチレンテレフタレートなどのポリエチレン系の合成樹脂をインキ収容管やボールペン本体(軸筒)に使用したボールペンなどの誘電体素材で構成された有体物もミリ波の伝送線路として機能することが本願発明者によって確認されている。アクリル系やポリエチレン系の樹脂の誘電正接 tanδは概ねガラスエポキシ系の樹脂の誘電正接 tanδに近い。したがって、前記実施形態で説明した基板10に関しては、ガラスエポキシ樹脂製に限らず、アクリル系やポリエチレン系の樹脂製のものとしてもよい。
また、前記実施形態では、使用周波数帯における誘電正接 tanδを、概ね0.001以下と概ね0.01以上の大小の2つで区別して説明したが、その区別は一例に過ぎない。たとえば、誘電正接 tanδがこれらの中間に位置する tanδが概ね0.01〜0.001程度のもの誘電体素材としては、BTレジンの樹脂( tanδ≒0.004)が該当する(下記の文献1を参照)。 tanδが概ね0.01〜0.001程度のものを使用した場合は「損失が中程度」となる。そして、たとえばBTレジンの樹脂を使用した「損失が中程度」のものは、前記実施形態で説明した「損失の大きい」ものと「損失の小さい」ものの境界に位置する特性を呈する。
参考文献1:“高周波用BTレジンガラス布基材銅張り積層板”、[online]、[平成21年09月02日検索]、インターネット<URL:http://www.tripleone.net/ENG/img_business/1_2_LX67.pdf>
また、伝送線路206,226などは、直線性を要求されることはなく、伝送線路206,226などを90°などのように折り曲げても、電磁波が進行することが確認されている(たとえば図12,15などを参照)。