JP5738480B2 - 符号化方法、符号化装置、復号方法、復号装置及びプログラム - Google Patents

符号化方法、符号化装置、復号方法、復号装置及びプログラム Download PDF

Info

Publication number
JP5738480B2
JP5738480B2 JP2014509152A JP2014509152A JP5738480B2 JP 5738480 B2 JP5738480 B2 JP 5738480B2 JP 2014509152 A JP2014509152 A JP 2014509152A JP 2014509152 A JP2014509152 A JP 2014509152A JP 5738480 B2 JP5738480 B2 JP 5738480B2
Authority
JP
Japan
Prior art keywords
range
signal sequence
correction amount
gain correction
samples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014509152A
Other languages
English (en)
Other versions
JPWO2013151004A1 (ja
Inventor
勝宏 福井
勝宏 福井
祐介 日和▲崎▼
祐介 日和▲崎▼
登 原田
登 原田
守谷 健弘
健弘 守谷
優 鎌本
優 鎌本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014509152A priority Critical patent/JP5738480B2/ja
Application granted granted Critical
Publication of JP5738480B2 publication Critical patent/JP5738480B2/ja
Publication of JPWO2013151004A1 publication Critical patent/JPWO2013151004A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components
    • G10L19/035Scalar quantisation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

本発明は、音声や音楽などの音響信号を少ない情報量で符号化するための技術に関し、より詳しくは、量子化精度を向上させる符号化技術に関する。
現在、音声や音楽などの音響信号を離散化したディジタルの入力信号を高能率に符号化する技術として、例えば、入力信号に含まれる5から200ms程度の一定間隔の各区間(フレーム)の入力信号系列を処理対象として、1フレームの入力信号系列に時間−周波数変換を適用して得られた周波数領域信号を符号化することが知られている。このような従来技術のうち、非特許文献1に開示されている符号化装置と復号装置の概要を図1に示す。
なお、非特許文献1によるとグローバルゲイン(正規化された入力信号系列の量子化精度に影響を及ぼすゲイン)の量子化値は時間領域で計算されている。しかし、時間領域における信号のエネルギーと周波数領域における信号のエネルギーは等しいため、グローバルゲインの量子化値を周波数領域で求めてもこの結果は時間領域におけるそれと異ならない。したがって、ここでは、グローバルゲインの量子化値およびその復号値を周波数領域で計算する場合を例示する。
以下、符号化装置での処理を説明する。
<周波数領域変換部101>
周波数領域変換部101には、時間領域の入力信号x(t)に含まれる連続する複数サンプルからなるフレーム単位の入力時間領域信号系列xF(t)が入力される。周波数領域変換部101は、1フレームの入力時間領域信号系列xF(t)に対応するL点(Lは、正整数で例えば256である)の周波数成分を入力周波数領域信号系列X(ω) [ω∈{0,…,L-1}]として出力する。ここで、tは離散時間のインデックス、ωは離散周波数のインデックスを表す。時間−周波数変換方法として、例えばMDCT(Modified Discrete Cosine Transform)またはDCT(Discrete Cosine Transform)を用いることができる。
<正規化部102>
正規化部102には、入力周波数領域信号系列X(ω) [ω∈{0,…,L-1}]と、後述するゲイン制御部104で求められた入力周波数領域信号系列X(ω) [ω∈{0,…,L-1}]の各成分の量子化精度を決定するゲイン(以下、グローバルゲインという)gが入力される。正規化部102は、入力周波数領域信号系列X(ω) [ω∈{0,…,L-1}]の各成分をグローバルゲインgでそれぞれ除することによって、もしくは入力周波数領域信号系列X(ω) [ω∈{0,…,L-1}]の各成分にグローバルゲインgの逆数をそれぞれ乗ずることによって、入力周波数領域信号系列X(ω) [ω∈{0,…,L-1}]の正規化を行い、正規化済み信号系列XQ(ω) [ω∈{0,…,L-1}]を出力する。
<量子化部103>
量子化部103には、正規化済み信号系列XQ(ω) [ω∈{0,…,L-1}]が入力される。量子化部103は、事前に定められた方法で正規化済み信号系列XQ(ω) [ω∈{0,…,L-1}]の量子化を行い、正規化済み信号系列XQ(ω) [ω∈{0,…,L-1}]の各成分の量子化値による系列である量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]、および量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]に対応する符号である正規化信号符号を生成し、正規化信号符号のビット数(以下、消費ビット数という)を出力する。また、ゲイン制御部104から、量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]と正規化信号符号を出力する指令情報を受けた場合には、量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]と正規化信号符号を出力する。
<ゲイン制御部104>
ゲイン制御部104には、消費ビット数が入力される。ゲイン制御部104は、消費ビット数が正規化信号符号に対して事前に割り当てられたビット数(以下、規定ビット数という)以下の最大値に近づくようにグローバルゲインgを調整し、調整後のグローバルゲインgを新たなグローバルゲインgとして出力する。グローバルゲインgの調整の一例として、消費ビット数が規定ビット数より大きい場合にはグローバルゲインgを大きくし、そうでなければグローバルゲインgを小さくする処理を例示できる。消費ビット数が規定ビット数以下の最大値となった場合には、量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]と正規化信号符号を出力する指令情報を量子化部103に対して出力する。
<グローバルゲイン符号化部105>
グローバルゲイン符号化部105には、入力周波数領域信号系列X(ω) [ω∈{0,…,L-1}]と量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]が入力される。グローバルゲイン符号化部105は、予め設定されたグローバルゲインの量子化値の複数の候補のうち、入力周波数領域信号系列X(ω) [ω∈{0,…,L-1}]と、量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]の各成分とグローバルゲインの量子化値の候補との乗算値による系列と、の間の相関が最大または誤差が最小となるグローバルゲインの量子化値の候補g^に対応する符号をグローバルゲイン符号として出力する。
符号化装置の出力符号である正規化信号符号とグローバルゲイン符号は、復号装置に向けて送信され、復号装置に入力される。
以下、復号装置での処理を説明する。
<グローバルゲイン復号部106>
グローバルゲイン復号部106には、グローバルゲイン符号が入力される。グローバルゲイン復号部106は、グローバルゲイン符号化部105が行う符号化処理に対応する復号処理を適用して当該グローバルゲイン符号を復号し、復号グローバルゲインg^を出力する。
<正規化信号復号部107>
正規化信号復号部107には、正規化信号符号が入力される。正規化信号復号部107は、符号化装置の量子化部103で行われる符号化方法と対応する復号方法を適用して当該正規化信号符号を復号し、復号正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]を出力する。
<復号周波数成分計算部108>
復号周波数成分計算部108には、復号グローバルゲインg^と復号正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]が入力される。復号周波数成分計算部108は、復号正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]の各成分と復号グローバルゲインg^とをそれぞれ乗算して得られる系列を復号周波数領域信号系列X^(ω) [ω∈{0,…,L-1}]として出力する。
<時間領域変換部109>
時間領域変換部109には、復号周波数領域信号系列X^(ω) [ω∈{0,…,L-1}]が入力される。時間領域変換部109は、復号周波数領域信号系列X^(ω) [ω∈{0,…,L-1}]に対して周波数−時間変換を適用して、フレーム単位の出力時間領域信号系列zF(t)を出力する。周波数−時間変換方法は、周波数領域変換部101で用いられた時間−周波数変換方法に対応する逆変換である。上述の例であれば、ここでの周波数−時間変換方法は、IMDCT(Inverse Modified Discrete Cosine Transform)またはIDCT(Inverse Discrete Cosine Transform)である。
Guillaume Fuchs, Markus Multrus, Max Neuendorf and Ralf Geiger, "MDCT-BASED CODER FOR HIGHLY ADAPTIVE SPEECH AND AUDIO CODING," 17th European Signal Processing Conference (EUSIPCO 2009), Glasgow, Scotland, August 24-28, 2009.
上述のような符号化方法では、グローバルゲインを調整して正規化済み信号系列の量子化の粗さを適宜制御し、このことによって正規化信号符号の符号量である消費ビット数が規定ビット数以下の最大値となるように制御を行っている。このため、規定ビット数より消費ビット数が小さい場合は、正規化済み信号系列のために事前に割り当てられたビット数を十分に生かした符号化処理を行えていないという問題がある。
このような状況に鑑みて、本発明は、正規化済み信号系列の量子化精度を少ない符号量の増加で改善する符号化技術とその復号技術を提供することを目的とする。
本発明の一態様による符号化方法は、複数の入力信号サンプルにより構成される、フレーム単位の入力信号系列を符号化する符号化方法において、入力信号系列に含まれる各入力信号サンプルが正規化された信号による系列を符号化して得られる正規化信号符号と、正規化信号符号に対応する量子化正規化済み信号系列とを得る正規化信号符号化ステップと、入力信号系列に対応するゲインである量子化グローバルゲインと、量子化グローバルゲインに対応するグローバルゲイン符号とを得るグローバルゲイン符号化ステップと、量子化正規化済み信号系列を予め定められたN個(N=2Dであり、Dは2以上の整数)の範囲に区分し、各区分された範囲についての複数個のゲイン補正量で量子化グローバルゲインを各区分された範囲ごとに補正して得られるゲインと量子化正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列と入力信号系列との相関が最大又は誤差が最小となるゲイン補正量を特定するためのゲイン補正量符号を得るゲイン補正量符号化ステップと、を有し、ゲイン補正量符号化ステップは、各区分された範囲に対応するゲイン補正量と区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲に対応するゲイン補正量とのうち範囲に含まれる区分された範囲の個数が多い範囲に対応するゲイン補正量に優先してビットを割り当てるビット割当ステップを含み、各区分された範囲に対応するゲイン補正量と区分された範囲を2k個ずつ纏めた範囲に対応するゲイン補正量とのうちビット割当ステップでビットが割り当てられたゲイン補正量は、ゲイン補正量符号に対応するゲイン補正量であり、各区分された範囲に対応するゲイン補正量と区分された範囲を2k個ずつ纏めた範囲に対応するゲイン補正量とのうちビット割当ステップでビットが割り当てられなかったゲイン補正量は、補正を行わないことに対応するゲイン補正量である。
本発明の一態様による符号化方法は、複数の入力信号サンプルにより構成される、フレーム単位の入力信号系列を符号化する符号化方法において、入力信号系列に含まれる各入力信号サンプルが正規化された信号による系列を符号化して得られる正規化信号符号と、正規化信号符号に対応する量子化正規化済み信号系列とを得る正規化信号符号化ステップと、入力信号系列に対応するゲインである量子化グローバルゲインと、量子化グローバルゲインに対応するグローバルゲイン符号とを得るグローバルゲイン符号化ステップと、量子化正規化済み信号系列を予め定められたN個(N=2Dであり、Dは2以上の整数)の範囲に区分し、各区分された範囲に対応するゲイン補正量と区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲に対応するゲイン補正量とのうち範囲に含まれる区分された範囲の個数が多い範囲に対応するゲイン補正量に優先してビットを割り当て、ビットが割り当てられた、各区分された範囲についての複数個のゲイン補正量で量子化グローバルゲインを各区分された範囲ごとに補正して得られるゲインと量子化正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列と入力信号系列との相関が最大又は誤差が最小となるゲイン補正量を特定するためのゲイン補正量符号を得るゲイン補正量符号化ステップと、を有する。
本発明の一態様による復号方法は、フレーム単位の符号を復号して出力信号系列を得る復号方法において、符号に含まれる正規化信号符号を復号して復号正規化済み信号系列を得る正規化信号復号ステップと、符号に含まれるグローバルゲイン符号を復号して復号グローバルゲインを得るグローバルゲイン復号ステップと、復号正規化済み信号系列を予め定められたN個(N=2Dであり、Dは2以上の整数)の範囲に区分し、各区分された範囲についての複数個のゲイン補正量で復号グローバルゲインを各区分された範囲ごとに補正して得られるゲインと復号正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列を出力信号系列として得る復元ステップと、を有し符号に含まれるゲイン補正量符号は、各区分された範囲に対応するゲイン補正量と区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲に対応するゲイン補正量とのうち範囲に含まれる区分された範囲の個数が多い範囲に対応するゲイン補正量に対して優先的にビットが割り当てるという基準に基づいてビットが割り当てられたゲイン補正量を特定するものであり、復元ステップにおいて、区分された範囲と区分された範囲を2k個纏めた範囲とのうち対応するゲイン補正量がある範囲については、ゲイン補正量符号を復号して得たゲイン補正量を用い、復元ステップにおいて、区分された範囲と区分された範囲を2k個纏めた範囲とのうち対応するゲイン補正量がない範囲については、補正を行わないことに対応するゲイン補正量を用いる。
本発明の一態様による復号方法は、フレーム単位の符号を復号して出力信号系列を得る復号方法において、符号に含まれる正規化信号符号を復号して復号正規化済み信号系列を得る正規化信号復号ステップと、符号に含まれるグローバルゲイン符号を復号して復号グローバルゲインを得るグローバルゲイン復号ステップと、復号正規化済み信号系列を予め定められたN個(N=2Dであり、Dは2以上の整数)の範囲に区分し、符号に含まれるゲイン補正量符号を復号して得た各区分された範囲についての複数個のゲイン補正量で復号グローバルゲインを各区分された範囲ごとに補正して得られるゲインと復号正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列を出力信号系列として得る復元ステップと、を有し、ゲイン補正量符号は、各区分された範囲に対応するゲイン補正量と区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲に対応するゲイン補正量とのうち範囲に含まれる区分された範囲の個数が多い範囲に対応するゲイン補正量に対して優先的にビットが割り当てるという基準に基づいてビットが割り当てられたゲイン補正量を特定するものである。
符号を要することなく符号化側と復号側で同一の方法でフレームを複数の範囲に区分し、複数の範囲のそれぞれにおいて、フレームの帯域全体に適用される量子化グローバルゲインを補正することによって、少ない符号量の増加でゲインの量子化精度が向上し、ミュージカルノイズや量子化ノイズなどに起因する音質劣化を軽減できる。
従来技術に関わる符号化装置と復号装置の機能構成例を示すブロック図。 第1実施形態に係る符号化装置の機能構成例を示すブロック図。 第1実施形態に係る符号化処理の処理フローを示す図。 第1基準による区分処理の第1例の具体例1の処理フローを示す図。 第1基準による区分処理の第1例の具体例2の処理フローを示す図。 第1基準による区分処理の第1例の一般化の処理フローを示す図。 第1基準による区分処理の第3例の具体例1の処理フローを示す図。 第1基準による区分処理の第3例の具体例2の処理フローを示す図。 第1基準による区分処理の第3例の一般化の処理フローを示す図。 第1基準による区分処理の第5例の具体例1の処理フローを示す図。 第1基準による区分処理の第5例の具体例2の処理フローを示す図。 第1基準による区分処理の第5例の一般化の処理フローを示す図。 第2基準による区分処理の第1例の具体例1の処理フローを示す図。 第2基準による区分処理の第1例の具体例2の処理フローを示す図。 第2基準による区分処理の第1例の一般化の処理フローを示す図。 第2基準による区分処理の第3例の具体例1の処理フローを示す図。 第2基準による区分処理の第3例の具体例2の処理フローを示す図。 第2基準による区分処理の第3例の一般化の処理フローを示す図。 第2基準による区分処理の第5例の具体例1の処理フローを示す図。 第2基準による区分処理の第5例の具体例2の処理フローを示す図。 第2基準による区分処理の第5例の一般化の処理フローを示す図。 第1実施形態に係る復号装置の機能構成例を示すブロック図。 第1実施形態に係る復号処理の処理フローを示す図。 ゲイン補正量符号化部140の機能構成例を示すブロック図。 区分された範囲及び区分された範囲を纏めた範囲の例を説明するための図。
本発明の実施形態を、図面を参照して説明する。同一構成要素ないし同一処理には同一符号を割り当てて重複説明を省略する場合がある。なお、各実施形態で扱う音響信号は音声や楽音などの音響、映像などの信号である。ここでは音響信号が時間領域信号であることを想定しているが、必要に応じて周知技術によって時間領域信号を周波数領域信号に変換することも、或いは周波数領域信号を時間領域信号に変換することもできる。したがって、符号化処理の対象となる信号は、時間領域信号でも周波数領域信号でもよい(以下の説明では、説明を具体的にするため、周波数領域信号を扱う)。符号化処理の対象として入力される信号は複数のサンプルで構成される系列(サンプル系列)であり、符号化処理は通常、フレーム単位で実行されることから、処理対象の信号を入力信号系列と呼称することにする。
例えば図1に示す技術を参考にすると、入力信号系列X(ω) [ω∈{0,…,L-1}]に含まれる各成分、量子化グローバルゲインg^および量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]に含まれる各成分の間の関係は式(1)で表すことができる。ここで、egはグローバルゲインgと量子化グローバルゲインg^との量子化誤差を、eXQは正規化入力信号系列XQ(ω) [ω∈{0,…,L-1}]と量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]に含まれる対応する成分同士(同じωの値の成分同士)の量子化誤差を表している。
Figure 0005738480
通常の量子化では、量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]に対応する符号である正規化信号符号に消費される消費ビット数は入力信号系列に依存し、正規化信号符号用に予め定められた規定ビット数の一部が未使用のビットとして残る場合が多い。そこで、この余った一つまたは複数のビット(以下、余剰ビットという)を量子化誤差egとeXQの低減に利用する。さらに言えば、余剰ビットに限らず、量子化誤差の低減のために事前に用意された一つまたは複数のビットを利用してもよい。以下で説明する実施形態では、余剰ビットまたは事前に用意された一つまたは複数のビットのうち一部または全部を量子化誤差egの低減に利用することを説明する。例えば、余剰ビットまたは事前に用意された一つまたは複数のビットのうち、量子化誤差eXQの低減に使われなかった残りのビットを量子化誤差egの低減に利用することができる。もちろん、量子化誤差egの低減のためだけに利用される一つまたは複数のビットを事前に用意しておいてもよい。以下、量子化誤差egの低減に利用可能なビットを「ゲイン修正ビット」と呼称する。ゲイン修正ビットのビット数をUとする。
「量子化誤差egを低減する」ことは、換言すると、「量子化グローバルゲインを補正する」ことに他ならない。量子化グローバルゲインの補正に関して、一つのフレームに関する離散周波数のインデックスω∈{0,1,2,…,L-1}の全体、つまり系列全体、に共通の量子化グローバルゲインを補正する方法が考えられる。しかし、音響信号の特性を考慮すると、系列全体に共通の量子化グローバルゲインを補正するよりも、系列全体BをN個(ただし、Nは2以上の予め定められた整数である)の範囲{Bnn=1 N={B1,…,Bn,…,BN}に区分した後、各範囲に対応するゲインを、量子化グローバルゲインを補正することによって求める方が、音声品質の向上を期待できる。このような観点から、実施形態における適応量子化では、量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]の系列全体が複数の範囲に区分される。
符号化装置と復号装置とで同じ信号系列BをN個の範囲に区分するために容易に考えられる方法は、隣接する範囲の境界位置や各範囲に含まれる成分数のような範囲を特定する情報を符号化装置の出力とする方法である。しかし、範囲を特定する情報を出力するためには大量のビット数が必要となる。範囲を特定する情報を符号化装置の出力とすることなく、すなわち、ビットを消費することなく、符号化装置と復号装置とで同じ基準で区分を行なう。また、各範囲に対してなるべく均等にゲイン修正ビット、すなわち、量子化グローバルゲインを修正するための情報量、を与えることを想定し、各範囲に含まれる量子化正規化済み信号系列の成分の情報量がなるべく均等となることが望ましい。そこで、系列区分の基準として「各範囲のエネルギーがなるべく等しくなるように区分する基準」又は「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」を採用する。これらの基準による具体的な区分方法については、後に詳述する。
実施形態の詳細を以下に説明する。
《第1実施形態》
第1実施形態の符号化装置1(図2参照)は、正規化信号符号化部120、グローバルゲイン符号化部105、ゲイン補正量符号化部140、区分部150を含む。図1に示す符号化装置1では、区分部150はゲイン補正量符号化部140の構成要素として図示されているが、後述の説明から容易に推測されるように、区分部150がゲイン補正量符号化部140と異なる構成要素であってもよい。符号化装置1は、必要に応じて、周波数領域変換部101と合成部160を含んでもよい。
まず、符号化装置1(encoder)が行う符号化処理を説明する(図3参照)。
ここでは、符号化装置1の入力信号系列は、フレーム単位の音響信号x(t)に対応するL点(Lは、正整数で例えば256である)の周波数成分である入力信号系列X(ω) [ω∈{Lmin,…,Lmax}]であるとして説明する。ここで、tは離散時間のインデックス、ωは離散周波数のインデックス、LminはL点の周波数成分のうちの最小の離散周波数のインデックス、LmaxはL点の周波数成分のうちの最大の離散周波数のインデックス、を表す。ただし、フレーム単位の音響信号x(t)そのものを符号化装置1の入力信号系列としてもよいし、フレーム単位の音響信号x(t)に対して線形予測分析をした残差信号を符号化装置1の入力信号系列としてもよいし、その残差信号に対応するL点(Lは、正整数で例えば256である)の周波数成分を入力信号系列としてもよい。
<周波数領域変換部101>
符号化装置1は、符号化装置1の前処理部として、または符号化装置1内に、周波数領域変換部101を備えてもよい。この場合は、周波数領域変換部101がフレーム単位の時間領域の音響信号x(t)に対応するL点(Lは、正整数で例えば256である)の周波数成分を生成して入力信号系列X(ω) [ω∈{Lmin,…,Lmax}]として出力する。時間−周波数変換方法として、例えばMDCT(Modified Discrete Cosine Transform)やDCT(Discrete Cosine Transform)を用いることができる。この場合も、フレーム単位の時間領域の音響信号に代えて、フレーム単位の時間領域の音響信号を線形予測分析して得られる残差信号をx(t)としてもよい。
<正規化信号符号化部120>
正規化信号符号化部120は、フレーム単位の入力信号系列X(ω) [ω∈{Lmin,…,Lmax}]の各成分が正規化された信号による系列を符号化して得られる正規化信号符号と、この正規化信号符号に対応する量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を出力する(ステップS1e)。
正規化信号符号化部120は、例えば、図1の正規化部102、量子化部103、ゲイン制御部104により実現される。正規化部102、量子化部103、ゲイン制御部104のそれぞれは、[背景技術]欄で説明した通りに動作する。
<グローバルゲイン符号化部105>
グローバルゲイン符号化部105が、入力信号系列X(ω) [ω∈{Lmin,…,Lmax}]に対応するゲインである量子化グローバルゲインg^と、量子化グローバルゲインg^に対応するグローバルゲイン符号とを得る(ステップS2e)。また、グローバルゲイン符号化部105は、必要に応じて量子化グローバルゲインg^に対応する量子化ステップ幅も得る。
グローバルゲイン符号化部105は、例えば、[背景技術]欄で説明した通りに動作する。
また、例えば、グローバルゲイン符号化部105は、量子化グローバルゲインの候補とその候補に対応するグローバルゲイン符号の組を複数組格納したテーブルを備え、正規化信号符号化部120で得られたグローバルゲインgと最も近い量子化グローバルゲインの候補を量子化グローバルゲインg^とし、その候補に対応するグローバルゲイン符号を出力してもよい。
要は、グローバルゲイン符号化部105は、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の各成分とゲインとを乗算して得られる信号系列と入力信号系列X(ω) [ω∈{Lmin,…,Lmax}]との相関が最大または相関が最大又は誤差が最小となるような基準で求められた量子化グローバルゲインg^とこの量子化グローバルゲインに対応するグローバルゲイン符号を求めて出力すればよい。
なお、ゲイン補正量符号化部140が量子化グローバルゲインg^に対応する量子化ステップ幅を用いた処理を行う場合は、量子化グローバルゲインg^に対応する量子化ステップ幅もゲイン補正量符号化部140に対して出力される。
<区分部150>
区分部150が、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を、「各範囲のエネルギーがなるべく等しくなるように区分する基準」又は「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」で、N個の範囲(ただし、N=2Dであり、Dは2以上の予め定められた整数である)に区分する(ステップS3e)。既述の説明と整合させると、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の離散周波数インデックスの集合を{Lmin,…,Lmax}として、量子化正規化済み信号系列X^Q(ω)[ω∈{Lmin,…,Lmax}]が系列全体Bに相当し、区分部150は、量子化正規化済み信号系列X^Q(ω)[ω∈{Lmin,…,Lmax}]を、「各範囲のエネルギーがなるべく等しくなるように区分する基準」又は「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」で、N個の範囲{Bnn=1 N={B1,…,Bn,…,BN}に区分する。「各範囲のエネルギーがなるべく等しくなるように区分する基準」又は「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」で区分する区分処理の詳細は後述する。この区分処理で得られるN個の範囲への区分に関する情報(以下、区分情報という)は区分部150から出力されゲイン補正量符号化部140に提供される。
区分部150が行なう区分処理の詳細については後述する。
<ゲイン補正量符号化部140>
ゲイン補正量符号化部140は、図24に示すように、記憶部141、ビット割当部142及び符号化部143を例えば備えている。ゲイン補正量符号化部140は、必要に応じて、図24に破線で示した乗算部144を備えていてもよい。ゲイン補正量符号化部140には、入力信号系列X(ω) [ω∈{Lmin,…,Lmax}]と、量子化グローバルゲインg^と、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]と区分情報が入力される。ゲイン補正量符号化部140は、ゲイン補正量符号化部140の記憶部141に記憶されている複数個のゲイン補正量コードブックを用いて、量子化グローバルゲインを複数個のゲイン補正量で区分された範囲ごとに補正して得られる補正ゲインと量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の各サンプルの値とを乗算して得られる信号系列と入力信号系列X(ω) [ω∈{Lmin,…,Lmax}]との相関が最大又は誤差が最小となるゲイン補正量を特定するための符号であるゲイン補正量符号idxを出力する。ゲイン補正量符号化部140は、入力された余剰ビット数Uに基づいて、Uビットのゲイン補正量符号idxを出力するようにする。
この際、ゲイン補正量符号化部140のビット割当部142は、N個(N=2Dであり、Dは2以上の整数)に区分された各範囲に対応するゲイン補正量と区分された範囲を2個(kは1からD−1までの各整数)纏めた範囲のゲイン補正量とのうち範囲に含まれる区分された範囲の個数が多い範囲に対応するゲイン補正量に優先してビットを割り当てる。具体的には、区分された範囲を2N-1個纏めた範囲、区分された範囲を2N-2個纏めた範囲、…、区分された範囲を2個纏めた範囲、区分された範囲の順に優先してビットを割り当てる。
なお、範囲に含まれる区分された範囲の個数が多い範囲のことを、大きな範囲と省略して記載することもある。また、範囲に含まれる区分された範囲の個数が少ない範囲のことを、小さな範囲と省略して記載することもある。さらに、範囲に含まれる区分された範囲の個数が同じ範囲のことを、同じ大きさの範囲と省略して記載することもある。
同じ大きさの範囲に対応するゲイン補正量については何れの範囲に対応するゲイン補正量に優先してビットを割り当ててもよいが、聴覚的な重要度が高い範囲に対応するゲイン補正量に対して優先的にビットを割り当てるほうが好ましい。例えば、符号化装置100内の図示しない手段又は符号化装置100の外から各範囲の聴覚的な重要度の情報が入力されたとする。この場合には、同じ大きさの範囲に対応するゲイン補正量については、各範囲の聴覚的な重要度の情報に従って、聴覚的な重要度が高い範囲に対応するゲイン補正量に優先してビットを割り当てる。すなわち、範囲に含まれる区分された範囲の個数が同じ範囲に対応するゲイン補正量については、聴覚的な重要度が高い範囲に対応するゲイン補正量に優先してビットを割り当ててもよい。
なお、一般的には、周波数が低い帯域の方が、周波数が高い帯域よりも、聴覚的な重要度が高いことが多い。このため、同じ大きさの範囲に対応するゲイン補正量については、周波数が低い範囲に対応するゲイン補正量に優先してビットを割り当ててもよい。すなわち、範囲に含まれる上記区分された範囲の個数が同じ範囲に対応するゲイン補正量については、周波数が低い範囲に対応するゲイン補正量に優先してビットを割り当ててもよい。
[ゲイン補正量符号化処理の第1例]
ゲイン補正量符号化処理の第1例は、量子化グローバルゲインg^とゲイン補正量とを加算したものを補正ゲインとする例である。ここでは、同じ大きさの範囲に対応するゲイン補正量については周波数が低い範囲に対応するゲイン補正量に優先してビットを割り当て、隣接する2つの範囲のゲイン補正量をベクトル量子化する例について説明する。量子化正規化済み信号系列が4個の範囲に区分されている場合について説明する。
この例では、量子化正規化済み信号系列は、第1の範囲R1、第2の範囲R2、第3の範囲R3及び第4の範囲R4に区分されている。例えば図25に示すように、第1の範囲R1は区間[Lmin,L(1)-1]であり、第2の範囲R2は区間[L(1),L(2)-1]であり、第3の範囲R3は区間[L(2),L(3)-1]であり、第4の範囲R4は区間[L(3),Lmax]である。図25の横軸は、サンプル番号を表す。これらの範囲R1,R2,R3,R4は、2個(kは一般には1からD−1までの各整数であるが、この例ではk=1)ずつ纏められている。範囲R1及び範囲R2を纏めた範囲を範囲R12とし、範囲R3及び範囲R4を纏めた範囲を範囲R34とする。
これらの範囲R1,R2,R3,R4,R12,R34は、同じ大きさの範囲ごとにa個の範囲で構成されるグループに分割されている。aは一般には2以上の整数であるが、この例ではa=2である。この例では、範囲R1及び範囲R2がグループG12を構成しており、範囲R3及び範囲R4がグループG34を構成しており、範囲R12及び範囲R34がグループG1234を構成している。すなわち、各グループを構成する範囲は、以下のようになる。
グループG12={範囲R1,範囲R2}
グループG34={範囲R3,範囲R4}
グループG1234={範囲R12,範囲R34}
ベクトル量子化は、これらのグループG12,G34,G1234のそれぞれで行われる。
具体的には、次の3つのベクトル量子化が行なわれる。第1のベクトル量子化は、グループG12についてのベクトル量子化、すなわち範囲R1に対応するゲイン補正量と範囲R2に対応するゲイン補正量とのベクトル量子化である。これを以下では「第1VQ」という。第2のベクトル量子化は、グループG34についてのベクトル量子化、すなわち範囲R3に対応するゲイン補正量と範囲R4に対応するゲイン補正量とのベクトル量子化である。これを以下では「第2VQ」という。第3のベクトル量子化は、グループG1234についてのベクトル量子化、すなわち範囲R12に対応するゲイン補正量と範囲R34に対応するゲイン補正量とのベクトル量子化である。これを以下では「第3VQ」という。
<記憶部141>
ゲイン補正量符号化部140の記憶部141には、範囲R1に対応するゲイン補正量の候補Δ1(ma)と、範囲R2に対応するゲイン補正量の候補Δ2(ma)と、これらのゲイン補正量の候補を特定する符号idx12(ma)との組が2Ma個(2のMa乗個、Maは1以上の整数、ma∈{1,…,2Ma}])格納されている。具体的には、Δ1(1)とΔ2(1)とidx12(1)との組、Δ1(2)とΔ2(2)とidx12(2)との組、…、Δ1(2Ma)とΔ2(2Ma)とidx12(2Ma)との組が第1VQのゲイン補正量コードブックとして記憶部141に格納されている。符号idx12(ma)のビット数はMaビットである。すなわち、第1VQにより出力される符号(以下、第1VQ符号という)idx12はMaビットである。
a個(この例ではa=2)のゲイン補正量の候補で構成されたベクトルを、ゲイン補正量候補ベクトルと呼ぶことにすると、第1VQのゲイン補正量コードブックには、Δ1(1)及びΔ2(1)で構成されたゲイン補正量候補ベクトル、Δ1(2)及びΔ2(2)で構成されたゲイン補正量候補ベクトル、…、Δ1(2Ma)及びΔ2(2Ma)で構成されたゲイン補正量候補ベクトルの計2Ma個のゲイン補正量候補ベクトルと、計2Ma個のゲイン補正量候補ベクトルとそれぞれ対応する計2Ma個の符号idx12(1),idx12(2),…,idx12(2Ma)が格納されていると考えることができる。
また、記憶部141には、範囲R3に対応するゲイン補正量の候補Δ3(mb)と、範囲R4に対応するゲイン補正量の候補Δ4(mb)と、これらのゲイン補正量の候補を特定する符号idx34(mb)との組が2Mb個(2のMb乗個、Mbは1以上の整数、mb∈{1,…,2Mb}])格納されている。具体的には、Δ3(1)とΔ4(1)とidx34(1)との組、Δ3(2)とΔ4(2)とidx34 (2)との組、…、Δ3(2Mb)とΔ4(2Mb)とidx34(2Mb)との組が第2VQのゲイン補正量コードブックとして記憶部141に格納されている。MbはMaと同じ値であっても異なる値であってもよい。符号idx34(mb)のビット数はMbビットである。すなわち、第2VQにより出力される符号(以下、第2VQ符号という)idx34はMbビットである。
第2VQのゲイン補正量コードブックには、Δ3(1)及びΔ4(1)で構成されたゲイン補正量候補ベクトル、Δ3(2)及びΔ4(2)で構成されたゲイン補正量候補ベクトル、…、Δ3(2Mb)及びΔ4(2Mb)で構成されたゲイン補正量候補ベクトルの計2Mb個のゲイン補正量候補ベクトルと、計2Mb個のゲイン補正量候補ベクトルとそれぞれ対応する計2Mb個の符号idx34(1),idx34(2),…,idx34(2Mb)が格納されていると考えてもよい。
さらに、記憶部141には、範囲R12のゲイン補正量の候補Δ12(mc)と、範囲R34のゲイン補正量の候補Δ34(mc)と、これらのゲイン補正量の候補を特定する符号idx1234(mc)との組が2Mc個(2のMc乗個、Mcは1以上の整数、mc∈{1,…,2Mc}])格納されている。具体的には、Δ12(1)とΔ34(1)とidx1234(1)との組、Δ12(2)とΔ34(2)とidx1234(2)との組、…、Δ12(2Mc)とΔ34(2Mc)とidx1234(2Mc)との組が第3VQのゲイン補正量コードブックとして記憶部141に格納されている。McはMaと同じ値であっても異なる値であってもよい。また、McはMbと同じ値であっても異なる値であってもよい。符号idx1234(mc)のビット数はMcビットである。第3VQにより出力される符号(以下、第3VQ符号という)idx1234はMcビットである。
第3VQのゲイン補正量コードブックには、Δ12(1)及びΔ34(1)で構成されたゲイン補正量候補ベクトル、Δ12(2)及びΔ34(2)で構成されたゲイン補正量候補ベクトル、…、Δ12(2Mc)及びΔ34(2Mc)で構成されたゲイン補正量候補ベクトルの計2Mc個のゲイン補正量候補ベクトルと、計2Mc個のゲイン補正量候補ベクトルとそれぞれ対応する計2Mc個の符号idx1234(1),idx1234(2),…,idx1234(2Mc)が格納されていると考えてもよい。
このように、区分された範囲及び区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲のそれぞれには、複数個のゲイン補正量の候補が対応付けされている。この例では、範囲R1にはΔ1(1),…,Δ1(2Ma)が対応付けされており、範囲R2にはΔ2(1),…,Δ2(2Ma)が対応付けされており、範囲R3にはΔ3(1),…,Δ3(2Mb)が対応付けされており、範囲R4にはΔ4(1),…,Δ4(2Mb)が対応付けされており、範囲R12にはΔ12(1),…,Δ12(2Mc)が対応付けされており、範囲R34にはΔ34(1),…,Δ34(2Mc)が対応付けされている。
ゲイン補正量の候補には、大きな範囲に対応するゲイン補正量の候補の絶対値の方が、その大きな範囲よりも小さい範囲に対応するゲイン補正量の候補の絶対値よりも大きいという関係があってもよい。すなわち、範囲に含まれる区分された範囲の個数が多い範囲に対応するゲイン補正量の候補の絶対値の方が、その範囲に含まれる上記区分された範囲の個数よりも範囲に含まれる区分された範囲の個数が少ない範囲に対応するゲイン補正量の候補の絶対値よりも大きいという関係があってもよい。
この例では、範囲R12及び範囲R34の方が、範囲R1、範囲R2、範囲R3及び範囲R4よりも大きな範囲である。
したがって、Δ12(1),…,Δ12(2Mc)の絶対値が、Δ1(1),…,Δ1(2Ma)の絶対値、Δ2(1),…,Δ2(2Ma)の絶対値、Δ3(1),…,Δ3(2Mb)の絶対値及びΔ4(1),…,Δ4(2Mb)の絶対値よりも大きくなっていてもよい。
同様に、Δ34(1),…,Δ34(2Mc)の絶対値が、Δ1(1),…,Δ1(2Ma)の絶対値、Δ2(1),…,Δ2(2Ma)の絶対値、Δ3(1),…,Δ3(2Mb)の絶対値及びΔ4(1),…,Δ4(2Mb)の絶対値よりも大きくなっていてもよい。
例えば、次のようにしてゲイン補正量候補ベクトルを生成することができる。
まず、a個の値で構成される正規化ゲイン補正量候補ベクトルを2Md個記憶部141に格納しておく。例えば、Md=Ma=Mb=Mcである。正規化ゲイン補正量候補ベクトルを構成するa個の値をΔ1(m),…,Δa(m)と表記すると、正規化ゲイン補正量候補ベクトルは(Δ1(m),…,Δa(m))と表記することができる。記憶部141には、2Md個の正規化ゲイン補正量候補ベクトル、すなわち(Δ1(1),…,Δa(1)),…,(Δ1(2Md),…,Δa(2Md))が格納されている。
なお、Δの右肩の数字及び文字はΔについての単なる添え字でありべき乗を意味しない。一方、例えば2Md等のΔ以外の文字の右肩の数字及び文字はべき乗を意味する点に注意すること。
また、範囲の大きさごとに予め定められた係数が定められているものとする。この係数は、対応する範囲が大きいほど大きい。言い換えれば、この係数は、範囲に含まれる区分された範囲の個数が多い範囲ほど大きい。
上記の例では、範囲R12,R34は範囲R1,R2,R3,R4よりも大きい範囲である。このため、範囲R12,R34に対応する係数step1234は、範囲R1,R2に対応する係数step12よりも大きい。同様に、範囲R12,R34に対応する係数step1234は、範囲R3,R4に対応する係数step34よりも大きい。
量子化グローバルゲインg^の量子化ステップ幅の範囲内で補正するのが、範囲R12に対応するゲイン補正量及び範囲R34に対応するゲイン補正量である。範囲R12に対応するゲイン補正量の量子化ステップ幅の範囲内で補正するのが、範囲R1に対応するゲイン補正量及び範囲R2に対応するゲイン補正量である。範囲R34に対応するゲイン補正量の量子化ステップ幅の範囲内で補正するのが、範囲R3に対応するゲイン補正量及び範囲R4に対応するゲイン補正量である。
このとき、正規化ゲイン補正量候補ベクトルに、範囲の大きさに対応する係数を乗算したベクトルを、その範囲のゲイン補正量候補ベクトルとする。言いかえれば、正規化ゲイン補正量候補ベクトル(Δ1(m),…,Δa(m))を構成するa個の値Δ1(m),…,Δa(m)のそれぞれに、範囲の大きさに対応する係数stepを乗算することにより得られたa個の値stepΔ1(m),…, stepΔa(m)により構成されるベクトル(stepΔ1(m),…,stepΔa(m))を、その範囲のゲイン補正量候補ベクトルとする。この乗算は、ゲイン補正量符号化部140の乗算部144により行われる。正規化ゲイン補正量候補ベクトル(Δ1(m),…,Δa(m))は2Md個あるため、m=1,…,2Mdのそれぞれについてこの乗算を行うことにより、2Md個のゲイン補正量候補ベクトル(stepΔ1(m),…, stepΔa(m))が得られる。
上記のa=2の例では、Md=Maとした場合、グループG12を構成する範囲R1,R2に対応するゲイン補正量候補ベクトル(Δ1(m),Δ2(m))は、(Δ1(m),Δ2(m))=(step12Δ1(m),step12Δ2(m))[m=1,…,2Ma]である。Md=Mbとした場合、グループG34を構成する範囲R3,R4に対応するゲイン補正量候補ベクトル(Δ3(m),Δ4(m))は、(Δ3(m),Δ4(m))=(step34Δ1(m),step34Δ2(m))[m=1,…,2Mb]である。Md=Mbとした場合、グループG1234を構成する範囲R12,R34に対応するゲイン補正量候補ベクトル(Δ12(m),Δ34(m))は、(Δ12(m),Δ34(m))=(step1234Δ1(m),step1234Δ2(m))[m=1,…,2Mc]である。
なお、下記の[符号化処理の具体例3]で説明するように、符号化部143が、第1VQ符号idx12と第2VQ符号idx34と第3VQ符号idx1234の少なくとも何れかについて、ゲイン補正量の候補を特定する符号に含まれる一部のビットのみを符号として出力する場合もある。この場合には、ゲイン補正量コードブックに含まれる符号を例えば下記のようにしておく。
Mc=2の場合の第3VQのゲイン補正量コードブックについて例示する。記憶部141には、Δ12(1)とΔ34(1)とidx1234(1)との組、Δ12(2)とΔ34(2)とidx1234(2)との組、Δ12(3)とΔ34(3)とidx1234(3)との組、Δ12(4)とΔ34(4)とidx1234(4)との組、の4組が第3VQのゲイン補正量コードブックとして格納されている。ここで、idx1234(1)を{0,0}の2ビット、idx1234(2)を{1,0}の2ビット、idx1234(3)を{0,1}の2ビット、idx1234(2)を{1,1}の2ビット、としておく。
<ビット割当部142>
ゲイン補正量符号化部140のビット割当部142は、範囲R1に対応するゲイン補正量、範囲R2に対応するゲイン補正量、範囲R3に対応するゲイン補正量、範囲R4に対応するゲイン補正量、範囲R12に対応するゲイン補正量、範囲34に対応するゲイン補正量の6個のゲイン補正量のうちの大きな範囲に対応するゲイン補正量に優先してビットを割り当てる。すなわち、範囲R12に対応するゲイン補正量と、範囲R34に対応するゲイン補正量とに優先してビットを割り当てる。
言い換えれば、第1VQ符号と第2VQ符号と第3VQ符号のうち、より大きな範囲に対応する第3VQ符号に優先してビットを割り当てる。また、第1VQ符号と第2VQ符号については、より周波数が低い範囲に対応する第1VQ符号に優先してビットを割り当てる。具体的なビットの割り当て方法は以下の通りである。
入力された余剰ビット数UがMc以下である場合は、範囲R12,R34にそれぞれ対応するゲイン補正量Δ12(mc),Δ34(mc)にビットが割り当てられるが、範囲R1,R2,R3,R4にそれぞれ対応するゲイン補正量Δ1(ma),Δ2(ma),Δ3(mb),Δ4(mb)にはビットが割り当てられない。したがって、この場合、ビット割当部142は、第3VQのみを行い第3VQ符号idx1234をゲイン補正量符号idxとして出力する指示を符号化部143に対して行う。
入力された余剰ビット数UがMcより大きくMa+Mc以下である場合は、範囲R12,R34にそれぞれ対応するゲイン補正量Δ12(mc),Δ34(mc)及び範囲R1,R2にそれぞれ対応するゲイン補正量Δ1(ma),Δ2(ma)にビットが割り当てられるが、範囲R3,R4にそれぞれ対応するゲイン補正量Δ3(mb),Δ4(mb)にはビットが割り当てられない。したがって、この場合、ビット割当部142は、第3VQと第1VQとを行い第3VQ符号idx1234と第1VQ符号idx12とをゲイン補正量符号idxとして出力する指示を符号化部143に対して行う。
入力された余剰ビット数UがMa+Mcより大きい場合は、範囲R1,R2,R3,R4,R12,R34のそれぞれに対応するゲイン補正量Δ1(ma),Δ2(ma),Δ3(mb),Δ4(mb),Δ3(mb),Δ4(mb)にビットが割り当てられる。この場合、ビット割当部142は、第3VQと第1VQと第2VQとを行い第3VQ符号idx1234と第1VQ符号idx12と第2VQ符号idx34とをゲイン補正量符号idxとして出力する指示を符号化部143に対して行う。
なお、入力された余剰ビット数Uが0以下である場合は、何れの範囲にもビットは割り当てられず、ビット割当部142は、符号化部143に対する指示は行わない。
<符号化部143>
符号化部143には、ビット割当部142からの指示と、入力信号系列X(ω) [ω∈{Lmin,…,Lmax}]と、量子化グローバルゲインg^と、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]と区分情報が入力される。
符号化部143は、各区分された範囲に対応する複数個のゲイン補正量の候補の中から、所定の誤差を最小にするゲイン補正量を選択する。また、符号化部143は、選択されたゲイン補正量を特定するためのゲイン補正量符号idxを出力する。
各グループを構成するa個の範囲はそれぞれゲイン補正量候補ベクトルを構成するa個のゲイン補正量の候補に対応付けされているため、符号化部143は、複数のゲイン補正量候補ベクトルの中から所定の誤差を最小にするゲイン補正量候補ベクトルを各グループごとに特定するためのゲイン補正量符号idxを出力すると考えてもよい。
所定の誤差とは、各区分された範囲についての複数個のゲイン補正量で量子化グローバルゲインをその各区分された範囲ごとに補正して得られるゲインに量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の各サンプルの値を乗算して得られる信号系列と入力信号系列X(ω) [ω∈{Lmin,…,Lmax}]との誤差のことである。具体的には、所定の誤差は、式(D1)、式(D3)、式(D5)で定義された加算値である。
[符号化処理の具体例1:3つの場合で異なる加算式を用いる例]
具体例1は、入力された余剰ビット数UがMcまたはMc+MaまたはMc+Ma+Mbの何れかである場合の例である。
(a) 入力された余剰ビット数UがMcである場合
入力された余剰ビット数UがMcである場合は、第3VQのみを行い第3VQ符号idx1234をゲイン補正量符号idxとして出力する指示がビット割当部142から行われる。この場合は、符号化部143は、まず、1から2Mcのそれぞれのmcについて、式(D1)で定義される加算値を計算する。なお、式(D1)において、区間[Lmin,L(2)-1]が範囲R12に対応し、区間[L(2),Lmax]が範囲R34に対応している。
Figure 0005738480
式(D1)で定義される加算値は、量子化グローバルゲインg^と範囲R12のゲイン補正量の候補Δ12(mc)とを加算して得られる値と範囲R12の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,L(2)-1}]の各サンプルの値とを乗算して得られる信号系列と範囲R12の入力信号系列X(ω) [ω∈{Lmin,…,L(2)-1}]との対応するサンプル同士の値の差の二乗和と、量子化グローバルゲインg^と範囲R34のゲイン補正量の候補Δ34(mc)とを加算して得られる値と範囲34の量子化正規化済み信号系列X^Q(ω) [ω∈{L(2),…,Lmax}]の各サンプルの値とを乗算して得られる信号系列と範囲R34の入力信号系列X(ω)[ω∈{L(2),…,Lmax}]との対応するサンプル同士の値の差の二乗和と、の加算値である。
次に、符号化部143は、この加算値を最小にするmcを選択して、この選択されたmcに対応する符号idx1234(mc)を第3VQ符号idx1234として出力する。この例では、この第3VQ符号idx1234が、ゲイン補正量符号idxとなる。第3VQ符号idx1234は式(D2)により求まる。
Figure 0005738480
(b) 入力された余剰ビット数UがMc+Maである場合
入力された余剰ビット数UがMc+Maである場合は、第3VQと第1VQとを行い第3VQ符号idx1234と第1VQ符号idx12をゲイン補正量符号idxとして出力する指示がビット割当部142から行われる。この場合は、符号化部143は、まず、1から2Mcの何れかであるmcと1から2Maの何れかであるmaとの組(mc,ma)のそれぞれについて、式(D3)で定義される加算値を計算する。なお、式(D3)において、区間[Lmin,L(1)-1]が範囲R1に対応し、区間[L(1),L(2)-1]が範囲R2に対応し、区間[Lmin,L(2)-1]が範囲R12に対応し、区間[L(2),Lmax]が範囲R34に対応している。
Figure 0005738480
式(D3)で定義される加算値は、量子化グローバルゲインg^と範囲R12のゲイン補正量の候補Δ12 (mc)と範囲R1のゲイン補正量の候補Δ1 (ma)とを加算して得られる値と範囲R1の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,L(1)-1}]の各サンプルの値とを乗算して得られる信号系列と範囲R1の入力信号系列X(ω) [ω∈{Lmin,…,L(1)-1}]との対応するサンプル同士の値の差の二乗和と、量子化グローバルゲインg^と範囲R12のゲイン補正量の候補Δ12 (mc)と範囲R2のゲイン補正量の候補Δ2 (ma)とを加算して得られる値と範囲R2の量子化正規化済み信号系列X^Q(ω) [ω∈{L(1),…,L(2)-1}]の各サンプルの値とを乗算して得られる信号系列と範囲R2の入力信号系列X(ω) [ω∈{L(1),…,L(2)-1}]との対応するサンプル同士の値の差の二乗和と、量子化グローバルゲインg^と範囲R34のゲイン補正量の候補Δ34(mc)とを加算して得られる値と範囲R34の量子化正規化済み信号系列X^Q(ω) [ω∈{L(2),…,Lmax}]の各サンプルの値とを乗算して得られる信号系列と範囲R34の入力信号系列X(ω)[ω∈{L(2),…,Lmax}]との対応するサンプル同士の値の差の二乗和と、の加算値である。
次に、符号化部143は、この加算値が最小となるmcとmaとの組に対応する符号idx1234(mc)を第3VQ符号idx1234とし符号idx12(ma) を第1VQ符号idx12として、第3VQ符号idx1234と第1VQ符号idx12とゲイン補正量符号idxとして出力する。第3VQ符号idx1234と第1VQ符号idx12は式(D4)により求まる。
Figure 0005738480
(c) 入力された余剰ビット数UがMc+Ma+Mbである場合
入力された余剰ビット数UがMc+Ma+Mbである場合は、第3VQと第1VQと第2VQを行い第3VQ符号idx1234と第1VQ符号idx12と第2VQ符号idx34をゲイン補正量符号idxとして出力する指示がビット割当部142から行われる。この場合は、符号化部143は、まず、1から2Mcの何れかであるmcと1から2Maの何れかであるmaと1から2Mbの何れかであるmbとの組(mc,ma,mb)のそれぞれについて、式(D5)で定義される加算値を計算する。なお、式(D5)において、区間[Lmin,L(1)-1]が範囲R1に対応し、区間[L(1),L(2)-1]が範囲R2に対応し、区間[L(2),L(3)-1]が範囲R3に対応し、区間[L(3),Lmax]が範囲R4に対応し、区間[Lmin,L(2)-1]が範囲R12に対応し、区間[L(2),Lmax]が範囲R34に対応している。
Figure 0005738480
式(D5)で定義される加算値は、量子化グローバルゲインg^と範囲R12のゲイン補正量の候補Δ12(mc)と範囲R1のゲイン補正量の候補Δ1(ma)とを加算して得られる値と範囲R1の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,L(1)-1}]の各サンプルの値とを乗算して得られる信号系列と範囲R1の入力信号系列X(ω) [ω∈{Lmin,…,L(1)-1}]との対応するサンプル同士の値の差の二乗和と、量子化グローバルゲインg^と範囲R12のゲイン補正量の候補Δ12(mc)と範囲R2のゲイン補正量の候補Δ2(ma)とを加算して得られる値と範囲R2の量子化正規化済み信号系列X^Q(ω) [ω∈{L(1),…,L(2)-1}]の各サンプルの値とを乗算して得られる信号系列と範囲R2の入力信号系列X(ω) [ω∈{L(1),…,L(2)-1}]との対応するサンプル同士の値の差の二乗和と、量子化グローバルゲインg^と範囲R34のゲイン補正量の候補Δ34(mc)と範囲R3のゲイン補正量の候補Δ3(mb)とを加算して得られる値と範囲R3の量子化正規化済み信号系列X^Q(ω) [ω∈{L(2),…,L(3)-1}]の各サンプルの値とを乗算して得られる信号系列と範囲R3の入力信号系列X(ω) [ω∈{L(2),…,L(3)-1}]との対応するサンプル同士の値の差の二乗和と、量子化グローバルゲインg^と範囲R34のゲイン補正量の候補Δ34(mc)と範囲R4のゲイン補正量の候補Δ4(mb)とを加算して得られる値と範囲R4の量子化正規化済み信号系列X^Q(ω) [ω∈{L(3),…,Lmax}]の各サンプルの値とを乗算して得られる信号系列と範囲R4の入力信号系列X(ω) [ω∈{L(3),…,Lmax}]との対応するサンプル同士の値の差の二乗和と、の加算値である。
次に、符号化部143は、この加算値が最小となるmcとmaとmbの組に対応する符号idx1234(mc)を第3VQ符号idx1234とし符号idx12(ma)を第1VQ符号idx12とし符号idx34(mb) を第2VQ符号idx34として、第3VQ符号idx1234と第1VQ符号idx12と第2VQ符号idx34とをゲイン補正量符号idxとして出力する。第3VQ符号idx1234と第1VQ符号idx12と第2VQ符号idx34は式(D6)により求まる。
Figure 0005738480
[符号化処理の具体例2:3つの場合で同じ加算式を用いる例]
具体例2も、具体例1と同様に、入力された余剰ビット数UがMcまたはMc+MaまたはMc+Ma+Mbの何れかである場合の例である。
具体例1では、式(D1)と式(D3)と式(D5)の何れかによって加算値を求めたが、具体例2では式(D5)のみによって加算値を求める。
(a) 入力された余剰ビット数UがMcである場合
入力された余剰ビット数UがMcである場合は、範囲R12,R34にそれぞれ対応するゲイン補正量Δ12(mc),Δ34(mc)にビットが割り当てられるが、範囲R1,R2,R3,R4にそれぞれ対応するゲイン補正量Δ1(ma),Δ2(ma),Δ3(mb),Δ4(mb)にはビットが割り当てられない。この場合、第3VQのみを行い第3VQ符号idx1234をゲイン補正量符号idxとして出力する指示がビット割当部142から行われる。
符号化部143は、Δ1(ma),Δ2(ma),Δ3(mb),Δ4(mb)を0として、1から2Mcのmcそれぞれについて、式(D5)により定義される加算値を求める。そして、符号化部143は、式(D5)により定義される加算値を最小にするmcを選択し、この選択されたmcに対応する符号idx1234(mc)を第3VQ符号idx1234として出力する。この例では、この第3VQ符号idx1234が、ゲイン補正量符号idxとなる。
(b) 入力された余剰ビット数UがMc+Maである場合
入力された余剰ビット数UがMc+Maである場合は、範囲R12,R34にそれぞれ対応するゲイン補正量Δ12(mc),Δ34(mc)及び範囲R1,R2にそれぞれ対応するゲイン補正量Δ1(ma),Δ2(ma)にビットが割り当てられるが、範囲R3,R4にそれぞれ対応するゲイン補正量Δ3(mb),Δ4(mb)にはビットが割り当てられない。この場合、第3VQと第1VQを行い第3VQ符号idx1234と第1VQ符号idx12をゲイン補正量符号idxとして出力する指示がビット割当部142から行われる。
符号化部143は、この場合は、Δ3(mb),Δ4(mb)を0として、1から2Mcの何れかであるmc及び1から2Maの何れかであるmaの組(mc,ma)のそれぞれについて、式(D5)により定義される加算値を求める。そして、符号化部143は、この加算値が最小となる最小となるmcとmaに対応する符号idx1234(mc)を第3VQ符号idx1234とし符号idx12(ma)を第1VQ符号idx12とし、第3VQ符号idx1234と第1VQ符号idx12とをゲイン補正量符号idxとして出力する。
(c) 入力された余剰ビット数UがMc+Ma+Mbである場合
入力された余剰ビット数UがMc+Ma+Mcである場合は、すべての範囲R1,R2,R3,R4,R12,R34のそれぞれにビットが割り当てられる。この場合、第3VQと第1VQと第2VQを行い第3VQ符号idx1234と第1VQ符号idx12と第2VQ符号idx34をゲイン補正量符号idxとして出力する指示がビット割当部142から行われる。
符号化部143は、具体例1と同様に加算値を式(D5)により求め、この加算値が最小となる最小となるmcに対応する符号idx1234(mc) を第3VQ符号idx1234とし符号idx12(ma) を第1VQ符号idx12とし符号idx34(ma) を第2VQ符号idx34とし、第3VQ符号idx1234と第1VQ符号idx12と第2VQ符号idx34とをゲイン補正量符号idxとして出力する。
このように、ビットが割り当てられなかったゲイン補正量は、記憶部141に格納されたものではなく0とされるため、補正を行わないことに対応するゲイン補正量と考えることができる。例えば、上記の「(a) 入力された余剰ビット数UがMcである場合」では、ビットが割り当てられなかったゲイン補正量であるΔ1(ma),Δ2(ma),Δ3(mb),Δ4(mb)が、補正を行わないことに対応するゲイン補正量となる。
[符号化処理の具体例3:余剰ビット数が半端な場合を含む例]
具体例3は、入力された余剰ビット数UがMcとMc+MaとMc+Ma+Mb以外も含む場合、すなわち、入力された余剰ビット数Uが1以上の値の何れかである場合の例である。
(a) 入力された余剰ビット数Uが0より大きくMc以下である場合 (0<U≦Mc)
入力された余剰ビット数Uが0より大きくMc以下である場合は、第3VQのみを行い第3VQ符号idx1234をゲイン補正量符号idxとして出力する指示がビット割当部142から行われる。
この場合は、符号化部143は、2U+1から2Mcの範囲にある全てのmcについてΔ12(mc),Δ34(mc)を0とし、1からMaの全てのmaについてΔ1(ma),Δ2(ma)を0とし、1からMbの全てのmbについてΔ3(mb),Δ4(mb)を0として、加算値を式(D5)により求める。
そして、符号化部143は、この加算値が最小となるmcに対応する符号idx1234(mc)のうち1から2Uの全てのmcを区別できるUビットの部分を第3VQ符号idx1234とし、この第3VQ符号idx1234をゲイン補正量符号idxとして出力する。
例えば、U=1、Mc=2の場合であれば、idx1234(1)の{0,0}の2ビットのうち1ビット目である{0}、または、idx1234(2)の{1,0}の2ビットのうち1ビット目である{1}を第3VQ符号idx1234とする。
(b) 入力された余剰ビット数UがMcより大きくMc+Ma以下である場合(Mc<U≦Mc+Ma)
入力された余剰ビット数UがMcより大きくMc+Ma以下である場合は、第3VQと第1VQを行い第3VQ符号idx1234と第1VQ符号idx12をゲイン補正量符号idxとして出力する指示がビット割当部142から行われる。
この場合は、符号化部143は、2U-Mc+1から2Maの範囲にある全てのmaについてΔ1(ma),Δ2(ma)を0とし、1から2Mbの全てのmbについてΔ3(mb),Δ4 (mb)を0として、加算値を式(D5)により求める。
そして、符号化部143は、この加算値が最小となるmcとmaに対応する符号idx1234(mc)を第3VQ符号idx1234とし、符号idx12(ma)のうちの1から2U-Mcの全てのmaを区別できるU-Mcビットの部分を第1VQ符号idx12として、第3VQ符号idx1234と第1VQ符号idx12とをゲイン補正量符号idxとして出力する。
(c) 入力された余剰ビット数UがMc+Maより大きい場合 (Mc+Ma<U)
入力された余剰ビット数UがMc+Maより大きい場合は、第3VQと第1VQと第2VQを行い第3VQ符号idx1234と第1VQ符号idx12と第2VQ符号idx34をゲイン補正量符号idxとして出力する指示がビット割当部142から行われる。
この場合は、符号化部143は、2U-Mc-Ma+1から2Mbの範囲にある全てのmbについてΔ3(mb),Δ4(mb)を0として、加算値を式(D5)により求める。
そして、符号化部143は、この加算値が最小となる最小となるmcとmaとmbに対応する符号idx1234(mc) を第3VQ符号idx1234とし、符号idx12(ma) を第1VQ符号idx12とし、符号idx34(mc)のうちの1から2U-Mc-Maの全てのmcを区別できるU-Mc-Maビットの部分を第2VQ符号idx34とし、第3VQ符号idx1234と第1VQ符号idx12と第2VQ符号idx34とゲイン補正量符号idxとして出力する。
なお、式(D2)、式(D4)、式(D6)は誤差が最小となる基準でのベクトル量子化に対応するものであるが、相関が最大となる基準でのベクトル量子化、誤差が最小または相関が最大となる基準でのスカラ量子化などの手法を適用しても良いのは当然のことである。
なお、各ベクトル量子化で用いるゲイン補正量の候補をひとつのゲイン補正量コードブックに格納しておき、ゲイン補正量符号idxを生成するようにしてもよい。
区分された範囲の個数は、2Dであるとする。2D個の区分された範囲を2k個ずつ纏めた範囲の個数は、2D/2k=2D-kである。したがって、区分された範囲及び区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲の個数は、2D+Σd=1 D-1D-dであり、合計でΣd=1 Dd=2D+Σd=1 D-1D-dである。以下、A=Σd=1 Ddとする。
この場合、ゲイン補正量候補ベクトルは、A個のゲイン補正量の候補で構成されているとする。2D個の区分された範囲及びこれらの2D個の区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲は、それぞれゲイン補正量候補ベクトルを構成するA個のゲイン補正量の候補に対応付けされているものとする。
上記のD=2,k=1であり、式(D5)を用いて加算値を求める例では、A=Σd=1 2d=2+4=6となり、符号idx(m)のゲイン補正量候補ベクトル(Δ12(m),Δ34(m),Δ1(m),Δ2(m),Δ3(m),Δ4(m))は、6個のゲイン補正量の候補Δ12(m),Δ34(m),Δ1(m),Δ2(m),Δ3(m),Δ4(m)で構成されている。ゲイン補正量の候補Δ12(m),Δ34(m),Δ1(m),Δ2(m),Δ3(m),Δ4(m)は、それぞれ範囲R12,R34,R1,R2,R3,R4に対応している。
ゲイン補正量コードブックには、複数のゲイン補正量候補ベクトルが格納されている。上記の例では、例えば2Me個のゲイン補正量候補ベクトル(Δ12(m),Δ34(m),Δ1(m),Δ2(m),Δ3(m),Δ4(m))[m=1,…,2Me]が、ゲイン補正量コードブックに格納されている。Meは、2以上の整数である。
この場合、符号化部143は、ゲイン補正量コードブックに格納された複数のゲイン補正量候補ベクトルの中から、所定の誤差を最小にするゲイン補正量候補ベクトルを特定するゲイン補正量符号idxを得る。ここでの、所定の誤差は、例えば式(D5)で定義される加算値である。
さらに、必要に応じて、合成部160が、正規化信号符号と、ゲイン補正量符号idxと、グローバルゲイン符号をまとめたビットストリームを出力する。ビットストリームは復号装置2へ伝送される。
[符号化部143の変形例]
ゲイン補正量符号化部140の符号化部143は、式(D1)に代えて式(D13)で定義される加算値を最小にするゲイン補正量を特定するためのゲイン補正量符号idxを得てもよい。
Figure 0005738480
s12及びs34は、例えば以下の式のように定義される。
Figure 0005738480
また、符号化部143は、式(D3)に代えて式(D14)で定義される加算値を最小にするゲイン補正量を特定するためのゲイン補正量符号idxを得てもよい。
Figure 0005738480
s1及びs2は、例えば以下の式のように定義される。
Figure 0005738480
符号化部143は、式(D5)に代えて式(D15)で定義される加算値を最小にするゲイン補正量を特定するためのゲイン補正量符号idxを得てもよい。
Figure 0005738480
s3及びs4は、例えば以下の式のように定義される。
Figure 0005738480
このように、量子化グローバルゲインg^を、各区分された範囲についての複数個のゲイン補正量のそれぞれと、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の全てのサンプルの値の二乗和をそのそれぞれのゲイン補正量に対応する範囲内の全てのサンプルの値の二乗和で除算した値とを乗算した値で各区分された範囲ごとに補正してもよい。
また、符号化部143は、式(D5)に代えて式(D16)で定義される加算値を最小にするゲイン補正量を特定するためのゲイン補正量符号idxを得てもよい。
Figure 0005738480
このように、量子化グローバルゲインg^を、各区分された範囲についての複数個のゲイン補正量を加算した値と、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の全てのサンプルの値の二乗和を上記各区分された範囲内の全てのサンプルの値の二乗和で除算した値とを乗算した値で各区分された範囲ごとに補正してもよい。
なお、s12,s34,s1,s2,s3,s4を、それぞれ以下の式のように定義してもよい。
Figure 0005738480
c12は、範囲R12のサンプルのエネルギーが所定値よりも大きいサンプルの個数である。c34は、範囲R34のサンプルのエネルギーが所定値よりも大きいサンプルの個数である。c1234は、範囲R1234のサンプルのエネルギーが所定値よりも大きいサンプルの個数である。c1は、範囲R1のサンプルのエネルギーが所定値よりも大きいサンプルの個数である。c2は、範囲R2のサンプルのエネルギーが所定値よりも大きいサンプルの個数である。c3は、範囲R3のサンプルのエネルギーが所定値よりも大きいサンプルの個数である。c4は、範囲R4のサンプルのエネルギーが所定値よりも大きいサンプルの個数である。
この場合、量子化グローバルゲインg^は、各区分された範囲についての複数個のゲイン補正量のそれぞれと、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]のサンプルのエネルギーが所定値よりも大きいサンプルの個数をそのそれぞれのゲイン補正量に対応する範囲内のサンプルのエネルギーが上記所定値よりも大きいサンプルの個数で除算した値とを乗算した値で補正されることになる。または、量子化グローバルゲインg^は、各区分された範囲についての複数個のゲイン補正量を加算した値と、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]のサンプルのエネルギーが所定値よりも大きいサンプルの個数を上記各区分された範囲内のサンプルのエネルギーが上記所定値よりも大きいサンプルの個数で除算した値とを乗算した値で各区分された範囲ごとに補正されることになる。
<区分部150が行なう区分処理の詳細>
まず「各範囲のエネルギーがなるべく等しくなるように区分する基準」での区分処理について説明し、次に「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」での区分処理について説明する。
以下、「各範囲のエネルギーがなるべく等しくなるように区分する基準」を第1基準、「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」を第2基準と略記することがある。
「各範囲のエネルギーがなるべく等しくなるように区分する基準」での区分処理は、例えば、量子化正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、
(a)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の二乗和と、量子化正規化済み信号系列の全てのサンプルの値の二乗和のN分のnと、が最も近付くように、
または、
(b)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の絶対値和と、量子化正規化済み信号系列の全てのサンプルの値の絶対値和のN分のnと、が最も近付くように、
または、
(c)量子化正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の二乗和が量子化正規化済み信号系列の全てのサンプルの値の二乗和のN分のn以上となる最小のサンプル数になるように、
または、
(d)量子化正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の絶対値和が量子化正規化済み信号系列の全てのサンプルの値の絶対値和のN分のn以上となる最小のサンプル数になるように、
または、
(e)量子化正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の二乗和が量子化正規化済み信号系列の全てのサンプルの値の二乗和のN分のn以下となる最大のサンプル数になるように、
または、
(f)量子化正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の絶対値和が量子化正規化済み信号系列の全てのサンプルの値の絶対値和のN分のn以下となる最大のサンプル数になるように、
求め、
量子化正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、量子化正規化済み信号系列の第Nの範囲とすることで、量子化正規化済み信号系列をN個の範囲に区分することにより行なわれる。
上記に例示した区分処理は、「各範囲のエネルギーがなるべく等しくなるように区分する基準」による区分を、第1の範囲から順に逐次的に決定していく方法によって実現するものである。上記に例示した区分処理によれば、少ない演算処理量で「各範囲のエネルギーがなるべく等しくなるように区分する基準」による区分を実現できる。
[第1基準による区分処理の第1例]
第1基準による区分処理の第1例を図4と図5と図6を用いて説明する。第1例の区分処理は上記の(a)に対応する。第1例の区分処理は、量子化正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の二乗和と、量子化正規化済み信号系列の全てのサンプルの値の二乗和のN分のnと、が最も近付くように求め、量子化正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、量子化正規化済み信号系列の第Nの範囲とすることで、量子化正規化済み信号系列をN個の範囲に区分する処理である。
[[第1基準による区分処理の第1例の具体例1:2つの範囲に区分する例]]
図4は、2つの範囲に区分する例、すなわち、N=2の場合の例である。区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をX^Q(ω) [ω∈{Lmin,…,Lmid-1}]とX^Q(ω) [ω∈{L mid,…,Lmax}]の2つの範囲に区分する例、具体的には、第1の範囲である低域と第2の範囲である高域との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるLmidを決定する場合の例である。
まず、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和powを求める。二乗和powは、式(2)によって求まる。
Figure 0005738480
次に、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和の2分の1と、量子化正規化済み信号系列の第1の範囲に含まれる全てのサンプルX^Q(Lmin),…,X^Q(Lmid-1)の値の二乗和との差が最小となるように、第2の範囲の最も低域側にあるサンプル番号であるLmidを求める。すなわち、Lmidは式(3)によって求まる。これにより第1の範囲がX^Q [ω∈{Lmin,…,Lmid-1}]と決定する。
Figure 0005738480
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲以外の範囲、すなわち、X^Q [ω∈{Lmid,…,Lmax}]を第2の範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は2つの範囲に区分される。
区分部150が出力する区分情報は、Lmidであってもよいし、Lmidに予め定めた値を演算した値であってもよいし、第1の範囲のサンプル数Lmid−Lminであってもよいし、第2の範囲のサンプル数Lmax−Lmid+1であってもよいし、要は、第1の範囲と第2の範囲とを特定できる情報であれば何でもよい。
[[第1基準による区分処理の第1例の具体例2:4個の範囲に区分する例]]
図5は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を4個の範囲に区分する例、具体的には、第1の範囲と第2の範囲との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるL(1)を決定し、第2の範囲と第3の範囲との境界を表す情報として第3の範囲の最も低域側にあるサンプル番号であるL(2)を決定し、第3の範囲と第4の範囲との境界を表す情報として第4の範囲の最も低域側にあるサンプル番号であるL(3)を決定する例である。
まず、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和powを求める。二乗和powは、式(2)によって求まる。
次に、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和の4分の1と、量子化正規化済み信号系列の第1の範囲に含まれる全てのサンプルX^Q(Lmin),…,X^Q(L(1)-1)の値の二乗和との差が最小となるように求めたL(1)を第2の範囲の最も低域側にあるサンプル番号とする。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
また、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和の4分の2(すなわち、2分の1)と、量子化正規化済み信号系列の第1の範囲から第2の範囲に含まれる全てのサンプルX^Q(Lmin),…,X^Q(L(2)-1)の値の二乗和との差が最小となるように求めたL(2)を第3の範囲の最も低域側にあるサンプル番号とする。これにより、X^Q [ω∈{L(1),…,L(2)-1}]が第2の範囲として定まる。
また、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和の4分の3と、量子化正規化済み信号系列の第1の範囲から第3の範囲に含まれる全てのサンプルX^Q(Lmin),…,X^Q(L(3)-1)の値の二乗和との差が最小となるように求めたL(3)を第4の範囲の最も低域側にあるサンプル番号とする。これにより、X^Q [ω∈{L(2),…,L(3)-1}]が第3の範囲として定まる。
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第3の範囲以外の範囲、すなわち、X^Q [ω∈{L(3),…,Lmax}]を第4の範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は4個の範囲に区分される。
区分部150が出力する区分情報は、L(1)とL(2)とL(3)であってもよいし、L(1)とL(2)とL(3)のそれぞれに予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、4個の範囲の全てを特定できる情報であれば何でもよい。
[[第1基準による区分処理の第1例の一般化:N個の範囲に区分する例]]
図6は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をN個の範囲に区分する例、具体的には、第nの範囲と第n+1の範囲との境界を表す情報として第n+1の範囲の最も低域側にあるサンプル番号であるL(n)を決定する例である。以下では、LminをL(0)として説明する。
まず、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和powを求める。二乗和powは、式(2)によって求まる。
次に、n=1からN−1のそれぞれのnについて、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和のN分のnと、量子化正規化済み信号系列の第1の範囲から第nの範囲に含まれる全てのサンプルX^Q(Lmin),…,X^Q(L(n)-1)の値の二乗和との差が最小となるように求めたL(n)を第n+1の範囲の最も低域側にあるサンプル番号とする。これにより、X^Q [ω∈{L(n-1),…,L(n)-1}]が第nの範囲として定まる。
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第N−1の範囲以外の範囲、すなわち、X^Q [ω∈{L(N-1),…,Lmax}]を第Nの範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]はN個の範囲に区分される。
区分部150が出力する区分情報は、L(n)(nは1からN−1までの各整数)であってもよいし、L(n)(nは1からN−1までの各整数)に予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、N個の範囲の全てを特定できる情報であれば何でもよい。
[第1基準による区分処理の第2例]
第1基準による区分処理の第2例は上記の(b)に対応する。第2例の区分処理は、第1例の区分処理における「二乗和」を「絶対値和」に置き換えた以外は、第1例の区分処理と同じ方法である。第2例の区分処理によれば、第1例の区分処理で行なう二乗計算を省略できる分、第1例の区分処理よりも少ない演算処理量で区分処理を行なうことが可能となる。
[第1基準による区分処理の第3例]
第1基準による区分処理の第3例を図7と図8と図9を用いて説明する。第3例の区分処理は上記の(c)に対応する。第3例の区分処理は、量子化正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、量子化正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の二乗和が量子化正規化済み信号系列の全てのサンプルの値の二乗和のN分のn以上となる最小のサンプル数になるように求め、量子化正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、量子化正規化済み信号系列の第Nの範囲とすることで、量子化正規化済み信号系列をN個の範囲に区分する処理である。
[[第1基準による区分処理の第3例の具体例1:2つの範囲に区分する例]]
図7は、2つの範囲に区分する例、すなわち、N=2の場合の例である。区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をX^Q(ω) [ω∈{Lmin,…,Lmid-1}]とX^Q(ω) [ω∈{Lmid,…,Lmax}]の2つの範囲に区分する例、具体的には、第1の範囲である低域と第2の範囲である高域との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるLmidを決定する場合の例である。
まず、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和powを求める。二乗和powは、式(2)によって求まる。
次に、離散周波数のインデックスωの番号をLminから順に増やしながら量子化正規化済み信号系列X^Q(ω)のLminから当該インデクスまでの二乗和plowがplow≧pow/2を満たすか否かを判定し、初めてplow≧pow/2を満たす場合の離散周波数のインデックスωまでを第1の範囲とし、当該インデックスωに1を加算したものを第2の範囲の最も低域側にあるサンプル番号であるインデックスLmidとして出力する。これにより第1の範囲がX^Q[ω∈{Lmin,…,Lmid-1}]と決定する。
図7は、上記の処理を実現するためのフローチャートである。離散周波数のインデックスωの初期値をLmin、低域のエネルギーplowの初期値を|X^Q(Lmin)|2に設定する。そして、plow≧pow/2を満たすか否かを判定する。plow≧pow/2を満たさない場合には、離散周波数のインデックスωに1を加えたものを新たなωとし、plowにX^Q(ω)のエネルギー|X^Q(ω)|2を加算したものを新たなplowとする。plow≧pow/2を満たす場合には、その時点での離散周波数のインデックスωに1を加えたものをインデックスLmidとして出力する。
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲以外の範囲、すなわち、X^Q [ω∈{Lmid,…,Lmax}]を第2の範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は2つの範囲に区分される。
区分部150が出力する区分情報は、Lmidであってもよいし、Lmidに予め定めた値を演算した値であってもよいし、第1の範囲のサンプル数Lmid−Lminであってもよいし、第2の範囲のサンプル数Lmax−Lmid+1であってもよいし、要は、第1の範囲と第2の範囲とを特定できる情報であれば何でもよい。
[[第1基準による区分処理の第3例の具体例2:4個の範囲に区分する例]]
図8は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を4個の範囲に区分する例、具体的には、第1の範囲と第2の範囲との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるL(1)を決定し、第2の範囲と第3の範囲との境界を表す情報として第3の範囲の最も低域側にあるサンプル番号であるL(2)を決定し、第3の範囲と第4の範囲との境界を表す情報として第4の範囲の最も低域側にあるサンプル番号であるL(3)を決定する例である。
まず、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和powを求める。二乗和powは、式(2)によって求まる。
次に、量子化正規化済み信号系列の第1の範囲に含まれる全てのサンプルX^Q(Lmin),…,X^Q(L(1)-1)の値の二乗和が、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和の4分の1以上であり、かつ、量子化正規化済み信号系列の第1の範囲に含まれる全てのサンプルから第1の範囲の最も高域側にある1つのサンプルを除いた信号系列X^Q(Lmin),…,X^Q(L(1)-2)の値の二乗和が、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和の4分の1より小さい、L(1)を第2の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
また、量子化正規化済み信号系列の第1の範囲から第2の範囲に含まれる全てのサンプルX^Q(Lmin),…,X^Q(L(2)-1)の値の二乗和が、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和の4分の2(すなわち、2分の1)以上であり、かつ、量子化正規化済み信号系列の第1の範囲から第2の範囲に含まれる全てのサンプルから第2の範囲の最も高域側にある1つのサンプルを除いた信号系列X^Q(Lmin),…,X^Q(L(2)-2)の値の二乗和が、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和の4分の2(すなわち、2分の1)より小さい、L(2)を第3の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{L(1),…,L(2)-1}]が第2の範囲として定まる。
また、量子化正規化済み信号系列の第1の範囲から第3の範囲に含まれる全てのサンプルX^Q(Lmin),…,X^Q(L(3)-1)の値の二乗和が、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和の4分の3以上であり、かつ、量子化正規化済み信号系列の第1の範囲から第3の範囲に含まれる全てのサンプルから第3の範囲の最も高域側にある1つのサンプルを除いた信号系列X^Q(Lmin),…,X^Q(L(3)-2)の値の二乗和が、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和の4分の3より小さい、L(3)を第4の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{L(2),…,L(3)-1}]が第3の範囲として定まる。
これら処理は、具体的には例えば、以下により実現できる。
まず、式(2)によってエネルギーpowを求める。
次に、iをLminから順に1ずつ増やしながら式(4)の条件を満たすか否かを判断していき、式(4)の条件を満たすiに1を加算したものをL(1)として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
Figure 0005738480
さらに、iをL(1)から順に1ずつ増やしながら式(5)の条件を満たすか否かを判断していき、式(5)の条件を満たすiに1を加算したものをL(2)として求める。これにより、X^Q [ω∈{L(1),…,L(2)-1}]が第2の範囲として定まる。
Figure 0005738480
さらに、iをL(2)から順に1ずつ増やしながら式(6)の条件を満たすか否かを判断していき、式(6)の条件を満たすiに1を加算したものをL(3)として求める。これにより、X^Q [ω∈{L(2),…,L(3)-1}]が第3の範囲として定まる。
Figure 0005738480
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第3の範囲以外の範囲、すなわち、X^Q [ω∈{L(3),…,Lmax}]を第4の範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は4個の範囲に区分される。
区分部150が出力する区分情報は、L(1)とL(2)とL(3)であってもよいし、L(1)とL(2)とL(3)のそれぞれに予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、4個の範囲の全てを特定できる情報であれば何でもよい。
[[第1基準による区分処理の第3例の一般化:N個の範囲に区分する例]]
図9は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をN個の範囲に区分する例、具体的には、第nの範囲と第n+1の範囲との境界を表す情報として第n+1の範囲の最も低域側にあるサンプル番号であるL(n)を決定する例である。
まず、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和powを求める。二乗和powは、式(2)によって求まる。
次に、n=1からN−1のそれぞれのnについて、量子化正規化済み信号系列の第1の範囲から第nの範囲に含まれる全てのサンプルX^Q(Lmin),…,X^Q(L(n)-1)の値の二乗和が、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和のN分のn以上であり、かつ、量子化正規化済み信号系列の第1の範囲から第nの範囲に含まれる全てのサンプルから第nの範囲の最も高域側にある1つのサンプルを除いた信号系列X^Q(Lmin),…,X^Q(L(n)-2)の値の二乗和が、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和のN分のnより小さい、L(n)を第n+1の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲、n=2からN−1のそれぞれのnについて、X^Q [ω∈{L(n-1),…,L(n)-1}]が第nの範囲、として定まる。
この処理は、具体的には例えば、以下により実現できる。まず、式(2)によってエネルギーpowを求める。次に、n=1について、iをLminから順に1ずつ増やしながら式(7)の条件を満たすか否かを判断していき、式(7)の条件を満たすiに1を加算したものをL(1)として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
Figure 0005738480
さらに、n=2からN−1のそれぞれのnについて、iをL(n-1)から順に1ずつ増やしながら式(7)の条件を満たすか否かを判断していき、式(7)の条件を満たすiに1を加算したものをL(n)として求める処理をnが小さい順に繰り返す。以上の処理により、n=2からN−1のそれぞれのnについて、X^Q [ω∈{L(n-1),…,L(n)-1}]が第nの範囲として定まる。
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第N−1の範囲以外の範囲、すなわち、X^Q [ω∈{L(N-1),…,Lmax}]を第Nの範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]はN個の範囲に区分される。
区分部150が出力する区分情報は、L(n)(nは1からN−1までの各整数)であってもよいし、L(n)(nは1からN−1までの各整数)に予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、N個の範囲の全てを特定できる情報であれば何でもよい。
[第1基準による区分処理の第4例]
第1基準による区分処理の第4例は上記の(d)に対応する。第4例の区分処理は、第3例の区分処理における「二乗和」を「絶対値和」に置き換えた以外は、第3例の区分処理と同じ方法である。第4例の区分処理によれば、第3例の区分処理で行なう二乗計算を省略できる分、第3例の区分処理よりも少ない演算処理量で区分処理を行なうことが可能となる。
[第1基準による区分処理の第5例]
第1基準による区分処理の第5例を図10と図11と図12を用いて説明する。第5例の区分処理は上記の(e)に対応する。第5例の区分処理は、量子化正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、量子化正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の二乗和が量子化正規化済み信号系列の全てのサンプルの値の二乗和のN分のn以下となる最大のサンプル数になるように求め、量子化正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、量子化正規化済み信号系列の第Nの範囲とすることで、量子化正規化済み信号系列をN個の範囲に区分する処理である。
[[第1基準による区分処理の第5例の具体例1:2つの範囲に区分する例]]
図10は、2つの範囲に区分する例、すなわち、N=2の場合の例である。区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をX^Q(ω) [ω∈{Lmin,…,Lmid-1}]とX^Q(ω) [ω∈{Lmid,…,Lmax}]の2つの範囲に区分する例、具体的には、第1の範囲である低域と第2の範囲である高域との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるLmidを決定する場合の例である。
まず、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和powを求める。二乗和powは、式(2)によって求まる。
次に、離散周波数のインデックスωの番号をLminから順に増やしながら量子化正規化済み信号系列X^Q(ω)のLminから当該インデクスまでの二乗和plowがplow≦pow/2を満たすか否かを判定し、初めてplow≦pow/2を満たさなくなる場合の離散周波数のインデックスωから1を減算した離散周波数までを第1の範囲とし、当該インデックスωをを第2の範囲の最も低域側にあるサンプル番号であるインデックスLmidとして出力する。これにより第1の範囲がX^Q [ω∈{Lmin,…,Lmid-1}]と決定する。
図10は、上記の処理を実現するためのフローチャートである。離散周波数のインデックスωの初期値をLmin、低域のエネルギーplowの初期値を|X^Q(Lmin)|2に設定する。そして、plow≦pow/2を満たすか否かを判定する。plow≦pow/2を満たす場合には、離散周波数のインデックスωに1を加えたものを新たなωとし、plowにX^Q(ω)のエネルギー|X^Q(ω)|2を加算したものを新たなplowとする。plow≦pow/2を満たさない場合には、その時点での離散周波数のインデックスωをインデックスLmidとして出力する。
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲以外の範囲、すなわち、X^Q [ω∈{Lmid,…,Lmax}]を第2の範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は2つの範囲に区分される。
区分部150が出力する区分情報は、Lmidであってもよいし、Lmidに予め定めた値を演算した値であってもよいし、第1の範囲のサンプル数Lmid−Lminであってもよいし、第2の範囲のサンプル数Lmax−Lmid+1であってもよいし、要は、第1の範囲と第2の範囲とを特定できる情報であれば何でもよい。
[[第1基準による区分処理の第5例の具体例2:4個の範囲に区分する例]]
図11は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を4個の範囲に区分する例、具体的には、第1の範囲と第2の範囲との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるL(1)を決定し、第2の範囲と第3の範囲との境界を表す情報として第3の範囲の最も低域側にあるサンプル番号であるL(2)を決定し、第3の範囲と第4の範囲との境界を表す情報として第4の範囲の最も低域側にあるサンプル番号であるL(3)を決定する例である。
まず、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和powを求める。二乗和powは、式(2)によって求まる。
次に、量子化正規化済み信号系列の第1の範囲に含まれる全てのサンプルX^Q(Lmin),…,X^Q(L(1)-1)の値の二乗和が、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和の4分の1以下であり、かつ、量子化正規化済み信号系列の第1の範囲に含まれる全てのサンプルに第2の範囲の最も低域側にある1つのサンプルを加えた信号系列X^Q(Lmin),…,X^Q(L(1))の値の二乗和が、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和の4分の1より大きい、L(1)を第2の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
また、量子化正規化済み信号系列の第1の範囲から第2の範囲に含まれる全てのサンプルX^Q(Lmin),…,X^Q(L(2)-1)の値の二乗和が、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和の4分の2(すなわち、2分の1)以下であり、かつ、量子化正規化済み信号系列の第1の範囲から第2の範囲に含まれる全てのサンプルに第3の範囲の最も低域側にある1つのサンプルを加えた信号系列X^Q(Lmin),…,X^Q(L(2))の値の二乗和が、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和の4分の2(すなわち、2分の1)より大きい、L(2)を第3の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{L(1),…,L(2)-1}]が第2の範囲として定まる。
また、量子化正規化済み信号系列の第1の範囲から第3の範囲に含まれる全てのサンプルX^Q(Lmin),…,X^Q(L(3)-1)の値の二乗和が、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和の4分の3以下であり、かつ、量子化正規化済み信号系列の第1の範囲から第3の範囲に含まれる全てのサンプルに第4の範囲の最も低域側にある1つのサンプルを加えた信号系列X^Q(Lmin),…,X^Q(L(3))の値の二乗和が、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和の4分の3より大きい、L(3)を第4の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{L(2),…,L(3)-1}]が第3の範囲として定まる。
この処理は、具体的には例えば、以下により実現できる。
まず、式(2)によってエネルギーpowを求める。
次に、iをLminから順に1ずつ増やしながら式(8)の条件を満たすか否かを判断していき、式(8)下の条件を満たすiに1を加算したものをL(1)として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
Figure 0005738480
さらに、iをL(1)から順に1ずつ増やしながら式(9)の条件を満たすか否かを判断していき、式(9)下の条件を満たすiに1を加算したものをL(2)として求める。これにより、X^Q [ω∈{L(1),…,L(2)-1}]が第2の範囲として定まる。
Figure 0005738480
さらに、iをL(2)から順に1ずつ増やしながら式(10)の条件を満たすか否かを判断していき、式(10)の条件を満たすiに1を加算したものをL(3)として求める。これにより、X^Q [ω∈{L(2),…,L(3)-1}]が第3の範囲として定まる。
Figure 0005738480
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第3の範囲以外の範囲、すなわち、X^Q [ω∈{L(3),…,Lmax}]を第4の範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は4個の範囲に区分される。
区分部150が出力する区分情報は、L(1)とL(2)とL(3)であってもよいし、L(1)とL(2)とL(3)のそれぞれに予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、4個の範囲の全てを特定できる情報であれば何でもよい。
[[第1基準による区分処理の第5例の一般化:N個の範囲に区分する例]]
図12は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をN個の範囲に区分する例、具体的には、第nの範囲と第n+1の範囲との境界を表す情報として第n+1の範囲の最も低域側にあるサンプル番号であるL(n)を決定する例である。
まず、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和powを求める。二乗和powは、式(2)によって求まる。
次に、n=1からN−1のそれぞれのnについて、量子化正規化済み信号系列の第1の範囲から第nの範囲に含まれる全てのサンプルX^Q(Lmin),…,X^Q(L(n)-1)の値の二乗和が、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和のN分のn以下であり、かつ、量子化正規化済み信号系列の第1の範囲から第nの範囲に含まれる全てのサンプルに第n+1の範囲の最も低域側にある1つのサンプルを加えた信号系列X^Q(Lmin),…,X^Q(L(n))の値の二乗和が、式(2)により求めた量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の全サンプルX^Q(Lmin),…,X^Q(Lmax)の二乗和のN分のnより大きい、L(n)を第n+1の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲、n=2からN−1のそれぞれのnについて、X^Q [ω∈{L(n-1),…,L(n)-1}]が第nの範囲、として定まる。
この処理は、具体的には例えば、以下により実現できる。まず、式(2)によってエネルギーpowを求める。次に、n=1について、iをLminから順に1ずつ増やしながら式(11)の条件を満たすか否かを判断していき、式(11)の条件を満たすiに1を加算したものをL(1)として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
Figure 0005738480
さらに、n=2からN−1のそれぞれのnについて、iをL(n-1)から順に1ずつ増やしながら式(11)の条件を満たすか否かを判断していき、式(11)の条件を満たすiに1を加算したものをL (n)として求める処理をnが小さい順に繰り返す。以上の処理により、n=2からN−1のそれぞれのnについて、X^Q [ω∈{L(n-1),…,L(n)-1}]が第nの範囲として定まる。
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第N−1の範囲以外の範囲、すなわち、X^Q [ω∈{L(N-1),…,Lmax}]を第Nの範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]はN個の範囲に区分される。
区分部150が出力する区分情報は、L(n)(nは1からN−1までの各整数)であってもよいし、L(n)(nは1からN−1までの各整数)に予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、N個の範囲の全てを特定できる情報であれば何でもよい。
なお、「量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値以上であるサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値以上であるサンプルの個数のN分のn以下となる最大のサンプル数となるように」n=1からN−1のそれぞれのnについて、第nの範囲を定める場合は、式(2)中の「<」を「≦」に置き換えればよい。
[第1基準による区分処理の第6例]
区分処理の第6例は上記の(f)に対応する。第6例の区分処理は、第5例の区分処理における「二乗和」を「絶対値和」に置き換えた以外は、第5例の区分処理と同じ方法である。第6例の区分処理によれば、第5例の区分処理で行なう二乗計算を省略できる分、第5例の区分処理よりも少ない演算処理量で区分処理を行なうことが可能となる。
次に、第2基準である「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」での区分処理について説明する。
「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」での区分処理は、例えば、量子化正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、
(a)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数と、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のnと、が最も近付くように、
または、
(b)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数と、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数のN分のnと、が最も近付くように、
または、
(c)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以上となる最小のサンプル数となるように、
または、
(d)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以上となる最小のサンプル数となるように、
または、
(e)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以下となる最大のサンプル数となるように、
または、
(f)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以下となる最大のサンプル数となるように、
求め、
量子化正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、量子化正規化済み信号系列の第Nの範囲とすることで、量子化正規化済み信号系列をN個の範囲に区分することにより行なわれる。
上記に例示した区分処理は、「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」による区分を、各範囲を逐次的に決定していく方法によって実現するものである。上記に例示した区分処理によれば、少ない演算処理量で「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」による区分を実現できる。
[第2基準による区分処理の第1例]
第2基準による区分処理の第1例を図13と図14と図15を用いて説明する。第1例の区分処理は上記の(a)に対応する。第1例の区分処理は、量子化正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数と、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のnと、が最も近付くように求め、量子化正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、量子化正規化済み信号系列の第Nの範囲とすることで、量子化正規化済み信号系列をN個の範囲に区分する処理である。
[[第2基準による区分処理の第1例の具体例1:2つの範囲に区分する例]]
図13は、2つの範囲に区分する例、すなわち、N=2の場合の例である。区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をX^Q(ω) [ω∈{Lmin,…,Lmid-1}]とX^Q(ω) [ω∈{Lmid,…,Lmax}]の2つの範囲に区分する例、具体的には、第1の範囲である低域と第2の範囲である高域との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるL midを決定する場合の例である。
まず、各インデックスωについてfcount(ω)を式(B2)によって定める。各インデックスωについてのfcount(ω)には、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]のインデックスωに対応するサンプルのエネルギー|X^Q(ω)|2が所定値より大きいサンプルに対して「サンプルのエネルギー|X^Q(ω)|が所定値より大きい」ことを表す情報として1を設定し、それ以外のサンプルに対して「サンプルのエネルギー|X^Q(ω)|が所定値より大きくない」ことを表す情報として0を設定する。この例では所定値を任意に予め定めた微小量ε(εは0以上の値)とする。
Figure 0005738480
次に、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の2分の1と、量子化正規化済み信号系列の第1の範囲に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmid-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmid-1)との差分値(差の絶対値)が最小となるように、第2の範囲の最も低域側にあるサンプル番号であるLmidを求める。すなわち、Lmidは式(B3)によって求まる。これにより第1の範囲がX^Q [ω∈{Lmin,…,Lmid-1}]と決定する。
Figure 0005738480
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲以外の範囲、すなわち、X^Q [ω∈{Lmid,…,Lmax}]を第2の範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は2つの範囲に区分される。
区分部150が出力する区分情報は、Lmidであってもよいし、Lmidに予め定めた値を演算した値であってもよいし、第1の範囲のサンプル数Lmid-1−Lmin+1であってもよいし、第2の範囲のサンプル数Lmax−Lmid+1であってもよいし、要は、第1の範囲と第2の範囲とを特定できる情報であれば何でもよい。
[[第2基準による区分処理の第1例の具体例2:4個の範囲に区分する例]]
図14は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を4個の範囲に区分する例、具体的には、第1の範囲と第2の範囲との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるL(1)を決定し、第2の範囲と第3の範囲との境界を表す情報として第3の範囲の最も低域側にあるサンプル番号であるL(2)を決定し、第3の範囲と第4の範囲との境界を表す情報として第4の範囲の最も低域側にあるサンプル番号であるL(3)を決定する例である。
まず、各インデックスωについてfcount(ω)を式(B2)によって定める。
次に、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の1と、量子化正規化済み信号系列の第1の範囲にに含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,L(1)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(1)-1)との差分値(差の絶対値)が最小となるように求めたL(1)を第2の範囲の最も低域側にあるサンプル番号とする。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
また、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の2(すなわち、2分の1)と、量子化正規化済み信号系列の第1の範囲から第2の範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(2)-1)との差分値(差の絶対値)が最小となるように求めたL(2)を第3の範囲の最も低域側にあるサンプル番号とする。これにより、X^Q [ω∈{L(1),…,L(2)-1}]が第2の範囲として定まる。
また、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の3と、量子化正規化済み信号系列の第1の範囲から第3の範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(3)-1)との差分値(差の絶対値)が最小となるように求めたL(3)を第4の範囲の最も低域側にあるサンプル番号とする。これにより、X^Q [ω∈{L(2),…,L(3)-1}]が第3の範囲として定まる。
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第3の範囲以外の範囲、すなわち、X^Q [ω∈{L(3),…,Lmax}]を第4の範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は4個の範囲に区分される。
区分部150が出力する区分情報は、L(1)とL(2)とL(3)であってもよいし、L(1)とL(2)とL(3)のそれぞれに予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、4個の範囲の全てを特定できる情報であれば何でもよい。
[[第2基準による区分処理の第1例の一般化:N個の範囲に区分する例]]
図15は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をN個の範囲に区分する例、具体的には、第nの範囲と第n+1の範囲との境界を表す情報として第n+1の範囲の最も低域側にあるサンプル番号であるL(n)を決定する例である。以下では、LminをL(0)として説明する。
まず、各インデックスωについてfcount(ω)を式(B2)によって定める。
次に、n=1からN−1のそれぞれのnについて、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)のN分のnと、量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,L(n)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(n)-1)との差分値(差の絶対値)が最小となるように求めたL(n)を第n+1の範囲の最も低域側にあるサンプル番号とする。これにより、X^Q [ω∈{L(n-1),…,L(n)-1}]が第nの範囲として定まる。
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第N−1の範囲以外の範囲、すなわち、X^Q [ω∈{L(N-1),…,Lmax}]を第Nの範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]はN個の範囲に区分される。
区分部150が出力する区分情報は、L(n)(nは1からN−1までの各整数)であってもよいし、L(n)(nは1からN−1までの各整数)に予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、N個の範囲の全てを特定できる情報であれば何でもよい。
なお、「量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値以上であるサンプルの個数と、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値以上であるサンプルの個数のN分のnと、が最も近付くように、」n=1からN−1のそれぞれのnについて、第nの範囲を定める場合は、式(B2)中の「<」を「≦」に置き換えればよい。
[第2基準による区分処理の第2例]
第2基準による区分処理の第2例は上記の(b)に対応する。第2例の区分処理は、第1例の区分処理における「サンプルのエネルギー|X^Q(ω)|2」を「サンプルの絶対値|X^Q(ω)|」に置き換えた以外は、第1例の区分処理と同じ方法である。第2例の区分処理によれば、第1例の区分処理で行なう二乗計算を省略できる分、第1例の区分処理よりも少ない演算処理量で区分処理を行なうことが可能となる。
[第2基準による区分処理の第3例]
第2基準による区分処理の第3例を図16と図17と図18を用いて説明する。第3例の区分処理は上記の(c)に対応する。第3例の区分処理は、量子化正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以上となる最小のサンプル数となるように求め、量子化正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、量子化正規化済み信号系列の第Nの範囲とすることで、量子化正規化済み信号系列をN個の範囲に区分する処理である。
[[第2基準による区分処理の第3例の具体例1:2つの範囲に区分する例]]
図16は、2つの範囲に区分する例、すなわち、N=2の場合の例である。区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をX^Q(ω) [ω∈{Lmin,…,Lmid-1}]とX^Q(ω) [ω∈{Lmid,…,Lmax}]の2つの範囲に区分する例、具体的には、第1の範囲である低域と第2の範囲である高域との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるLmidを決定する場合の例である。
まず、各インデックスωについてfcount(ω)を式(B2)によって定める。
次に、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)を求める。
次に、離散周波数のインデックスωの番号kをLminから順に増やしながらLminから当該インデクスkまでの量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(k)が(fcount(Lmin)+…+fcount(Lmax))/2以上であるか否かを判定し、初めてfcount(Lmin)+…+fcount(k)が (fcount(Lmin)+…+fcount(Lmax))/2以上となる離散周波数のインデックスkまでを第1の範囲とし、当該インデックスkに1を加算したものを第2の範囲の最も低域側にあるサンプル番号であるインデックスL midとして出力する。これにより第1の範囲がX^Q [ω∈{Lmin,…,Lmid-1}]と決定する。
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲以外の範囲、すなわち、X^Q [ω∈{Lmid,…,Lmax}]を第2の範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は2つの範囲に区分される。
区分部150が出力する区分情報は、L midであってもよいし、L midに予め定めた値を演算した値であってもよいし、第1の範囲のサンプル数Lmid−Lminであってもよいし、第2の範囲のサンプル数Lmax−Lmid+1であってもよいし、要は、第1の範囲と第2の範囲とを特定できる情報であれば何でもよい。
[[第2基準による区分処理の第3例の具体例2:4個の範囲に区分する例]]
図17は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を4個の範囲に区分する例、具体的には、第1の範囲と第2の範囲との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるL(1)を決定し、第2の範囲と第3の範囲との境界を表す情報として第3の範囲の最も低域側にあるサンプル番号であるL(2)を決定し、第3の範囲と第4の範囲との境界を表す情報として第4の範囲の最も低域側にあるサンプル番号であるL(3)を決定する例である。
まず、各インデックスωについてfcount(ω)を式(B2)によって定める。
次に、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)を求める。
次に、量子化正規化済み信号系列の第1の範囲に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(1)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(1)-1)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の1以上であり、かつ、量子化正規化済み信号系列の第1の範囲に含まれる全てのサンプルから第1の範囲の最も高域側にある1つのサンプルを除いた信号系列に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(1)-2}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(1)-2)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の1より小さい、L(1)を第2の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
次に、量子化正規化済み信号系列の第1と第2の範囲に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(2)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(2)-1)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の2分の1以上であり、かつ、量子化正規化済み信号系列の第1と第2の範囲に含まれる全てのサンプルから第2の範囲の最も高域側にある1つのサンプルを除いた信号系列に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(2)-2}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(2)-2)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の2分の1より小さい、L(2)を第3の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{L(1),…,L(2)-1}]が第2の範囲として定まる。
次に、量子化正規化済み信号系列の第1と第2と第3の範囲に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(3)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(3)-1)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の3以上であり、かつ、量子化正規化済み信号系列の第1と第2と第3の範囲に含まれる全てのサンプルから第3の範囲の最も高域側にある1つのサンプルを除いた信号系列に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(3)-2}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(3)-2)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の3より小さい、L(3)を第4の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q[ω∈{L(2),…,L(3)-1}]が第3の範囲として定まる。
これら処理は、具体的には例えば、以下により実現できる。
まず、各インデックスωについてfcount(ω)を式(B2)によって定める。そして、fcount(Lmin)+…+fcount(Lmax)をFとする。
次に、iをLminから順に1ずつ増やしながら式(B4)を満たすか否かを判断していき、式(B4)を満たすiに1を加算したものをL(1)として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
Figure 0005738480
さらに、iをLminから順に1ずつ増やしながら式(B5)を満たすか否かを判断していき、式(B5)を満たすiに1を加算したものをL(2)として求める。これにより、X^Q [ω∈{L(1),…,L(2)-1}]が第2の範囲として定まる。
Figure 0005738480
さらに、iをLminから順に1ずつ増やしながら式(B6)を満たすか否かを判断していき、式(B6)を満たすiに1を加算したものをL(3)として求める。これにより、X^Q [ω∈{L(2),…,L(3)-1}]が第3の範囲として定まる。
Figure 0005738480
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第3の範囲以外の範囲、すなわち、X^Q [ω∈{L(3),…,Lmax}]を第4の範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は4個の範囲に区分される。
区分部150が出力する区分情報は、L(1)とL(2)とL(3)であってもよいし、L(1)とL(2)とL(3)のそれぞれに予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、4個の範囲の全てを特定できる情報であれば何でもよい。
[[第2基準による区分処理の第3例の一般化:N個の範囲に区分する例]]
図18は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をN個の範囲に区分する例、具体的には、第nの範囲と第n+1の範囲との境界を表す情報として第n+1の範囲の最も低域側にあるサンプル番号であるL(n)を決定する例である。
まず、各インデックスωについてfcount(ω)を式(B2)によって定める。
次に、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)を求める。
次に、n=1からN−1のそれぞれのnについて、量子化正規化済み信号系列の第1の範囲から第nの範囲に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(n)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(n)-1)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)のN分のn以上であり、かつ、量子化正規化済み信号系列の第1の範囲から第nの範囲に含まれる全てのサンプルから第nの範囲の最も高域側にある1つのサンプルを除いた信号系列X^Q(ω)[ω∈{Lmin,…,L(n)-2}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(n)-2)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)のN分のnより小さい、L(n)を第n+1の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲、n=2からN−1のそれぞれのnについて、X^Q [ω∈{L(n-1),…,L(n)-1}]が第nの範囲、として定まる。
この処理は、具体的には例えば、以下により実現できる。
まず、各インデックスωについてfcount(ω)を式(B2)によって定める。そして、fcount(Lmin)+…+fcount(Lmax)をFとする。
次に、n=1について、iをLminから順に1ずつ増やしながら式(B7)を満たすか否かを判断していき、式(B7)を満たすiに1を加算したものをL(1)として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
Figure 0005738480
さらに、n=2からN−1のそれぞれのnについて、iをL(n-1)から順に1ずつ増やしながら式(B7)を満たすか否かを判断していき、式(B7)を満たすiに1を加算したものをL(n)として求める処理をnが小さい順に繰り返す。以上の処理により、n=2からN−1のそれぞれのnについて、X^Q [ω∈{L(n-1),…,L(n)-1}]が第nの範囲として定まる。
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第N−1の範囲以外の範囲、すなわち、X^Q [ω∈{L(n),…,Lmax}]を第Nの範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]はN個の範囲に区分される。
区分部150が出力する区分情報は、L(n)(nは1からN−1までの各整数)であってもよいし、L(n)(nは1からN−1までの各整数)に予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、N個の範囲の全てを特定できる情報であれば何でもよい。
なお、「量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値以上であるサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値以上であるサンプルの個数のN分のn以上となる最小のサンプル数となるように」n=1からN−1のそれぞれのnについて、第nの範囲を定める場合は、式(2)中の「<」を「≦」に置き換えればよい。
[第2基準による区分処理の第4例]
第2基準による区分処理の第4例は上記の(d)に対応する。第4例の区分処理は、第3例の区分処理における「サンプルのエネルギー|X^Q(ω)|2」を「サンプルの絶対値|X^Q(ω)|」に置き換えた以外は、第3例の区分処理と同じ方法である。第4例の区分処理によれば、第3例の区分処理で行なう二乗計算を省略できる分、第3例の区分処理よりも少ない演算処理量で区分処理を行なうことが可能となる。
[第2基準による区分処理の第5例]
第2基準による区分処理の第5例を図19と図20と図21を用いて説明する。第5例の区分処理は上記の(e)に対応する。第5例の区分処理は、量子化正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以下となる最大のサンプル数となるように求め、量子化正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、量子化正規化済み信号系列の第Nの範囲とすることで、量子化正規化済み信号系列をN個の範囲に区分する処理である。
[[第2基準による区分処理の第5例の具体例1:2つの範囲に区分する例]]
図19は、2つの範囲に区分する例、すなわち、N=2の場合の例である。区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をX^Q(ω) [ω∈{Lmin,…,Lmid-1}]とX^Q(ω) [ω∈{Lmid,…,Lmax}]の2つの範囲に区分する例、具体的には、第1の範囲である低域と第2の範囲である高域との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるLmidを決定する場合の例である。
まず、各インデックスωについてfcount(ω)を式(B2)によって定める。
次に、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)を求める。
次に、離散周波数のインデックスωの番号kをLminから順に増やしながらLminから当該インデクスkまでの量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(k)が(fcount(Lmin)+…+fcount(Lmax))/2より大であるか否かを判定し、初めてfcount(Lmin)+…+fcount(k)が (fcount(Lmin)+…+fcount(Lmax))/2より大となる離散周波数のインデックスkより1小さいk-1までを第1の範囲とし、当該インデックスkを第2の範囲の最も低域側にあるサンプル番号であるインデックスL midとして出力する。これにより第1の範囲がX^Q [ω∈{Lmin,…,Lmid-1}]と決定する。
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲以外の範囲、すなわち、X^Q [ω∈{Lmid,…,Lmax}]を第2の範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は2つの範囲に区分される。
区分部150が出力する区分情報は、Lmidであってもよいし、Lmidに予め定めた値を演算した値であってもよいし、第1の範囲のサンプル数Lmid−Lminであってもよいし、第2の範囲のサンプル数Lmax−Lmid+1であってもよいし、要は、第1の範囲と第2の範囲とを特定できる情報であれば何でもよい。
[[第2基準による区分処理の第5例の具体例2:4個の範囲に区分する例]]
図20は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を4個の範囲に区分する例、具体的には、第1の範囲と第2の範囲との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるL(1)を決定し、第2の範囲と第3の範囲との境界を表す情報として第3の範囲の最も低域側にあるサンプル番号であるL(2)を決定し、第3の範囲と第4の範囲との境界を表す情報として第4の範囲の最も低域側にあるサンプル番号であるL(3)を決定する例である。
まず、各インデックスωについてfcount(ω)を式(B2)によって定める。
次に、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)を求める。
次に、量子化正規化済み信号系列の第1の範囲に含まれる全てのサンプルに第2の範囲の最も低域側にある1つのサンプルを加えた信号系列に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(1)}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(1))が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の1より大きく、かつ、量子化正規化済み信号系列の第1の範囲に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(1)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(1)-1)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の1以下となる、L(1)を第2の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
次に、量子化正規化済み信号系列の第1と第2の範囲に含まれる全てのサンプルに第3の範囲の最も低域側にある1つのサンプルを加えた信号系列に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(2)}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(2))が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の2分の1より大きく、かつ、量子化正規化済み信号系列の第1と第2の範囲に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(2)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(2)-1)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の2分の1以下となる、L(2)を第3の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{L(1),…,L(2)-1}]が第2の範囲として定まる。
次に、量子化正規化済み信号系列の第1と第2と第3の範囲に含まれる全てのサンプルに第4の範囲の最も低域側にある1つのサンプルを加えた信号系列に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(3)}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(3))が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の3より大きく、かつ、量子化正規化済み信号系列の第1と第2と第3の範囲に含まれる全てのサンプルルX^Q(ω)[ω∈{Lmin,…,L(3)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(3)-1)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の3以下となる、L(3)を第4の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{L(2),…,L(3)-1}]が第3の範囲として定まる。
この処理は、具体的には例えば、以下により実現できる。
まず、各インデックスωについてfcount(ω)を式(B2)によって定める。そして、fcount(Lmin)+…+fcount(Lmax)をFとする。
次に、iをLminから順に1ずつ増やしながら式(B8)を満たすか否かを判断していき、式(B8)を満たすiに1を加算したものをL(1)として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
Figure 0005738480
さらに、iをLminから順に1ずつ増やしながら式(B9)を満たすか否かを判断していき、式(B9)を満たすiに1を加算したものをL(2)として求める。これにより、X^Q [ω∈{L(1),…,L(2)-1}]が第2の範囲として定まる。
Figure 0005738480
さらに、iをLminから順に1ずつ増やしながら式(B10)を満たすか否かを判断していき、式(B10)を満たすiに1を加算したものをL(3)として求める。これにより、X^Q [ω∈{L(2),…,L(3)-1}]が第3の範囲として定まる。
Figure 0005738480
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第3の範囲以外の範囲、すなわち、X^Q [ω∈{L(3),…,Lmax}]を第4の範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は4個の範囲に区分される。
区分部150が出力する区分情報は、L(1)とL(2)とL(3)であってもよいし、L(1)とL(2)とL(3)のそれぞれに予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、4個の範囲の全てを特定できる情報であれば何でもよい。
[[第2基準による区分処理の第5例の一般化:N個の範囲に区分する例]]
図21は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をN個の範囲に区分する例、具体的には、第nの範囲と第n+1の範囲との境界を表す情報として第n+1の範囲の最も低域側にあるサンプル番号であるL(n)を決定する例である。
まず、各インデックスωについてfcount(ω)を式(B2)によって定める。
次に、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)を求める。
次に、n=1からN−1のそれぞれのnについて、量子化正規化済み信号系列の第1の範囲から第nの範囲に含まれる全てのサンプルに第n+1の範囲の最も低域側にある1つのサンプルを加えた信号系列に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(n)}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(n))が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)のN分のnより大きく、かつ、量子化正規化済み信号系列の第1の範囲から第nの範囲に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(n)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(n)-1)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)のN分のn以下となる、L(n)を第n+1の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲、n=2からN−1のそれぞれのnについて、X^Q [ω∈{L(n-1),…,L(n)-1}]が第nの範囲、として定まる。
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第N−1の範囲以外の範囲、すなわち、X^Q [ω∈{L(n),…,Lmax}]を第Nの範囲とする。
この処理は、具体的には例えば、以下により実現できる。
まず、各インデックスωについてfcount(ω)を式(B2)によって定める。そして、fcount(Lmin)+…+fcount(Lmax)をFとする。
次に、n=1について、iをLminから順に1ずつ増やしながら式(B11)を満たすか否かを判断していき、式(B11)を満たすiに1を加算したものをL(1)として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
Figure 0005738480
さらに、n=2からN−1のそれぞれのnについて、iをL(n-1)から順に1ずつ増やしながら式(B11)を満たすか否かを判断していき、式(B11)を満たすiに1を加算したものをL(n)として求める処理をnが小さい順に繰り返す。以上の処理により、n=2からN−1のそれぞれのnについて、X^Q [ω∈{L(n-1),…,L(n)-1}]が第nの範囲として定まる。
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第N−1の範囲以外の範囲、すなわち、X^Q [ω∈{L(n),…,Lmax}]を第Nの範囲とする。
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]はN個の範囲に区分される。
区分部150が出力する区分情報は、L(n)(nは1からN−1までの各整数)であってもよいし、L(n)(nは1からN−1までの各整数)に予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、N個の範囲の全てを特定できる情報であれば何でもよい。
[第2基準による区分処理の第6例]
第2基準による区分処理の第6例は上記の(f)に対応する。第6例の区分処理は、第5例の区分処理における「サンプルのエネルギー|X^Q(ω)|2」を「サンプルの絶対値|X^Q(ω)|」に置き換えた以外は、第5例の区分処理と同じ方法である。第6例の区分処理によれば、第5例の区分処理で行なう二乗計算を省略できる分、第5例の区分処理よりも少ない演算処理量で区分処理を行なうことが可能となる。
なお、符号化装置1から復号装置2へビットストリームを伝送する実施構成に限定されず、例えば、合成部160によって得られた情報を記録媒体に記録し、当該記録媒体から読み出された当該情報が復号装置2に入力される実施構成も許容される。
第1実施形態の復号装置2(図22参照)は、正規化信号復号部107、グローバルゲイン復号部106、ゲイン補正量復号部230、復号信号系列生成部250、区分部260を含む。復号装置2は必要に応じて分離部210、時間領域変換部270を含んでもよい。
以下、復号装置2(decoder)での処理を説明する(図23参照)。
符号化装置1から送信されたビットストリームは復号装置2に入力される。分離部210が、ビットストリームから、正規化信号符号と、グローバルゲイン符号と、ゲイン補正量符号idxを取り出す。
<正規化信号復号部107>
正規化信号復号部107には、正規化信号符号が入力される。正規化信号復号部107が、符号化装置1の正規化信号符号化部120が行う符号化方法と対応する復号方法を適用して、正規化信号符号を復号して復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を得る(ステップS1d)。この例では、符号化装置1に対応して説明を行なうため、ωは離散周波数のインデックスを表すものとし、L点の離散周波数の各成分をω=LminからLmaxのそれぞれで表すものとする。正規化信号復号部107は、[背景技術]欄で説明した図1の正規化信号復号部107と同じ動作をする。
<区分部260>
区分部260が、復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を、「各範囲のエネルギーがなるべく等しくなるように区分する基準」又は「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」で、N個の範囲(ただし、N=2Dであり、Dは2以上の予め定められた整数である)に区分する(ステップS2d)。既述の説明と整合させると、復号正規化済み信号系列X^Q(ω)の離散周波数インデックスの集合を{Lmin,…,Lmax}として、復号正規化済み信号系列X^Q(ω)[ω∈{Lmin,…,Lmax}]が系列全体Bに相当し、区分部260は、復号正規化済み信号系列X^Q(ω)[ω∈{Lmin,…,Lmax}]をN個の範囲{Bnn=1 N={B1,…,Bn,…,BN}に区分する。この区分処理の詳細は後述する。この区分処理で得られるN個の範囲の全てを特定できる情報である区分情報は復号信号系列生成部250に提供される。
区分数Nは、符号化装置1の区分部150における区分数Nと共通の値となるように、例えば符号化装置1の区分部150と復号装置2の区分部260とに予め設定されている。
区分部260が復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]に対して行なう区分処理は、符号化装置1の区分部150が量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]に対して行なう区分処理と同一の処理が行われるように、符号化装置1の区分部150と復号装置2の区分部260との間で予め設定されている。
<区分部260が行なう区分処理の詳細>
区分部260が復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]に対して行なう区分処理は、符号化装置1の区分部150が量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]に対して行なう区分処理と同一である。
「各範囲のエネルギーがなるべく等しくなるように区分する基準」での区分処理は、例えば、復号正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、
(a)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の二乗和と、復号正規化済み信号系列の全てのサンプルの値の二乗和のN分のnと、が最も近付くように、
または、
(b)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の絶対値和と、復号正規化済み信号系列の全てのサンプルの値の絶対値和のN分のn
と、が最も近付くように、
または、
(c)復号正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の二乗和が復号正規化済み信号系列の全てのサンプルの値の二乗和のN分のn以上となる最小のサンプル数になるように、
または、
(d)復号正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の絶対値和が復号正規化済み信号系列の全てのサンプルの値の絶対値和のN分のn以上となる最小のサンプル数になるように、
または、
(e)復号正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の二乗和が復号正規化済み信号系列の全てのサンプルの値の二乗和のN分のn以下となる最大のサンプル数になるように、
または、
(f)復号正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の絶対値和が復号正規化済み信号系列の全てのサンプルの値の絶対値和のN分のn以下となる最大のサンプル数になるように、
求め、
復号正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、復号正規化済み信号系列の第Nの範囲とすることで、復号正規化済み信号系列をN個の範囲に区分することにより行なわれる。
上記に例示した区分処理は、「各範囲のエネルギーがなるべく等しくなるように区分する基準」による区分を、第1の範囲から順に逐次的に決定していく方法によって実現するものである。上記に例示した区分処理によれば、少ない演算処理量で「各範囲のエネルギーがなるべく等しくなるように区分する基準」による区分を実現できる。
「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」での区分処理は、例えば、復号正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、
(a)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数と、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のnと、が最も近付くように、
または、
(b)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数と、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数のN分のnと、が最も近付くように、
または、
(c)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数が、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以上となる最小のサンプル数となるように、
または、
(d)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数が、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以上となる最小のサンプル数となるように、
または、
(e)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数が、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以下となる最大のサンプル数となるように、
または、
(f)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数が、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以下となる最大のサンプル数となるように、
求め、
復号正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、復号正規化済み信号系列の第Nの範囲とすることで、復号正規化済み信号系列をN個の範囲に区分することにより行なわれる。
上記に例示した区分処理は、「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」による区分を、各範囲を逐次的に決定していく方法によって実現するものである。上記に例示した区分処理によれば、少ない演算処理量で「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」による区分を実現できる。
区分部260が行なう区分処理の具体例は、符号化装置1の区分部150が行う区分処理の具体例である「第1の基準による区分処理の第1例」から「第1の基準による区分処理の第6例」、「第2の基準による区分処理の第1例」から「第2の基準による区分処理の第6例」のそれぞれの具体例中の、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]に置き換えたものである。
<グローバルゲイン復号部106>
グローバルゲイン復号部106には、グローバルゲイン符号が入力される。グローバルゲイン復号部106は、当該グローバルゲイン符号を復号し、復号グローバルゲインg^を出力する(ステップS4d)。グローバルゲイン復号部106が行う復号処理は、グローバルゲイン符号化部105が行う符号化処理に対応する処理であり、[背景技術]欄のグローバルゲイン復号部106でも説明した通りの周知技術である。
<復号信号系列生成部250>
復号信号系列生成部250には、復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]と、ゲイン補正量符号idxと、復号グローバルゲインg^と、区分情報が入力される。復号信号系列生成部250は、入力された区分情報を用いて復号正規化済み信号系列X^Q(ω)[ω∈{Lmin,…,Lmax}]を予め定められたN=2D個(Dは2以上の整数)の範囲に区分し、復号信号系列生成部250内の記憶部251に記憶されている複数個のゲイン補正量コードブックを用いて、各区分された範囲についての複数個のゲイン補正量で復号グローバルゲインg^を各区分された範囲ごとに補正して得られる補正ゲインと復号正規化済み信号系列X^Q(ω)[ω∈{Lmin,…,Lmax}]の各サンプルの値とを乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{Lmin,…,Lmax}]として得る(ステップS5d)。
このゲイン補正量符号idxは、符号化装置1において、大きな範囲に対応するゲイン補正量に優先してビットが割り当てるという基準に基づいてビットが割り当てたゲイン補正量を特定するものである。言い換えれば、ゲイン補正量符号idxは、範囲に含まれる区分された範囲の個数が多い範囲に対応するゲイン補正量に対して優先的にビットが割り当てるという基準に基づいてビットが割り当てられたゲイン補正量を特定するものである。
同じ大きさの範囲に対応するゲイン補正量については何れの範囲に対応するゲイン補正量に優先してビットが割り当てられていてもよいが、聴覚的な重要度が高い範囲に対応するゲイン補正量に対して優先的にビットが割り当てられているほうが好ましい。なお、一般的には、周波数が低い帯域のほうが、周波数が高い帯域よりも、聴覚的な重要度が高いことが多い。このため、同じ大きさの範囲に対応するゲイン補正量については、周波数が低い範囲のゲイン補正量に優先してビットが割り当てられている。
したがって、ゲイン補正量符号idxは、符号化装置1において、範囲に含まれる区分された範囲の個数が同じ範囲に対応するゲイン補正量については、聴覚的な重要度が高い範囲に対応するゲイン補正量に優先してビットを割り当てるという基準に更に基づいてビットが割り当てられたゲイン補正量を特定するものであってもよい。
また、ゲイン補正量符号idxは、符号化装置1において、範囲に含まれる区分された範囲の個数が同じ範囲に対応するゲイン補正量については、周波数が低い範囲に対応するゲイン補正量に優先してビットを割り当てるという基準に更に基づいてビットが割り当てられたゲイン補正量を特定するものであってもよい。
[復号信号系列生成処理の第1例]
復号信号系列生成処理の第1例は、量子化グローバルゲインg^とゲイン補正量とを加算したものを補正ゲインとする例である。ここでは、同じ大きさの範囲に対応するゲイン補正量については周波数が低い範囲のゲイン補正量に優先してビットが割り当てられており、隣接する2つの範囲のゲイン補正量をベクトル量子化により復号する例について説明する。復号正規化済み信号系列が4個の範囲に区分されている場合について説明する。
この例では、復号正規化済み信号系列は、第1の範囲R1、第2の範囲R2、第3の範囲R3及び第4の範囲R4に区分されている。例えば図25に示すように、第1の範囲R1は区間[Lmin,L(1)-1]であり、第2の範囲R2は区間[L(1),L(2)-1]であり、第3の範囲R3は区間[L(2),L(3)-1]であり、第4の範囲R4は区間[L(3),Lmax]である。図25の横軸は、サンプル番号を表す。これらの範囲R1,R2,R3,R4は、2k個(kは一般には1からD−1までの各整数であるが、この例ではk=1)ずつ纏められている。範囲R1及び範囲R2を纏めた範囲を範囲R12とし、範囲R3及び範囲R4を纏めた範囲を範囲R34とする。
これらの範囲R1,R2,R3,R4,R12,R34は、同じ大きさの範囲ごとにa個の範囲で構成されるグループに分割されている。aは一般には2以上の整数であるが、この例ではa=2である。この例では、範囲R1及び範囲R2がグループG12を構成しており、範囲R3及び範囲R4がグループG34を構成しており、範囲R12及び範囲R34がグループG1234を構成している。すなわち、各グループを構成する範囲は、以下のようになる。
グループG12={範囲R1,範囲R2}
グループG34={範囲R3,範囲R4}
グループG1234={範囲R12,範囲R34}
ベクトル量子化の復号は、これらのグループG12,G34,G1234のそれぞれで行われる。
隣接する2つの範囲のゲイン補正量のベクトル量子化の復号は、具体的には、次の3つのベクトル量子化の復号により行なわれる。第1のベクトル量子化の復号は、範囲R1に対応するゲイン補正量と範囲R2に対応するゲイン補正量とのベクトル量子化の復号である。これを以下では「第1VQ復号」という。第2のベクトル量子化の復号は、の範囲R3に対応するゲイン補正量と範囲R4に対応するゲイン補正量とのベクトル量子化の復号である。これを以下では「第2VQ復号」という。第3のベクトル量子化の復号は、範囲R12に対応するゲイン補正量と範囲R34に対応するゲイン補正量とのベクトル量子化の復号である。これを以下では「第3VQ復号」という。
本明細書において、復号されたゲイン補正量のことを、復号ゲイン補正量と呼ぶこともある。
復号信号系列生成部250内の記憶部251には、符号化装置1の記憶部141と同じ第1VQのゲイン補正量コードブック、第2VQのゲイン補正量コードブック、第3VQのゲイン補正量コードブックが格納されている。
すなわち、a個(この例ではa=2)のゲイン補正量の候補で構成されたベクトルを、ゲイン補正量候補ベクトルと呼ぶことにすると、第1VQのゲイン補正量コードブックには、Δ1(1)及びΔ2(1)で構成されたゲイン補正量候補ベクトル、Δ1(2)及びΔ2(2)で構成されたゲイン補正量候補ベクトル、…、Δ1(2Ma)及びΔ2(2Ma)で構成されたゲイン補正量候補ベクトルの計2Ma個のゲイン補正量候補ベクトル、計2Ma個のゲイン補正量候補ベクトルとそれぞれ対応する計2Ma個の符号idx12(1),idx12(2),…,idx12(2Ma)が格納されている。
また、第2VQのゲイン補正量コードブックには、Δ3(1)及びΔ4(1)で構成されたゲイン補正量候補ベクトル、Δ3(2)及びΔ4(2)で構成されたゲイン補正量候補ベクトル、…、Δ3(2Mb)及びΔ4(2Mb)で構成されたゲイン補正量候補ベクトルの計2Mb個のゲイン補正量候補ベクトルと、計2Mb個のゲイン補正量候補ベクトルとそれぞれ対応する計2Mb個の符号idx34(1),idx34(2),…,idx34(2Mb)が格納されている。
第3VQのゲイン補正量コードブックには、Δ12(1)及びΔ34(1)で構成されたゲイン補正量候補ベクトル、Δ12(2)及びΔ34(2)で構成されたゲイン補正量候補ベクトル、…、Δ12(2Mb)及びΔ34(2Mb)で構成されたゲイン補正量候補ベクトルの計2Mc個のゲイン補正量候補ベクトルと、計2Mc個のゲイン補正量候補ベクトルとそれぞれ対応する計2Mc個の符号idx1234(1),idx1234(2),…,idx1234(2Mc)が格納されている。
このように、区分された範囲及び区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲のそれぞれには、複数個のゲイン補正量の候補が対応付けされている。この例では、範囲R1にはΔ1(1),…,Δ1(2Ma)が対応付けされており、範囲R2にはΔ2(1),…,Δ2(2Ma)が対応付けされており、範囲R3にはΔ3(1),…,Δ3(2Mb)が対応付けされており、範囲R4にはΔ4(1),…,Δ4(2Mb)が対応付けされており、範囲R12にはΔ12(1),…,Δ12(2Mc)が対応付けされており、範囲R34にはΔ34(1),…,Δ34(2Mc)が対応付けされている。
ゲイン補正量の候補には、大きな範囲に対応するゲイン補正量の候補の絶対値の方が、その大きな範囲よりも小さい範囲に対応するゲイン補正量の候補の絶対値よりも大きいという関係があってもよい。すなわち、範囲に含まれる区分された範囲の個数が多い範囲に対応するゲイン補正量の候補の絶対値の方が、その範囲に含まれる上記区分された範囲の個数よりも範囲に含まれる区分された範囲の個数が少ない範囲に対応するゲイン補正量の候補の絶対値よりも大きいという関係があってもよい。
この例では、範囲R12及び範囲R34の方が、範囲R1、範囲R2、範囲R3及び範囲R4よりも大きな範囲である。
したがって、Δ12(1),…,Δ12(2Mc)の絶対値が、Δ1(1),…,Δ1(2Ma)の絶対値、Δ2(1),…,Δ2(2Ma)の絶対値、Δ3(1),…,Δ3(2Mb)の絶対値及びΔ4(1),…,Δ4(2Mb)の絶対値よりも大きくなっていてもよい。
同様に、Δ34(1),…,Δ34(2Mc)の絶対値が、Δ1(1),…,Δ1(2Ma)の絶対値、Δ2(1),…,Δ2(2Ma)の絶対値、Δ3(1),…,Δ3(2Mb)の絶対値及びΔ4(1),…,Δ4(2Mb)の絶対値よりも大きくなっていてもよい。
例えば、次のようにしてゲイン補正量候補ベクトルを生成することができる。
まず、a個の値で構成される正規化ゲイン補正量候補ベクトルを2Md個記憶部141に格納しておく。例えば、Md=Ma=Mb=Mcである。正規化ゲイン補正量候補ベクトルを構成するa個の値をΔ1(m),…,Δa(m)と表記すると、正規化ゲイン補正量候補ベクトルは(Δ1(m),…,Δa(m))と表記することができる。記憶部141には、2Md個の正規化ゲイン補正量候補ベクトル、すなわち(Δ1(1),…,Δa(1)),…,(Δ1(2Md),…,Δa(2Md))が格納されている。
また、範囲の大きさごとに予め定められた係数が定められているものとする。この係数は、対応する範囲が大きいほど大きい。言い換えれば、この係数は、範囲に含まれる区分された範囲の個数が多い範囲ほど大きい。
上記の例では、範囲R12,R34は、範囲R1,R2,R3,R4よりも大きい範囲である。このため、範囲R12,R34に対応する係数step1234は、範囲R1,R2に対応する係数step12よりも大きい。同様に、範囲R12,R34に対応する係数step1234は、範囲R3,R4に対応する係数step34よりも大きい。
このとき、正規化ゲイン補正量候補ベクトルに、範囲の大きさに対応する係数を乗算したベクトルを、その範囲のゲイン補正量候補ベクトルとする。言いかえれば、正規化ゲイン補正量候補ベクトル(Δ1(m),…,Δa(m))を構成するa個の値Δ1(m),…,Δa(m)のそれぞれに、範囲の大きさに対応する係数stepを乗算することにより得られたa個の値stepΔ1(m),…, stepΔa(m)により構成されるベクトル(stepΔ1(m),…,stepΔa(m))を、その範囲のゲイン補正量候補ベクトルとする。この乗算は、例えば復号信号系列生成部250により行われる。正規化ゲイン補正量候補ベクトル(Δ1(m),…,Δa(m))は2Md個あるため、m=1,…,2Mdのそれぞれについてこの乗算を行うことにより、2Md個のゲイン補正量候補ベクトル(stepΔ1(m),…, stepΔa(m))が得られる。
上記のa=2の例では、Md=Maとした場合、グループG12を構成する範囲R1,R2に対応するゲイン補正量候補ベクトル(Δ1(m),Δ2(m))は、(Δ1(m),Δ2(m))=(step12Δ1(m),step12Δ2(m))[m=1,…,2Ma]である。Md=Mbとした場合、グループG34を構成する範囲R3,R4に対応するゲイン補正量候補ベクトル(Δ3(m),Δ4(m))は、(Δ3(m),Δ4(m))=(step34Δ1(m),step34Δ2(m))[m=1,…,2Mb]である。Md=Mcとした場合、グループG1234を構成する範囲R12,R34に対応するゲイン補正量候補ベクトル(Δ12(m),Δ34(m))は、(Δ12(m),Δ34(m))=(step1234Δ1(m),step1234Δ2(m))[m=1,…,2Mc]である。
[[復号信号系列生成処理の具体例1:3つの場合で異なる加算式を用いる例]]
具体例1は、入力されたゲイン補正量符号idxのビット数Uが、McとMc+MaとMc+Ma+Mbとの何れかである場合の例である。
(a) 入力されたゲイン補正量符号idxのビット数UがMcである場合
入力されたゲイン補正量符号idxのビット数UがMcである場合は、ゲイン補正量符号idxには第3VQ符号idx1234のみが含まれる。したがって、復号信号系列生成部250は、まず、第3VQ符号idx1234に対して第3VQ復号を行い、範囲R12に対応する復号ゲイン補正量Δ12と範囲R34に対応する復号ゲイン補正量Δ34を得る。具体的には、記憶部251に格納されたΔ12(1)とΔ34(1)とidx1234(1)との組、Δ12(2)とΔ34(2)とidx1234(2)との組、…、Δ12(2Mc)とΔ34(2Mc)とidx1234 (2Mc)との組を参照して、第3VQ符号idx1234と同一のidx1234(mc)に対応するΔ12(mc)を範囲R12に対応する復号ゲイン補正量Δ12として得て、第3VQ符号idx1234と同一のidx1234(mc)に対応するΔ34(mc)を範囲R34に対応する復号ゲイン補正量Δ34として得る。これは、周知のベクトル量子化の復号方法である。
次に、範囲R1については、範囲R1についての復号ゲイン補正量である範囲R12に対応する復号ゲイン補正量Δ12と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ12と、復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,L(1)-1]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{Lmin,…,L(1)-1}]として得る。すなわち、範囲R1の出力信号系列X^(ω) [ω∈{Lmin,…,L(1)-1}]の各サンプルは式(D7)により求まる。
X^(ω)=(g^+Δ12) X^Q(ω) (D7)
また、範囲R2については、範囲R2についての復号ゲイン補正量である範囲R12に対応する復号ゲイン補正量Δ12と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ12と、復号正規化済み信号系列X^Q(ω) [ω∈{L(1) ,…,L(2)-1]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{L(1) ,…,L(2)-1]として得る。すなわち、範囲R2の出力信号系列X^(ω) [ω∈{L(1),…,L(2)-1]の各サンプルも式(D7)により求まる。
また、範囲R3については、範囲R3についての復号ゲイン補正量である範囲R34に対応する復号ゲイン補正量Δ34と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ34と、復号正規化済み信号系列X^Q(ω) [ω∈{L(2),…,L(3)-1]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{L(2),…,L(3)-1]として得る。すなわち、範囲R3の出力信号系列X^(ω) [ω∈{L(2),…,L(3)-1]の各サンプルは式(D8)により求まる。
X^(ω)=(g^+Δ34) X^Q(ω) (D8)
また、範囲R4については、範囲R4についての復号ゲイン補正量である範囲R34に対応する復号ゲイン補正量Δ34と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ34と、復号正規化済み信号系列X^Q(ω) [ω∈{L(3) ,…,Lmax]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{L(3) ,…,Lmax]として得る。すなわち、範囲R4の出力信号系列X^(ω) [ω∈{L(3),…,Lmax]の各サンプルも式(D8)により求まる。
(b) 入力されたゲイン補正量符号idxのビット数UがMc+Maである場合
入力されたゲイン補正量符号idxのビット数UがMc+Maである場合は、ゲイン補正量符号idxには第3VQ符号idx1234と第1VQ符号idx12が含まれる。したがって、復号信号系列生成部250は、第3VQ符号idx1234に対して第3VQ復号を行い、範囲R12に対応する復号ゲイン補正量Δ12と範囲R34に対応する復号ゲイン補正量Δ34を得て、さらに、第1VQ符号idx12に対して第1VQ復号を行い、範囲R1に対応する復号ゲイン補正量Δ1と範囲R2に対応する復号ゲイン補正量Δ2を得る。各VQ復号は、周知のベクトル量子化の復号方法により行われる。
次に、範囲R1については、範囲R1についての復号ゲイン補正量である範囲R12に対応する復号ゲイン補正量Δ12及び範囲R1に対応する復号ゲイン補正量Δ1と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ12+Δ1と、復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,L(1)-1]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{Lmin,…,L(1)-1}]として得る。すなわち、範囲R1の出力信号系列X^(ω) [ω∈{Lmin,…,L(1)-1}]の各サンプルは式(D9)により求まる。
X^(ω)=(g^+Δ12+Δ1) X^Q(ω) (D9)
また、範囲R2については、範囲R1についての復号ゲイン補正量である範囲R12の復号ゲイン補正量Δ12及び範囲R2の復号ゲイン補正量Δ2と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ12+Δ2と、復号正規化済み信号系列X^Q(ω) [ω∈{L(1),…,L(2)-1]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{L(1),…,L(2)-1}]として得る。すなわち、範囲R2の出力信号系列X^(ω) [ω∈{L(1),…,L(2)-1}]の各サンプルは式(D10)により求まる。
X^(ω)=(g^+Δ12+Δ2) X^Q(ω) (D10)
また、範囲R3については、範囲R3についての復号ゲイン補正量である範囲R34に対応する復号ゲイン補正量Δ34と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ34と、復号正規化済み信号系列X^Q(ω) [ω∈{L(2),…,L(3)-1]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{L(2),…,L(3)-1]として得る。すなわち、範囲R3の出力信号系列X^(ω) [ω∈{L(2),…,L(3)-1]の各サンプルは式(D8)により求まる。
また、範囲R4については、範囲R4についての復号ゲイン補正量である範囲R34に対応する復号ゲイン補正量Δ34と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ34と、復号正規化済み信号系列X^Q(ω) [ω∈{L(3) ,…,Lmax]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{L(3) ,…,Lmax]として得る。すなわち、第4の範囲の出力信号系列X^(ω) [ω∈{L(3),…,Lmax]の各サンプルも式(D8)により求まる。
(c) 入力されたゲイン補正量符号idxのビット数UがMc+Ma+Mbである場合
入力されたゲイン補正量符号idxのビット数UがMc+Ma+Mbである場合は、ゲイン補正量符号idxには第3VQ符号idx1234と第1VQ符号idx12と第2VQ符号idx34が含まれる。したがって、復号信号系列生成部250は、第3VQ符号idx1234に対して第3VQ復号を行い、範囲R12に対応する復号ゲイン補正量Δ12と範囲R34に対応する復号ゲイン補正量Δ34を得て、さらに、第1VQ符号idx12に対して第1VQ復号を行い、範囲R1に対応する復号ゲイン補正量Δ1と範囲R2に対応する復号ゲイン補正量Δ2を得て、さらに、第2VQ符号idx34に対して第2VQ復号を行い、範囲R3に対応する復号ゲイン補正量Δ3と範囲R4に対応する復号ゲイン補正量Δ4を得る。各VQ復号は、周知のベクトル量子化の復号方法により行われる。
次に、範囲R1については、範囲R1についての復号ゲイン補正量である範囲R12に対応する復号ゲイン補正量Δ12及び範囲R1に対応する復号ゲイン補正量Δ1と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ12+Δ1と、復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,L(1)-1]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{Lmin,…,L(1)-1}]として得る。すなわち、第1の範囲の出力信号系列X^(ω) [ω∈{Lmin,…,L(1)-1}]の各サンプルは式(D9)により求まる。
また、範囲R2については、範囲R2についての復号ゲイン補正量である範囲R12に対応する復号ゲイン補正量Δ12及び範囲R2に対応する復号ゲイン補正量Δ2と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ12+Δ2と、復号正規化済み信号系列X^Q(ω) [ω∈{L(1),…,L(2)-1]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{L(1),…,L(2)-1}]として得る。すなわち、範囲R2の出力信号系列X^(ω) [ω∈{L(1),…,L(2)-1}]の各サンプルは式(D10)により求まる。
また、範囲R3については、範囲R3についての復号ゲイン補正量である範囲R34に対応する復号ゲイン補正量Δ34及び範囲R3に対応する復号ゲイン補正量Δ3と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ34+Δ3と、復号正規化済み信号系列X^Q(ω) [ω∈{L(2),…,L(3)-1]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{L(2),…,L(3)-1}]として得る。すなわち、第3の範囲の出力信号系列X^(ω) [ω∈{L(2),…,L(3)-1}]の各サンプルは式(D11)により求まる。
X^(ω)=(g^+Δ34+Δ3) X^Q(ω) (D11)
また、範囲R4については、範囲R4についての復号ゲイン補正量である範囲R34の復号ゲイン補正量Δ34及び範囲R4の復号ゲイン補正量Δ4と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ34+Δ4と、復号正規化済み信号系列X^Q(ω) [ω∈{L(3),…,Lmax]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{L(3),…,Lmax}]として得る。すなわち、範囲R4の出力信号系列X^(ω) [ω∈{L(3),…,Lmax}]の各サンプルは式(D12)により求まる。
X^(ω)=(g^+Δ34+Δ4) X^Q(ω) (D12)
[[復号信号系列生成処理の具体例2:3つの場合で同じ加算式を用いる例]]
具体例2も、具体例1と同様に、入力されたゲイン補正量符号idxのビット数Uが、McとMc+MaとMc+Ma+Mbとの何れかである場合の例である。
(a) 入力されたゲイン補正量符号idxのビット数UがMcである場合
入力されたゲイン補正量符号idxのビット数UがMcである場合は、ゲイン補正量符号idxには第3VQ符号idx1234のみが含まれる。したがって、復号信号系列生成部250は、まず、第3VQ符号idx1234に対して第3VQ復号を行い、範囲R12に対応する復号ゲイン補正量Δ12と範囲R34に対応する復号ゲイン補正量Δ34を得る。復号ゲイン補正量を得る方法は具体例1と同様である。
また、復号ゲイン補正量Δ1234のそれぞれを0とする。
次に、範囲R1については、範囲R1についての復号ゲイン補正量である範囲R12に対応する復号ゲイン補正量Δ12及び範囲R1に対応する復号ゲイン補正量Δ1と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ12+Δ1と、復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,L(1)-1]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{Lmin,…,L(1)-1}]として得る。すなわち、範囲R1の出力信号系列X^(ω) [ω∈{Lmin,…,L(1)-1}]の各サンプルは式(D9)により求まる。
また、範囲R2については、範囲R2についての復号ゲイン補正量である範囲R12に対応する復号ゲイン補正量Δ12及び範囲R2に対応する復号ゲイン補正量Δ2と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ12+Δ2と、復号正規化済み信号系列X^Q(ω) [ω∈{L(1),…,L(2)-1]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{L(1) ,…,L(2)-1]として得る。すなわち、範囲R2の出力信号系列X^(ω) [ω∈{L(1),…,L(2)-1]の各サンプルは式(D10)により求まる。
また、範囲R3については、範囲R3についての復号ゲイン補正量である範囲R34に対応する復号ゲイン補正量Δ34及び範囲R3に対応する復号ゲイン補正量Δ3と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ34+Δ3と、復号正規化済み信号系列X^Q(ω) [ω∈{L(2),…,L(3)-1]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{L(2),…,L(3)-1]として得る。すなわち、範囲R3の出力信号系列X^(ω) [ω∈{L(2),…,L(3)-1]の各サンプルは式(D11)により求まる。
また、範囲R4については、範囲R4についての復号ゲイン補正量である範囲R34に対応する復号ゲイン補正量Δ34及び範囲R4に対応する復号ゲイン補正量Δ4と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ34+Δ4と、復号正規化済み信号系列X^Q(ω) [ω∈{L(3),…,Lmax]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{L(3) ,…,Lmax]として得る。すなわち、範囲R4の出力信号系列X^(ω) [ω∈{L(3),…,Lmax]の各サンプルは式(D12)により求まる。
(b) 入力されたゲイン補正量符号idxのビット数UがMc+Maである場合
入力されたゲイン補正量符号idxのビット数UがMc+Maである場合は、ゲイン補正量符号idxには第3VQ符号idx1234と第1VQ符号idx12が含まれる。したがって、復号信号系列生成部250は、第3VQ符号idx1234に対して第3VQ復号を行い、範囲R12に対応する復号ゲイン補正量Δ12と範囲R34に対応する復号ゲイン補正量Δ34を得て、さらに、第1VQ符号idx12に対して第1VQ復号を行い、範囲R1に対応する復号ゲイン補正量Δ1と範囲R2に対応する復号ゲイン補正量Δ2を得る。復号ゲイン補正量を得る方法は具体例1と同様である。
また、復号ゲイン補正量Δ34のそれぞれは、0とする。
復号ゲイン補正量Δ12341234のそれぞれを得た後の、範囲R1から範囲R4の各範囲の出力信号系列を得る処理は、上記の(a)の場合と同じである。
このようにビットが割り当てられていないゲイン補正量を0として復号グローバルゲインg^の補正を行うことは、対応するゲイン補正量がない範囲については補正を行わないことに対応するゲイン補正量を用いることと同義である。例えば、上記の「(a) 入力されたゲイン補正量符号idxのビット数UがMcである場合」では、範囲R1,R2,R3,R4が対応するゲイン補正量がない範囲である。
(c) 入力されたゲイン補正量符号idxのビット数UがMc+Ma+Mbである場合
入力されたゲイン補正量符号idxのビット数UがMc+Ma+Mbである場合は、ゲイン補正量符号idxには第3VQ符号idx1234と第1VQ符号idx12と第2VQ符号idx34が含まれる。したがって、復号信号系列生成部250は、第3VQ符号idx1234に対して第3VQ復号を行い、範囲R12に対応する復号ゲイン補正量Δ12と範囲R34に対応する復号ゲイン補正量Δ34を得て、さらに、第1VQ符号idx12に対して第1VQ復号を行い、範囲R1に対応する復号ゲイン補正量Δ1と範囲R2に対応する復号ゲイン補正量Δ2を得て、さらに、第2VQ符号idx34に対して第2VQ復号を行い、範囲R3に対応する復号ゲイン補正量Δ3と範囲R4に対応する復号ゲイン補正量Δ4を得る。復号ゲイン補正量を得る方法は具体例1と同様である。
復号ゲイン補正量Δ12341234のそれぞれを得た後の、範囲R1から範囲R4の各範囲の出力信号系列を得る処理は、上記の(a)の場合と同じである。
[[復号信号系列生成処理の具体例3:ゲイン補正量符号idxのビット数が半端な場合を含む例]]
具体例3は、入力されたゲイン補正量符号idxのビット数UがMcとMc+MaとMc+Ma+Mb以外も含む場合、すなわち入力されたゲイン補正量符号idxのビット数Uが1以上の値の何れかである場合の例である。
(a) 入力されたゲイン補正量符号idxのビット数Uが0より大きくMc以下である場合 (0<U≦Mc)
入力されたゲイン補正量符号idxのビット数Uが0より大きくMc以下である場合は、ゲイン補正量符号idxには第3VQ符号idx1234のみが含まれる。したがって、復号信号系列生成部250は、まず、第3VQ符号idx1234に対して第3VQ復号を行い、範囲R12に対応する復号ゲイン補正量Δ12と範囲R34に対応する復号ゲイン補正量Δ34を得る。この場合は、1から2Uの全てのmcを区別できるUビットの部分が、ゲイン補正量符号idxとされている。例えば、U=1、Mc=2の場合であれば、idx1234(1)の{0,0}の2ビットのうち1ビット目である{0}、または、idx1234(2)の{1,0}の2ビットのうち1ビット目である{1}が第3VQ符号idx1234とされている。復号ゲイン補正量を得る方法は具体例1と同様である。
また、復号ゲイン補正量Δ1234のそれぞれは、0とする。
次に、範囲R1については、範囲R1についての復号ゲイン補正量である範囲R12に対応する復号ゲイン補正量Δ12及び範囲R1の復号ゲイン補正量Δ1と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ12+Δ1と、復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,L(1)-1]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{Lmin,…,L(1)-1}]として得る。すなわち、範囲R1の出力信号系列X^(ω) [ω∈{Lmin,…,L(1)-1}]の各サンプルは式(D9)により求まる。
また、範囲R2については、範囲R2についての復号ゲイン補正量である範囲R12に対応する復号ゲイン補正量Δ12及び範囲R2に対応する復号ゲイン補正量Δ2と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ12+Δ2と、復号正規化済み信号系列X^Q(ω) [ω∈{L(1),…,L(2)-1]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{L(1) ,…,L(2)-1]として得る。すなわち、範囲R2の出力信号系列X^(ω) [ω∈{L(1),…,L(2)-1]の各サンプルは式(D10)により求まる。
また、範囲R3については、範囲R3についての復号ゲイン補正量である範囲R34に対応する復号ゲイン補正量Δ34及び範囲R3に対応する復号ゲイン補正量Δ3と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ34+Δ3と、復号正規化済み信号系列X^Q(ω) [ω∈{L(2),…,L(3)-1]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{L(2),…,L(3)-1]として得る。すなわち、第3の範囲の出力信号系列X^(ω) [ω∈{L(2),…,L(3)-1]の各サンプルは式(D11)により求まる。
また、範囲R4については、範囲R4についての復号ゲイン補正量である範囲R34に対応する復号ゲイン補正量Δ34及び範囲R4に対応する復号ゲイン補正量Δ4と、復号グローバルゲインg^とを加算して得られる補正ゲインg^+Δ34+Δ4と、復号正規化済み信号系列X^Q(ω) [ω∈{L(3),…,Lmax]の各サンプルの値と、を乗算して得られる信号系列を出力信号系列X^(ω) [ω∈{L(3) ,…,Lmax]として得る。すなわち、第4の範囲の出力信号系列X^(ω) [ω∈{L(3),…,Lmax]の各サンプルは式(D11)により求まる。
(b) 入力されたゲイン補正量符号idxのビット数UがMcより大きくMc+Ma以下である場合
(Mc<U≦Mc+Ma)
入力されたゲイン補正量符号idxのビット数UがMcより大きくMc+Ma以下である場合は、ゲイン補正量符号idxには第3VQ符号idx1234と第1VQ符号idx12が含まれる。したがって、復号信号系列生成部250は、第3VQ符号idx1234に対して第3VQ復号を行い、範囲R12に対応する復号ゲイン補正量Δ12と範囲R34に対応する復号ゲイン補正量Δ34を得て、さらに、第1VQ符号idx12に対して第1VQ復号を行い、範囲R1に対応する復号ゲイン補正量Δ1と範囲R2に対応する復号ゲイン補正量Δ2を得る。この場合は、2U-Mc+1から2Maの範囲にある全てのmaを区別できるU-Mcビットの部分が第1VQ符号idx12とされている。復号ゲイン補正量を得る方法は具体例1と同様である。
また、復号ゲイン補正量Δ34のそれぞれは、0とする。
復号ゲイン補正量Δ12341234のそれぞれを得た後の、範囲R1から範囲R4の各範囲の出力信号系列を得る処理は、上記の(a)の場合と同じである。
(c) 入力されたゲイン補正量符号idxのビット数UがMc+Maより大きい場合 (Mc+Ma<U)
入力されたゲイン補正量符号idxのビット数UがMc+Maより大きい場合は、ゲイン補正量符号idxには第3VQ符号idx1234と第1VQ符号idx12と第2VQ符号idx34が含まれる。したがって、復号信号系列生成部250は、第3VQ符号idx1234に対して第3VQ復号を行い、範囲R12に対応する復号ゲイン補正量Δ12と範囲R34に対応する復号ゲイン補正量Δ34を得て、さらに、第1VQ符号idx12に対して第1VQ復号を行い、範囲R1に対応する復号ゲイン補正量Δ1と範囲R2に対応する復号ゲイン補正量Δ2を得て、さらに、第2VQ符号idx34に対して第2VQ復号を行い、範囲R3に対応する復号ゲイン補正量Δ3と範囲R4に対応する復号ゲイン補正量Δ4を得る。この場合は、2U-Mc-Ma+1から2Mbの範囲にある全てのmbを区別できるU-Mc-Maビットの部分が第2VQ符号idx34とされている。
復号ゲイン補正量Δ12341234のそれぞれを得た後の、範囲R1から範囲R4の各範囲の出力信号系列を得る処理は、上記の(a)の場合と同じである。
なお、各ベクトル量子化の復号で用いるゲイン補正量の候補をひとつのゲイン補正量コードブックに格納しておき、1回のベクトル量子化の復号でゲイン補正量を生成するようにしてもよい。
区分された範囲の個数は、2Dであるとする。2D個の区分された範囲を2k個ずつ纏めた範囲の個数は、2D/2k=2D-kである。したがって、区分された範囲及び区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲の個数は、2D+Σd=1 D-1D-dであり、合計でΣd=1 Dd=2D+Σd=1 D-1D-dである。以下、A=Σd=1 Ddとする。
この場合、ゲイン補正量候補ベクトルは、A個のゲイン補正量の候補で構成されているとする。2D個の区分された範囲及びこれらの2D個の区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲は、それぞれゲイン補正量候補ベクトルを構成するA個のゲイン補正量の候補に対応付けされているものとする。
上記のD=2,k=1であり、[[復号信号系列生成処理の具体例2:3つの場合で同じ加算式を用いる例]]の「(c) 入力されたゲイン補正量符号idxのビット数UがMc+Ma+Mbである場合」の例では、A=Σd=1 2d=2+4=6となり、インデックスidx(m)のゲイン補正量候補ベクトル(Δ12(m),Δ34(m),Δ1(m),Δ2(m),Δ3(m),Δ4(m))は、6個のゲイン補正量の候補Δ12(m),Δ34(m),Δ1(m),Δ2(m),Δ3(m),Δ4(m)で構成されている。ゲイン補正量の候補Δ12(m),Δ34(m),Δ1(m),Δ2(m),Δ3(m),Δ4(m)は、それぞれ範囲R12,R34,R1,R2,R3,R4に対応している。
ゲイン補正量コードブックには、複数のゲイン補正量候補ベクトルが格納されている。上記の例では、例えば2Me個のゲイン補正量候補ベクトル(Δ12(m),Δ34(m),Δ1(m),Δ2(m),Δ3(m),Δ4(m))[m=1,…,2Me]が、ゲイン補正量コードブックに格納されている。Meは、2以上の整数である。
この場合、復号信号系列生成部250は、ゲイン補正量コードブックに格納された複数のゲイン補正量候補ベクトルの中から、入力されたゲイン補正量符号idxで特定されるゲイン補正量候補ベクトルを選択する。この選択されたゲイン補正量候補ベクトルを構成するゲイン補正量を用いて、復号グローバルゲインの補正を行う。
[復号信号系列生成部250の変形例]
復号信号系列生成部250は、式(D7)、式(D8)にそれぞれ代えて式(D17)、式(D18)に基づいて、出力信号系列X^(ω)を求めてもよい。
X^(ω)=(g^+s12Δ12) X^Q(ω) (D17)
X^(ω)=(g^+s34Δ34) X^Q(ω) (D18)
s12及びs34は、例えば以下の式のように定義される。
Figure 0005738480
また、復号信号系列生成部250は、式(D9)、式(D10)、式(D11)、式(D12)にそれぞれ代えて式(D19)、式(D20)、式(D21)、式(D22)に基づいて、出力信号系列X^(ω)を求めてもよい。
X^(ω)=(g^+s12Δ12+s1Δ1) X^Q(ω) (D19)
X^(ω)=(g^+s12Δ12+s2Δ2) X^Q(ω) (D20)
X^(ω)=(g^+s34Δ34+s3Δ3) X^Q(ω) (D21)
X^(ω)=(g^+s34Δ34+s4Δ4) X^Q(ω) (D22)
s1及びs2は、例えば以下の式のように定義される。
Figure 0005738480
また、s3及びs4は、例えば以下の式のように定義される。
Figure 0005738480
このように、復号グローバルゲインg^を、各区分された範囲についての複数個のゲイン補正量のそれぞれと、復号正規化済み信号系列X^Q(ω)の全てのサンプルの値の二乗和をそのそれぞれのゲイン補正量に対応する範囲内の全てのサンプルの値の二乗和で除算した値とを乗算した値で各区分された範囲ごとに補正してもよい。
また、復号信号系列生成部250は、式(D9)、式(D10)、式(D11)、式(D12)にそれぞれ代えて式(D23)、式(D24)、式(D25)、式(D26)に基づいて、出力信号系列X^(ω)を求めてもよい。
X^(ω)=(g^+s112+Δ1)) X^Q(ω) (D23)
X^(ω)=(g^+s212+Δ2)) X^Q(ω) (D24)
X^(ω)=(g^+s334+Δ3)) X^Q(ω) (D25)
X^(ω)=(g^+s434+Δ4)) X^Q(ω) (D26)
このように、復号グローバルゲインg^を、各区分された範囲についての複数個のゲイン補正量を加算した値と、復号正規化済み信号系列X^Q(ω)の全てのサンプルの値の二乗和を各区分された範囲内の全てのサンプルの値の二乗和で除算した値とを乗算した値で各区分された範囲ごとに補正してもよい。
なお、s12,s34,s1,s2,s3,s4を、それぞれ以下の式のように定義してもよい。
Figure 0005738480
c12は、範囲R12のサンプルのエネルギーが所定値よりも大きいサンプルの個数である。c34は、範囲R34のサンプルのエネルギーが所定値よりも大きいサンプルの個数である。c1234は、範囲R1234のサンプルのエネルギーが所定値よりも大きいサンプルの個数である。c1は、範囲R1のサンプルのエネルギーが所定値よりも大きいサンプルの個数である。c2は、範囲R2のサンプルのエネルギーが所定値よりも大きいサンプルの個数である。c3は、範囲R3のサンプルのエネルギーが所定値よりも大きいサンプルの個数である。c4は、範囲R4のサンプルのエネルギーが所定値よりも大きいサンプルの個数である。
この場合、復号グローバルゲインg^は、各区分された範囲についての複数個のゲイン補正量のそれぞれと、復号正規化済み信号系列X^Q(ω)のサンプルのエネルギーが所定値よりも大きいサンプルの個数をそのそれぞれのゲイン補正量に対応する範囲内のサンプルのエネルギーが上記所定値よりも大きいサンプルの個数で除算した値とを乗算した値で補正されることになる。また、復号グローバルゲインg^は、各区分された範囲についての複数個のゲイン補正量を加算した値と、復号正規化済み信号系列X^Q(ω)のサンプルのエネルギーが所定値よりも大きいサンプルの個数を各区分された範囲内のサンプルのエネルギーが上記所定値よりも大きいサンプルの個数で除算した値とを乗算した値で各区分された範囲ごとに補正されることになる。
<時間領域変換部270>
必要に応じて備える時間領域変換部270には、出力信号系列X^(ω)が入力される。時間領域変換部270は、出力信号系列X^(ω)に対して周波数−時間変換を適用して、フレーム単位の時間領域信号系列zF(t)を出力する。周波数−時間変換方法は、周波数領域変換部101で用いられた時間−周波数変換方法に対応する逆変換である。上述の例であれば、ここでの周波数−時間変換方法は、IMDCT(Inverse Modified Discrete Cosine Transform)またはIDCT(Inverse Discrete Cosine Transform)である。
《第2実施形態》
第2実施形態は、ゲイン補正量符号idxに、正規化信号符号の余剰ビットを用いる形態である。
正規化信号符号化部120が[背景技術]欄で説明した正規化部102と量子化部103とゲイン制御部104により構成される場合などでは、消費ビット数が規定ビット数より少なくなる場合がある。
第2実施形態の符号化装置1では、正規化信号符号化部120が、規定ビット数から消費ビット数を減算して得られる余剰ビット数Uをゲイン補正量符号化部140に対して出力するようにする。また、ゲイン補正量符号化部140は、入力された余剰ビット数Uに基づいて、Uビットのゲイン補正量符号idxを出力するようにする。具体的には、ゲイン補正量符号化部140で用いるゲイン補正量の候補数Mを2Uとし、ゲイン補正量符号idxをUビットとすればよい。
第2実施形態の復号装置2では、正規化信号復号部107が、正規化信号符号のビット数の最大値として規定されている規定ビット数から実際の正規化信号符号のビット数である消費ビット数を減算して得られる余剰ビット数Uをゲイン補正量復号部230に対して出力するようにする。また、ゲイン補正量復号部230は入力されたUビットのゲイン補正量符号idxを復号できるようにする。具体的には、ゲイン補正量復号部230で用いるゲイン補正量コードブックに含まれるゲイン補正量の候補数Mを2Uとし、ゲイン補正量符号idxをUビットとすればよい。
第2実施形態の符号化装置1及び復号装置2によれば、正規化信号符号のために用意されたものの実際には正規化信号符号には用いられなかったビットをゲイン補正量符号idxに用いることで、与えられたビットを有効に活用した符号化及び復号を行うことが可能となる。
《第3実施形態》
第3実施形態は、区分された範囲の数Nに対応する情報を符号化装置1から復号装置2に伝える例である。
符号化装置1の区分部150は、何らかの基準や区分部150の外から伝えられた情報により区分後の範囲数Nを決定し、区分後の範囲の数がNとなるように区分処理を行う。符号化装置1の区分部150は、区分後の範囲の数であるNを特定できる補助符号も出力する。復号装置2の区分部260には、補助符号が入力され、区分後の範囲の数が補助符号により特定される数Nとなるように、区分処理を行なう。
以上の各実施形態の他、本発明である符号化装置、符号化方法、復号装置、復号方法は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。また、上記実施形態において説明した処理は、記載の順に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されるとしてもよい。
また、上記符号化装置/上記復号装置における処理機能をコンピュータによって実現する場合、符号化装置/復号装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、上記符号化装置/上記復号装置における処理機能がコンピュータ上で実現される。
この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。
また、この形態では、コンピュータ上で所定のプログラムを実行させることにより、符号化装置、復号装置を構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。

Claims (32)

  1. 複数の入力信号サンプルにより構成される、フレーム単位の入力信号系列を符号化する符号化方法において、
    上記入力信号系列に含まれる各入力信号サンプルが正規化された信号による系列を符号化して得られる正規化信号符号と、上記正規化信号符号に対応する量子化正規化済み信号系列とを得る正規化信号符号化ステップと、
    上記入力信号系列に対応するゲインである量子化グローバルゲインと、上記量子化グローバルゲインに対応するグローバルゲイン符号とを得るグローバルゲイン符号化ステップと、
    上記量子化正規化済み信号系列を予め定められたN個(N=2Dであり、Dは2以上の整数)の範囲に区分し、各上記区分された範囲についての複数個のゲイン補正量で上記量子化グローバルゲインを上記各区分された範囲ごとに補正して得られるゲインと上記量子化正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列と上記入力信号系列との相関が最大又は誤差が最小となるゲイン補正量を特定するためのゲイン補正量符号を得るゲイン補正量符号化ステップと、
    を有し、
    上記ゲイン補正量符号化ステップは、各上記区分された範囲に対応するゲイン補正量と上記区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲に対応するゲイン補正量とのうち範囲に含まれる上記区分された範囲の個数が多い範囲に対応するゲイン補正量に優先してビットを割り当てるビット割当ステップを含み、
    各上記区分された範囲に対応するゲイン補正量と上記区分された範囲を2k個ずつ纏めた範囲に対応するゲイン補正量とのうち上記ビット割当ステップでビットが割り当てられたゲイン補正量は、上記ゲイン補正量符号に対応するゲイン補正量であり、
    各上記区分された範囲に対応するゲイン補正量と上記区分された範囲を2k個ずつ纏めた範囲に対応するゲイン補正量とのうち上記ビット割当ステップでビットが割り当てられなかったゲイン補正量は、補正を行わないことに対応するゲイン補正量である、
    符号化方法。
  2. 複数の入力信号サンプルにより構成される、フレーム単位の入力信号系列を符号化する符号化方法において、
    上記入力信号系列に含まれる各入力信号サンプルが正規化された信号による系列を符号化して得られる正規化信号符号と、上記正規化信号符号に対応する量子化正規化済み信号系列とを得る正規化信号符号化ステップと、
    上記入力信号系列に対応するゲインである量子化グローバルゲインと、上記量子化グローバルゲインに対応するグローバルゲイン符号とを得るグローバルゲイン符号化ステップと、
    上記量子化正規化済み信号系列を予め定められたN個(N=2Dであり、Dは2以上の整数)の範囲に区分し、各上記区分された範囲に対応するゲイン補正量と上記区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲に対応するゲイン補正量とのうち範囲に含まれる上記区分された範囲の個数が多い範囲に対応するゲイン補正量に優先してビットを割り当て、上記ビットが割り当てられた、各上記区分された範囲についての複数個のゲイン補正量で上記量子化グローバルゲインを上記各区分された範囲ごとに補正して得られるゲインと上記量子化正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列と上記入力信号系列との相関が最大又は誤差が最小となるゲイン補正量を特定するためのゲイン補正量符号を得るゲイン補正量符号化ステップと、
    を有する符号化方法。
  3. 請求項1又は2に記載の符号化方法であって、
    上記ゲイン補正量符号化ステップにおけるN個の範囲への区分は、
    上記量子化正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、
    (a)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の二乗和と、上記量子化正規化済み信号系列の全てのサンプルの値の二乗和のN分のnと、が最も近付くように、
    または、
    (b)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の絶対値和と、上記量子化正規化済み信号系列の全てのサンプルの値の絶対値和のN分のnと、が最も近付くように、
    または、
    (c)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の二乗和が上記量子化正規化済み信号系列の全てのサンプルの値の二乗和のN分のn以上となる最小のサンプル数になるように、
    または、
    (d)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の絶対値和が上記量子化正規化済み信号系列の全てのサンプルの値の絶対値和のN分のn以上となる最小のサンプル数になるように、
    または、
    (e)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の二乗和が上記量子化正規化済み信号系列の全てのサンプルの値の二乗和のN分のn以下となる最大のサンプル数になるように、
    または、
    (f)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の絶対値和が上記量子化正規化済み信号系列の全てのサンプルの値の絶対値和のN分のn以下となる最大のサンプル数になるように、
    求め、
    上記量子化正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、上記量子化正規化済み信号系列の第Nの範囲とすることで、上記量子化正規化済み信号系列をN個の範囲に区分することにより行なわれる、
    符号化方法。
  4. 請求項1又は2に記載の符号化方法であって、
    上記ゲイン補正量符号化ステップにおけるN個の範囲への区分は、
    上記量子化正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、
    (a)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいサンプルの個数と、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいサンプルの個数のN分のnと、が最も近付くように、
    または、
    (b)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいサンプルの個数と、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいサンプルの個数のN分のnと、が最も近付くように、
    または、
    (c)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいサンプルの個数の合計が、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいサンプルの個数のN分のn以上となる最小のサンプル数となるように、
    または、
    (d)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいサンプルの個数の合計が、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が上記所定値より大きいサンプルの個数のN分のn以上となる最小のサンプル数となるように、
    または、
    (e)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいサンプルの個数の合計が、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいサンプルの個数のN分のn以下となる最大のサンプル数となるように、
    または、
    (f)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいサンプルの個数の合計が、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が上記所定値より大きいサンプルの個数のN分のn以下となる最大のサンプル数となるように、
    求め、
    上記量子化正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、上記量子化正規化済み信号系列の第Nの範囲とすることで、上記量子化正規化済み信号系列をN個の範囲に区分することにより行なわれる、
    符号化方法。
  5. 請求項1から請求項4の何れかに記載の符号化方法であって、
    上記ゲイン補正量符号化ステップは、範囲に含まれる上記区分された範囲の個数が同じ範囲に対応するゲイン補正量については、聴覚的な重要度が高い範囲に対応するゲイン補正量に優先してビットを割り当てる、
    符号化方法。
  6. 請求項1から請求項4の何れかに記載の符号化方法であって、
    上記入力信号系列は周波数領域の信号系列であり、
    上記ゲイン補正量符号化ステップは、範囲に含まれる上記区分された範囲の個数が同じ範囲に対応するゲイン補正量については、周波数が低い範囲に対応するゲイン補正量に優先してビットを割り当てる、
    符号化方法。
  7. 請求項1から請求項6の何れかに記載の符号化方法であって、
    上記区分された範囲及び上記区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲のそれぞれには、複数個のゲイン補正量の候補が対応付けされており、
    上記ゲイン補正量符号化ステップは、上記複数個のゲイン補正量の候補の中から上記相関が最大又は誤差が最小となるゲイン補正量を特定するためのゲイン補正量符号を得るステップであり、
    範囲に含まれる上記区分された範囲の個数が多い範囲に対応するゲイン補正量の候補の絶対値の方が、その範囲に含まれる上記区分された範囲の個数よりも範囲に含まれる上記区分された範囲の個数が少ない範囲に対応するゲイン補正量の候補の絶対値よりも大きい、
    符号化方法。
  8. 請求項1から請求項6の何れかに記載の符号化方法であって、
    上記区分された範囲及び上記区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲は、aを2以上の整数として、a個の範囲で構成されるグループに分割されており、各グループを構成するa個の範囲は区分された範囲の個数が同じ範囲であり、
    ゲイン補正量候補ベクトルは、a個のゲイン補正量の候補で構成されており、
    各上記分割されたグループを構成するa個の範囲は、それぞれゲイン補正量候補ベクトルを構成するa個のゲイン補正量の候補に対応付けされており、
    上記ゲイン補正量符号化ステップは、複数のゲイン補正量候補ベクトルの中から上記誤差を最小にするゲイン補正量候補ベクトルを各上記グループごとに特定するためのゲイン補正量符号を得るステップであり、
    符号帳には、a個の値で構成される正規化ゲイン補正量候補ベクトルが複数格納されており、
    上記複数のゲイン補正量候補ベクトルは、上記符号帳に格納された正規化ゲイン補正量候補ベクトルを構成するa個の値のそれぞれに範囲の大きさごとに定められた所定の係数を乗算することにより得られたa個の値により構成されるベクトルであり、
    範囲に含まれる上記区分された範囲の個数が多い範囲に対応する所定の係数の絶対値の方が、その範囲に含まれる上記区分された範囲の個数よりも範囲に含まれる上記区分された範囲の個数が少ない範囲に対応する所定の係数の絶対値よりも大きい、
    符号化方法。
  9. 請求項1から請求項6の何れかに記載の符号化方法であって、
    ゲイン補正量候補ベクトルは、A=Σd=1 Ddとして、A個のゲイン補正量の候補で構成されており、
    上記区分された範囲及び上記区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲は、それぞれゲイン補正量候補ベクトルを構成するA個のゲイン補正量の候補に対応付けされており、
    ゲイン補正量コードブックには、複数のゲイン補正量候補ベクトルが格納されており、
    上記ゲイン補正量符号化ステップは、上記ゲイン補正量コードブックに格納された複数のゲイン補正量候補ベクトルの中から上記誤差を最小にするゲイン補正量候補ベクトルを特定するゲイン補正量符号を得るステップであり、
    範囲に含まれる上記区分された範囲の個数が多い範囲に対応するゲイン補正量の候補の絶対値の方が、その範囲に含まれる上記区分された範囲の個数よりも範囲に含まれる上記区分された範囲の個数が少ない範囲に対応するゲイン補正量の候補の絶対値よりも大きい、
    符号化方法。
  10. 請求項1から請求項6の何れかに記載の符号化方法であって、
    上記補正して得られるゲインは、上記各区分された範囲についての複数個のゲイン補正量のそれぞれと、上記量子化正規化済み信号系列の全てのサンプル値の二乗和をそのそれぞれのゲイン補正量に対応する範囲内の全てのサンプルの値の二乗和で除算した値とを乗算した値で上記量子化グローバルゲインを上記各区分された範囲ごとに補正して得られる値である、
    符号化方法。
  11. 請求項1から請求項6の何れかに記載の符号化方法であって、
    上記補正して得られるゲインは、上記各区分された範囲についての複数個のゲイン補正量のそれぞれと、上記量子化正規化済み信号系列のサンプルのエネルギーが所定値よりも大きいサンプルの個数をそのそれぞれのゲイン補正量に対応する範囲内のサンプルのエネルギーが上記所定値よりも大きいサンプルの個数で除算した値とを乗算した値で上記量子化グローバルゲインを補正して得られる値である、
    符号化方法。
  12. 請求項1から請求項6の何れかに記載の符号化方法であって、
    上記補正して得られるゲインは、上記各区分された範囲についての複数個のゲイン補正量を加算した値と、上記量子化正規化済み信号系列の全てのサンプル値の二乗和を上記各区分された範囲内の全てのサンプルの値の二乗和で除算した値とを乗算した値で上記量子化グローバルゲインを上記各区分された範囲ごとに補正して得られる値である、
    符号化方法。
  13. 請求項1から請求項6の何れかに記載の符号化方法であって、
    上記補正して得られるゲインは、上記各区分された範囲についての複数個のゲイン補正量を加算した値と、上記量子化正規化済み信号系列のサンプルのエネルギーが所定値よりも大きいサンプルの個数を上記各区分された範囲内のサンプルのエネルギーが上記所定値よりも大きいサンプルの個数で除算した値とを乗算した値で上記量子化グローバルゲインを上記各区分された範囲ごとに補正して得られる値である、
    符号化方法。
  14. フレーム単位の符号を復号して出力信号系列を得る復号方法において、
    上記符号に含まれる正規化信号符号を復号して復号正規化済み信号系列を得る正規化信号復号ステップと、
    上記符号に含まれるグローバルゲイン符号を復号して復号グローバルゲインを得るグローバルゲイン復号ステップと、
    上記復号正規化済み信号系列を予め定められたN個(N=2Dであり、Dは2以上の整数)の範囲に区分し、各上記区分された範囲についての複数個のゲイン補正量で上記復号グローバルゲインを上記各区分された範囲ごとに補正して得られるゲインと上記復号正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列を出力信号系列として得る復元ステップと、
    を有し、
    上記符号に含まれるゲイン補正量符号は、各上記区分された範囲に対応するゲイン補正量と上記区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲に対応するゲイン補正量とのうち範囲に含まれる上記区分された範囲の個数が多い範囲に対応するゲイン補正量に対して優先的にビットが割り当てるという基準に基づいてビットが割り当てられたゲイン補正量を特定するものであり、
    上記復元ステップにおいて、上記区分された範囲と上記区分された範囲を2k個纏めた範囲とのうち対応するゲイン補正量がある範囲については、上記ゲイン補正量符号を復号して得たゲイン補正量を用い、
    上記復元ステップにおいて、上記区分された範囲と上記区分された範囲を2k個纏めた範囲とのうち対応するゲイン補正量がない範囲については、補正を行わないことに対応するゲイン補正量を用いる、
    復号方法。
  15. フレーム単位の符号を復号して出力信号系列を得る復号方法において、
    上記符号に含まれる正規化信号符号を復号して復号正規化済み信号系列を得る正規化信号復号ステップと、
    上記符号に含まれるグローバルゲイン符号を復号して復号グローバルゲインを得るグローバルゲイン復号ステップと、
    上記復号正規化済み信号系列を予め定められたN個(N=2Dであり、Dは2以上の整数)の範囲に区分し、上記符号に含まれるゲイン補正量符号を復号して得た各上記区分された範囲についての複数個のゲイン補正量で上記復号グローバルゲインを上記各区分された範囲ごとに補正して得られるゲインと上記復号正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列を出力信号系列として得る復元ステップと、
    を有し、
    上記ゲイン補正量符号は、各上記区分された範囲に対応するゲイン補正量と上記区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲に対応するゲイン補正量とのうち範囲に含まれる上記区分された範囲の個数が多い範囲に対応するゲイン補正量に対して優先的にビットが割り当てるという基準に基づいてビットが割り当てられたゲイン補正量を特定するものである、
    復号方法。
  16. 請求項14又は15に記載の復号方法であって、
    上記復元ステップにおけるN個の範囲への区分は、
    上記復号正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、
    (a)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の二乗和と、上記復号正規化済み信号系列の全てのサンプルの値の二乗和のN分のnと、が最も近付くように、
    または、
    (b)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の絶対値和と、上記復号正規化済み信号系列の全てのサンプルの値の絶対値和のN分のnと、が最も近付くように、
    または、
    (c)上記復号正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の二乗和が上記復号正規化済み信号系列の全てのサンプルの値の二乗和のN分のn以上となる最小のサンプル数になるように、
    または、
    (d)上記復号正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の絶対値和が上記復号正規化済み信号系列の全てのサンプルの値の絶対値和のN分のn以上となる最小のサンプル数になるように、
    または、
    (e)上記復号正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の二乗和が上記復号正規化済み信号系列の全てのサンプルの値の二乗和のN分のn以下となる最大のサンプル数になるように、
    または、
    (f)上記復号正規化済み信号系列の第1の範囲から第nの範囲までのサンプル数の合計が、上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルの値の絶対値和が上記復号正規化済み信号系列の全てのサンプルの値の絶対値和のN分のn以下となる最大のサンプル数になるように、
    求め、
    上記復号正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、上記復号正規化済み信号系列の第Nの範囲とすることで、上記復号正規化済み信号系列をN個の範囲に区分することにより行なわれる、
    復号方法。
  17. 請求項1又は1に記載の復号方法であって、
    上記復元ステップにおけるN個の範囲への区分は、
    上記復号正規化済み信号系列の第nの範囲(nは1からN−1までの整数)を、
    (a)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいサンプルの個数と、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいサンプルの個数のN分のnと、が最も近付くように、
    または、
    (b)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいサンプルの個数と、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいサンプルの個数のN分のnと、が最も近付くように、
    または、
    (c)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいサンプルの個数が、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいサンプルの個数のN分のn以上となる最小のサンプル数となるように、
    または、
    (d)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいサンプルの個数が、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が上記所定値より大きいサンプルの個数のN分のn以上となる最小のサンプル数となるように、
    または、
    (e)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいサンプルの個数が、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいサンプルの個数のN分のn以下となる最大のサンプル数となるように、
    または、
    (f)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいサンプルの個数が、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が上記所定値より大きいサンプルの個数のN分のn以下となる最大のサンプル数となるように、
    求め、
    上記復号正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、上記復号正規化済み信号系列の第Nの範囲とすることで、上記復号正規化済み信号系列をN個の範囲に区分することにより行なわれる、
    復号方法。
  18. 請求項14から請求項17の何れかに記載の復号方法であって、
    上記ゲイン補正量符号は、範囲に含まれる上記区分された範囲の個数が同じ範囲に対応するゲイン補正量については、聴覚的な重要度が高い範囲に対応するゲイン補正量に優先してビットを割り当てるという基準に更に基づいてビットが割り当てられたゲイン補正量を特定するものである、
    復号方法。
  19. 請求項14から請求項17の何れかに記載の復号方法であって、
    上記出力信号系列は周波数領域の信号系列であり、
    上記ゲイン補正量符号は、範囲に含まれる上記区分された範囲の個数が同じ範囲に対応するゲイン補正量については、周波数が低い範囲に対応するゲイン補正量に優先してビットを割り当てるという基準に更に基づいてビットが割り当てられたゲイン補正量を特定するものである、
    復号方法。
  20. 請求項14から請求項19の何れかに記載の復号方法であって、
    範囲に含まれる上記区分された範囲の個数が多い範囲に対応するゲイン補正量の候補の絶対値の方が、その範囲に含まれる上記区分された範囲の個数よりも範囲に含まれる上記区分された範囲の個数が少ない範囲に対応するゲイン補正量の候補の絶対値よりも大きい、
    復号方法。
  21. 請求項14から請求項19の何れかに記載の復号方法であって、
    上記区分された範囲及び上記区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲は、aを2以上の整数として、a個の範囲で構成されるグループに分割されており、各グループを構成するa個の範囲は範囲に含まれる上記区分された範囲の個数が同じ範囲であり、
    ゲイン補正量候補ベクトルは、a個のゲイン補正量の候補で構成されており、
    各上記分割されたグループを構成するa個の範囲は、それぞれゲイン補正量候補ベクトルを構成するa個のゲイン補正量の候補に対応付けされており、
    上記復元ステップは、複数のゲイン補正量候補ベクトルの中から上記符号に含まれるゲイン補正量符号により特定されるゲイン補正量候補ベクトルを選択し、その選択されたゲイン補正量候補ベクトルを構成するゲイン補正量を用いて上記復号グローバルゲインの補正を行うステップを含み
    符号帳には、a個の値で構成される正規化ゲイン補正量候補ベクトルが複数格納されており、
    上記複数のゲイン補正量候補ベクトルは、上記符号帳に格納された正規化ゲイン補正量候補ベクトルを構成するa個の値のそれぞれに範囲の大きさごとに定められた所定の係数を乗算することにより得られたa個の値により構成されるベクトルであり、
    範囲に含まれる上記区分された範囲の個数が多い範囲に対応する所定の係数の絶対値の方が、その範囲に含まれる上記区分された範囲の個数よりも範囲に含まれる上記区分された範囲の個数が少ない範囲に対応する所定の係数の絶対値よりも大きい、
    復号方法。
  22. 請求項14から請求項19の何れかに記載の復号方法であって、
    ゲイン補正量候補ベクトルは、A=Σd=1 Ddとして、A個のゲイン補正量の候補で構成されており、
    上記区分された範囲及び上記区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲は、それぞれゲイン補正量候補ベクトルを構成するA個のゲイン補正量の候補に対応付けされており、
    ゲイン補正量コードブックには、複数のゲイン補正量候補ベクトルが格納されており、
    上記復元ステップは、上記ゲイン補正量コードブックに格納された複数のゲイン補正量候補ベクトルの中から上記符号に含まれるゲイン補正量符号により特定されるゲイン補正量候補ベクトルを選択し、その選択されたゲイン補正量候補ベクトルを構成するゲイン補正量を用いて上記復号グローバルゲインの補正を行うステップを含み、
    範囲に含まれる上記区分された範囲の個数が多い範囲に対応するゲイン補正量の候補の絶対値の方が、その範囲に含まれる上記区分された範囲の個数よりも範囲に含まれる上記区分された範囲の個数が少ない範囲に対応するゲイン補正量の候補の絶対値よりも大きい、
    復号方法。
  23. 請求項14から請求項19の何れかに記載の復号方法であって、
    上記補正して得られるゲインは、上記各区分された範囲についての複数個のゲイン補正量のそれぞれと、上記復号正規化済み信号系列の全てのサンプル値の二乗和をそのそれぞれのゲイン補正量に対応する範囲内の全てのサンプルの値の二乗和で除算した値とを乗算した値で上記復号グローバルゲインを上記各区分された範囲ごとに補正して得られる値である、
    復号方法。
  24. 請求項14から請求項19のいずれかに記載の復号方法であって、
    上記補正して得られるゲインは、上記各区分された範囲についての複数個のゲイン補正量のそれぞれと、上記復号正規化済み信号系列のサンプルのエネルギーが所定値よりも大きいサンプルの個数をそのそれぞれのゲイン補正量に対応する範囲内のサンプルのエネルギーが上記所定値よりも大きいサンプルの個数で除算した値とを乗算した値で上記復号グローバルゲインを補正して得られる値である、
    復号方法。
  25. 請求項14から請求項19の何れかに記載の復号方法であって、
    上記補正して得られるゲインは、上記各区分された範囲についての複数個のゲイン補正量を加算した値と、上記復号正規化済み信号系列の全てのサンプル値の二乗和を上記各区分された範囲内の全てのサンプルの値の二乗和で除算した値とを乗算した値で上記復号グローバルゲインを上記各区分された範囲ごとに補正して得られる値である、
    復号方法。
  26. 請求項14から請求項19の何れかに記載の復号方法であって、
    上記補正して得られるゲインは、上記各区分された範囲についての複数個のゲイン補正量を加算した値と、上記復号正規化済み信号系列のサンプルのエネルギーが所定値よりも大きいサンプルの個数を上記各区分された範囲内のサンプルのエネルギーが上記所定値よりも大きいサンプルの個数で除算した値とを乗算した値で上記復号グローバルゲインを上記各区分された範囲ごとに補正して得られる値である、
    復号方法。
  27. 複数の入力信号サンプルにより構成される、フレーム単位の入力信号系列を符号化する符号化装置において、
    上記入力信号系列に含まれる各入力信号サンプルが正規化された信号による系列を符号化して得られる正規化信号符号と、上記正規化信号符号に対応する量子化正規化済み信号系列とを得る正規化信号符号化部と、
    上記入力信号系列に対応するゲインである量子化グローバルゲインと、上記量子化グローバルゲインに対応するグローバルゲイン符号とを得るグローバルゲイン符号化部と、
    上記量子化正規化済み信号系列を予め定められたN個(N=2Dであり、Dは2以上の整数)の範囲に区分し、各上記区分された範囲についての複数個のゲイン補正量で上記量子化グローバルゲインを上記各区分された範囲ごとに補正して得られるゲインと上記量子化正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列と上記入力信号系列との相関が最大又は誤差が最小となるゲイン補正量を特定するためのゲイン補正量符号を得るゲイン補正量符号化部と、
    を備え、
    上記ゲイン補正量符号化部は、各上記区分された範囲に対応するゲイン補正量と上記区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲に対応するゲイン補正量とのうち範囲に含まれる上記区分された範囲の個数が多い範囲に対応するゲイン補正量に優先してビットを割り当てるビット割当部を含み、
    各上記区分された範囲に対応するゲイン補正量と上記区分された範囲を2k個ずつ纏めた範囲に対応するゲイン補正量とのうち上記ビット割当部でビットが割り当てられたゲイン補正量は、上記ゲイン補正量符号に対応するゲイン補正量であり、
    各上記区分された範囲に対応するゲイン補正量と上記区分された範囲を2k個ずつ纏めた範囲に対応するゲイン補正量とのうち上記ビット割当部でビットが割り当てられなかったゲイン補正量は、補正を行わないことに対応するゲイン補正量である、
    符号化装置。
  28. 複数の入力信号サンプルにより構成される、フレーム単位の入力信号系列を符号化する符号化装置において、
    上記入力信号系列に含まれる各入力信号サンプルが正規化された信号による系列を符号化して得られる正規化信号符号と、上記正規化信号符号に対応する量子化正規化済み信号系列とを得る正規化信号符号化部と、
    上記入力信号系列に対応するゲインである量子化グローバルゲインと、上記量子化グローバルゲインに対応するグローバルゲイン符号とを得るグローバルゲイン符号化部と、
    上記量子化正規化済み信号系列を予め定められたN個(N=2Dであり、Dは2以上の整数)の範囲に区分し、各上記区分された範囲に対応するゲイン補正量と上記区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲に対応するゲイン補正量とのうち範囲に含まれる上記区分された範囲の個数が多い範囲に対応するゲイン補正量に優先してビットを割り当て、上記ビットが割り当てられた、各上記区分された範囲についての複数個のゲイン補正量で上記量子化グローバルゲインを上記各区分された範囲ごとに補正して得られるゲインと上記量子化正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列と上記入力信号系列との相関が最大又は誤差が最小となるゲイン補正量を特定するためのゲイン補正量符号を得るゲイン補正量符号化部と、
    を備える符号化装置。
  29. フレーム単位の符号を復号して出力信号系列を得る復号装置において、
    上記符号に含まれる正規化信号符号を復号して復号正規化済み信号系列を得る正規化信号復号部と、
    上記符号に含まれるグローバルゲイン符号を復号して復号グローバルゲインを得るグローバルゲイン復号部と、
    上記復号正規化済み信号系列を予め定められたN個(N=2Dであり、Dは2以上の整数)の範囲に区分し、各上記区分された範囲についての複数個のゲイン補正量で上記復号グローバルゲインを上記各区分された範囲ごとに補正して得られるゲインと上記復号正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列を出力信号系列として得る復元部と、
    を備え、
    上記符号に含まれるゲイン補正量符号は、各上記区分された範囲に対応するゲイン補正量と上記区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲に対応するゲイン補正量とのうち範囲に含まれる上記区分された範囲の個数が多い範囲に対応するゲイン補正量に対して優先的にビットが割り当てるという基準に基づいてビットが割り当てられたゲイン補正量を特定するものであり、
    上記復元部は、上記区分された範囲と上記区分された範囲を2k個纏めた範囲とのうち対応するゲイン補正量がある範囲については、上記ゲイン補正量符号を復号して得たゲイン補正量を用い、
    上記復元部は、上記区分された範囲と上記区分された範囲を2k個纏めた範囲とのうち対応するゲイン補正量がない範囲については、補正を行わないことに対応するゲイン補正量を用いる、
    復号装置。
  30. フレーム単位の符号を復号して出力信号系列を得る復号装置において、
    上記符号に含まれる正規化信号符号を復号して復号正規化済み信号系列を得る正規化信号復号部と、
    上記符号に含まれるグローバルゲイン符号を復号して復号グローバルゲインを得るグローバルゲイン復号部と、
    上記復号正規化済み信号系列を予め定められたN個(N=2Dであり、Dは2以上の整数)の範囲に区分し、上記符号に含まれるゲイン補正量符号を復号して得た各上記区分された範囲についての複数個のゲイン補正量で上記復号グローバルゲインを上記各区分された範囲ごとに補正して得られるゲインと上記復号正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列を出力信号系列として得る復元部と、
    を備え、
    上記ゲイン補正量符号は、各上記区分された範囲に対応するゲイン補正量と上記区分された範囲を2k個(kは1からD−1までの各整数)ずつ纏めた範囲に対応するゲイン補正量とのうち範囲に含まれる上記区分された範囲の個数が多い範囲に対応するゲイン補正量に対して優先的にビットが割り当てるという基準に基づいてビットが割り当てられたゲイン補正量を特定するものである、
    復号装置。
  31. 請求項1から請求項13の何れかに記載の符号化方法の各ステップをコンピュータに実行させるためのプログラム。
  32. 請求項14から請求項26の何れかに記載の復号方法の各ステップをコンピュータに実行させるためのプログラム。
JP2014509152A 2012-04-02 2013-04-01 符号化方法、符号化装置、復号方法、復号装置及びプログラム Active JP5738480B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014509152A JP5738480B2 (ja) 2012-04-02 2013-04-01 符号化方法、符号化装置、復号方法、復号装置及びプログラム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012083740 2012-04-02
JP2012083740 2012-04-02
PCT/JP2013/059908 WO2013151004A1 (ja) 2012-04-02 2013-04-01 符号化方法、符号化装置、復号方法、復号装置、プログラム及び記録媒体
JP2014509152A JP5738480B2 (ja) 2012-04-02 2013-04-01 符号化方法、符号化装置、復号方法、復号装置及びプログラム

Publications (2)

Publication Number Publication Date
JP5738480B2 true JP5738480B2 (ja) 2015-06-24
JPWO2013151004A1 JPWO2013151004A1 (ja) 2015-12-17

Family

ID=49300487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014509152A Active JP5738480B2 (ja) 2012-04-02 2013-04-01 符号化方法、符号化装置、復号方法、復号装置及びプログラム

Country Status (2)

Country Link
JP (1) JP5738480B2 (ja)
WO (1) WO2013151004A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029304A1 (ja) * 2005-09-05 2007-03-15 Fujitsu Limited オーディオ符号化装置及びオーディオ符号化方法
JP2010175633A (ja) * 2009-01-27 2010-08-12 Sony Corp 符号化装置及び方法、並びにプログラム
WO2012005212A1 (ja) * 2010-07-05 2012-01-12 日本電信電話株式会社 符号化方法、復号方法、符号化装置、復号装置、プログラム、及び記録媒体
WO2012004998A1 (ja) * 2010-07-06 2012-01-12 パナソニック株式会社 スペクトル係数コーディングの量子化パラメータを効率的に符号化する装置及び方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029304A1 (ja) * 2005-09-05 2007-03-15 Fujitsu Limited オーディオ符号化装置及びオーディオ符号化方法
JP2010175633A (ja) * 2009-01-27 2010-08-12 Sony Corp 符号化装置及び方法、並びにプログラム
WO2012005212A1 (ja) * 2010-07-05 2012-01-12 日本電信電話株式会社 符号化方法、復号方法、符号化装置、復号装置、プログラム、及び記録媒体
WO2012004998A1 (ja) * 2010-07-06 2012-01-12 パナソニック株式会社 スペクトル係数コーディングの量子化パラメータを効率的に符号化する装置及び方法

Also Published As

Publication number Publication date
WO2013151004A1 (ja) 2013-10-10
JPWO2013151004A1 (ja) 2015-12-17

Similar Documents

Publication Publication Date Title
JP5085543B2 (ja) 適応コーディングおよびデコーディングでの複数のエントロピモデルの選択的使用
CN110444215B (zh) 编码装置、编码方法、记录介质
KR102493482B1 (ko) 시간-도메인 스테레오 코딩 및 디코딩 방법, 및 관련 제품
US20110305272A1 (en) Encoding method, decoding method, encoding device, decoding device, program, and recording medium
KR20160080115A (ko) 부호화 방법, 부호화 장치, 주기성 특징량 결정 방법, 주기성 특징량 결정 장치, 프로그램, 기록 매체
JP7239565B2 (ja) Celpコーデックにおいてビット配分を効率的に分配するための方法およびデバイス
JP5738480B2 (ja) 符号化方法、符号化装置、復号方法、復号装置及びプログラム
JP5734519B2 (ja) 符号化方法、符号化装置、復号方法、復号装置、プログラム及び記録媒体
JP5840101B2 (ja) 符号化方法、符号化装置、復号方法、復号装置、プログラム及び記録媒体
JP6668532B2 (ja) 復号装置、及びその方法、プログラム、記録媒体
KR102492600B1 (ko) 시간-도메인 스테레오 파라미터에 대한 코딩 방법, 및 관련 제품
KR102569784B1 (ko) 오디오 코덱의 장기 예측을 위한 시스템 및 방법
JP5786044B2 (ja) 符号化方法、符号化装置、復号方法、復号装置、プログラム及び記録媒体
JP5635213B2 (ja) 符号化方法、符号化装置、復号方法、復号装置、プログラム及び記録媒体
JP5320508B2 (ja) 符号化装置、復号装置、これらの方法、プログラム及び記録媒体
JP5800920B2 (ja) 符号化方法、符号化装置、復号方法、復号装置、プログラム及び記録媒体
RU2773421C9 (ru) Способ и соответствующий продукт для определения режима кодирования/декодирования аудио
RU2773022C2 (ru) Способ кодирования и декодирования стерео во временной области и сопутствующий продукт
RU2773421C2 (ru) Способ и соответствующий продукт для определения режима кодирования/декодирования аудио
RU2772405C2 (ru) Способ стереокодирования и декодирования во временной области и соответствующий продукт
KR20140037118A (ko) 오디오 신호 처리방법, 오디오 부호화장치, 오디오 복호화장치, 및 이를 채용하는 단말기
WO2013129528A1 (ja) 符号化装置、この方法、プログラムおよび記録媒体

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150421

R150 Certificate of patent or registration of utility model

Ref document number: 5738480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150