JP5737254B2 - Optical communication module - Google Patents

Optical communication module Download PDF

Info

Publication number
JP5737254B2
JP5737254B2 JP2012212138A JP2012212138A JP5737254B2 JP 5737254 B2 JP5737254 B2 JP 5737254B2 JP 2012212138 A JP2012212138 A JP 2012212138A JP 2012212138 A JP2012212138 A JP 2012212138A JP 5737254 B2 JP5737254 B2 JP 5737254B2
Authority
JP
Japan
Prior art keywords
optical
element array
groove
protrusion
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012212138A
Other languages
Japanese (ja)
Other versions
JP2014066873A (en
Inventor
英徳 米澤
英徳 米澤
須永 義則
義則 須永
石神 良明
良明 石神
山嵜 欣哉
欣哉 山嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012212138A priority Critical patent/JP5737254B2/en
Priority to US13/873,057 priority patent/US8876415B2/en
Priority to CN201310174065.3A priority patent/CN103676031B/en
Publication of JP2014066873A publication Critical patent/JP2014066873A/en
Application granted granted Critical
Publication of JP5737254B2 publication Critical patent/JP5737254B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Light Receiving Elements (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、電気信号を光信号に変換して出力する、あるいは光信号を電気信号に変換して出力する光通信モジュールに関するものである。   The present invention relates to an optical communication module that converts an electrical signal into an optical signal and outputs it, or converts an optical signal into an electrical signal and outputs it.

光通信では、通信速度の高速化に伴い多チャンネルによる伝送が行われている。多チャンネル伝送用の光通信モジュールでは、アレイ化が容易なVCSEL(Vertical Cavity Surface Emitting LASER)などの面発光素子またはフォトダイオードなどの面受光素子をアレイ状に配置した光素子アレイが用いられている。光素子アレイは、金属材料、セラミック材料、シリコン等の結晶材料からなる支持部材(基板)に載置される。   In optical communication, multi-channel transmission is performed with an increase in communication speed. In an optical communication module for multi-channel transmission, an optical element array in which surface light emitting elements such as VCSELs (Vertical Cavity Surface Emitting LASER) that are easily arrayed or surface light receiving elements such as photodiodes are arranged in an array is used. . The optical element array is placed on a support member (substrate) made of a crystal material such as a metal material, a ceramic material, or silicon.

光通信モジュールでは、光素子アレイと光学的に接続される光ファイバは、取り回しを容易とするために、支持部材の表面に対して平行に配置されるのが通常である。そこで、支持部材の表面に対して垂直に光を入出射する光素子アレイと、支持部材の表面に対して平行に光を入出射する光ファイバとを光学的に結合させるために、光学部材(レンズブロック、光学ブロックともいう)が用いられている。   In the optical communication module, the optical fiber optically connected to the optical element array is usually arranged in parallel to the surface of the support member in order to facilitate handling. Therefore, in order to optically couple the optical element array that inputs and outputs light perpendicular to the surface of the support member and the optical fiber that inputs and outputs light parallel to the surface of the support member, an optical member ( A lens block or an optical block).

例えば、特許文献1では、光素子アレイと、光素子アレイに対して光学経路が90度の方向にある光ファイバとの間に、集光用のレンズと光学経路変更用の反射面を有する光学部材を配置している。光学部材としては、樹脂やガラスからなるものが一般に用いられる。   For example, in Patent Document 1, an optical element having a condensing lens and a reflecting surface for changing an optical path between an optical element array and an optical fiber whose optical path is 90 degrees with respect to the optical element array. The member is arranged. As the optical member, one made of resin or glass is generally used.

ところで、光通信モジュールを組み立てる際には、光学部材と光素子アレイの位置合わせが必要になる。   By the way, when assembling the optical communication module, it is necessary to align the optical member and the optical element array.

光学部材と光素子アレイの位置合わせを行う方法として、光素子アレイを動作させた状態で、光ファイバに伝達される光強度を観測しながら光学部材の位置を決定する方法が知られている。しかし、この方法では、電気配線を行い、光素子アレイを動作させた状態で測定を行いながら位置合わせを行う必要があるため、非常に手間がかかってしまい、量産性の観点から問題があった。   As a method for aligning the optical member and the optical element array, a method is known in which the position of the optical member is determined while observing the light intensity transmitted to the optical fiber while the optical element array is in operation. However, in this method, since it is necessary to perform alignment while performing the electrical wiring and performing the measurement while the optical element array is operated, it is very troublesome and has a problem from the viewpoint of mass productivity. .

光学部材と光素子アレイの位置合わせをより簡便に行う方法として、光素子アレイを動作させずに機械的に位置合わせを行う方法が知られている。   As a simpler method for aligning the optical member and the optical element array, a method for performing mechanical alignment without operating the optical element array is known.

特許文献2では、光素子アレイの支持部材にガイドピンを設けると共に、光学部材に穴を設け、光素子アレイの支持部材を光学部材に対しても支持部材として位置合わせを行う方法が提案されている。   Patent Document 2 proposes a method in which a guide pin is provided on a support member of an optical element array, a hole is provided in an optical member, and the support member of the optical element array is aligned with the optical member as a support member. Yes.

特開2004−246279号公報JP 2004-246279 A 特開2006−65358号公報JP 2006-65358 A

ところで、光学部材に用いられる樹脂は、熱による膨張・収縮が光素子等と比べ比較的大きいという特徴がある。そのため、周囲温度の変化や、光素子アレイやモジュール内の半導体素子の動作時の発熱による温度変化により、光素子アレイや支持部材と光学部材との間にサイズ変化の差異が生じ、その結果、高い位置合わせ精度が要求される光素子アレイと光学部材間で位置ずれが生じてしまい、光通信の特性が悪化してしまうという問題がある。   By the way, the resin used for the optical member has a feature that expansion and contraction due to heat is relatively large as compared with an optical element or the like. Therefore, due to changes in ambient temperature and temperature changes due to heat generation during operation of the optical element array and the semiconductor elements in the module, a difference in size change occurs between the optical element array and the support member and the optical member. There is a problem that misalignment occurs between the optical element array and the optical member that require high alignment accuracy, and the optical communication characteristics deteriorate.

特許文献2の方法では、このような温度変化による光素子アレイと光学部材の位置ずれの発生を抑制することはできず、さらには、光素子アレイや支持部材に対して光学部材が膨張した場合には、ガイドピンや光学部材の変形を招くおそれがあり、問題である。   In the method of Patent Document 2, it is not possible to suppress the occurrence of misalignment between the optical element array and the optical member due to such a temperature change, and furthermore, when the optical member expands with respect to the optical element array and the support member However, there is a possibility that the guide pin and the optical member may be deformed, which is a problem.

本発明は上記事情に鑑み為されたものであり、光学部材と光素子アレイの位置合わせを機械的に簡易に行うことができ、かつ、熱により光学部材が膨張・収縮した場合でも位置ずれを抑制することが可能な光通信モジュールを提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to mechanically easily align the optical member and the optical element array, and even when the optical member expands / contracts due to heat, the positional deviation is prevented. An object of the present invention is to provide an optical communication module that can be suppressed.

本発明は上記目的を達成するために創案されたものであり、発光素子または受光素子をアレイ状に配置した光素子アレイと、前記光素子アレイが載置される支持部材と、前記光素子アレイと光学的に接続される複数の光ファイバと、前記光素子アレイと前記光ファイバとを光学的に結合させる光学部材と、前記支持部材または前記光学部材に形成された複数の溝と、前記溝と対応するように前記光学部材または前記支持部材に形成された複数の突起と、を備え、前記溝と前記突起とを嵌合させることで、前記光学部材を前記支持部材に載置すると共に、前記光学部材の前記光素子アレイに対する位置決めを行うように構成された光通信モジュールであって、前記溝が開口に向かって幅が広がるよう形成されるか、あるいは、前記突起が基端に向かって幅が広がるよう形成され、前記光学部材の膨張・収縮時に前記溝と前記突起の干渉により前記支持部材と前記光学部材との距離が変化するように構成され、前記溝と前記突起は、前記光学部材の膨張・収縮時に前記溝と前記突起間で相対的な位置ずれが発生しない幅方向の位置が、平面視で前記光素子アレイの中心を通る直線上に位置するようにそれぞれ形成され、かつ、前記溝と前記突起は、平面視で前記光素子アレイの中心を通る少なくとも2つ以上の異なる直線上にそれぞれ形成されている光通信モジュールである。   The present invention has been made to achieve the above object, and includes an optical element array in which light emitting elements or light receiving elements are arranged in an array, a support member on which the optical element array is placed, and the optical element array. A plurality of optical fibers that are optically connected to each other, an optical member that optically couples the optical element array and the optical fiber, a plurality of grooves formed in the support member or the optical member, and the grooves A plurality of protrusions formed on the optical member or the support member so as to correspond to the optical member, and by fitting the groove and the protrusion, the optical member is placed on the support member, An optical communication module configured to position the optical member with respect to the optical element array, wherein the groove is formed to increase in width toward the opening, or the protrusion is at a proximal end. The width of the optical member is increased, and the distance between the support member and the optical member is changed by the interference between the groove and the protrusion when the optical member expands and contracts. A position in the width direction where relative displacement between the groove and the protrusion does not occur when the optical member expands and contracts is formed so as to be positioned on a straight line passing through the center of the optical element array in plan view, The groove and the protrusion are each an optical communication module formed on at least two different straight lines passing through the center of the optical element array in plan view.

前記溝と前記突起の少なくとも一方は、幅方向の断面がV字状に形成され、当該V字状の溝または突起の幅方向の中心位置が、平面視で前記光素子アレイの中心を通る直線上に位置するように形成されていてもよい。   At least one of the groove and the protrusion has a V-shaped cross section in the width direction, and the center position of the V-shaped groove or protrusion in the width direction passes through the center of the optical element array in plan view. You may form so that it may be located on.

前記溝と前記突起は、その幅方向の一方の側面が、共に前記支持部材の表面に対して垂直に形成され、当該側面が、平面視で前記光素子アレイの中心を通る直線上に位置するように形成されていてもよい。   The groove and the protrusion are both formed such that one side surface in the width direction is perpendicular to the surface of the support member, and the side surface is positioned on a straight line passing through the center of the optical element array in plan view. It may be formed as follows.

前記溝の底面の長さが、前記突起の基端部の長さよりも大きく形成されてもよい。 A length of a bottom surface of the groove may be formed larger than a length of a base end portion of the protrusion.

前記支持部材は、シリコン基板からなり、当該シリコン基板に前記溝が形成されてもよい。   The support member may be formed of a silicon substrate, and the groove may be formed in the silicon substrate.

前記光学部材は、前記光素子アレイの各発光部または受光部と対向する位置に形成された複数のレンズからなるレンズアレイを有し、前記光素子アレイからの光の光軸を変換して前記各光ファイバに出射する、あるいは前記各光ファイバからの光の光軸を変換して前記光素子アレイに出射してもよい。   The optical member has a lens array composed of a plurality of lenses formed at positions facing each light emitting part or light receiving part of the optical element array, and converts the optical axis of light from the optical element array to convert the optical axis. The light may be emitted to each optical fiber, or the optical axis of the light from each optical fiber may be converted and emitted to the optical element array.

前記レンズアレイの平面視における中心と前記光素子アレイの平面視における中心とが一致するとよい。   The center of the lens array in plan view and the center of the optical element array in plan view may coincide.

本発明によれば、光学部材と光素子アレイの位置合わせを機械的に簡易に行うことができ、かつ、熱により光学部材が膨張・収縮した場合でも位置ずれを抑制することが可能な光通信モジュールを提供できる。   According to the present invention, optical communication capable of mechanically and simply aligning an optical member and an optical element array and suppressing displacement even when the optical member expands or contracts due to heat. Can provide modules.

本発明の一実施の形態に係る光通信モジュールを示す図であり、(a)は光学部材を透視した上面図、(b)はその1B−1B線断面図、(c)は溝と突起の嵌合状態を示す断面図である。It is a figure which shows the optical communication module which concerns on one embodiment of this invention, (a) is the top view which saw through the optical member, (b) is the 1B-1B sectional view, (c) is a groove | channel and protrusion. It is sectional drawing which shows a fitting state. (a)〜(d)は、本発明において、基準位置を説明する図である。(A)-(d) is a figure explaining a reference position in the present invention. (a)は光素子アレイとレンズの中心を固定点とした場合、(b)は光素子アレイとレンズの端部を固定点とした場合において、光学部材の膨張・収縮時の発光部または受光部とレンズとの位置ずれを説明する図である。(A) When the center of the optical element array and the lens is a fixed point, (b) When the optical element array and the end of the lens are fixed points, the light emitting portion or the light receiving when the optical member is expanded or contracted It is a figure explaining the position shift of a part and a lens. (a)〜(d)は、図1の光通信モジュールの変形例を示す図である。(A)-(d) is a figure which shows the modification of the optical communication module of FIG. (a)〜(d)は、図1の光通信モジュールの変形例を示す図である。(A)-(d) is a figure which shows the modification of the optical communication module of FIG.

以下、本発明の実施の形態を添付図面にしたがって説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本実施の形態に係る光通信モジュールを示す図であり、(a)は光学部材を透視した上面図、(b)はその1B−1B線断面図、(c)は溝と突起の嵌合状態を示す断面図である。   1A and 1B are diagrams showing an optical communication module according to the present embodiment, in which FIG. 1A is a top view seen through an optical member, FIG. 1B is a cross-sectional view taken along line 1B-1B, and FIG. It is sectional drawing which shows these fitting states.

図1(a),(b)に示すように、光通信モジュール1は、光素子アレイ2と、支持部材3と、光ファイバ(図示せず)と、光学部材4と、を備えている。   As shown in FIGS. 1A and 1B, the optical communication module 1 includes an optical element array 2, a support member 3, an optical fiber (not shown), and an optical member 4.

光素子アレイ2は、VCSELなどの発光素子またはフォトダイオードなどの受光素子をアレイ状に配置したものであり、1チップにアレイ状に発光部または受光部2aを配列して構成される。図1では、光素子アレイ2が発光部または受光部2aを4つ配列したものである場合を示しているが、発光部または受光部2aの数はこれに限定されるものではない。隣接する発光部または受光部2a間の距離(ピッチ)は、例えば250μmである。   The optical element array 2 includes light emitting elements such as VCSELs or light receiving elements such as photodiodes arranged in an array, and is configured by arranging light emitting parts or light receiving parts 2a in an array on one chip. Although FIG. 1 shows a case where the optical element array 2 has four light emitting units or light receiving units 2a arranged, the number of light emitting units or light receiving units 2a is not limited to this. The distance (pitch) between adjacent light emitting units or light receiving units 2a is, for example, 250 μm.

光素子アレイ2は、支持部材3に載置される。支持部材3は、金属材料、セラミック材料、シリコン等の結晶材料からなる。光素子アレイ2が発光素子である場合、支持部材3には光素子アレイ2を駆動するドライバIC(図示せず)が搭載される。光素子アレイ2が受光素子である場合、支持部材3には光素子アレイ2からの信号を増幅するアンプIC(図示せず)が搭載される。また、支持部材3には、外部の通信機器等と接続するための電気コネクタ(図示せず)等が設けられる。   The optical element array 2 is placed on the support member 3. The support member 3 is made of a crystal material such as a metal material, a ceramic material, or silicon. When the optical element array 2 is a light emitting element, a driver IC (not shown) for driving the optical element array 2 is mounted on the support member 3. When the optical element array 2 is a light receiving element, an amplifier IC (not shown) that amplifies a signal from the optical element array 2 is mounted on the support member 3. Further, the support member 3 is provided with an electrical connector (not shown) for connecting to an external communication device or the like.

光ファイバは、光素子アレイ2と光学的に接続されるものであり、取り回しを容易とするため、その先端部が支持部材3の表面と平行に配置される。   The optical fiber is optically connected to the optical element array 2, and its front end is arranged in parallel with the surface of the support member 3 in order to facilitate handling.

光学部材4は、光素子アレイ2と光ファイバとを光学的に結合させるものである。本実施の形態では、光学部材4は、光素子アレイ2の各発光部または受光部2aと対向する位置に形成された複数(ここでは4つ)のレンズからなるレンズアレイ4aを有し、光素子アレイ2からの光の光軸を変換して各光ファイバに出射する、あるいは各光ファイバからの光の光軸を変換して光素子アレイ2に出射するように構成されている。光学部材4には、光ファイバ先端部の位置を固定するためのV溝(図示せず)が形成されている。光学部材4は、樹脂やガラスからなる。光学部材4は、レンズアレイ4aの平面視における中心と光素子アレイ2の平面視における中心とが一致するように配置される。   The optical member 4 optically couples the optical element array 2 and the optical fiber. In the present embodiment, the optical member 4 has a lens array 4a composed of a plurality of (here, four) lenses formed at positions facing each light emitting part or light receiving part 2a of the optical element array 2, The optical axis of the light from the element array 2 is converted and emitted to each optical fiber, or the optical axis of the light from each optical fiber is converted and emitted to the optical element array 2. The optical member 4 is formed with a V-groove (not shown) for fixing the position of the tip portion of the optical fiber. The optical member 4 is made of resin or glass. The optical member 4 is disposed such that the center of the lens array 4a in plan view coincides with the center of the optical element array 2 in plan view.

また、光通信モジュール1は、支持部材3または光学部材4に形成された複数の溝5と、溝5と対応するように光学部材4または支持部材3に形成された複数の突起6と、を備え、溝5と突起6とを嵌合させることで、光学部材4を支持部材3に載置すると共に、光学部材4の光素子アレイ2に対する位置決めを行うように構成されている。   The optical communication module 1 includes a plurality of grooves 5 formed in the support member 3 or the optical member 4 and a plurality of protrusions 6 formed in the optical member 4 or the support member 3 so as to correspond to the grooves 5. The optical member 4 is mounted on the support member 3 and the optical member 4 is positioned with respect to the optical element array 2 by fitting the groove 5 and the protrusion 6.

本実施の形態では、支持部材3に溝5、光学部材4に突起6を形成したが、これに限らず、支持部材3に突起6、光学部材4に溝5を形成するようにしてもよい。なお、支持部材3としてシリコン基板を用いる場合は、シリコンプロセスによる高い加工精度を期待できるため、支持部材3側に溝5を形成することがより望ましい。   In this embodiment, the grooves 5 are formed on the support member 3 and the protrusions 6 are formed on the optical member 4. However, the present invention is not limited thereto, and the protrusions 6 may be formed on the support member 3 and the grooves 5 may be formed on the optical member 4. . When a silicon substrate is used as the support member 3, it is more desirable to form the groove 5 on the support member 3 side because high processing accuracy can be expected by the silicon process.

光素子アレイ2と、支持部材3と、光ファイバの先端部と、光学部材4とは、図示しない筐体に収容される。光ファイバの一方の端部に光素子アレイ2として発光素子を用いた送信側の光通信モジュール1を設け、光ファイバの他方の端部に光素子アレイ2として受光素子を用いた受信側の光通信モジュール1を設けることで、光アクティブケーブルが形成される。すなわち、光アクティブケーブルは、送信側の光通信モジュール1と受信側の光通信モジュール1とで共通の光ファイバを用いたものと換言することもできる。   The optical element array 2, the support member 3, the distal end portion of the optical fiber, and the optical member 4 are accommodated in a housing (not shown). A transmission side optical communication module 1 using a light emitting element as an optical element array 2 is provided at one end of the optical fiber, and a receiving side light using a light receiving element as the optical element array 2 at the other end of the optical fiber. By providing the communication module 1, an optical active cable is formed. In other words, the optical active cable can be said to use a common optical fiber for the optical communication module 1 on the transmission side and the optical communication module 1 on the reception side.

この光アクティブケーブルでは、送信側の光通信モジュール1にて、外部の通信機器等から入力された電気信号を光信号に変換して光ファイバに出射し、受信側の光通信モジュール1にて、光ファイバを介して入力された光信号を電気信号に変換して別の外部の通信機器等に出力するよう動作する。   In this optical active cable, an electrical signal input from an external communication device or the like is converted into an optical signal in the optical communication module 1 on the transmission side and emitted to an optical fiber. In the optical communication module 1 on the reception side, The optical signal input through the optical fiber is converted into an electric signal and output to another external communication device or the like.

さて、本実施の形態に係る光通信モジュール1では、溝5が開口に向かって幅が広がるよう形成されるか、あるいは、突起6が基端に向かって幅が広がるよう形成され、光学部材4の膨張・収縮時に溝5と突起6の干渉により支持部材3と光学部材4との距離が変化するように構成されている。   In the optical communication module 1 according to the present embodiment, the groove 5 is formed so as to increase in width toward the opening, or the protrusion 6 is formed so as to increase in width toward the base end, so that the optical member 4 is formed. The distance between the support member 3 and the optical member 4 is changed by the interference between the groove 5 and the protrusion 6 during the expansion / contraction of the lens.

本実施の形態では、支持部材3に溝5を、光学部材4に突起6を形成している。そのため、低温になると突起6が溝5に対して相対的に収縮し、溝5と突起6の干渉位置(接触位置)が溝5の底部に近づいて、支持部材3と光学部材4の距離が小さくなる。同様に、高温となると、突起6が溝5に対して相対的に膨張し、溝5と突起6の干渉位置が溝5の底部から離れて、支持部材3と光学部材4の距離が大きくなる。なお、支持部材3に突起6を、光学部材4に溝5を形成する場合、逆に、低温となると溝5が突起6に対して相対的に収縮し、支持部材3と光学部材4の距離が大きくなる。同様に、高温となると溝5が突起6に対して相対的に膨張し、支持部材3と光学部材4の距離が小さくなる。   In the present embodiment, the groove 5 is formed in the support member 3 and the protrusion 6 is formed in the optical member 4. Therefore, when the temperature is low, the protrusion 6 contracts relative to the groove 5, the interference position (contact position) between the groove 5 and the protrusion 6 approaches the bottom of the groove 5, and the distance between the support member 3 and the optical member 4 increases. Get smaller. Similarly, when the temperature becomes high, the protrusion 6 expands relative to the groove 5, the interference position between the groove 5 and the protrusion 6 moves away from the bottom of the groove 5, and the distance between the support member 3 and the optical member 4 increases. . When the protrusion 6 is formed on the support member 3 and the groove 5 is formed on the optical member 4, conversely, when the temperature is low, the groove 5 contracts relative to the protrusion 6, and the distance between the support member 3 and the optical member 4. Becomes larger. Similarly, when the temperature becomes high, the groove 5 expands relative to the protrusion 6 and the distance between the support member 3 and the optical member 4 becomes small.

図1(c)に示すように、本実施の形態では、溝5を開口に向かって幅が広がるように形成し、かつ、突起6を基端に向かって幅が広がるように形成したが、どちらか一方を満たせばよい。つまり、溝5を開口に向かって幅が広がるように形成すれば、突起6はどのような形状でもよい。ただし、溝5と突起6の形状の組み合わせによっては、後述する基準位置が生じない場合も考えられるので、この場合、突起6は幅方向の断面が左右対称形状であることが望ましい。また、この場合、想定される使用温度内の変形範囲において、溝5と突起6の干渉位置が溝5の両方の側面に接触している必要がある。干渉位置が溝5の側面に接触していないということは、溝5から突起6が抜けた状態となっているか、あるいは溝5内で突起6が拘束されず幅方向に自由に動ける状態となっていることを意味し、どちらも光素子アレイ2と光学部材4の位置ずれの原因となるためである。   As shown in FIG. 1C, in the present embodiment, the groove 5 is formed so as to increase in width toward the opening, and the protrusion 6 is formed so as to increase in width toward the base end. Either one may be satisfied. In other words, the protrusion 6 may have any shape as long as the groove 5 is formed so that the width increases toward the opening. However, depending on the combination of the shapes of the groove 5 and the protrusion 6, there may be a case where a reference position to be described later does not occur. Further, in this case, the interference position between the groove 5 and the protrusion 6 needs to be in contact with both side surfaces of the groove 5 in a deformation range within an assumed use temperature. The fact that the interference position is not in contact with the side surface of the groove 5 means that the protrusion 6 is removed from the groove 5 or that the protrusion 6 is not restrained in the groove 5 and can move freely in the width direction. This is because both cause positional deviation between the optical element array 2 and the optical member 4.

同様の理由から、突起6を基端に向かって幅が広がるように形成し溝5を任意の形状とする場合、溝5は幅方向の断面が左右対称形状であることが望ましく、また、想定される使用温度内の変形範囲において、溝5と突起6の干渉位置が突起6の両方の側面に接触している必要がある。   For the same reason, when the protrusion 6 is formed so that its width is widened toward the base end and the groove 5 has an arbitrary shape, it is desirable that the groove 5 has a laterally symmetric cross section in the width direction. It is necessary that the interference position between the groove 5 and the protrusion 6 is in contact with both side surfaces of the protrusion 6 within the deformation range within the operating temperature.

本実施の形態では、溝5と突起6の幅方向の断面形状を略同じV字状とし、溝5と突起6とが面接触するように構成した。但し、溝5と突起6の断面形状を全く同じとすると、支持部材3と光学部材4が接触し、突起6の先端が溝5の底に接触してしまうので、これを避けるため、本実施の形態では、溝5の深さよりも突起6の高さを若干高くすると共に、突起6の先端部を面取り加工するようにしている。   In the present embodiment, the groove 5 and the protrusion 6 have substantially the same V-shaped cross-sectional shape, and the groove 5 and the protrusion 6 are in surface contact. However, if the cross-sectional shapes of the groove 5 and the protrusion 6 are exactly the same, the support member 3 and the optical member 4 come into contact with each other, and the tip of the protrusion 6 comes into contact with the bottom of the groove 5. In this embodiment, the height of the protrusion 6 is made slightly higher than the depth of the groove 5, and the tip of the protrusion 6 is chamfered.

さらに、本実施の形態に係る光通信モジュール1では、溝5と突起6は、光学部材4の膨張・収縮時に溝5と突起6間で相対的な位置ずれが発生しない幅方向の位置(基準位置という)が、平面視(上面視)で光素子アレイ2の中心Aを通る直線A1,A2上に位置するようにそれぞれ形成される。   Further, in the optical communication module 1 according to the present embodiment, the groove 5 and the protrusion 6 are positioned in the width direction (reference) where the relative displacement between the groove 5 and the protrusion 6 does not occur when the optical member 4 is expanded or contracted. Are defined on the straight lines A1 and A2 passing through the center A of the optical element array 2 in plan view (top view).

ここで、基準位置について説明しておく。   Here, the reference position will be described.

図2(a)〜(c)に示すように、溝5と突起6の幅方向の断面形状を略同じとした場合(但し、溝5の深さよりも突起6の高さを若干高くし、突起6の先端部を面取り加工している)における基準位置について考える。   As shown in FIGS. 2A to 2C, when the cross-sectional shapes in the width direction of the groove 5 and the protrusion 6 are substantially the same (however, the height of the protrusion 6 is slightly higher than the depth of the groove 5, Consider a reference position in which the tip of the protrusion 6 is chamfered.

図2(a)に示すように、溝5と突起6の幅方向の断面形状をV字状(二等辺三角形状)とする場合、突起6が相対的に膨張・収縮した際には、その幅方向の中心位置において位置ずれは生じない。よって、この場合、幅方向の中心位置が基準位置となる。本実施の形態では、溝5と突起6の幅方向の断面形状を共にV字状としているため、図1(a)に示すように、溝5と突起6は、その幅方向の中心位置が、平面視で光素子アレイ2の中心Aを通る直線A1,A2上に位置するように(直線A1,A2に沿うように)に形成される。   As shown in FIG. 2A, when the cross-sectional shape in the width direction of the groove 5 and the protrusion 6 is V-shaped (isosceles triangle), when the protrusion 6 is relatively expanded and contracted, No misalignment occurs at the center position in the width direction. Therefore, in this case, the center position in the width direction becomes the reference position. In this embodiment, since the cross-sectional shape in the width direction of the groove 5 and the protrusion 6 is both V-shaped, as shown in FIG. 1A, the groove 5 and the protrusion 6 have a center position in the width direction. In a plan view, it is formed so as to be positioned on the straight lines A1 and A2 passing through the center A of the optical element array 2 (along the straight lines A1 and A2).

図2(b)に示すように、溝5と突起6の幅方向の一方の側面を支持部材3の表面に対して垂直に形成した場合は、当該側面において位置ずれが生じないこととなり、この側面の位置が基準位置となる。また、図2(c)に示すように、開口の幅方向の中心からずれた位置に溝5の底となる頂点を位置させた場合、その頂点の位置が基準位置となる。   As shown in FIG. 2B, when one side surface in the width direction of the groove 5 and the protrusion 6 is formed perpendicular to the surface of the support member 3, no positional deviation occurs on the side surface. The position of the side surface becomes the reference position. In addition, as shown in FIG. 2C, when the vertex serving as the bottom of the groove 5 is positioned at a position shifted from the center in the width direction of the opening, the position of the vertex becomes the reference position.

このように、溝5の断面形状を三角形状とする場合は、溝5の底となる頂点の位置が基準位置となり、この基準位置が平面視で光素子アレイ2の中心Aを通る直線A1,A2上に位置するように溝5と突起6を形成すればよい。なお、図2(d)に示すように、溝5の断面形状を台形状とする場合は、その側面(傾斜面)を延長した頂点の位置が基準位置となる。   Thus, when the cross-sectional shape of the groove 5 is triangular, the position of the apex that is the bottom of the groove 5 is the reference position, and this reference position is a straight line A1, passing through the center A of the optical element array 2 in plan view. What is necessary is just to form the groove | channel 5 and the processus | protrusion 6 so that it may be located on A2. In addition, as shown in FIG.2 (d), when making the cross-sectional shape of the groove | channel 5 into a trapezoid shape, the position of the vertex which extended the side surface (inclined surface) becomes a reference position.

図1に戻り、本実施の形態では、平面視で、光素子アレイ2の中心Aを通り、かつ発光部または受光部2aの配列方向に沿った直線A1上に、光素子アレイ2を挟むように2つ(2セット)の溝5と突起6を形成している。この2つの溝5と突起6により、図1(a)の上下方向における位置決めがなされることになる。   Returning to FIG. 1, in the present embodiment, the optical element array 2 is sandwiched on a straight line A1 passing through the center A of the optical element array 2 and along the arrangement direction of the light emitting part or the light receiving part 2a in plan view. Two (two sets) of grooves 5 and protrusions 6 are formed. By the two grooves 5 and the projections 6, positioning in the vertical direction in FIG.

ここで、溝5と突起6の長さが同じであると、図1(a)の左右方向における膨張を許容できず光学部材4や支持部材3の変形の原因となる。そこで、溝5は、その長さが、突起6の長さよりも大きく形成され、溝5の長さ方向において突起6が移動可能とされている。   Here, if the lengths of the grooves 5 and the protrusions 6 are the same, expansion in the left-right direction in FIG. 1A cannot be allowed, causing deformation of the optical member 4 and the support member 3. Therefore, the length of the groove 5 is larger than the length of the protrusion 6, and the protrusion 6 is movable in the length direction of the groove 5.

そのため、直線A1上に形成された2つの溝5と突起6では、図1(a)の上下方向の位置決めがなされるものの、図1(a)の左右方向の位置は規制がなされず、直線A1に沿った方向において支持部材3に対する光学部材4の移動が許容された状態となる。   Therefore, the two grooves 5 and the protrusions 6 formed on the straight line A1 are positioned in the vertical direction in FIG. 1A, but the horizontal position in FIG. The optical member 4 is allowed to move relative to the support member 3 in the direction along A1.

そこで、光通信モジュール1では、平面視で光素子アレイ2の中心Aを通り、かつ直線A1と直交する直線A2上に、さらに溝5と突起6を形成している。この直線A2上に形成された溝5と突起6により、図1(a)の左右方向における支持部材3に対する光学部材4の位置決めがなされることになる。なお、この直線A2上に形成された溝5も、その長さが突起6の長さより大きく形成され、直線A2に沿った突起6の移動が許容されている。   Therefore, in the optical communication module 1, a groove 5 and a protrusion 6 are further formed on a straight line A2 that passes through the center A of the optical element array 2 in a plan view and is orthogonal to the straight line A1. The groove 5 and the projection 6 formed on the straight line A2 position the optical member 4 with respect to the support member 3 in the left-right direction in FIG. The length of the groove 5 formed on the straight line A2 is also larger than the length of the protrusion 6, and the movement of the protrusion 6 along the straight line A2 is allowed.

ここでは、直交する直線A1,A2上に溝5と突起6を形成したが、これに限らず、溝5と突起6は、その基準位置が、平面視で光素子アレイ2の中心Aを通る少なくとも2つ以上の異なる直線上(光素子アレイ2の中心Aから放射状に延びる直線上と換言することもできる)に位置するように、それぞれ形成されていればよい。   Here, the grooves 5 and the protrusions 6 are formed on the orthogonal straight lines A1 and A2. However, the present invention is not limited to this, and the reference positions of the grooves 5 and the protrusions 6 pass through the center A of the optical element array 2 in plan view. It suffices to form them so as to be positioned on at least two or more different straight lines (in other words, a straight line extending radially from the center A of the optical element array 2).

このように構成することで、光学部材4が熱により膨張・収縮すると、平面視においては、光学部材4の光素子アレイ2の中心Aと対向する位置(つまりレンズアレイ4aの中心位置)を固定点として放射状に膨張・収縮の変形が行われることとなり、断面視においては、各溝5と突起6の幅方向における移動が規制された状態のまま、支持部材3と光学部材4間の距離が変化するようになる。   With this configuration, when the optical member 4 expands or contracts due to heat, the position facing the center A of the optical element array 2 of the optical member 4 (that is, the center position of the lens array 4a) is fixed in plan view. As a point, the expansion / contraction deformation is performed radially, and in a cross-sectional view, the distance between the support member 3 and the optical member 4 is maintained while the movement in the width direction of each groove 5 and the protrusion 6 is restricted. To change.

図3(a)に示すように、光素子アレイ2の中心A(レンズアレイ4aの中心)を固定点とすることで、光学部材4が熱により膨張・収縮した際の発光部または受光部2aとレンズ4aの位置ずれを極小とすることが可能になる。これに対して、例えば図3(b)に示すように、光素子アレイ2の端部(レンズアレイ4aの端部)を固定点とした場合、固定点とした端部と反対側の端部において発光部または受光部2aとレンズアレイ4aの各レンズとの位置ずれが大きくなり、光通信の特性が悪化してしまう。   As shown in FIG. 3A, the center A of the optical element array 2 (the center of the lens array 4a) is used as a fixed point, so that the light emitting section or the light receiving section 2a when the optical member 4 is expanded or contracted by heat. And the positional deviation of the lens 4a can be minimized. On the other hand, for example, as shown in FIG. 3B, when the end of the optical element array 2 (end of the lens array 4a) is a fixed point, the end opposite to the fixed end In this case, the positional deviation between the light emitting unit or light receiving unit 2a and each lens of the lens array 4a becomes large, and the characteristics of optical communication deteriorate.

以上説明したように、本実施の形態に係る光通信モジュール1では、溝5が開口に向かって幅が広がるよう形成されるか、あるいは、突起6が基端に向かって幅が広がるよう形成され、光学部材4の膨張・収縮時に溝5と突起6の干渉により支持部材3と光学部材4との距離が変化するように構成され、溝5と突起6は、光学部材4の膨張・収縮時に溝5と突起6間で相対的な位置ずれが発生しない幅方向の位置(基準位置)が、平面視で光素子アレイ2の中心Aを通る直線A1,A2上に位置するようにそれぞれ形成され、かつ、溝5と突起6は、平面視で光素子アレイ2の中心Aを通る少なくとも2つ以上の異なる直線A1,A2上にそれぞれ形成されている。   As described above, in the optical communication module 1 according to the present embodiment, the groove 5 is formed so that the width increases toward the opening, or the protrusion 6 is formed so that the width increases toward the base end. The distance between the support member 3 and the optical member 4 is changed by the interference between the groove 5 and the protrusion 6 when the optical member 4 is expanded and contracted. The groove 5 and the protrusion 6 are formed when the optical member 4 is expanded and contracted. The position in the width direction (reference position) where no relative displacement occurs between the groove 5 and the protrusion 6 is formed so as to be positioned on the straight lines A1 and A2 passing through the center A of the optical element array 2 in plan view. And the groove | channel 5 and the processus | protrusion 6 are each formed on the at least 2 or more different straight line A1, A2 which passes the center A of the optical element array 2 by planar view.

このように構成することで、支持部材3に対する光学部材4の熱による膨張・収縮を許容しつつも、光素子アレイ2の平面視における中心と4つのレンズからなるレンズアレイ4aの平面視における中心を常に対向位置に維持し、光学部材4の光素子アレイ2に対する位置ずれを抑制することが可能になり、光通信の特性の悪化を抑制できる。また、光学部材4に熱による膨張・収縮が光素子等よりも大きい樹脂等の材料を用いることが可能となるため、低コスト化にも寄与する。   With this configuration, the center in the plan view of the optical element array 2 and the center in the plan view of the lens array 4a including four lenses are allowed while allowing expansion and contraction of the optical member 4 with respect to the support member 3 due to heat. Is always maintained at the facing position, and the positional deviation of the optical member 4 with respect to the optical element array 2 can be suppressed, and deterioration of the characteristics of optical communication can be suppressed. In addition, since the optical member 4 can be made of a material such as a resin that is larger in expansion and contraction due to heat than an optical element or the like, it contributes to cost reduction.

さらに、光通信モジュール1では、位置合わせを機械的に行うことが可能であり、光素子アレイ2を動作させることなく簡易に位置合わせを行うことが可能であり、量産性に優れている。   Further, the optical communication module 1 can be mechanically aligned, can be simply aligned without operating the optical element array 2, and is excellent in mass productivity.

本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。   The present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the spirit of the present invention.

例えば、上記実施の形態では、溝5と突起6が面で接触する場合を説明したが、図4(a)に示すように、突起6の幅方向の両側端部を先細に形成したり、図4(b)に示すように、突起6を直方体状に形成するなどして、溝5と突起6が線で接触するように構成してもよい。また、図4(c)に示すように、突起6を球形状とするなどして、溝5と突起6が点で接触するように構成してもよい。なお、複数の溝5と突起6は同じ形状である必要はなく、様々な形状の溝5と突起6を混在させることも可能である。   For example, in the above-described embodiment, the case where the groove 5 and the protrusion 6 are in contact with each other has been described. However, as shown in FIG. 4A, both end portions in the width direction of the protrusion 6 are tapered, As shown in FIG. 4B, the protrusions 6 may be formed in a rectangular parallelepiped shape so that the grooves 5 and the protrusions 6 are in line contact. Moreover, as shown in FIG.4 (c), you may comprise so that the groove | channel 5 and the processus | protrusion 6 may contact at a point, for example by making the processus | protrusion 6 into spherical shape. The plurality of grooves 5 and the protrusions 6 do not have to have the same shape, and various shapes of the grooves 5 and the protrusions 6 can be mixed.

また、図4(d)に示すように、1つの溝5に2つの突起41を嵌合させるよう構成することも可能である。なお、この場合、2つの突起41の間の空間を埋めても同じ作用を奏することから、2つの突起41で1つの突起6に相当するといえる。   Moreover, as shown in FIG.4 (d), it is also possible to comprise so that the two protrusions 41 may be fitted to the one groove | channel 5. FIG. In this case, it can be said that the two protrusions 41 correspond to one protrusion 6 because the same effect is obtained even if the space between the two protrusions 41 is filled.

また、上記実施の形態では、光素子アレイ2の発光部または受光部2aの配列方向とその垂直方向に沿った直線A1,A2上に溝5と突起6を形成したが、溝5と突起6を形成する位置は、基準位置が平面視で光素子アレイ2の中心Aから放射状に延びる直線上となる位置であれば、適宜選択可能である。例えば、図5(a)に示すように、図1(a)における光素子アレイ2の左側の溝5と突起6を省略してもよいし、図5(b)に示すように、光素子アレイ2の中心Aから120度ごとに延びる3つの直線上に溝5と突起6をそれぞれ形成してもよい。   Moreover, in the said embodiment, although the groove | channel 5 and the processus | protrusion 6 were formed on the straight line A1, A2 along the arrangement direction of the light emission part of the optical element array 2, or the light-receiving part 2a, and the perpendicular direction, the groove | channel 5 and the processus | protrusion 6 Can be appropriately selected as long as the reference position is on a straight line extending radially from the center A of the optical element array 2 in plan view. For example, as shown in FIG. 5A, the groove 5 and the protrusion 6 on the left side of the optical element array 2 in FIG. 1A may be omitted, or as shown in FIG. The grooves 5 and the protrusions 6 may be formed on three straight lines extending from the center A of the array 2 every 120 degrees.

また、図5(c)に示すように、図1(a)における光素子アレイ2の下側にさらに溝5と突起6を形成して光学部材4の設置の安定性を向上させてもよいし、図5(d)に示すように、図5(c)における光素子アレイ2と溝5および突起6との関係を回転させる(ここでは光素子アレイ2を45度回転させた場合を示している)ことも可能である。なお、図5(a)〜(d)では、図の簡略化のため突起6を省略して描いている。   Further, as shown in FIG. 5 (c), the groove 5 and the protrusion 6 may be further formed on the lower side of the optical element array 2 in FIG. 1 (a) to improve the installation stability of the optical member 4. As shown in FIG. 5D, the relationship between the optical element array 2 and the grooves 5 and the projections 6 in FIG. 5C is rotated (here, the case where the optical element array 2 is rotated by 45 degrees is shown). It is also possible. In FIGS. 5A to 5D, the projections 6 are omitted for simplification of the drawing.

さらに、上記実施の形態では、溝5または突起6の幅方向の側面をテーパ状とする場合について説明したが、これに限らず、例えば、溝5または突起6の幅方向の側面を円弧状に(所定の曲率で湾曲するように)形成することも勿論可能である。   Furthermore, although the case where the side surface in the width direction of the groove 5 or the protrusion 6 is tapered has been described in the above embodiment, the present invention is not limited thereto, and for example, the side surface in the width direction of the groove 5 or the protrusion 6 is formed in an arc shape. Of course, it is also possible to form it (curved with a predetermined curvature).

また、上記実施の形態では、光学部材4の光素子アレイ2に対向する位置にレンズを配置したが、これに限らず、例えばレンズおよび反射板を有しない光学部材を用いて光素子アレイに対向する位置に光ファイバの入出射面を配置してもよい。   Moreover, in the said embodiment, although the lens was arrange | positioned in the position facing the optical element array 2 of the optical member 4, it is not restricted to this, For example, it opposes an optical element array using the optical member which does not have a lens and a reflecting plate. An incident / exit surface of the optical fiber may be disposed at a position where the optical fiber is located.

1 光通信モジュール
2 光素子アレイ
2a 発光部または受光部
3 支持部材
4 光学部材
4a レンズアレイ
5 溝
6 突起
DESCRIPTION OF SYMBOLS 1 Optical communication module 2 Optical element array 2a Light emission part or light-receiving part 3 Support member 4 Optical member 4a Lens array 5 Groove 6 Protrusion

Claims (7)

発光素子または受光素子をアレイ状に配置した光素子アレイと、
前記光素子アレイが載置される支持部材と、
前記光素子アレイと光学的に接続される複数の光ファイバと、
前記光素子アレイと前記光ファイバとを光学的に結合させる光学部材と、
前記支持部材または前記光学部材に形成された複数の溝と、
前記溝と対応するように前記光学部材または前記支持部材に形成された複数の突起と、を備え、
前記溝と前記突起とを嵌合させることで、前記光学部材を前記支持部材に載置すると共に、前記光学部材の前記光素子アレイに対する位置決めを行うように構成された光通信モジュールであって、
前記溝が開口に向かって幅が広がるよう形成されるか、あるいは、前記突起が基端に向かって幅が広がるよう形成され、前記光学部材の膨張・収縮時に前記溝と前記突起の干渉により前記支持部材と前記光学部材との距離が変化するように構成され、
前記溝と前記突起は、前記光学部材の膨張・収縮時に前記溝と前記突起間で相対的な位置ずれが発生しない幅方向の位置が、平面視で前記光素子アレイの中心を通る直線上に位置するようにそれぞれ形成され、
かつ、前記溝と前記突起は、平面視で前記光素子アレイの中心を通る少なくとも2つ以上の異なる直線上にそれぞれ形成されている
ことを特徴とする光通信モジュール。
An optical element array in which light emitting elements or light receiving elements are arranged in an array; and
A support member on which the optical element array is placed;
A plurality of optical fibers optically connected to the optical element array;
An optical member for optically coupling the optical element array and the optical fiber;
A plurality of grooves formed in the support member or the optical member;
A plurality of protrusions formed on the optical member or the support member so as to correspond to the groove,
An optical communication module configured to place the optical member on the support member and to position the optical member with respect to the optical element array by fitting the groove and the protrusion,
The groove is formed so as to increase in width toward the opening, or the protrusion is formed so as to increase in width toward the proximal end. The distance between the support member and the optical member is changed,
The groove and the protrusion are positioned on a straight line passing through the center of the optical element array in a plan view so that a relative positional deviation does not occur between the groove and the protrusion when the optical member expands and contracts. Each formed to be located,
And the said groove | channel and the said protrusion are each formed on the at least 2 or more different straight line which passes the center of the said optical element array by planar view. The optical communication module characterized by the above-mentioned.
前記溝と前記突起の少なくとも一方は、幅方向の断面がV字状に形成され、当該V字状の溝または突起の幅方向の中心位置が、平面視で前記光素子アレイの中心を通る直線上に位置するように形成されている
請求項1記載の光通信モジュール。
At least one of the groove and the protrusion has a V-shaped cross section in the width direction, and the center position of the V-shaped groove or protrusion in the width direction passes through the center of the optical element array in plan view. The optical communication module according to claim 1, wherein the optical communication module is formed so as to be positioned above.
前記溝と前記突起は、その幅方向の一方の側面が、共に前記支持部材の表面に対して垂直に形成され、当該側面が、平面視で前記光素子アレイの中心を通る直線上に位置するように形成されている
請求項1記載の光通信モジュール。
The groove and the protrusion are both formed such that one side surface in the width direction is perpendicular to the surface of the support member, and the side surface is positioned on a straight line passing through the center of the optical element array in plan view. The optical communication module according to claim 1, wherein the optical communication module is formed as described above.
前記溝の底面の長さが、前記突起の基端部の長さよりも大きく形成される
請求項1〜3いずれかに記載の光通信モジュール。
The optical communication module according to claim 1, wherein a length of a bottom surface of the groove is formed larger than a length of a base end portion of the protrusion.
前記支持部材は、シリコン基板からなり、
当該シリコン基板に前記溝が形成される
請求項1〜4いずれかに記載の光通信モジュール。
The support member is made of a silicon substrate,
The optical communication module according to claim 1, wherein the groove is formed in the silicon substrate.
前記光学部材は、前記光素子アレイの各発光部または受光部と対向する位置に形成された複数のレンズからなるレンズアレイを有し、前記光素子アレイからの光の光軸を変換して前記各光ファイバに出射する、あるいは前記各光ファイバからの光の光軸を変換して前記光素子アレイに出射する
請求項1〜5いずれかに記載の光通信モジュール。
The optical member has a lens array composed of a plurality of lenses formed at positions facing each light emitting part or light receiving part of the optical element array, and converts the optical axis of light from the optical element array to convert the optical axis. The optical communication module according to any one of claims 1 to 5, wherein the optical communication module emits light to each optical fiber or converts the optical axis of light from each optical fiber to emit to the optical element array.
前記レンズアレイの平面視における中心と前記光素子アレイの平面視における中心とが一致する
請求項6記載の光通信モジュール。
The optical communication module according to claim 6, wherein a center of the lens array in a plan view coincides with a center of the optical element array in a plan view.
JP2012212138A 2012-09-26 2012-09-26 Optical communication module Expired - Fee Related JP5737254B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012212138A JP5737254B2 (en) 2012-09-26 2012-09-26 Optical communication module
US13/873,057 US8876415B2 (en) 2012-09-26 2013-04-29 Optical communication module
CN201310174065.3A CN103676031B (en) 2012-09-26 2013-05-13 Optical communications module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012212138A JP5737254B2 (en) 2012-09-26 2012-09-26 Optical communication module

Publications (2)

Publication Number Publication Date
JP2014066873A JP2014066873A (en) 2014-04-17
JP5737254B2 true JP5737254B2 (en) 2015-06-17

Family

ID=50314138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012212138A Expired - Fee Related JP5737254B2 (en) 2012-09-26 2012-09-26 Optical communication module

Country Status (3)

Country Link
US (1) US8876415B2 (en)
JP (1) JP5737254B2 (en)
CN (1) CN103676031B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7086512B2 (en) 2019-07-05 2022-06-20 三菱電機株式会社 servo amplifier

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6596817B2 (en) * 2014-12-04 2019-10-30 株式会社リコー Light source device and light source device
US9939598B2 (en) * 2015-01-16 2018-04-10 Us Conec, Ltd. Fiber optic connector assembly, apparatus for forming a transceiver interface, and ferrule
EP3308206B1 (en) * 2015-06-15 2021-01-13 RWTH Aachen Self-alignment for apparatus comprising photonic device
US10088639B2 (en) * 2016-06-28 2018-10-02 Mellanox Technologies, Ltd. Opto-mechanical coupler
US10345542B2 (en) * 2016-06-28 2019-07-09 Mellanox Technologies, Ltd. Opto-mechanical coupler
US10656349B2 (en) * 2017-10-30 2020-05-19 DustPhotonics Ltd. Optical coupler and optical fiber passive alignment
CN108155542B (en) * 2017-12-29 2020-05-19 北京国科世纪激光技术有限公司 Laser thermal expansion direction control support and laser system
WO2020003189A1 (en) * 2018-06-29 2020-01-02 3M Innovative Properties Company Apparatus and method for maintaining optical ferrule alignment during thermal expansion or contraction
JP2023512606A (en) 2020-02-03 2023-03-27 センコー アドバンスド コンポーネンツ インコーポレイテッド elastic mean bond

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06130254A (en) * 1992-10-15 1994-05-13 Toshiba Corp Optical component coupler
KR19980066890A (en) * 1997-01-29 1998-10-15 김광호 Optical waveguide and optical fiber coupling device and method
JP2002014258A (en) * 2000-06-30 2002-01-18 Kyocera Corp Optical semiconductor element carrier and optical assembly provided with it
JP4984354B2 (en) * 2001-07-10 2012-07-25 ソニー株式会社 Optical communication connection device and optical communication method
JP2004246279A (en) 2003-02-17 2004-09-02 Seiko Epson Corp Optical module and its manufacturing method, optical communication device, optical and electric mixed integrated circuit, circuit board, electronic equipment
JP4705432B2 (en) * 2005-03-28 2011-06-22 富士通コンポーネント株式会社 connector
JP2006065358A (en) 2005-11-07 2006-03-09 Nec Corp Optical module, package and optical fiber connector
JP2007310083A (en) * 2006-05-17 2007-11-29 Fuji Xerox Co Ltd Optical transmission module and method for manufacturing the same
TWI317030B (en) * 2006-10-04 2009-11-11 Ind Tech Res Inst An optical interconnection module
JP4957503B2 (en) * 2007-10-16 2012-06-20 住友電気工業株式会社 Optical module and optical module manufacturing method
JP5280742B2 (en) * 2008-06-16 2013-09-04 富士通コンポーネント株式会社 Mounting structure and mounting method of optical waveguide holding member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7086512B2 (en) 2019-07-05 2022-06-20 三菱電機株式会社 servo amplifier

Also Published As

Publication number Publication date
US8876415B2 (en) 2014-11-04
CN103676031B (en) 2016-06-15
US20140086528A1 (en) 2014-03-27
JP2014066873A (en) 2014-04-17
CN103676031A (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5737254B2 (en) Optical communication module
US20190113697A1 (en) Demountable optical connector for optoelectronic devices
KR100844068B1 (en) Optical transmission module and method of manufacturing the same
JP5550221B2 (en) Optical coupling element and optical module having the same
WO2014034458A1 (en) Structure for connecting optical module and optical connector
US9389375B2 (en) Optical coupling element and optical module provided with same
CN115362402A (en) Elastic average coupling device
JP2007127797A (en) Optical module
US9726826B2 (en) Inter-lens adjusting method and photoelectric hybrid substrate
US10048458B2 (en) Optical module
JP2008158001A (en) Photocoupler
US10156688B1 (en) Passive alignment system and an optical communications module that incorporates the passive alignment system
JP5901367B2 (en) Light emitting device
JP2008102282A (en) Optical module
JP6506138B2 (en) Optical module and receptacle for optical module
JP6475911B2 (en) Optical connector holder, optical connector module, optical substrate module, and optical module
EP1219993A2 (en) Optical device package
JPWO2013099685A1 (en) Optical module and manufacturing method thereof
WO2024116621A1 (en) Optical connector and optical transmission module
EP3995872A1 (en) Two-stage expanded beam optical coupling
US20220082768A1 (en) Optical module and optical connector cable
JP2011053668A (en) Method for manufacturing optical connection section and optical connection structure
JP4127203B2 (en) Optical coupling structure and optical coupling device
JP2018087869A (en) Optical module and method for manufacturing optical module
JP2008026811A (en) Optical coupling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R150 Certificate of patent or registration of utility model

Ref document number: 5737254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees