JPH06130254A - Optical component coupler - Google Patents

Optical component coupler

Info

Publication number
JPH06130254A
JPH06130254A JP27747092A JP27747092A JPH06130254A JP H06130254 A JPH06130254 A JP H06130254A JP 27747092 A JP27747092 A JP 27747092A JP 27747092 A JP27747092 A JP 27747092A JP H06130254 A JPH06130254 A JP H06130254A
Authority
JP
Japan
Prior art keywords
substrate
optical component
optical
coupling device
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27747092A
Other languages
Japanese (ja)
Inventor
Fumihiko Shimizu
文彦 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27747092A priority Critical patent/JPH06130254A/en
Publication of JPH06130254A publication Critical patent/JPH06130254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To obtain a device capable of deciding the arrangement of an optical component to be confronted with each other simply and with high accuracy and performing fine adjustment for coinciding positions by forming a pair of specific regulating parts on respective confronting plane of first and second substrates, and performing positioning by engaging their regulating parts with each other when the first substrate is loaded on the second substrate. CONSTITUTION:A pair of regulating parts 33b, 34b and 33c, 34c whose cross- sections are formed in V-shape and projected and recessed in parallel are formed at both sides of the groove parts 33a, 34a of confronting parts on the first and second substrates 33, 34 in a direction of Y-axis. In other words, the positioning in a direction of X-axis between the substrates 33, 34 can be performed by engaging the regulating parts 33b, 34b with 33c 34c when the second substrate 34 is loaded on the first substrate 33. The regulating parts 33b, 34b and 33c, 34c are formed by etching, a high accuracy machine, or a method of cutting, etc. Therefore, they can be formed with high accuracy, and the positioning of the first and second substrates 33, 34 can be performed with high accuracy by engaging the regulating parts 33b, 34b with 33c, 34c.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば多心光ファイ
バアレイと光送信デバイスアレイあるいは光受信デバイ
スアレイとを光結合する光結合装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical coupling device for optically coupling a multi-core optical fiber array with an optical transmitting device array or an optical receiving device array.

【0002】[0002]

【従来の技術】近年、通信・放送などの分野にあって
は、伝送信号のデジタル化とその信号速度の向上、通信
ネットワークの広域化、取り扱う信号数の飛躍的な増大
に伴って、光通信システムが急速に実用化されている。
また情報処理などの分野においても処理速度の高速化と
並列コンピュータ等の開発が活発に行われている。
2. Description of the Related Art In recent years, in the fields of communication / broadcasting, optical communication has become possible due to digitization of transmission signals and improvement of their signal speeds, widening of communication networks, and dramatic increase in the number of signals to be handled. The system is being put to practical use rapidly.
Further, in the field of information processing and the like, the speeding up of processing speed and the development of parallel computers and the like are being actively conducted.

【0003】このような状況のなかで、最近、装置内の
配線に光伝送路を用いた小型・高密度光配線技術が注目
されている。この技術は信号伝送路に多心光ファイバア
レイを使用し、多心光ファイバアレイと光送信デバイス
アレイあるいは光受信デバイスアレイとの光結合部を小
型・高信頼性・低コストで実現しようとするものであ
る。従来の多心光ファイバアレイと光送信デバイスアレ
イとを光結合する光結合装置を図7に示す。
Under such circumstances, a small-sized and high-density optical wiring technique using an optical transmission line for the wiring in the device has recently been attracting attention. This technology uses a multi-fiber optical fiber array for the signal transmission line, and aims to realize an optical coupling part between the multi-fiber optical fiber array and the optical transmitting device array or the optical receiving device array in a small size, high reliability, and low cost. It is a thing. FIG. 7 shows an optical coupling device that optically couples a conventional multi-core optical fiber array and an optical transmission device array.

【0004】図7において、1は多心光ファイバアレイ
なるリボンファイバであり、複数本のファイバ線1aが
一列に束ねられている。2は送信デバイスアレイなるレ
ーザチップであり、ここでは一側面に互いに等間隔にか
つ一直線上に複数個のレーザ出射口2aが設けられてい
る。
In FIG. 7, reference numeral 1 denotes a ribbon fiber which is a multi-fiber optical fiber array, and a plurality of fiber lines 1a are bundled in a line. Reference numeral 2 denotes a laser chip which is a transmitter device array, and here, a plurality of laser emission ports 2a are provided on one side at equal intervals and in a straight line.

【0005】まず、レーザチップ搭載用基板11の特定
箇所に予め印されたマーカ位置にレーザチップ1を目測
により固定する。また、ファイバ線固定用基板12に予
め形成されたファイバ線固定用V溝群12aにそれぞれ
リボンファイバ1の各ファイバ線を固定する。これらの
基板11,12を位置固定用基板13上に光結合パワー
をパワーモニタリングしながら位置合わせして固定す
る。尚、上記光結合に際して、ファイバ線1aとレーザ
出射口2aとの間にマイクロレンズアレイ(図示せず)
を挿入して結合効率を改善することもある。
First, the laser chip 1 is fixed by visual measurement at a marker position which is previously marked on a specific portion of the laser chip mounting substrate 11. Further, each fiber line of the ribbon fiber 1 is fixed to the fiber line fixing V groove group 12a formed in advance on the fiber line fixing substrate 12. These substrates 11 and 12 are aligned and fixed on the position fixing substrate 13 while monitoring the optical coupling power. In the above optical coupling, a microlens array (not shown) is provided between the fiber line 1a and the laser emission port 2a.
May be inserted to improve the coupling efficiency.

【0006】しかしながら、上記のような光部品結合装
置では、レーザチップ2の固定、及びレーザチップ搭載
用基板11、ファイバ線固定用基板12及び基板上での
位置合わせを目測手作業で行っているため、大変な手間
と時間がかかり、このことがコスト増大の大きな原因と
なっている。さらに、調整箇所が多数あることにより、
光結合精度や信頼性の点でも問題が多い。
However, in the above-described optical component coupling apparatus, the laser chip 2 is fixed and the laser chip mounting substrate 11, the fiber line fixing substrate 12 and the alignment on the substrate are performed by an eye-checking operation. Therefore, it takes a lot of time and effort, which is a major cause of cost increase. Furthermore, because there are many adjustment points,
There are many problems in terms of optical coupling accuracy and reliability.

【0007】そこで、従来では、簡単な構成でしかも光
部品間の光軸調整を自己整合で自動的に行えるように、
図8または図9に示すような、市販されている多心光コ
ネクタの雄側部品を利用した光部品結合装置が提案され
ている。
Therefore, in the prior art, in order to adjust the optical axis between the optical components automatically by self-alignment with a simple structure,
As shown in FIG. 8 or FIG. 9, there has been proposed an optical component coupling device using a male component of a commercially available multi-fiber optical connector.

【0008】図8において、21は多心光コネクタの雄
側部品であり、リボンファイバ1の端部において、複数
のファイバ線を樹脂モールド22で一列かつ等間隔に配
置固定し、同時にその両側から一対のガイドピン23を
平行に突出させて構成される。
In FIG. 8, reference numeral 21 denotes a male part of the multi-fiber optical connector. At the end of the ribbon fiber 1, a plurality of fiber wires are arranged and fixed in a row with a resin mold 22 at equal intervals, and at the same time, from both sides thereof. A pair of guide pins 23 are configured to project in parallel.

【0009】このような多心光コネクタ部品21に対し
て、レーザチップ搭載用基板25は予めエッチングや高
精度機械加工あるいは切削等の手法でレーザチップ2の
幅と等しい幅の溝26が形成され、さらにその両側面が
光コネクタ部品21の一対のガイドピン23の内幅に等
しい幅で切り出され、レーザチップ位置固定用基板27
に固定される。尚、レーザチップ2の複数個のレーザ出
射口2aは多心光コネクタ部品21側のファイバ線数、
間隔と同じであるものとする。
For such a multi-fiber optical connector component 21, a laser chip mounting substrate 25 is preliminarily formed with a groove 26 having a width equal to the width of the laser chip 2 by a method such as etching, high precision machining or cutting. Further, both side surfaces thereof are cut out with a width equal to the inner width of the pair of guide pins 23 of the optical connector part 21, and the laser chip position fixing substrate 27 is cut.
Fixed to. The plurality of laser emission ports 2a of the laser chip 2 are the number of fiber lines on the multi-core optical connector component 21 side,
It shall be the same as the interval.

【0010】すなわち、上記構成の光部品結合装置は、
溝26上にレーザチップ2を搭載固定した状態で基板2
5を位置固定用基板27上に固定し、基板25の側面に
沿って一対のガイドピン23を合わせて多心光コネクタ
部品21を配置固定する。これによって、レーザチップ
2の各レーザ出射口2aと多心光コネクタ部品21側の
各ファイバ線1aとの光軸合わせを自動的に行う。
That is, the optical component coupling device having the above structure is
The substrate 2 with the laser chip 2 mounted and fixed on the groove 26
5 is fixed on the position fixing substrate 27, and the multi-fiber optical connector component 21 is arranged and fixed by aligning the pair of guide pins 23 along the side surface of the substrate 25. As a result, the optical axes of the laser emission ports 2a of the laser chip 2 and the fiber lines 1a on the multi-fiber optical connector component 21 side are automatically adjusted.

【0011】一方、図9において、21は多心光コネク
タの雄側部品であり、図8のものと同じである。このよ
うな多心光コネクタ部品21に対して、レーザチップ搭
載用基板28には、予めエッチングや高精度機械加工あ
るいは切削等の手法でレーザチップ2の幅と等しい幅の
溝29を形成し、同時にその両側に光コネクタ部品21
の一対のガイドピン23をその径に等しい幅の位置で案
内する一対のV字型溝30を形成しておく。
On the other hand, in FIG. 9, 21 is a male side component of the multi-fiber optical connector, which is the same as that of FIG. With respect to such a multi-fiber optical connector component 21, a groove 29 having a width equal to the width of the laser chip 2 is previously formed on the laser chip mounting substrate 28 by a method such as etching, high precision machining or cutting. At the same time, optical connector parts 21 on both sides
A pair of V-shaped grooves 30 for guiding the pair of guide pins 23 at a position having a width equal to the diameter thereof are formed.

【0012】すなわち、上記構成の光部品結合装置は、
基板28の溝29上にレーザチップ2を搭載固定し、同
じ基板28のV字型溝26にガイドピン23を合わせて
多心光コネクタ部品21を配置固定する。これによっ
て、レーザチップ2の各レーザ出射口2aと多心光コネ
クタ部品21側の各ファイバ線1aとの光軸合わせを自
動的に行う。
That is, the optical component coupling device having the above structure is
The laser chip 2 is mounted and fixed on the groove 29 of the substrate 28, the guide pin 23 is aligned with the V-shaped groove 26 of the same substrate 28, and the multi-fiber optical connector component 21 is arranged and fixed. As a result, the optical axes of the laser emission ports 2a of the laser chip 2 and the fiber lines 1a on the multi-fiber optical connector component 21 side are automatically adjusted.

【0013】しかしながら、図8に示す装置では、レー
ザチップ搭載用基板25において、レーザチップ位置決
め用溝26の形成位置に対して両側面を正確に切り出す
ことが非常に困難であり、さらに一対のガイドピン23
の加工精度も材質上あまり高くとることができない。よ
って、レーザ出射口2aとファイバ線1aとの間の位置
合わせに精度上の問題が残る。
However, in the apparatus shown in FIG. 8, it is very difficult to accurately cut out both side surfaces of the laser chip mounting substrate 25 with respect to the position where the laser chip positioning groove 26 is formed, and a pair of guides is used. Pin 23
The processing accuracy of is not very high due to the material. Therefore, there remains a problem of accuracy in the alignment between the laser emission port 2a and the fiber line 1a.

【0014】一方、図9に示す装置では、レーザチップ
搭載用基板28にレーザチップ位置決め用溝29を形成
すると同時に、同じ手法(例えばエッチング)でガイド
ピン案内用のV字型溝30を形成するため、図8の装置
と比較して高い精度を出すことができる。しかしなが
ら、この場合もガイドピン23の加工精度に依存してお
り、基板28側の精度を高くすることができても、やは
り位置合わせに精度上の問題が残る。
On the other hand, in the apparatus shown in FIG. 9, the laser chip positioning groove 29 is formed on the laser chip mounting substrate 28, and at the same time, the V-shaped groove 30 for guiding the guide pin is formed by the same method (for example, etching). Therefore, it is possible to obtain higher accuracy than the device of FIG. However, in this case as well, it depends on the processing accuracy of the guide pin 23, and even if the accuracy on the substrate 28 side can be increased, the accuracy problem still remains in the alignment.

【0015】さらに、図8、図9のいずれの装置も、位
置合わせ後の調整が困難であり、例えば径10μmのフ
ァイバコア線に対して数μmオーダーで光軸調整するこ
とはほとんど不可能である。
Further, in any of the devices shown in FIGS. 8 and 9, it is difficult to perform adjustment after alignment, and for example, it is almost impossible to adjust the optical axis on the order of several μm for a fiber core wire having a diameter of 10 μm. is there.

【0016】[0016]

【発明が解決しようとする課題】以上述べたように、従
来の光部品結合装置では、相対すべき第1、第2の光部
品の配置決定に精度上の問題があり、しかも微調整が困
難であった。
As described above, in the conventional optical component coupling device, there is a problem in accuracy in determining the arrangement of the first and second optical components to be opposed to each other, and fine adjustment is difficult. Met.

【0017】この発明は上記の課題を解決するためにな
されたもので、簡単かつ高精度に相対すべき光部品を配
置決定することができ、しかも位置合わせの微調整を可
能とする光部品結合装置を提供することを目的とする。
The present invention has been made to solve the above problems, and it is possible to easily and accurately determine the positions of optical components to be opposed to each other, and to perform optical component coupling that enables fine adjustment of alignment. The purpose is to provide a device.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
にこの発明は、相対すべき第1、第2の光部品を配置決
定して光結合させる光部品結合装置において、前記第1
の光部品が位置決め搭載される第1の基板と、この第1
の基板上に搭載され、その搭載状態で前記第1の光部品
と所望の相対位置関係となるように前記第2の光部品が
位置決め固定される第2の基板とを具備し、前記第1、
第2の基板の対向面それぞれに断面がV字型で平行に凹
凸させた一対の規制部を形成し、第2の基板の第1の基
板搭載時に互いの規制部を嵌合することで基板間を位置
決めするようにしたことを特徴とする
In order to achieve the above object, the present invention provides an optical component coupling device for arranging and optically coupling first and second optical components to be opposed to each other.
And a first substrate on which the optical components of
And a second substrate on which the second optical component is positioned and fixed so as to have a desired relative positional relationship with the first optical component in the mounted state. ,
By forming a pair of restricting portions having a V-shaped cross section in parallel on each of the facing surfaces of the second substrate and fitting the restricting portions together when the second substrate is mounted on the first substrate, Characterized by positioning between the spaces

【0019】[0019]

【作用】上記構成による光部品結合装置では、第1の基
板の溝部に端部を合わせて第1の光部品31を配置する
だけで、第1の光部品を位置決めすることができ、第2
の基板の溝部に端部を合わせて配置するだけで第2の光
部品を位置決めすることができ、第2の基板を第1の基
板上に搭載する際に、互いの規制部をそれぞれ嵌合する
ことで基板間の位置決めをすることができる。このた
め、上記規制部をそれぞれエッチングや高精度機械加工
あるいは切削等の手法で形成することで互いに高い精度
で形成すれば、規制部の嵌合で第1、第2の基板を高精
度に位置決めすることができ、これらに搭載される第
1、第2の光部品も結果的に高精度に位置決めすること
ができる。
In the optical component coupling device having the above structure, the first optical component can be positioned by merely disposing the first optical component 31 with its end aligned with the groove of the first substrate.
The second optical component can be positioned simply by arranging the ends in alignment with the groove portions of the board, and when the second board is mounted on the first board, the respective restricting parts are fitted together. By doing so, the positioning between the substrates can be performed. Therefore, if the regulation portions are formed with high precision by forming each of the regulation portions by a method such as etching, high-precision machining, or cutting, the first and second substrates can be positioned with high precision by fitting the regulation portions. As a result, the first and second optical components mounted on them can be positioned with high precision as a result.

【0020】[0020]

【実施例】以下、図1を参照してこの発明の実施例を詳
細に説明する。
Embodiments of the present invention will be described in detail below with reference to FIG.

【0021】図1はこの発明に係る第1の実施例の構成
を示すもので、31は第1の光部品、32は第2の光部
品である。ここでは光部品31,32を互いに相対位置
に配置して光軸合わせを行うことで両者を光結合する光
部品結合装置を示している。
FIG. 1 shows the configuration of a first embodiment according to the present invention, in which 31 is a first optical component and 32 is a second optical component. Here, an optical component coupling device that optically couples the optical components 31 and 32 by arranging the optical components at relative positions to perform optical axis alignment is shown.

【0022】この光部品結合装置は、第1の光部品31
が位置決め搭載される第1の基板33と、この第1の基
板33上に搭載され、その搭載状態で第1の光部品31
と所望の相対位置関係となるように第2の光部品32が
位置決め固定される第2の基板34とで構成される。
This optical component coupling device includes a first optical component 31.
Is mounted on the first substrate 33, and the first optical component 31 is mounted on the first substrate 33.
And a second substrate 34 on which the second optical component 32 is positioned and fixed so as to have a desired relative positional relationship.

【0023】第1の基板33には、上面中央に第1の光
部品31の幅に相当する底面と適度な深さの溝部33a
が図中Y軸方向(第1、第2の光部品31,32の光軸
方向)に形成される。すなわち、この溝部33aに端部
を合わせて第1の光部品31を配置するだけで、第1の
光部品31を位置決めすることができる。
The first substrate 33 has a bottom surface corresponding to the width of the first optical component 31 and a groove portion 33a having an appropriate depth in the center of the top surface.
Are formed in the Y-axis direction (the optical axis directions of the first and second optical components 31 and 32) in the figure. That is, the first optical component 31 can be positioned only by arranging the first optical component 31 with its end aligned with the groove 33a.

【0024】一方、第2の基板34にも、第1の基板3
3との対向面中央に第2の光部品32の幅に相当する底
面と適度な深さの溝部34aが図中Y軸方向に形成され
る。すなわち、この溝部34aに端部を合わせて第2の
光部品32を配置するだけで、第2の光部品32を位置
決めすることができる。
On the other hand, the second substrate 34 also includes the first substrate 3
A bottom surface corresponding to the width of the second optical component 32 and a groove portion 34a having an appropriate depth are formed in the center of the surface facing the third optical element 32 in the Y-axis direction in the drawing. That is, the second optical component 32 can be positioned only by arranging the second optical component 32 with its end aligned with the groove 34a.

【0025】第1、第2の基板33,34には、さらに
対向面の溝部33a,34a両側にそれぞれ断面がV字
型で平行に凹凸させた一対の規制部33bと34b,3
3cと34cが図中Y軸方向に形成される。すなわち、
第2の基板34を第1の基板33上に搭載する際に、互
いの規制部33bと34b,33cと34cをそれぞれ
嵌合することで基板33,34間の図中X軸方向(Y軸
に直交しかつ基板33,34に水平な方向)の位置決め
をすることができる。
On the first and second substrates 33, 34, a pair of regulating portions 33b, 34b, 3 having V-shaped cross sections and formed in parallel on both sides of the groove portions 33a, 34a of the facing surface are provided.
3c and 34c are formed in the Y-axis direction in the figure. That is,
When the second substrate 34 is mounted on the first substrate 33, by fitting the respective restricting portions 33b and 34b, 33c and 34c, respectively, the X-axis direction (Y-axis direction) between the substrates 33 and 34 in the figure. Can be positioned in a direction orthogonal to and horizontal to the substrates 33 and 34.

【0026】上記規制部33bと34b,33cと34
cは、それぞれエッチングや高精度機械加工あるいは切
削等の手法で形成される。よって、互いに高い精度で形
成可能であり、規制部33bと34b,33cと34c
の嵌合で第1、第2の基板33,34を高精度に位置決
めすることができ、これらに搭載される第1、第2の光
部品31,32も結果的に高精度に位置決めすることが
できる。
The restricting portions 33b and 34b, 33c and 34
Each c is formed by a method such as etching, high-precision machining or cutting. Therefore, they can be formed with high precision, and the restricting portions 33b and 34b, 33c and 34c can be formed.
The first and second substrates 33 and 34 can be positioned with high precision by fitting the above, and the first and second optical components 31 and 32 mounted on these can be positioned with high precision as a result. You can

【0027】図2はこの発明に係る第2の実施例を示す
ものである。但し、図2において、図1と同一部分には
同一符号を付して示し、ここでは異なる部分について説
明する。
FIG. 2 shows a second embodiment according to the present invention. However, in FIG. 2, the same parts as those in FIG. 1 are designated by the same reference numerals, and different parts will be described here.

【0028】第1の実施例ではX軸方向の位置決めを自
己整合で行えるようにした場合を説明したが、Y軸方向
の位置決めにも応用可能である。そこで、第2の基板3
4をコ字状に形成し、第1、第2の基板33,34にそ
れぞれY軸に平行する規制部33bと34b,33cと
34cを溝部33a,34aの両側に設けると共に、X
軸に平行し断面がV字型で平行に凹凸させた一対の規制
部33dと34d,33eと34eをそれぞれ増設部分
両側に設ける。
In the first embodiment, the case in which the positioning in the X-axis direction can be performed by self-alignment has been described, but it is also applicable to the positioning in the Y-axis direction. Therefore, the second substrate 3
4 is formed in a U-shape, and restricting portions 33b and 34b, 33c and 34c parallel to the Y axis are provided on the first and second substrates 33 and 34, respectively, on both sides of the groove portions 33a and 34a, and X
A pair of restricting portions 33d and 34d, 33e and 34e, which are parallel to the axis and have a V-shaped cross section and are formed in parallel, are provided on both sides of the extension portion.

【0029】この構成によれば、第2の基板34を第1
の基板33上に搭載する際に、互いの規制部33bと3
4b,33cと34c,33dと34d,33eと34
eをそれぞれ嵌合することで、基板33,34間の位置
決めを、図中X軸方向のみならずY軸方向も自己整合で
行うことができる。
According to this structure, the second substrate 34 is connected to the first substrate.
When mounted on the board 33 of the
4b, 33c and 34c, 33d and 34d, 33e and 34
By fitting e respectively, the positioning between the substrates 33 and 34 can be performed by self-alignment not only in the X-axis direction but also in the Y-axis direction in the drawing.

【0030】図3はこの発明に係る第3の実施例を示す
ものである。但し、図3において、図1と同一部分には
同一符号を付して示し、ここでは異なる部分について説
明する。
FIG. 3 shows a third embodiment according to the present invention. However, in FIG. 3, the same parts as those in FIG. 1 are denoted by the same reference numerals, and different parts will be described here.

【0031】すなわち、この光部品結合装置は、第1の
基板33を利用し、第3の基板35を用いて第3の光部
品36を搭載するようにしたものである。第3の基板3
5は第2の基板34と全く同様であり、第1の基板33
との対向面中央に第3の光部品36の幅に相当する底面
と適度な深さの溝部35aが図中Y軸方向に形成され
る。これにより、溝部35aに端部を合わせて第3の光
部品36を配置するだけで、第3の光部品36を位置決
めすることができる。
In other words, this optical component coupling device utilizes the first substrate 33 and mounts the third optical component 36 on the third substrate 35. Third substrate 3
5 is exactly the same as the second substrate 34, and the first substrate 33
A bottom surface corresponding to the width of the third optical component 36 and a groove portion 35a having an appropriate depth are formed in the center of the surface opposed to and in the Y-axis direction in the figure. Thereby, the third optical component 36 can be positioned only by arranging the third optical component 36 with its end aligned with the groove 35a.

【0032】また、溝部35aの両側に第1の基板33
の規制部33b,33cと嵌合するように、それぞれ断
面がV字型で平行に凹凸させた一対の規制部35b,3
5が図中Y軸方向に形成される。すなわち、第3の基板
35を第1の基板33上に搭載する際に、互いの規制部
33bと35b,33cと35cをそれぞれ嵌合するこ
とで基板33,35間の図中X軸方向の位置決めをする
ことができる。
The first substrate 33 is formed on both sides of the groove 35a.
So as to be fitted with the restriction portions 33b and 33c, the pair of restriction portions 35b and 3 have V-shaped cross sections and are formed in parallel.
5 is formed in the Y-axis direction in the figure. That is, when the third board 35 is mounted on the first board 33, the restriction portions 33b and 35b, 33c and 35c are fitted to each other so that the boards 33 and 35 can move in the X-axis direction in the drawing. Can be positioned.

【0033】上記規制部35b,35cは、それぞれエ
ッチングや高精度機械加工あるいは切削等の手法で形成
される。よって、第1の基板33の規制部33b,33
cと同じく高い精度で形成可能であり、規制部33bと
35b,33cと35cの嵌合で第1、第3の基板3
3,35を高精度に位置決めすることができ、第2、第
3の基板34,35に搭載される第2、第3の光部品3
2,36を結果的に高精度に位置決めすることができ
る。
The restricting portions 35b and 35c are formed by a technique such as etching, high precision machining or cutting. Therefore, the restriction portions 33b, 33 of the first substrate 33
It can be formed with the same high precision as c, and the first and third substrates 3 can be formed by fitting the restricting portions 33b and 35b and 33c and 35c.
The second and third optical components 3 mounted on the second and third substrates 34 and 35, which enable highly accurate positioning of the third and third substrates 35 and 35.
As a result, it is possible to position 2, 36 with high accuracy.

【0034】尚、この構成によれば、第1の光部品31
を第1の基板33に直接搭載するのではなく、第3の基
板35を用いて間接的に搭載するようにすることもでき
る。図4はこの発明に係る第4の実施例を示すものであ
る。但し、図4において、図1、図3、図7と同一部分
には同一符号を付して示し、ここでは異なる部分につい
て説明する。
According to this configuration, the first optical component 31
Instead of being mounted directly on the first substrate 33, the third substrate 35 can be used to mount it indirectly. FIG. 4 shows a fourth embodiment according to the present invention. However, in FIG. 4, the same parts as those in FIGS. 1, 3 and 7 are denoted by the same reference numerals, and different parts will be described here.

【0035】この実施例の光部品結合装置は、図7に示
したリボンファイバ1、レーザチップ2を光結合するも
ので、リボンファイバ1のファイバ線1aは第2の基板
34に取り付けられ、レーザチップ1は第3の基板35
に取り付けられる。
The optical component coupling apparatus of this embodiment optically couples the ribbon fiber 1 and the laser chip 2 shown in FIG. 7, and the fiber line 1a of the ribbon fiber 1 is attached to the second substrate 34 and the laser Chip 1 is the third substrate 35
Attached to.

【0036】第2の基板34には、前述の溝部34aに
代わって、複数本のファイバ線1aを光軸方向に所定間
隔で配設するためのV溝群34fが形成されており、こ
こにファイバ線1aを配設した後、固定板37で固定さ
れる。一方、第3の基板35の溝部35aには端部を合
わせてレーザチップ1が配設される。
The second substrate 34 is formed with a V groove group 34f for arranging a plurality of fiber lines 1a at a predetermined interval in the optical axis direction, instead of the groove portion 34a described above. After disposing the fiber wire 1a, it is fixed by the fixing plate 37. On the other hand, the laser chip 1 is disposed in the groove portion 35a of the third substrate 35 with their ends aligned.

【0037】このようにファイバ線1a、レーザチップ
2を配設した第2、第3の基板34,35をそれぞれ第
1の基板33に各規制部33bと34b,33cと34
cを合わせて搭載することで、自己整合的にファイバ線
1aとレーザチップ2の図中X軸方向の位置決めするこ
とができる。
The second and third substrates 34 and 35 having the fiber line 1a and the laser chip 2 arranged on the first substrate 33 are respectively restricted portions 33b and 34b, 33c and 34.
By mounting c together, the fiber line 1a and the laser chip 2 can be positioned in the X-axis direction in the figure in a self-aligning manner.

【0038】ここで、リボンファイバ1のファイバ線直
径が125μm、そのコアの直径が10μmである場合
を想定する。これに対して、上記規制部33b,33
c,34b,34cの凹凸のピッチは、前述の形成手法
によれば数μmオーダーで実現できる。したがって、初
期設定でレーザ光軸がファイバ線のコア中心からずれた
場合であっても、規制部33bと34b,33cと34
cの嵌合位置をX軸方向にずらすことで数μmごとに位
置調整でき、これによってレーザ光軸をコア中心に極め
て高い精度で合わせることができる。
Here, it is assumed that the ribbon fiber 1 has a fiber diameter of 125 μm and its core has a diameter of 10 μm. On the other hand, the restriction portions 33b, 33
The pitch of the concavities and convexities of c, 34b, and 34c can be realized on the order of several μm by the above-described forming method. Therefore, even if the laser optical axis is deviated from the center of the core of the fiber line in the initial setting, the restricting portions 33b and 34b, 33c and 34 are formed.
By shifting the fitting position of c in the X-axis direction, the position can be adjusted every several μm, and thus the laser optical axis can be aligned with the core center with extremely high accuracy.

【0039】尚、上記実施例において、さらに第2の実
施例のように、y軸に垂直でかつ基板33,34,35
に対して水平な方向に断面がV字型の凹凸を形成してな
る規制部を、基板33,34,35の各対向位置に設け
ることで、自己整合的にY軸方向の位置決めをも同時に
行うことができる。また、Y軸方向の数μmごとの位置
調整も可能である。図5はこの発明に係る第5の実施例
を示すものである。但し、図5において図1と同一部分
には同一符号を付して示し、ここでは特徴部分を中心に
説明する。
In the above embodiment, as in the second embodiment, the substrates 33, 34 and 35 are perpendicular to the y axis and are perpendicular to the y axis.
By providing the restricting portion having the V-shaped cross section in a horizontal direction with respect to each of the facing positions of the substrates 33, 34, and 35, the positioning in the Y-axis direction is simultaneously performed in a self-aligning manner. It can be carried out. Further, it is also possible to adjust the position every several μm in the Y-axis direction. FIG. 5 shows a fifth embodiment according to the present invention. However, in FIG. 5, the same parts as those in FIG. 1 are denoted by the same reference numerals, and the characteristic parts will be mainly described here.

【0040】図5は一つの一対の規制部(例として33
b,34bとする)を取り出して示す第1、第2の基板
33,34の断面図である。ここでは、第1の基板33
側の規制部33bの凹凸数を第2の基板34側の規制部
34bの凹凸数より数倍(図では4倍)多くし、規定部
34bと噛み合う個数を1グループとして、グループ単
位で深さを順に浅くするようにしている。他の規制部に
ついても同様に設定する。
FIG. 5 shows one pair of regulating parts (33 as an example).
FIG. 3B is a cross-sectional view of the first and second substrates 33 and 34 in which (b, 34b) is taken out. Here, the first substrate 33
The number of irregularities of the regulating portion 33b on the side of the second substrate 34 is increased several times (four times in the figure) than the number of irregularities of the regulating portion 34b on the side of the second substrate 34, and the number of meshes with the regulating portion 34b is set as one group, and the depth is increased in group units Are made shallower in order. The same applies to other control units.

【0041】この構成によれば、第1の基板33に対す
る第2の基板34の搭載位置をずらすことで、第1の基
板33に対する第2の基板34の高さ(X,Y軸に垂直
なZ軸方向)を調整することができる。図4の実施例に
適用すれば、第1の基板33に対して、第3の基板35
の高さを調整することができ、図2の実施例の構成を合
わせて適用すれば、X,Y,Z軸全ての方向の調整が可
能となる。
According to this structure, by shifting the mounting position of the second substrate 34 with respect to the first substrate 33, the height of the second substrate 34 with respect to the first substrate 33 (perpendicular to the X and Y axes). (Z-axis direction) can be adjusted. When applied to the embodiment of FIG. 4, the third substrate 35 is used with respect to the first substrate 33.
Can be adjusted, and if the configuration of the embodiment of FIG. 2 is applied together, adjustment in all directions of the X, Y, and Z axes becomes possible.

【0042】図6はこの発明に係る第6の実施例を示す
もので、(a)は外観を示す斜視図、(b)は(a)図
のA−A線断面図である。但し、図6において図1と同
一部分には同一符号を付して示し、ここでは特徴部分を
中心に説明する。
6A and 6B show a sixth embodiment according to the present invention. FIG. 6A is a perspective view showing the external appearance, and FIG. 6B is a sectional view taken along the line AA of FIG. 6A. However, in FIG. 6, the same parts as those in FIG. 1 are denoted by the same reference numerals, and the characteristic parts will be mainly described here.

【0043】図6はリボンファイバ1の各ファイバ線1
aとフォトダイオードチップアレイ(以下、PDチップ
と称する)38とを光結合する光部品結合装置の構成を
示すものである。
FIG. 6 shows each fiber wire 1 of the ribbon fiber 1.
1 shows a configuration of an optical component coupling device that optically couples a with a photodiode chip array (hereinafter referred to as PD chip) 38.

【0044】PDチップ38は第1の基板33の中央に
形成された溝部33aの適当な位置に配設される。ま
た、リボンファイバ1の各ファイバ線1aはそれぞれ第
2の基板34の中央に光軸方向に形成されたV溝群34
fに配設され、透明の固定板37で固定される。
The PD chip 38 is arranged at an appropriate position in the groove 33a formed in the center of the first substrate 33. Further, each fiber line 1a of the ribbon fiber 1 has a V-groove group 34 formed in the center of the second substrate 34 in the optical axis direction.
It is arranged at f and is fixed by a transparent fixing plate 37.

【0045】第1、第2の基板33,34にはそれぞれ
X軸方向の規制部33bと34b,33cと34c及び
X軸方向の規制部33dと34d,33eと34eが形
成される。第2の基板34は第1の基板上にPDチップ
38の真上にファイバ線1aの端部が位置するように載
置固定される。
On the first and second substrates 33 and 34, X-axis direction restricting portions 33b and 34b, 33c and 34c and X-axis direction restricting portions 33d and 34d, 33e and 34e are formed, respectively. The second substrate 34 is mounted and fixed on the first substrate so that the end portion of the fiber line 1a is located directly above the PD chip 38.

【0046】この際、各ファイバ線1aが取り付けられ
た第2の基板34は、さらにファイバ線1aの端部が位
置する側面(ファイバ線1a及び固定板37を含む)が
第1の基板33との対向面に対して例えば45°となる
ようにスライスされる。これによってファイバ線1aの
端面は光軸に対して45°の反射鏡を配置したと同様の
効果を発揮するようになり、ファイバ線1a中を伝送さ
れてきた信号光は端面で第1の基板33上に配置したP
Dチップ38に向けて反射される。
At this time, in the second substrate 34 to which each fiber wire 1a is attached, the side surface (including the fiber wire 1a and the fixing plate 37) on which the end of the fiber wire 1a is located is the first substrate 33. Is sliced at an angle of, for example, 45 ° with respect to the facing surface of. As a result, the end face of the fiber line 1a exhibits the same effect as when a reflecting mirror at 45 ° to the optical axis is arranged, and the signal light transmitted through the fiber line 1a is at the end face of the first substrate. P placed on 33
It is reflected toward the D chip 38.

【0047】したがって、ファイバ線1aの反射光軸と
PDチップ38の入射光軸が一致するように第2の基板
34の配置をX,Y軸方向に調整すれば、高精度に光軸
を合わせてファイバ線1aとPDチップ38とを光結合
することができる。尚、この発明は上記の各実施例に限
定されるものではなく、この発明の要旨を逸脱しない範
囲で種々変形しても同様に実施可能である。
Therefore, if the arrangement of the second substrate 34 is adjusted in the X and Y axis directions so that the reflected optical axis of the fiber line 1a and the incident optical axis of the PD chip 38 coincide with each other, the optical axes can be aligned with high precision. Thus, the fiber line 1a and the PD chip 38 can be optically coupled. The present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the scope of the invention.

【0048】[0048]

【発明の効果】以上のようにこの発明によれば、簡単か
つ高精度に相対すべき光部品を配置決定することがで
き、しかも位置合わせの微調整を可能とする光部品結合
装置を提供することができる。
As described above, according to the present invention, there is provided an optical component coupling device capable of easily and accurately determining the positions of optical components to be opposed to each other and enabling fine adjustment of alignment. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る光部品結合装置の第1の実施例
の構成を示す斜視図。
FIG. 1 is a perspective view showing the configuration of a first embodiment of an optical component coupling device according to the present invention.

【図2】この発明に係る第2の実施例の構成を示す分解
斜視図。
FIG. 2 is an exploded perspective view showing a configuration of a second embodiment according to the present invention.

【図3】この発明に係る第3の実施例の構成を示す分解
斜視図。
FIG. 3 is an exploded perspective view showing the configuration of a third embodiment according to the present invention.

【図4】この発明に係る第4の実施例の構成を示す分解
斜視図。
FIG. 4 is an exploded perspective view showing the configuration of a fourth embodiment according to the present invention.

【図5】この発明に係る第5の実施例の構成を示す断面
図。
FIG. 5 is a sectional view showing the configuration of a fifth embodiment according to the present invention.

【図6】この発明に係る第6の実施例の構成を示す斜視
図及び断面図。
FIG. 6 is a perspective view and a sectional view showing the configuration of a sixth embodiment according to the present invention.

【図7】従来の光部品結合装置の構成を示す斜視図。FIG. 7 is a perspective view showing a configuration of a conventional optical component coupling device.

【図8】従来の光部品結合装置の他の構成を示す斜視
図。
FIG. 8 is a perspective view showing another configuration of the conventional optical component coupling device.

【図9】従来の光部品結合装置の他の構成を示す斜視
図。
FIG. 9 is a perspective view showing another configuration of the conventional optical component coupling device.

【符号の説明】[Explanation of symbols]

1…リボンファイバ、1a…ファイバ線、2…レーザチ
ップ、11…レーザチップ搭載用基板、12…ファイバ
線固定用基板、12a…ファイバ線固定用V溝群、13
…位置固定用基板、21…多芯光コネクタ雄側部品、2
2…樹脂モール度、23…ガイドピン、25…レーザチ
ップ搭載用基板、26…レーザチップ位置決め用溝、2
7…位置固定用基板、28…レーザチップ搭載用基板、
29…レーザチップ位置決め用溝、30…ガイドピン案
内用V字型溝、31…第1の光部品、32…第2の光部
品、33…第1の基板、33a…溝部、33b,33c
…X軸方向規制部、33d,33e…Y軸方向規制部、
34…第2の基板、34a…溝部、34b,34c…X
軸方向規制部、34d,34e…Y軸方向規制部、34
f…V溝群、35…第3の基板、35a…溝部、35
b,35c…X軸方向規制部、36…第3の光部品、3
7…固定板、38…PDチップ。
DESCRIPTION OF SYMBOLS 1 ... Ribbon fiber, 1a ... Fiber line, 2 ... Laser chip, 11 ... Laser chip mounting substrate, 12 ... Fiber line fixing substrate, 12a ... Fiber line fixing V groove group, 13
... Position fixing board, 21 ... Multi-core optical connector male part, 2
2 ... Resin molding degree, 23 ... Guide pin, 25 ... Laser chip mounting substrate, 26 ... Laser chip positioning groove, 2
7 ... Position fixing substrate, 28 ... Laser chip mounting substrate,
29 ... Laser chip positioning groove, 30 ... Guide pin guiding V-shaped groove, 31 ... First optical component, 32 ... Second optical component, 33 ... First substrate, 33a ... Groove portion, 33b, 33c
... X-axis direction restricting portion, 33d, 33e ... Y-axis direction restricting portion,
34 ... 2nd board | substrate, 34a ... Groove part, 34b, 34c ... X
Axial direction restricting portion, 34d, 34e ... Y-axis direction restricting portion, 34
f ... V groove group, 35 ... Third substrate, 35a ... Groove portion, 35
b, 35c ... X-axis direction restricting portion, 36 ... Third optical component, 3
7 ... Fixed plate, 38 ... PD chip.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】相対すべき第1、第2の光部品を配置決定
して光結合させる光部品結合装置において、前記第1の
光部品が位置決め搭載される第1の基板と、この第1の
基板上に搭載され、その搭載状態で前記第1の光部品と
所望の相対位置関係となるように前記第2の光部品が位
置決め固定される第2の基板とを具備し、前記第1、第
2の基板の対向面それぞれに断面がV字型で平行に凹凸
させた一対の規制部を形成し、第2の基板の第1の基板
搭載時に互いの規制部を嵌合することで基板間を位置決
めするようにしたことを特徴とする光部品結合装置。
1. An optical component coupling device for arranging and optically coupling first and second optical components to be opposed to each other, a first substrate on which the first optical component is positioned and mounted, and the first substrate. And a second substrate on which the second optical component is positioned and fixed so as to have a desired relative positional relationship with the first optical component in the mounted state. By forming a pair of restricting portions having a V-shaped cross section in parallel on each of the facing surfaces of the second substrate and fitting the restricting portions together when the second substrate is mounted on the first substrate, An optical component coupling device characterized by positioning between substrates.
【請求項2】さらに、前記第1の基板上に搭載され、前
記第1の光部品が位置決め搭載される第3の基板を備
え、前記第1、第3の基板の対向面それぞれに断面がV
字型で平行に凹凸させた一対の規制部を形成し、第3の
基板の第1の基板搭載時に互いの規制部を嵌合すること
で基板間を位置決めするようにしたことを特徴とする請
求項1記載の光部品結合装置。
2. A third substrate, which is mounted on the first substrate and on which the first optical component is positioned and mounted, has a cross section on each of the facing surfaces of the first and third substrates. V
It is characterized in that a pair of regulating portions having a V-shape and formed in parallel with each other are formed in parallel, and when the third substrate is mounted on the first substrate, the regulating portions are fitted to each other to position the substrates. The optical component coupling device according to claim 1.
【請求項3】前記一対の規制部は、互いに直交する2方
向に形成されることを特徴とする請求項1及び2のいず
れか一方記載の光部品結合装置。
3. The optical component coupling device according to claim 1, wherein the pair of restricting portions are formed in two directions orthogonal to each other.
【請求項4】前記一対の規制部は、少なくとも一方の凹
凸が複数列形成され、他方が任意の一つに嵌合すること
により位置調整する位置調整機能を有するようにしたこ
とを特徴とする請求項1及び2のいずれか一方記載の光
部品結合装置。
4. The pair of restricting portions has at least one unevenness formed in a plurality of rows, and the other has a position adjusting function for adjusting the position by fitting into any one of them. The optical component coupling device according to claim 1.
【請求項5】前記一対の規制部は、一方の凹凸が複数
列、かつ互いに深さが異なるように形成され、他方が任
意の一つに嵌合することにより高さ調整する高さ調整機
能を有するようにしたことを特徴とする請求項1及び2
のいずれか一方記載の光部品結合装置。
5. The height adjusting function of the pair of restricting portions, wherein one of the concavities and convexities is formed in a plurality of rows and the depths thereof are different from each other, and the other is fitted to an arbitrary one to adjust the height. 3. The method according to claim 1 or 2, characterized in that
An optical component coupling device according to any one of 1.
【請求項6】前記第1の光部品は受光素子であり、前記
第2の光部品は光ファイバであり、前記光ファイバから
の信号光を前記受光素子の受光面に導くものであって、
前記第1の基板は前記受光素子を配置決定する溝部を備
え、前記第2の基板は前記光ファイバを前記第1の基板
との対向面側にその面に沿って固定する溝部を備え、さ
らに前記光ファイバを固定した状態で前記光ファイバの
端部及び側面を対向面に対して斜めにカットしてなり、
前記第1の基板に対して前記受光素子を受光面が上方を
向くように配置した状態で、前記光ファイバの端部が前
記受光素子の受光面の上方に位置するように前記第1、
第2の基板にそれぞれ前記一対の規制部を形成するよう
にしたことを特徴とする請求項1記載の光部品結合装
置。
6. The first optical component is a light receiving element, the second optical component is an optical fiber, and the signal light from the optical fiber is guided to a light receiving surface of the light receiving element.
The first substrate includes a groove portion for arranging the light receiving element, and the second substrate includes a groove portion for fixing the optical fiber on a surface facing the first substrate along the surface thereof. In a state where the optical fiber is fixed, the end portion and the side surface of the optical fiber are obliquely cut with respect to the facing surface,
In a state where the light receiving element is arranged on the first substrate so that the light receiving surface faces upward, the first, so that the end portion of the optical fiber is located above the light receiving surface of the light receiving element,
The optical component coupling device according to claim 1, wherein the pair of restriction portions are formed on the second substrate, respectively.
JP27747092A 1992-10-15 1992-10-15 Optical component coupler Pending JPH06130254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27747092A JPH06130254A (en) 1992-10-15 1992-10-15 Optical component coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27747092A JPH06130254A (en) 1992-10-15 1992-10-15 Optical component coupler

Publications (1)

Publication Number Publication Date
JPH06130254A true JPH06130254A (en) 1994-05-13

Family

ID=17584048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27747092A Pending JPH06130254A (en) 1992-10-15 1992-10-15 Optical component coupler

Country Status (1)

Country Link
JP (1) JPH06130254A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534568A (en) * 2000-05-23 2003-11-18 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) Method and apparatus for passive alignment
JP2007298887A (en) * 2006-05-02 2007-11-15 Hitachi Cable Ltd Method of manufacturing optical wiring member, and optical wiring member
JP2008268752A (en) * 2007-04-24 2008-11-06 Fuji Xerox Co Ltd Optical apparatus and image forming apparatus
EP2413171A1 (en) * 2009-03-26 2012-02-01 Wuhan Telecommunication Devices Co., Ltd. Laterally coupled optical fiber component and processing method thereof
JP2012032574A (en) * 2010-07-30 2012-02-16 Hitachi Cable Ltd Optical module
JP2014066873A (en) * 2012-09-26 2014-04-17 Hitachi Metals Ltd Optical communication module
JP2014239131A (en) * 2013-06-07 2014-12-18 日本電信電話株式会社 Junction structure and method for manufacturing the same
JP2016500840A (en) * 2013-03-27 2016-01-14 オプティシス カンパニー リミテッド Optical connector
JP2016148797A (en) * 2015-02-13 2016-08-18 沖電気工業株式会社 Optical element mounting structure body
JP2017032950A (en) * 2015-08-06 2017-02-09 日本電信電話株式会社 Optical signal processing device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4808900B2 (en) * 2000-05-23 2011-11-02 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus for passive alignment
JP2003534568A (en) * 2000-05-23 2003-11-18 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) Method and apparatus for passive alignment
JP2007298887A (en) * 2006-05-02 2007-11-15 Hitachi Cable Ltd Method of manufacturing optical wiring member, and optical wiring member
JP4609375B2 (en) * 2006-05-02 2011-01-12 日立電線株式会社 Optical wiring member manufacturing method and optical wiring member
JP2008268752A (en) * 2007-04-24 2008-11-06 Fuji Xerox Co Ltd Optical apparatus and image forming apparatus
EP2413171A4 (en) * 2009-03-26 2012-12-19 Wuhan Telecomm Devices Co Ltd Laterally coupled optical fiber component and processing method thereof
EP2413171A1 (en) * 2009-03-26 2012-02-01 Wuhan Telecommunication Devices Co., Ltd. Laterally coupled optical fiber component and processing method thereof
JP2012032574A (en) * 2010-07-30 2012-02-16 Hitachi Cable Ltd Optical module
JP2014066873A (en) * 2012-09-26 2014-04-17 Hitachi Metals Ltd Optical communication module
JP2016500840A (en) * 2013-03-27 2016-01-14 オプティシス カンパニー リミテッド Optical connector
EP2980621A4 (en) * 2013-03-27 2016-11-16 Opticis Co Ltd Optical connector
JP2014239131A (en) * 2013-06-07 2014-12-18 日本電信電話株式会社 Junction structure and method for manufacturing the same
JP2016148797A (en) * 2015-02-13 2016-08-18 沖電気工業株式会社 Optical element mounting structure body
JP2017032950A (en) * 2015-08-06 2017-02-09 日本電信電話株式会社 Optical signal processing device

Similar Documents

Publication Publication Date Title
US6823109B2 (en) Optical fiber-lens array
US4725114A (en) Optical waveguide lateral alignment arrangement
US9645331B1 (en) Optical module device and method of manufacturing the same
US5913002A (en) Optical coupling device for passive alignment of optoelectronic devices and fibers
US5071213A (en) Optical coupler and method of making optical coupler
US20020085816A1 (en) Optical module and method of assembling the optical module
US5446810A (en) Optical switch, optical fiber arranging member and method of manufacturing the optical fiber arranging member
JP3105624B2 (en) Multi-core connector and manufacturing method thereof
US9304264B2 (en) Optical fiber subassembly
US5218663A (en) Optical waveguide device and method for connecting optical waveguide and optical fiber using the optical waveguide device
US7693362B2 (en) Optical connections and methods of forming optical connections
US6097864A (en) Branching optical wave guide configuration
EP0198030A1 (en) Optical waveguide lateral alignment arrangement
Papakonstantinou et al. Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs
JPH06130254A (en) Optical component coupler
JP2851796B2 (en) Fixing method of optical fiber array to substrate
TW202318054A (en) Optical connector and device equipped with optical connector
US20060093270A1 (en) Optical connections and methods of forming optical connections
JP3259746B2 (en) Optical fiber array unit
US6704147B2 (en) Collimator, collimator array and method of producing those member
US20040052494A1 (en) Optical fiber array and optical fiber collimator array and optical module using the same
JPH09166723A (en) Optical waveguide module
JP3190166B2 (en) Method of manufacturing optical switch and optical fiber array member
WO2023153290A1 (en) Optical connector, optical module, and method for evaluating optical connector
JP3293115B2 (en) Optical fiber array and optical waveguide module coupling method