JPH0651168A - Light signal transmission device - Google Patents

Light signal transmission device

Info

Publication number
JPH0651168A
JPH0651168A JP20764192A JP20764192A JPH0651168A JP H0651168 A JPH0651168 A JP H0651168A JP 20764192 A JP20764192 A JP 20764192A JP 20764192 A JP20764192 A JP 20764192A JP H0651168 A JPH0651168 A JP H0651168A
Authority
JP
Japan
Prior art keywords
optical fiber
state light
solid
emitting element
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20764192A
Other languages
Japanese (ja)
Inventor
Takahiro Asai
隆宏 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Ricoh Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Ricoh Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP20764192A priority Critical patent/JPH0651168A/en
Publication of JPH0651168A publication Critical patent/JPH0651168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To inexpensively build an optical parallel transmission module advantageous for transmission of image information in and out of image processing equipment. CONSTITUTION:This optical signal transmission device is constituted to transmit light signals by coupling a solid-state light emitting element array disposed with plural pieces of solid-state light emitting elements 1 which emit light from the end faces in accordance with energization in an array form and a holding member holding the optical fiber array disposed with plural pieces of the optical fibers 2 in an array form and optically coupling the respective exit light rays of the respective solid-state light emitting elements 1 to the respective optical fibers 2. The above-mentioned solid-state light emitting element array is constituted by forming an LED array and optical fiber array as a multimode type optical fiber sheet. The respective light output ends of the respective solid-state light emitting elements 1 are provided with reflection members 4 for reflecting the exit light rays thereof and introducing these light rays to the corresponded optical fibers 2. The light transmission which assures the necessary signal band of several tens MHz and the transmission distance of several hundreds m in and out of the image processing equipment is attained at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機器間や機器内部でデ
ジタルデータを高速に伝送する場合に、複数の固体発光
素子と光ファイバアレイを用いて信号伝送する光信号伝
送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical signal transmission device for transmitting a signal using a plurality of solid state light emitting elements and an optical fiber array when transmitting digital data at high speed between devices or inside a device.

【0002】[0002]

【従来の技術】最近の画像処理機器等においては、機器
内・外において、画像データを階調を有するデジタル値
(1画素のデータが複数のビット、例えば8ビットに対
応)で利用されている。そして、これらのデジタルデー
タを、機器内・外で伝送する必要性が生じてきている。
特に、複数のビットデータを伝送する場合が多く、信号
をパラレル‐シリアル変換して伝送する高速の光伝送装
置を利用するより、パラレルデータをそのまま比較的高
速な(数MHz程度)光伝送装置で伝送したほうが、パ
ラレル‐シリアル、シリアル‐パラレル変換回路が不要
になるとともに、システム内での最大データレートが低
く、放射ノイズ等の面でも有利といえる。
2. Description of the Related Art In recent image processing equipment and the like, image data is used inside and outside the equipment as a digital value having a gradation (1 pixel data corresponds to a plurality of bits, for example, 8 bits). . Then, it is necessary to transmit these digital data inside and outside the device.
In particular, multiple bit data are often transmitted, and parallel data can be transmitted as it is at a relatively high speed (several MHz) rather than using a high-speed optical transmission device that performs parallel-to-serial conversion of signals and then transmits. It can be said that the transmission is advantageous in terms of radiated noise, because the parallel-serial and serial-parallel conversion circuits are not required, and the maximum data rate in the system is low.

【0003】このような観点から、特開平2−2898
03号公報によれば、固体発光素子アレイと光ファイバ
アレイとを用いて複数の信号を伝送するようにした並列
伝送光モジュールが提案されている。特に、上記公報例
によれば、固体発光素子と光ファイバアレイとの結合に
関して、ファイバ端面に直接光束を入射させたり、光フ
ァイバと固体発光素子との間に結像素子(レンズ)を介
在させるようにしている。
From such a point of view, JP-A-2-2898
According to Japanese Patent Laid-Open No. 03, a parallel transmission optical module is proposed in which a plurality of signals are transmitted using a solid state light emitting element array and an optical fiber array. In particular, according to the above-mentioned publication, regarding the coupling between the solid-state light-emitting element and the optical fiber array, a light beam is directly incident on the fiber end face, or an imaging element (lens) is interposed between the optical fiber and the solid-state light-emitting element. I am trying.

【0004】[0004]

【発明が解決しようとする課題】ところが、固体発光素
子に半導体レーザ(LD)を使用した場合、LDの出射
光束が狭くて光ファイバとの結合効率がよく、高速伝送
(数GHz程度)に対応可能であるが、コスト高とな
る。また、使用する光ファイバアレイとしてシングルモ
ード型光ファイバを用いた場合には、高速伝送(数GH
z程度)に対応可能であるが、光ファイバの光伝送部
(コア)径が数μであり、高精度な位置合わせが必要と
なり、製造コストの高いものとなる。
However, when a semiconductor laser (LD) is used for the solid-state light emitting device, the light flux emitted from the LD is narrow, the coupling efficiency with the optical fiber is good, and high-speed transmission (about several GHz) is supported. Possible, but costly. Moreover, when a single mode optical fiber is used as the optical fiber array used, high speed transmission (several GH
However, since the diameter of the optical transmission part (core) of the optical fiber is several μ, highly accurate alignment is required and the manufacturing cost becomes high.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明で
は、通電に基づき端面より発光する複数個の固体発光素
子を列状に配置させた固体発光素子アレイと、複数本の
光ファイバを列状に配置させた光ファイバアレイを保持
する保持部材とを結合させ、各固体発光素子の各出射光
を各光ファイバに光結合させて、光信号の伝送を行うよ
うにした光信号伝送装置において、固体発光素子アレイ
をLEDアレイ、光ファイバアレイをマルチモード型光
ファイバシートとし、各固体発光素子の各光出力端にそ
の出射光を反射して対応する光ファイバに導く反射部材
を設けた。
According to a first aspect of the present invention, a solid-state light-emitting element array in which a plurality of solid-state light-emitting elements that emit light from an end face when energized are arranged in a row, and a plurality of optical fibers are arranged in a row. In an optical signal transmission device configured to couple a holding member that holds the optical fiber array arranged in a shape, optically couple each emitted light of each solid state light emitting element to each optical fiber, and transmit an optical signal. The solid-state light-emitting element array was an LED array, the optical fiber array was a multi-mode optical fiber sheet, and a reflection member for reflecting the emitted light and guiding it to the corresponding optical fiber was provided at each light output end of each solid-state light-emitting element.

【0006】この際、請求項2記載の発明では、各固体
発光素子の各光出力端面の径を各光ファイバの光導波部
の径より小さく形成し、各固体発光素子の各光出力端側
の径より各光ファイバ側の径が大きくなるように同心円
状に広がる円錐形状の反射穴を各固体発光素子に対応さ
せて列状に配設させた反射部材を固体発光素子アレイと
光ファイバアレイとの間に一体化固定した。
In this case, according to the second aspect of the present invention, the diameter of each light output end face of each solid state light emitting element is made smaller than the diameter of the optical waveguide portion of each optical fiber, and each solid state light emitting element side of each light output end is formed. Solid-state light-emitting element array and optical-fiber array with reflecting members in which conical-shaped reflecting holes that spread concentrically so that the diameter on the side of each optical fiber is larger than the diameter of And fixed together.

【0007】請求項3記載の発明では、請求項2記載の
反射穴に代えて、各固体発光素子の各光出力端側の幅よ
り各光ファイバ側の幅が大きくなるように拡開する四角
錐形状の反射穴とした。
In the invention described in claim 3, instead of the reflection hole described in claim 2, the solid-state light emitting element is expanded so that the width on each optical fiber side is larger than the width on each optical output end side. It was a pyramidal reflection hole.

【0008】請求項4記載の発明では、このような反射
穴に代えて、各固体発光素子の各光出力端側の幅より各
光ファイバ側の幅が大きくなるように拡開する反射溝と
した。
According to the invention described in claim 4, instead of such a reflection hole, there is provided a reflection groove which expands so that the width of each optical fiber side is larger than the width of each light output end side of each solid state light emitting element. did.

【0009】請求項5記載の発明では、これらの反射部
材の材料を、エッチング処理可能な材料とした。
In the invention according to claim 5, the material of these reflecting members is a material that can be etched.

【0010】加えて、請求項6記載の発明では、光ファ
イバアレイを固定保持する保持部材と反射部材とに、相
互に結合して位置決めする一対の位置決め部を形成し
た。
In addition, according to the invention described in claim 6, a pair of positioning portions are formed on the holding member for fixing and holding the optical fiber array and the reflecting member so as to be coupled to each other for positioning.

【0011】さらには、請求項7記載の発明では、光フ
ァイバアレイを固定保持する保持部材と反射部材とに、
相互に結合して位置決めする一対の位置決め部を形成
し、固体発光素子アレイの発光部を反射溝内部に位置さ
せて固体発光素子を反射部材上に位置決め固定させた。
Further, in the invention according to the seventh aspect, the holding member for fixing and holding the optical fiber array and the reflecting member,
A pair of positioning portions that are coupled to each other for positioning are formed, the light emitting portion of the solid state light emitting element array is positioned inside the reflection groove, and the solid state light emitting element is positioned and fixed on the reflecting member.

【0012】[0012]

【作用】請求項1記載の発明においては、端面発光型L
EDアレイとマルチモード型光ファイバシートとを反射
部材で結合させているので、画像処理機器内・外で必要
な数十MHzなる信号帯域と数百mなる伝送距離とを確
保した光伝送が低価格で実現される。
According to the first aspect of the invention, the edge-emitting type L
Since the ED array and the multimode optical fiber sheet are coupled by the reflecting member, the optical transmission that secures a signal band of tens of MHz and a transmission distance of hundreds of meters required inside and outside the image processing device is low. Realized at a price.

【0013】この際、請求項2ないし4記載の発明にお
いては、固体発光素子側より光ファイバ側へ拡開した形
状の反射穴又は反射溝を有する反射部材を用いているの
で、光ファイバに対する結合効率が向上する。特に、円
錐形状又は四角錐形状の反射穴や、拡開形状の反射溝に
よれば、簡易な形状であり反射部材の製造が容易な上
に、平面反射のみを利用することになり、レンズのよう
に焦点距離や光軸精度を厳しくする必要のないものとな
る。加えて、反射溝による場合には、平面基板上に簡単
に作製することができる上に、光ファイバや固体発光素
子との接続も容易なものとなる。
In this case, according to the second to fourth aspects of the present invention, since the reflection member having the reflection hole or the reflection groove which is expanded from the solid-state light emitting element side to the optical fiber side is used, it is coupled to the optical fiber. Efficiency is improved. In particular, a conical or quadrangular pyramid-shaped reflection hole or a spread-shaped reflection groove makes it easy to manufacture a reflection member having a simple shape and uses only plane reflection. Therefore, it is not necessary to make the focal length and the optical axis accuracy severe. In addition, when the reflection groove is used, it can be easily manufactured on a flat substrate, and connection with an optical fiber or a solid-state light emitting element is easy.

【0014】また、請求項5記載の発明においては、反
射部材の材料をエッチング可能な材料としているので、
反射部材を半導体製造プロセスを利用して作製可能とな
り、高精度な反射部材を大量生産して低コスト化を図る
ことができる。特に、エッチング可能な材料の内で、固
体発光素子側と同一材料とすれば、両者間の熱膨張に殆
ど差が生じないため、固体発光素子・反射部材間の相対
位置ずれが防止される。
Further, according to the invention of claim 5, since the material of the reflecting member is an etchable material,
The reflecting member can be manufactured by using a semiconductor manufacturing process, and highly accurate reflecting members can be mass-produced to reduce the cost. In particular, among the materials that can be etched, if the same material as that of the solid-state light-emitting element side is used, there is almost no difference in thermal expansion between the two, so that relative displacement between the solid-state light-emitting element and the reflecting member is prevented.

【0015】さらに、請求項6記載の発明においては、
光ファイバアレイ用の保持部材と反射部材とに、位置決
めピンと位置決め穴との組合せ等よりなり、相互に結合
する一対の位置決め部を形成したので、位置精度の高い
組付けが容易に確保される。
Further, in the invention according to claim 6,
Since the holding member for the optical fiber array and the reflecting member are formed of a pair of positioning pins and positioning holes, and a pair of positioning portions that are coupled to each other are formed, assembly with high positional accuracy can be easily ensured.

【0016】また、請求項7記載の発明においては、反
射部材上に固体発光素子アレイを固定し、かつ、この反
射部材に対して位置決め部を利用して光ファイバアレイ
を位置決め固定するので、反射部材をベースとした光モ
ジュールの一体化が容易に実現される。
According to the present invention, the solid-state light emitting element array is fixed on the reflecting member, and the optical fiber array is positioned and fixed on the reflecting member using the positioning portion. The optical module based on the member can be easily integrated.

【0017】[0017]

【実施例】本発明の一実施例を図面に基づいて説明す
る。本実施例は、光ファイバアレイとしてGI型(マル
チモード型)光ファイバシートを利用することで、画像
処理機器内・外で必要なデータ転送速度を満足(数十M
Hzで数百mの信号伝送が可能)させ、この帯域で利用
可能な端面発光型の固体発光素子アレイ、具体的にはL
EDアレイを使用することで、低コストな光信号伝送装
置を構成したことを基本とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. In this embodiment, a GI type (multimode type) optical fiber sheet is used as the optical fiber array to satisfy the required data transfer rate inside and outside the image processing apparatus (tens of M).
It is possible to transmit a signal of several hundred meters in Hz), and an edge emitting solid-state light emitting element array that can be used in this band, specifically L
Basically, a low-cost optical signal transmission device is configured by using the ED array.

【0018】ここに、端面発光型LEDアレイとGI型
光ファイバアレイとを用いた場合には、LEDアレイの
出射パターンがアレイ方向(基板と平行な方向)に広く
(完全拡散に近い)、垂直方向(基板と垂直な方向)に
狭い(LDの出射パターンに近い)ため、光ファイバと
の結合効率がLDの場合より低くなってしまう。
Here, when the edge emitting LED array and the GI optical fiber array are used, the emission pattern of the LED array is wide (close to perfect diffusion) in the array direction (direction parallel to the substrate) and vertical. Since it is narrow in the direction (direction perpendicular to the substrate) (close to the emission pattern of the LD), the coupling efficiency with the optical fiber is lower than that of the LD.

【0019】しかして、本実施例ではこのような点を考
慮して、上記の基本構成に加えて、端面発光型LEDア
レイの各LEDからの光のアレイ方向の光束をアレイ状
の反射部材を利用することで、効率よく光ファイバアレ
イの各光ファイバに結合させて、光伝送させるようにし
たものである。
In consideration of such a point, in this embodiment, in addition to the above-mentioned basic structure, the light flux in the array direction of the light from each LED of the edge-emitting LED array is provided with an array-shaped reflecting member. By utilizing this, the optical fibers are efficiently coupled to each optical fiber of the optical fiber array to perform optical transmission.

【0020】図1は、その概念的な基本構成を示すもの
で、端面発光型の固体発光素子アレイ中の各固体発光素
子(LED構成)1とGI型光ファイバアレイ中の対応
する光ファイバ2との間に反射経路3を有する反射部材
4を一体化固定して介在させたものである。ここに、光
ファイバ2はコア(光導波部)5とその周囲を囲むクラ
ッド6とよりなり、コア5の径は固体発光素子1の光出
力端面の径より大きく設定されている。このような径の
差に対応させて、前記反射経路3はアレイ方向に見て、
固体発光素子1側から光ファイバ2側に向けて拡開する
形状とされている。
FIG. 1 shows a conceptual basic structure of the solid-state light-emitting element array of the edge-emitting type (LED structure) 1 and a corresponding optical fiber 2 in the GI-type optical fiber array. And a reflection member 4 having a reflection path 3 is integrally fixed and interposed between the two. Here, the optical fiber 2 is composed of a core (optical waveguide portion) 5 and a clad 6 surrounding the core 5, and the diameter of the core 5 is set to be larger than the diameter of the light output end face of the solid state light emitting device 1. Corresponding to such a difference in diameter, the reflection path 3 is viewed in the array direction,
The solid light emitting element 1 has a shape that expands toward the optical fiber 2 side.

【0021】このような構成において、各固体発光素子
1からの出射光は反射部材4の反射経路3においてアレ
イ方向の光束が反射されて、光ファイバ2への入射光束
を増加させる状態で結合されるため、その結合効率が上
昇するものとなる。この時、光ファイバ2で伝送させる
光束は、光ファイバ2の等価的なN.A以下の光束だけ
であり、反射部材4には反射経路3の反射面に高反射膜
を形成するか、或いは、反射部材4自体を反射率の高い
材料により形成すればよい。特に、反射率の高い材料に
よる場合には、反射経路3の形状を高精度に作製すれば
よく、反射膜を形成する必要のないものとなる。
In such a configuration, the light emitted from each solid-state light emitting element 1 is combined in a state where the light flux in the array direction is reflected in the reflection path 3 of the reflecting member 4 and the incident light flux to the optical fiber 2 is increased. Therefore, the coupling efficiency is increased. At this time, the luminous flux transmitted by the optical fiber 2 is equivalent to the N.V. Only the light flux of A or less, and a high reflection film may be formed on the reflection surface of the reflection path 3 in the reflection member 4, or the reflection member 4 itself may be formed of a material having a high reflectance. In particular, when using a material having a high reflectance, the shape of the reflection path 3 may be formed with high accuracy, and it is not necessary to form a reflection film.

【0022】ところで、図1に示す例においては、固体
発光素子1から出射された光束は、角度α2 ,β2 で反
射経路3の反射面に入射し、光ファイバ2に等価的な
N.A(0.5:約11.5°)以下の角度で入射した
光束を伝送する。ちなみに、光ファイバ2に対する入射
角α1 ,β1 は、反射経路3の拡開角度をγとすると、 α1 =90°−(α2 +γ)<11.5° β1 =90°−(β2 +γ)<11.5° であり、 α2 +γ>78.5° β2 +γ>78.5° とされている。よって、反射部材4を備えることによ
り、光ファイバ2に等価的なN.A以下の角度で入射す
る光束が多くなり、結合効率が向上するものとなる。
By the way, in the example shown in FIG. 1, the light beam emitted from the solid-state light-emitting element 1 is incident on the reflecting surface of the reflecting path 3 at angles α 2 and β 2 and is equivalent to the optical fiber 2. A light beam incident at an angle of A (0.5: about 11.5 °) or less is transmitted. Incidentally, the incident angles α 1 and β 1 with respect to the optical fiber 2 are α 1 = 90 ° − (α 2 + γ) <11.5 ° β 1 = 90 ° − (, where γ is the spread angle of the reflection path 3. β 2 + γ) <11.5 ° and α 2 + γ> 78.5 ° β 2 + γ> 78.5 °. Therefore, by providing the reflecting member 4, the N.V. equivalent to the optical fiber 2 is provided. A large number of light beams are incident at an angle of A or less, and the coupling efficiency is improved.

【0023】ここで、反射部材4の具体例を図2に例示
する。同図(a)は円錐形状に拡開する反射穴3aを反
射経路3として列状に配設させた構成のものとしたもの
である。同図(b)は四角錐形状に拡開する反射穴3b
を反射経路3として列状に配設させた構成のものとした
ものである。同図(c)は拡開形状の反射溝3cを反射
経路3として列状に配設させた構成のものとしたもので
ある。円錐形状の反射穴3aによる場合、製造が比較的
容易である。四角錐形状の反射穴3bの場合、アレイ方
向の光束を効率的に光ファイバ2側に導き得る。反射溝
3cによる場合、光束を溝の両面(両壁)で反射させて
光ファイバ2側に導くが、平面的形状は拡開四角錐形状
と同等であり、光ファイバ2に効率よく導く。
Here, a specific example of the reflection member 4 is illustrated in FIG. FIG. 1A shows a configuration in which the reflection holes 3a that expand into a conical shape are arranged in rows as the reflection paths 3. The same figure (b) shows the reflection hole 3b which spreads out in a quadrangular pyramid
The reflection paths 3 are arranged in a row. FIG. 3C shows a configuration in which the reflection grooves 3c having an expanded shape are arranged in rows as the reflection paths 3. With the conical reflection hole 3a, manufacturing is relatively easy. In the case of the quadrangular pyramidal reflection hole 3b, the light flux in the array direction can be efficiently guided to the optical fiber 2 side. In the case of the reflection groove 3c, the light flux is reflected by both surfaces (both walls) of the groove and guided to the optical fiber 2 side, but the planar shape is equivalent to the expanded quadrangular pyramid shape and is efficiently guided to the optical fiber 2.

【0024】何れにしても、このような反射部材4の材
質をエッチング可能な材料とすれば半導体製造プロセス
により形成できることになり、各穴、溝3a〜3cの位
置や形状を高精度なものとすることができる。特に、固
体発光素子1と同一の材料を使用すれば、熱による膨張
係数が近くなり、固体発光素子アレイとの相対位置精度
を維持できる。
In any case, if the material of the reflecting member 4 is an etchable material, it can be formed by a semiconductor manufacturing process, and the positions and shapes of the holes and the grooves 3a to 3c are highly accurate. can do. In particular, if the same material as the solid-state light-emitting element 1 is used, the expansion coefficient due to heat becomes close, and the relative positional accuracy with the solid-state light-emitting element array can be maintained.

【0025】ここに、約50μmとコア径の大きなGI
型光ファイバアレイを用いることで、固体発光素子アレ
イ、反射部材4、光ファイバアレイの相対位置の精度が
数μm程度でよく、各部品の精度を管理すれば、比較的
組付けが容易となる。
GI with a large core diameter of about 50 μm
By using the mold optical fiber array, the relative position accuracy of the solid state light emitting element array, the reflecting member 4, and the optical fiber array may be about several μm, and if the accuracy of each component is controlled, the assembly becomes relatively easy. .

【0026】特に、光ファイバアレイ5と反射部材4と
の組付けは、図3又は図4に示すように、反射部材4の
アレイ方向両側に位置決め部としての円柱状穴6を高精
度に形成する一方、光ファイバアレイ5を保持した保持
部材7のアレイ方向両側には前記円柱状穴6に対応する
位置決め部となる円柱状ピン8を高精度に形成し、円柱
状ピン8を円柱状穴6に嵌合結合させるようにすれば、
簡単にして高精度に一体化できる。なお、円柱状穴6と
円柱状ピン8とを位置決めのみに用い、両者間の一体化
固定には接着剤を用いるようにしてもよい。また、円柱
状穴6と円柱状ピン8とは相対的なものであり、反射部
材4側に円柱状ピン8を形成し、保持部材7側に円柱状
穴6を形成するようにしてもよい。もっとも、円柱状ピ
ン8を有する保持部材7とすれば、光ファイバアレイ同
士を接続するために一般的なMFコネクタを利用でき
る。
Particularly, when the optical fiber array 5 and the reflecting member 4 are assembled, as shown in FIG. 3 or 4, cylindrical holes 6 as positioning portions are formed with high precision on both sides of the reflecting member 4 in the array direction. On the other hand, a cylindrical pin 8 serving as a positioning portion corresponding to the cylindrical hole 6 is formed with high precision on both sides of the holding member 7 holding the optical fiber array 5 in the array direction, and the cylindrical pin 8 is formed into a cylindrical hole. If it is fitted and connected to 6,
Easy and highly integrated. The cylindrical hole 6 and the cylindrical pin 8 may be used only for positioning, and an adhesive may be used for integrally fixing them. Further, the cylindrical hole 6 and the cylindrical pin 8 are relative to each other, and the cylindrical pin 8 may be formed on the reflecting member 4 side and the cylindrical hole 6 may be formed on the holding member 7 side. . However, if the holding member 7 having the cylindrical pin 8 is used, a general MF connector can be used to connect the optical fiber arrays.

【0027】また、反射部材4と固体発光素子アレイと
を一体化するには、固体発光素子アレイ基板を反射部材
4上に固定するのがよい。この時、固体発光素子アレイ
基板の裏面を基準とすれば、反射部材4上に固定でき
る。この場合には、固体発光素子アレイ基板の裏面と素
子面との平行度が結合効率を決めることになる。
In order to integrate the reflecting member 4 and the solid state light emitting element array, it is preferable to fix the solid state light emitting element array substrate on the reflecting member 4. At this time, if the back surface of the solid state light emitting element array substrate is used as a reference, it can be fixed on the reflecting member 4. In this case, the parallelism between the back surface of the solid state light emitting element array substrate and the element surface determines the coupling efficiency.

【0028】そこで、本実施例では、反射部材4と固体
発光素子アレイとの固定を、図5に示すように、固体発
光素子アレイ基板9の素子面9aを基準に固定するた
め、反射部材4上の各反射溝3c中に各固体発光素子1
の発光端面1aが来るようにして(図6参照)、各固体
発光素子1間の基板面と反射溝3cを形成する壁上面と
を接着剤で固定することで、高精度な組付けが可能とな
る。
Therefore, in the present embodiment, the reflection member 4 and the solid state light emitting element array are fixed with reference to the element surface 9a of the solid state light emitting element array substrate 9 as shown in FIG. Each solid-state light emitting element 1 is provided in each reflection groove 3c above.
Highly accurate assembly is possible by fixing the light emitting end surface 1a of the above (see FIG. 6) and fixing the substrate surface between each solid state light emitting element 1 and the upper surface of the wall forming the reflection groove 3c with an adhesive. Becomes

【0029】[0029]

【発明の効果】請求項1記載の発明によれば、固体発光
素子アレイをLEDアレイ、光ファイバアレイをマルチ
モード型光ファイバシートとし、各固体発光素子の各光
出力端にその出射光を反射して対応する光ファイバに導
く反射部材を設けたので、画像処理機器内・外で必要な
数十MHzなる信号帯域と数百mなる伝送距離とを確保
した光伝送を低価格で実現することができる。
According to the invention of claim 1, the solid-state light-emitting element array is an LED array, the optical fiber array is a multimode optical fiber sheet, and the emitted light is reflected at each light output end of each solid-state light-emitting element. Since a reflection member for guiding the corresponding optical fiber is provided, it is possible to realize optical transmission at a low price, which secures a required signal band of several tens of MHz and a transmission distance of several hundred meters inside and outside the image processing device. You can

【0030】この際、請求項2ないし4記載の発明によ
れば、固体発光素子側より光ファイバ側へ拡開した形状
の反射穴又は反射溝を有する反射部材を用いるようにし
たので、光ファイバに対する結合効率を向上させること
ができ、特に、円錐形状又は四角錐形状の反射穴や、拡
開形状の反射溝によれば、簡易な形状であり反射部材の
製造が容易な上に、平面反射のみを利用することにな
り、レンズのように焦点距離や光軸精度を厳しくする必
要のないものとすることができ、加えて、反射溝による
場合には、平面基板上に簡単に作製することができる上
に、光ファイバや固体発光素子との接続も容易なものと
することができる。
In this case, according to the second to fourth aspects of the invention, since the reflection member having the reflection hole or the reflection groove having the shape expanded from the solid state light emitting element side to the optical fiber side is used, the optical fiber is used. It is possible to improve the coupling efficiency with respect to, and in particular, a conical or quadrangular pyramid-shaped reflection hole or a spread-shaped reflection groove has a simple shape and facilitates the manufacture of a reflection member, and also provides planar reflection. Only the lens is used, so it is not necessary to make the focal length and optical axis accuracy strict like a lens. In addition, when using a reflection groove, it can be easily manufactured on a flat substrate. In addition, it is possible to easily connect to an optical fiber or a solid-state light emitting element.

【0031】また、請求項5記載の発明によれば、反射
部材の材料をエッチング可能な材料としたので、反射部
材を半導体製造プロセスを利用して作製することがで
き、高精度な反射部材を大量生産して低コスト化を図る
ことができ、特に、エッチング可能な材料の内で、固体
発光素子側と同一材料とすれば、両者間の熱膨張に殆ど
差が生じないため、固体発光素子・反射部材間の相対位
置ずれも防止することができる。
Further, according to the invention of claim 5, since the material of the reflecting member is an etchable material, the reflecting member can be manufactured by utilizing a semiconductor manufacturing process, and a highly accurate reflecting member can be obtained. It can be mass-produced to reduce the cost, and in particular, if the same material as the solid-state light-emitting element side is used among the materials that can be etched, there is almost no difference in thermal expansion between the two, so that the solid-state light-emitting element can be manufactured. -It is possible to prevent relative displacement between the reflecting members.

【0032】さらに、請求項6記載の発明によれば、光
ファイバアレイ用の保持部材と反射部材とに、位置決め
ピンと位置決め穴との組合せ等よりなり、相互に結合す
る一対の位置決め部を形成したので、位置精度の高い組
付けを容易に確保することができる。
Further, according to the invention of claim 6, a pair of positioning portions which are made of a combination of a positioning pin and a positioning hole and are coupled to each other are formed in the holding member and the reflecting member for the optical fiber array. Therefore, assembly with high positional accuracy can be easily ensured.

【0033】また、請求項7記載の発明によれば、反射
部材上に固体発光素子アレイを固定し、かつ、この反射
部材に対して位置決め部を利用して光ファイバアレイを
位置決め固定するようにしたので、反射部材をベースと
した光モジュールの一体化を容易に実現することができ
る。
According to the seventh aspect of the invention, the solid state light emitting element array is fixed on the reflecting member, and the optical fiber array is positioned and fixed on the reflecting member using the positioning portion. Therefore, it is possible to easily realize the integration of the optical module based on the reflecting member.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す要部の平面図である。FIG. 1 is a plan view of an essential part showing an embodiment of the present invention.

【図2】反射部材の構成例を数例示す斜視図である。FIG. 2 is a perspective view showing several examples of the configuration of a reflecting member.

【図3】光ファイバアレイ側と反射部材との結合例の一
例を示す分解斜視図である。
FIG. 3 is an exploded perspective view showing an example of coupling between the optical fiber array side and a reflecting member.

【図4】光ファイバアレイ側と反射部材との結合例の他
例を示す分解斜視図である。
FIG. 4 is an exploded perspective view showing another example of the coupling between the optical fiber array side and the reflecting member.

【図5】光モジュール化例を示す斜視図である。FIG. 5 is a perspective view showing an example of making an optical module.

【図6】図5中のA部を拡大抽出して示す斜視図であ
る。
FIG. 6 is a perspective view showing a portion A in FIG. 5 in an enlarged manner.

【符号の説明】[Explanation of symbols]

1 固体発光素子 2 光ファイバ 2a 光導波部 3a 円錐形状の反射穴 3b 四角錐形状の反射穴 3c 反射溝 4 反射部材 5 光ファイバアレイ 6 位置決め部 7 保持部材 8 位置決め部 DESCRIPTION OF SYMBOLS 1 Solid-state light emitting element 2 Optical fiber 2a Optical waveguide part 3a Conical reflection hole 3b Square pyramidal reflection hole 3c Reflection groove 4 Reflecting member 5 Optical fiber array 6 Positioning part 7 Holding member 8 Positioning part

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 通電に基づき端面より発光する複数個の
固体発光素子を列状に配置させた固体発光素子アレイ
と、複数本の光ファイバを列状に配置させた光ファイバ
アレイを保持する保持部材とを結合させ、各固体発光素
子の各出射光を各光ファイバに光結合させて、光信号の
伝送を行うようにした光信号伝送装置において、前記固
体発光素子アレイをLEDアレイ、前記光ファイバアレ
イをマルチモード型光ファイバシートとし、各固体発光
素子の各光出力端にその出射光を反射して対応する光フ
ァイバに導く反射部材を設けたことを特徴とする光信号
伝送装置。
1. A holding device for holding a solid-state light-emitting element array in which a plurality of solid-state light-emitting elements that emit light from an end face when energized are arranged in a row, and an optical fiber array in which a plurality of optical fibers are arranged in a row. In the optical signal transmission device configured to couple a member and optically couple each emitted light of each solid state light emitting element to each optical fiber to transmit an optical signal, the solid state light emitting element array is an LED array, An optical signal transmission device characterized in that a fiber array is a multimode optical fiber sheet, and a reflection member for reflecting the emitted light and guiding it to a corresponding optical fiber is provided at each light output end of each solid state light emitting element.
【請求項2】 各固体発光素子の各光出力端面の径を各
光ファイバの光導波部の径より小さく形成し、各固体発
光素子の各光出力端側の径より各光ファイバ側の径が大
きくなるように同心円状に広がる円錐形状の反射穴を各
固体発光素子に対応させて列状に配設させた反射部材を
固体発光素子アレイと光ファイバアレイとの間に一体化
固定したことを特徴とする請求項1記載の光信号伝送装
置。
2. The diameter of each light output end face of each solid state light emitting element is formed smaller than the diameter of the optical waveguide part of each optical fiber, and the diameter of each solid state light emitting element is closer to each optical fiber side than the diameter of each light output end side. The conical reflection holes that spread concentrically so that the size of the solid-state light-emitting element array and the optical fiber array are integrally fixed to each other. The optical signal transmission device according to claim 1, wherein
【請求項3】 各固体発光素子の各光出力端面の径を各
光ファイバの光導波部の径より小さく形成し、各固体発
光素子の各光出力端側の幅より各光ファイバ側の幅が大
きくなるように拡開する四角錐形状の反射穴を各固体発
光素子に対応させて列状に配設させた反射部材を固体発
光素子アレイと光ファイバアレイとの間に一体化固定し
たことを特徴とする請求項1記載の光信号伝送装置。
3. The diameter of each light output end face of each solid-state light-emitting element is formed smaller than the diameter of the optical waveguide portion of each optical fiber, and the width of each solid-state light-emitting element is closer to each optical fiber side than to each optical output end side. The reflection member having a quadrangular pyramid-shaped reflection hole that expands so as to increase the size is arranged in a row corresponding to each solid-state light-emitting device, and is integrally fixed between the solid-state light-emitting device array and the optical fiber array. The optical signal transmission device according to claim 1, wherein
【請求項4】 各固体発光素子の各光出力端面の径を各
光ファイバの光導波部の径より小さく形成し、各固体発
光素子の各光出力端側の幅より各光ファイバ側の幅が大
きくなるように拡開する反射溝を各固体発光素子に対応
させて列状に配設させた反射部材を固体発光素子アレイ
と光ファイバアレイとの間に一体化固定したことを特徴
とする請求項1記載の光信号伝送装置。
4. The width of each light output end face of each solid-state light-emitting element is formed smaller than the diameter of the optical waveguide portion of each optical fiber, and the width of each solid-state light-emitting device is closer to each optical fiber than to each light output end. Characterized in that a reflection member having a reflection groove that expands so as to increase the size is arranged in a row corresponding to each solid state light emitting element is integrally fixed between the solid state light emitting element array and the optical fiber array. The optical signal transmission device according to claim 1.
【請求項5】 反射部材の材料を、エッチング処理可能
な材料としたことを特徴とする請求項2,3又は4記載
の光信号伝送装置。
5. The optical signal transmission device according to claim 2, 3 or 4, wherein the material of the reflecting member is a material that can be etched.
【請求項6】 光ファイバアレイを固定保持する保持部
材と反射部材とに、相互に結合して位置決めする一対の
位置決め部を形成したことを特徴とする請求項5記載の
光信号伝送装置。
6. The optical signal transmission device according to claim 5, wherein a pair of positioning portions that are mutually coupled and positioned are formed on the holding member and the reflecting member that fix and hold the optical fiber array.
【請求項7】 光ファイバアレイを固定保持する保持部
材と反射部材とに、相互に結合して位置決めする一対の
位置決め部を形成し、固体発光素子アレイの発光部を反
射溝内部に位置させて固体発光素子を反射部材上に位置
決め固定させたことを特徴とする請求項4記載の光信号
伝送装置。
7. A pair of positioning portions, which are coupled to each other and are positioned, are formed on a holding member for fixing and holding the optical fiber array and a reflecting member, and the light emitting portion of the solid state light emitting element array is positioned inside the reflection groove. The optical signal transmission device according to claim 4, wherein the solid state light emitting element is positioned and fixed on the reflecting member.
JP20764192A 1992-08-04 1992-08-04 Light signal transmission device Pending JPH0651168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20764192A JPH0651168A (en) 1992-08-04 1992-08-04 Light signal transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20764192A JPH0651168A (en) 1992-08-04 1992-08-04 Light signal transmission device

Publications (1)

Publication Number Publication Date
JPH0651168A true JPH0651168A (en) 1994-02-25

Family

ID=16543151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20764192A Pending JPH0651168A (en) 1992-08-04 1992-08-04 Light signal transmission device

Country Status (1)

Country Link
JP (1) JPH0651168A (en)

Similar Documents

Publication Publication Date Title
US5073003A (en) Optoelectronic device package method and apparatus
CN100409516C (en) Surface emitting semiconductor laser array and optical transmission system using the same
US8876415B2 (en) Optical communication module
JPS61260207A (en) Bidirectional optoelectronics component part for forming optical couple
JPWO2004104666A1 (en) Optical element, optical transmission unit and optical transmission system
US6674941B2 (en) Optical coupling for optical fibers
JP2004212847A (en) Optical coupler
US6408121B1 (en) Optical communication module
US6792178B1 (en) Fiber optic header with integrated power monitor
US5243671A (en) Laser-to-fiber coupling apparatus
US5224184A (en) Optical multi-chip interconnect
JP2006003818A (en) Semiconductor integrated circuit chip and its manufacturing method
JPH0651168A (en) Light signal transmission device
JP2008102282A (en) Optical module
KR19990013585A (en) Optical communication device and method
US6312167B1 (en) Light transmission module
JPH02154208A (en) Parallel transmission optical module
US6739762B2 (en) Optical device package
WO2020133951A1 (en) Multi-channel mode converters with silicon lenses
JP3295327B2 (en) Bidirectional optical module
JP2004286895A (en) Optical waveguide part and optical module using the same
JP2004317630A (en) Optical transmitting module
JPH04340508A (en) Optical fiber array with lens
JP3373819B2 (en) Optical module substrate and light emitting module and light receiving module using the same
JP2002107566A (en) Optical functional module