JP5735370B2 - Aromatic polyester resin composition and oriented polyester film - Google Patents

Aromatic polyester resin composition and oriented polyester film Download PDF

Info

Publication number
JP5735370B2
JP5735370B2 JP2011161007A JP2011161007A JP5735370B2 JP 5735370 B2 JP5735370 B2 JP 5735370B2 JP 2011161007 A JP2011161007 A JP 2011161007A JP 2011161007 A JP2011161007 A JP 2011161007A JP 5735370 B2 JP5735370 B2 JP 5735370B2
Authority
JP
Japan
Prior art keywords
film
aromatic polyester
resin composition
temperature
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011161007A
Other languages
Japanese (ja)
Other versions
JP2013023622A (en
Inventor
良敬 田中
良敬 田中
石田 剛
剛 石田
飯田 真
真 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin DuPont Films Japan Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2011161007A priority Critical patent/JP5735370B2/en
Publication of JP2013023622A publication Critical patent/JP2013023622A/en
Application granted granted Critical
Publication of JP5735370B2 publication Critical patent/JP5735370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はフィルムにしたときに寸法安定性に優れた芳香族ポリエステルの樹脂組成物およびそれを用いた配向ポリエステルフィルムに関する。   The present invention relates to an aromatic polyester resin composition having excellent dimensional stability when formed into a film, and an oriented polyester film using the same.

ポリエチレンテレフタレートやポリエチレン−2,6−ナフタレンジカルボキシレートに代表される芳香族ポリエステルは優れた機械的特性、寸法安定性および耐熱性を有することから、フィルムなどに幅広く使用されている。特にポリエチレン−2,6−ナフタレートは、ポリエチレンテレフタレートよりも優れた機械的特性、寸法安定性および耐熱性を有することから、それらの要求の厳しい用途、例えば高密度磁気記録媒体などのベースフィルムなどに使用されている。しかしながら、近年の高密度磁気記録媒体などでの寸法安定性の要求はますます高くなってきており、さらなる特性の向上が求められている。   Aromatic polyesters typified by polyethylene terephthalate and polyethylene-2,6-naphthalene dicarboxylate have excellent mechanical properties, dimensional stability and heat resistance, and are therefore widely used for films and the like. In particular, polyethylene-2,6-naphthalate has mechanical properties, dimensional stability, and heat resistance superior to those of polyethylene terephthalate, so that it is used in demanding applications such as a base film for high-density magnetic recording media. It is used. However, the demand for dimensional stability in high-density magnetic recording media and the like in recent years is increasing, and further improvement of characteristics is required.

そこで、特許文献1では、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を共重合することで、湿度膨張係数を低減でき、寸法安定性を向上せしめた高密度磁気記録媒体のベースフィルムに適したフィルムが提案されている。しかしながら、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分の製造には非常に多くの溶媒が必要など生産性の点で問題があった。   Therefore, Patent Document 1 discloses a high-density magnetic recording medium in which the coefficient of humidity expansion can be reduced and the dimensional stability is improved by copolymerizing a 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component. A film suitable for the base film has been proposed. However, the production of the 6,6 '-(alkylenedioxy) di-2-naphthoic acid component has a problem in terms of productivity because a very large amount of solvent is required.

一方、特許文献2には、ボトルなどに成形する際に、ポリエチレン−2,6−ナフタレンジカルボキシレートをブロー延伸して用いようとすると、成形加工性が乏しく、そのブロー延伸での成形加工性を向上させるために、ジヒドロキシナフタレン類のアルキレンオキサイド付加物やビフェノール類のアルキレンオキサイド付加物から誘導される構成単位を共重合することが提案されている。しかし、高密度磁気記録媒体のベースフィルムなど寸法安定性の要求されるフィルムに用いることは、何ら検討されていない。   On the other hand, in Patent Document 2, when polyethylene-2,6-naphthalenedicarboxylate is blown and used when forming into a bottle or the like, the forming processability is poor, and the forming processability by blow-drawing is poor. In order to improve the above, it has been proposed to copolymerize structural units derived from an alkylene oxide adduct of dihydroxynaphthalene or an alkylene oxide adduct of biphenol. However, it has not been studied at all for use in a film requiring dimensional stability such as a base film of a high-density magnetic recording medium.

ところで、例えば磁気記録媒体のベースフィルムに用いる場合、磁性層を塗布したり、蒸着したりして形成され、その加工の際に高温での熱処理が施される。そして、高温での熱処理を行う場合、フィルムを安定に走向させるためにある程度張力がかかった状態になり、熱により張力のかかっている方向に伸びてしまうという課題も抱えていた。また、磁気記録媒体のベースフィルムに用いる場合、磁気記録信号を安定して読み取れるようにするため、ベースフィルムの表面性は平坦であることが求められる。   By the way, when used for a base film of a magnetic recording medium, for example, it is formed by applying or vapor-depositing a magnetic layer, and heat treatment at a high temperature is performed during the processing. When heat treatment is performed at a high temperature, the film is in a state where tension is applied to some extent in order to stably run the film, and the film is stretched in the direction in which the tension is applied due to heat. Further, when used for a base film of a magnetic recording medium, the surface property of the base film is required to be flat so that a magnetic recording signal can be read stably.

特開平10−204166号公報JP-A-10-204166 特願平8−260736号公報(特開平10−101782号公報)Japanese Patent Application No. 8-260736 (Japanese Patent Laid-Open No. 10-101782) 特開平6−49336号公報Japanese Patent Laid-Open No. 6-49336 特開2008−189801号公報JP 2008-189801 A

本発明の目的は、寸法安定性、特に温度や湿度といった環境変化に対する寸法安定性に優れ、高温での加工時の伸びも抑制でき、さらに表面の平坦性にも優れる配向ポリエステルフィルムを形成するのに適した樹脂組成物及びそれを用いた配向ポリエステルフィルムを提供することである。   The purpose of the present invention is to form an oriented polyester film that is excellent in dimensional stability, especially dimensional stability against environmental changes such as temperature and humidity, can suppress elongation during processing at high temperature, and is also excellent in surface flatness. It is providing the resin composition suitable for 1 and an oriented polyester film using the same.

配向ポリエステルフィルムにおいて、温度膨張係数および湿度膨張係数はヤング率と非常に密接な関係にあり、ヤング率が高いほど一般的に低くなる。しかしながら、ヤング率はいくらでも高められるというわけではなく、製膜性や直交する方向のヤング率確保の点から自ずと限界がある。そのため、同じヤング率なら温度や湿度に対してより低い膨張係数をもつフィルムが得られないか鋭意研究したところ、主たる繰り返し単位が下記式(2)で示される芳香族ポリエステル(芳香族ポリエステルB)からなるフィルムは、低い湿度膨張係数を示すことから好適なフィルムとして考えた。しかしながら、芳香族ポリエステルBからなるフィルムは、延伸倍率が出にくくヤング率が低いという課題と、温度膨張係数が高いという課題があった。   In the oriented polyester film, the temperature expansion coefficient and the humidity expansion coefficient are very closely related to the Young's modulus, and generally the lower the Young's modulus, the lower. However, the Young's modulus is not increased as much as possible, and there is a limit in terms of film forming properties and securing the Young's modulus in the orthogonal direction. For this reason, when the same Young's modulus is used, it has been earnestly investigated whether a film having a lower expansion coefficient with respect to temperature and humidity can be obtained. Since the film which consists of shows a low humidity expansion coefficient, it was considered as a suitable film. However, the film made of the aromatic polyester B has a problem that the draw ratio is difficult to obtain and the Young's modulus is low, and the temperature expansion coefficient is high.

ところが、本発明者らは、芳香族ポリエステルBを、ポリエチレンテレフタレートやポリエチレン−2,6ナフタレンジカルボキシレートとブレンドした樹脂組成物として用いたとき、驚くべきことに、芳香族ポリエステルBの低湿度膨張係数とポリエチレンテレフタレートやポリエチレン−2,6ナフタレンジカルボキシレートのヤング率を兼備し、磁気記録媒体の塗布時の熱によるフィルムの伸びなど、高温での加工時の伸びも抑制でき、しかも得られるフィルムの表面の平坦性にも優れるフィルムが得られることを見出した。   However, when the present inventors used the aromatic polyester B as a resin composition blended with polyethylene terephthalate or polyethylene-2,6 naphthalene dicarboxylate, surprisingly, the low humidity expansion of the aromatic polyester B Combines the modulus with the Young's modulus of polyethylene terephthalate and polyethylene-2,6 naphthalene dicarboxylate, and can suppress elongation during processing at high temperatures, such as film elongation due to heat during application of magnetic recording media. It was found that a film having excellent surface flatness can be obtained.

かくして本発明によれば、主たる繰り返し単位が下記式(1)で示される芳香族ポリエステル(A)と、主たる繰り返し単位が下記式(2)で表される芳香族ポリエステルBとを重量比50:50〜95:5で含有し、下記式(1)と(2)

Figure 0005735370
(上記構造式(1)および(2)中の、Xは1,4−フェニレン基または2,6−ナフタレンジイル基であり、Rはエチレン基、Rは炭素数2〜10のアルキレン基もしくは炭素数8〜10のシクロアルキレン基を示す。)におけるXが1,4−フェニレン基または2,6−ナフタレンジイル基のいずれかである樹脂組成物が提供され、その好ましい態様として、式(2)中のRがエチレン基である樹脂組成物も提供される。 Thus, according to the present invention, the weight ratio of the aromatic polyester (A) in which the main repeating unit is represented by the following formula (1) and the aromatic polyester B in which the main repeating unit is represented by the following formula (2) is 50: 50-95: 5, the following formulas (1) and (2)
Figure 0005735370
(In the above structural formulas (1) and (2), X is a 1,4-phenylene group or a 2,6-naphthalenediyl group, R 1 is an ethylene group, and R 2 is an alkylene group having 2 to 10 carbon atoms. Or a cycloalkylene group having 8 to 10 carbon atoms) is provided. A resin composition in which X is either a 1,4-phenylene group or a 2,6-naphthalenediyl group is provided. A resin composition in which R 2 in 2) is an ethylene group is also provided.

また、本発明によれば、上記本発明の樹脂組成物からなる配向ポリエステルフィルムが提供され、その好ましい態様として、フィルムの面方向における屈折率の最も高い方向(主配向方向)における105℃熱収縮率が0%以上1%以下であること、磁気記録媒体のベースフィルムに用いられることの少なくともいずれかを具備する配向ポリエステルフィルムも提供される。   Further, according to the present invention, an oriented polyester film comprising the resin composition of the present invention is provided, and as a preferred embodiment, thermal shrinkage at 105 ° C. in the direction with the highest refractive index in the plane direction of the film (main orientation direction). An oriented polyester film having at least one of a ratio of 0% or more and 1% or less and being used for a base film of a magnetic recording medium is also provided.

本発明によれば、温度や湿度変化に対する寸法安定性に優れ、ヤング率などの機械的特性に優れ、しかも高温での加工時の伸びも小さく、優れた表面の平坦性も得られるフィルムに具備させることができる樹脂組成物およびそれを用いた配向ポリエステルフィルムが提供できる。   According to the present invention, the film has excellent dimensional stability against temperature and humidity changes, excellent mechanical properties such as Young's modulus, small elongation during processing at high temperature, and excellent surface flatness. It is possible to provide a resin composition that can be prepared and an oriented polyester film using the resin composition.

<芳香族ポリエステルA>
本発明における芳香族ポリエステルAは、主たる繰り返し単位が前記式(1)で示されるポリエチレンテレフタレートやポリエチレン−2,6−ナフタレンジカルボキシレートであり、本発明の湿度膨張係数の低減効果やヤング率をより高めやすいことから、ポリエチレン−2,6−ナフタレンジカルボキシレートが好ましい。なお、本発明の目的を損なわない範囲で、例えば全繰り返し単位のモル数を基準として、20モル%以下、さらに10モル%以下の範囲で、他の共重合成分を共重合したものであっても良い。共重合成分としては、それ自体公知のものを適宜採用できる。
<Aromatic polyester A>
In the aromatic polyester A in the present invention, the main repeating unit is polyethylene terephthalate or polyethylene-2,6-naphthalenedicarboxylate represented by the formula (1), and the effect of reducing the humidity expansion coefficient and Young's modulus of the present invention are as follows. Polyethylene-2,6-naphthalenedicarboxylate is preferred because it is easier to increase. It should be noted that, within a range not impairing the object of the present invention, for example, based on the number of moles of all repeating units, 20% by mole or less, further 10% by mole or less, other copolymerization components are copolymerized. Also good. As the copolymer component, those known per se can be appropriately employed.

本発明における芳香族ポリエステルAの固有粘度は、特に制限されないが、芳香族ポリエステルBとの混練のしやすさや、フィルムに製膜したときの機械的特性などの点から、0.4〜1.5dl/g、さらに0.5〜1.0dl/gの範囲にあることが好ましい。なお、本発明における固有粘度は、P−クロロフェノール/1,1,2,2−テトラクロロエタン(重量比40/60)の混合溶媒を用いて35℃で測定した固有粘度である。   The intrinsic viscosity of the aromatic polyester A in the present invention is not particularly limited, but it is 0.4 to 1. in terms of ease of kneading with the aromatic polyester B, mechanical properties when formed into a film, and the like. It is preferably 5 dl / g, more preferably in the range of 0.5 to 1.0 dl / g. In addition, the intrinsic viscosity in this invention is an intrinsic viscosity measured at 35 degreeC using the mixed solvent of P-chlorophenol / 1,1,2,2-tetrachloroethane (weight ratio 40/60).

<芳香族ポリエステルB>
本発明における芳香族ポリエステルBは、主たる繰り返し単位が前記式(2)で示されるポリエステルである。前記式(2)で示されるRの部分は、炭素数2〜10のアルキレン基もしくは炭素数8〜10のシクロアルキレン基であり、好ましくはエチレン基、プロピレン基、ブチレン基などが挙げられ、これらの中でも本発明の効果の点からは、上記一般式(2)におけるRの炭素数が偶数のものが好ましく、特にエチレン基が好ましい。なお、本発明の目的を損なわない範囲で、例えば全繰り返し単位のモル数を基準として、20モル%以下、さらに10モル%以下の範囲で、他の共重合成分を共重合したものであっても良い。共重合成分としては、それ自体公知のものを適宜採用できる。
<Aromatic polyester B>
The aromatic polyester B in the present invention is a polyester whose main repeating unit is represented by the formula (2). The R 2 moiety represented by the formula (2) is an alkylene group having 2 to 10 carbon atoms or a cycloalkylene group having 8 to 10 carbon atoms, and preferably includes an ethylene group, a propylene group, a butylene group, Among these, from the viewpoint of the effect of the present invention, those having an even number of carbon atoms in R 2 in the general formula (2) are preferable, and an ethylene group is particularly preferable. It should be noted that, within a range not impairing the object of the present invention, for example, based on the number of moles of all repeating units, 20% by mole or less, further 10% by mole or less, other copolymerization components are copolymerized. Also good. As the copolymer component, those known per se can be appropriately employed.

好ましい芳香族ポリエステルBとしては、ポリ−4,4’−ジフェニレンジオキシエチレン−2,6−ナフタレンジカルボキシレートおよびポリ−4,4’−ジフェニレンジオキシエチレン−テレフタレートが挙げられ、本発明の熱による伸びを抑制しやすく、ヤング率をより高めやすいことから、ポリ−4,4’−ジフェニレンジオキシエチレン−2,6−ナフタレンジカルボキシレートが好ましい。   Preferred aromatic polyesters B include poly-4,4′-diphenylenedioxyethylene-2,6-naphthalenedicarboxylate and poly-4,4′-diphenylenedioxyethylene-terephthalate, and the present invention. Poly-4,4′-diphenylenedioxyethylene-2,6-naphthalenedicarboxylate is preferred because it is easy to suppress the elongation due to heat and to increase the Young's modulus more easily.

本発明における芳香族ポリエステルBの固有粘度は、特に制限されないが、芳香族ポリエステルAとの混練のしやすさや、フィルムに製膜したときの機械的特性などの点から、0.4〜1.5dl/g、さらに0.5〜1.0dl/gの範囲にあることが好ましい。   The intrinsic viscosity of the aromatic polyester B in the present invention is not particularly limited, but it is 0.4 to 1. in terms of easiness of kneading with the aromatic polyester A and mechanical properties when formed into a film. It is preferably 5 dl / g, more preferably in the range of 0.5 to 1.0 dl / g.

<樹脂組成物>
本発明の樹脂組成物は、前述の芳香族ポリエステルAと芳香族ポリエステルBとをブレンドしたものである。特に得られるフィルムの表面の平坦性を向上させるために、前記式(1)中のXと、前記式(2)中のXとは同じである。そういった観点から、芳香族ポリエステルAがエチレンテレフタレートを主たる(例えば80モル%以上)繰り返し単位とするポリエチレンテレフタレートである場合は、4,4’−ジフェニレンジオキシエチレン−テレフタレートを主たる(例えば80モル%以上)繰り返し単位とするポリ−4,4’−ジフェニレンジオキシエチレン−テレフタレートが好ましく、芳香族ポリエステルAがエチレン−2,6−ナフタレンジカルボキシレートを主たる(例えば80モル%以上)繰り返し単位とするポリエチレン−2,6−ナフタレンジカルボキシレートである場合は、4,4’−ジフェニレンジオキシエチレン−2,6−ナフタレンジカルボキシレートを主たる(例えば80モル%以上)繰り返し単位とするポリ−4,4’−ジフェニレンジオキシエチレン−2,6−ナフタレンジカルボキシレートが好ましい。
<Resin composition>
The resin composition of the present invention is a blend of the aforementioned aromatic polyester A and aromatic polyester B. In particular, in order to improve the flatness of the surface of the film obtained, X in the formula (1) and X in the formula (2) are the same. From this point of view, when the aromatic polyester A is polyethylene terephthalate having ethylene terephthalate as a main repeating unit (for example, 80 mol% or more), 4,4′-diphenylenedioxyethylene-terephthalate is mainly used (for example, 80 mol%). Poly-4,4′-diphenylenedioxyethylene-terephthalate as a repeating unit is preferable, and aromatic polyester A is a repeating unit mainly composed of ethylene-2,6-naphthalenedicarboxylate (for example, 80 mol% or more) In the case of polyethylene-2,6-naphthalenedicarboxylate, poly- having 4,4′-diphenylenedioxyethylene-2,6-naphthalenedicarboxylate as the main (for example, 80 mol% or more) repeating unit. 4,4'-Diphenylenedioxy Siethylene-2,6-naphthalenedicarboxylate is preferred.

本発明の特徴の一つは、フィルムを形成する樹脂組成物が、芳香族ポリエステルAと芳香族ポリエステルBからなり、芳香族ポリエステルAと芳香族ポリエステルBとの重量比が、50:50〜95:5、好ましくは60:40〜94:6の範囲、さらに好ましくは70:30〜94:6の範囲にあることである。芳香族ポリエステルBの割合が少なすぎれば、湿度膨張係数など寸法安定性の向上効果が乏しくなり、他方で芳香族ポリエステルBの割合が多すぎれば、ヤング率などが低下したりしやすくなる。   One of the characteristics of the present invention is that the resin composition for forming a film comprises an aromatic polyester A and an aromatic polyester B, and the weight ratio of the aromatic polyester A to the aromatic polyester B is 50:50 to 95. : 5, preferably in the range of 60:40 to 94: 6, more preferably in the range of 70:30 to 94: 6. If the ratio of the aromatic polyester B is too small, the effect of improving the dimensional stability such as the humidity expansion coefficient is poor. On the other hand, if the ratio of the aromatic polyester B is too large, the Young's modulus or the like tends to decrease.

ところで、本発明の樹脂組成物は、DSCで測定した融点が、200〜270℃の範囲、さらに210〜270℃の範囲、特に230〜265℃の範囲にあることが製膜性と得られるフィルムの機械的特性の点から好ましい。また、本発明の樹脂組成物は、DSCで測定したガラス転移温度(以下、Tgと称することがある。)が、80〜120℃の範囲、さらに90〜118℃の範囲、特に95〜116℃の範囲にあることが、フィルムの延伸性、耐熱性や寸法安定性の点から好ましい。   By the way, the resin composition of the present invention has a film forming property that the melting point measured by DSC is in the range of 200 to 270 ° C., further in the range of 210 to 270 ° C., particularly in the range of 230 to 265 ° C. From the viewpoint of the mechanical properties of The resin composition of the present invention has a glass transition temperature (hereinafter sometimes referred to as Tg) measured by DSC in the range of 80 to 120 ° C., more preferably in the range of 90 to 118 ° C., particularly 95 to 116 ° C. It is preferable from the viewpoint of the stretchability, heat resistance and dimensional stability of the film.

なお、このような融点やガラス転移温度は、芳香族ポリエステルAと芳香族ポリエステルBの共重合成分の種類や共重合量、また副生物であるジアルキレングリコールの制御、さらに芳香族ポリエステルAと芳香族ポリエステルBの割合などによって調整できる。なお、フィルムにした後の高温での加工、例えば磁性層の塗布などの加工性を向上させる観点からは、Tgはできる限り高いことが好ましく、本発明の目的を損なわない範囲で、さらにガラス転移温度を高くできる共重合成分を共重合したり、ポリエーテルイミドや液晶樹脂をブレンドしたりすること(例えば、特開2000−355631号公報、特開2000−141475号公報および特開平11−1568号公報などを参照)も好ましい態様である。   Such melting point and glass transition temperature are determined depending on the type and amount of copolymerization component of aromatic polyester A and aromatic polyester B, control of by-product dialkylene glycol, and aromatic polyester A and aromatic polyester. It can be adjusted depending on the ratio of the group B polyester. From the viewpoint of improving processability at high temperatures after forming into a film, for example, workability such as coating of a magnetic layer, Tg is preferably as high as possible, and further within the range of not impairing the object of the present invention. Copolymerizing a copolymer component capable of increasing the temperature, or blending a polyetherimide or a liquid crystal resin (for example, JP 2000-355631 A, JP 2000-141475 A and JP 11-1568 A). (See publications and the like) is also a preferred embodiment.

<配向フィルム>
本発明の配向フィルムは、前述の樹脂組成物からなり、フィルム面方向の少なくとも一方向に延伸、すなわち分子鎖が配向されたフィルムである。
この際、分子鎖が最も配向された方向(以下、主配向方向と称する)は、105℃にて30分間無荷重下で測定したときの熱収縮率が1%以下である。熱収縮率がこれよりも大きいと、高温での加工時にフィルムが主配向方向に収縮し、高温加工時の伸びを抑制しても、変形が大きく、加工性が低下したり、また加工後の湿度膨張係数やヤング率などの特性が損なわれやすくなったりすることがある。そういった観点から、好ましい主配向方向の熱収縮率の上限は、1.0%以下、さらに0.9%以下である。このような熱収縮率は延伸後に熱固定処理を行い、そのときの温度を高くすることや、熱収縮率を下げたい方向に弛緩させることなどで小さくできる。なお、熱収縮率の下限は特に制限されないが、通常の製膜条件では、膨張するような負の値にしようとすると、工程でシワなどが発生しやすいことから、0%以上、さらに0.1%以上であることが好ましい。
<Oriented film>
The oriented film of the present invention is a film made of the above-described resin composition and stretched in at least one direction of the film surface direction, that is, a molecular chain is oriented.
At this time, the direction in which the molecular chains are most oriented (hereinafter referred to as the main orientation direction) has a heat shrinkage of 1% or less when measured at 105 ° C. for 30 minutes under no load. If the thermal shrinkage rate is larger than this, the film shrinks in the main orientation direction during processing at high temperature, and even if the elongation during high-temperature processing is suppressed, the deformation is large, the workability decreases, and the post-processing Characteristics such as the coefficient of humidity expansion and Young's modulus may be easily impaired. From such a viewpoint, the upper limit of the preferred thermal shrinkage rate in the main orientation direction is 1.0% or less, and further 0.9% or less. Such a heat shrinkage rate can be reduced by performing a heat setting treatment after stretching and increasing the temperature at that time or relaxing the heat shrinkage in a direction in which the heat shrinkage rate is desired to decrease. The lower limit of the heat shrinkage rate is not particularly limited, but under normal film forming conditions, if it is attempted to be a negative value that expands, wrinkles and the like are likely to occur in the process. It is preferably 1% or more.

本発明の配向フィルムは、磁気テープなどのベースフィルムとして用いたとき、ベースフィルムが伸びないように前記主配向方向は、ヤング率が4.5GPa以上という高いヤング率を有することが好ましい。しかも、このようにヤング率を高くすることで、より湿度膨張係数を小さくすることができる。ヤング率の上限は制限されないが、通常11GPaである。   When the oriented film of the present invention is used as a base film such as a magnetic tape, the main orientation direction preferably has a high Young's modulus of 4.5 GPa or more so that the base film does not stretch. Moreover, the humidity expansion coefficient can be further reduced by increasing the Young's modulus in this way. The upper limit of the Young's modulus is not limited, but is usually 11 GPa.

なお、本発明の配向フィルムを磁気記録媒体のベースフィルムなど、フィルムの製膜方向(以下、長手方向、縦方向またはMD方向と称することがある。)と、幅方向(横方向、TD方向と称することがある。)の両方向に高いヤング率が求められる場合、二軸配向フィルムであることが好ましい。二軸配向フィルムである場合の好ましいヤング率は、主配向方向のヤング率が4.5GPa以上で、かつフィルムの長手方向が3〜11GPa、さらに3.5〜10GPa、特に4.0〜9GPaの範囲であり、フィルムの幅方向が4〜11GPa、さらに5〜11GPa、さらに6〜10GPa、特に7〜10GPaの範囲である。   The oriented film of the present invention, such as a base film of a magnetic recording medium, may be referred to as a film forming direction (hereinafter sometimes referred to as a longitudinal direction, a longitudinal direction, or an MD direction) and a width direction (a lateral direction, a TD direction). Biaxially oriented film is preferred when a high Young's modulus is required in both directions. The preferred Young's modulus in the case of a biaxially oriented film is that the Young's modulus in the main orientation direction is 4.5 GPa or more and the longitudinal direction of the film is 3 to 11 GPa, further 3.5 to 10 GPa, particularly 4.0 to 9 GPa. The width direction of the film is 4 to 11 GPa, further 5 to 11 GPa, further 6 to 10 GPa, particularly 7 to 10 GPa.

本発明の配向フィルムは、主配向方向の湿度膨張係数が7.5ppm/%RH以下、さらには7.3ppm/%RH以下、特に7ppm/%RH以下であることが好ましく、他方下限は特に制限されないが、1ppm/%RH以上、さらに2ppm/%RH以上、特に3ppm/%RHであることが、目的とする製品に湿度変化に対する優れた寸法安定性を付与できることから好ましい。特にリニア記録方式の磁気記録媒体のベースフィルムに用いる場合、上記湿度膨張係数を満足する方向が幅方向であることが、トラックずれなどを極めて抑制できることから好ましい。   In the oriented film of the present invention, the humidity expansion coefficient in the main orientation direction is 7.5 ppm /% RH or less, more preferably 7.3 ppm /% RH or less, particularly preferably 7 ppm /% RH or less, while the lower limit is particularly limited. However, it is preferably 1 ppm /% RH or more, more preferably 2 ppm /% RH or more, particularly 3 ppm /% RH, because it can impart excellent dimensional stability against humidity changes to the target product. In particular, when used for a base film of a linear recording magnetic recording medium, it is preferable that the direction satisfying the humidity expansion coefficient is the width direction because track deviation and the like can be extremely suppressed.

本発明の配向フィルムは、主配向方向の温度膨張係数が−10〜+10ppm/℃、さらには−7〜+5ppm/℃の範囲、特に−5〜−1ppm/℃にあることが、特に磁気記録テープにしたときの寸法安定性の点で好ましい。特に、磁気記録テープにベースフィルムに用いる場合、上記温度膨張係数を満足する方向が幅方向であることが、トラックずれなどを極めて抑制できることから好ましい。   The oriented film of the present invention has a coefficient of thermal expansion in the main orientation direction of −10 to +10 ppm / ° C., more preferably −7 to +5 ppm / ° C., particularly −5 to −1 ppm / ° C. This is preferable in terms of dimensional stability. In particular, when used as a base film for a magnetic recording tape, it is preferable that the direction satisfying the above-mentioned temperature expansion coefficient is the width direction because track deviation and the like can be extremely suppressed.

本発明の配向フィルムは、110℃にまで加熱したときのフィルムの製膜方向および幅方向の伸びが、それぞれ1.5%以下で、かつ両者の合計が2.0%以下であることが好ましい。このように110℃まで加熱したときの伸びが抑えられることで、加工時のシワなどの発生を抑制できる。そのような観点から、110℃にまで加熱したときのフィルムの製膜方向および幅方向の伸びは、それぞれ1.0%以下で、両者の合計が1.5%以下であることがさらに好ましく、特にそれぞれが0.8%以下であることが好ましい。   In the oriented film of the present invention, the film-forming direction and the width direction elongation when heated to 110 ° C. are each 1.5% or less, and the total of both is preferably 2.0% or less. . Thus, by suppressing the elongation when heated to 110 ° C., it is possible to suppress the occurrence of wrinkles during processing. From such a viewpoint, the elongation in the film forming direction and the width direction of the film when heated to 110 ° C. is 1.0% or less, respectively, and the total of both is more preferably 1.5% or less. In particular, each is preferably 0.8% or less.

本発明の配向フィルムの厚みは、用途に応じて適宜決めればよく、磁気記録テープのベースフィルムに用いる場合は、2〜10μm、さらに3〜7μm、特に4〜6μmの範囲が好ましい。   The thickness of the oriented film of the present invention may be appropriately determined depending on the application. When used for a base film of a magnetic recording tape, the thickness is preferably 2 to 10 μm, more preferably 3 to 7 μm, and particularly preferably 4 to 6 μm.

本発明の配向フィルムは、その表面の表面粗さは用いられる用途に応じて適宜調整すればよく、磁気記録媒体のベースフィルムなど平坦性の要求される用途に用いる場合、少なくとも一方の表面は、表面粗さ(Ra)が1nm〜20nm、更に好ましくは2nm〜10nmであることが好ましい。   In the oriented film of the present invention, the surface roughness of the surface may be adjusted as appropriate according to the application to be used. When used in applications requiring flatness such as a base film of a magnetic recording medium, at least one surface is The surface roughness (Ra) is preferably 1 nm to 20 nm, more preferably 2 nm to 10 nm.

通常フィルムの表面粗さを粗くするには、フィルム層に不活性粒子を含有させたりして、突起を形成すればよい。含有させる不活性粒子としては、それ自体公知のものを好適に使用できる。走行性の観点からは、フィルム層に含有させる不活性粒子の平均粒径は、0.02〜1.0μm、さらに0.03〜0.8μmの範囲にあることが好ましく、特に磁気記録媒体として用いる場合は0.03〜0.5μm、さらに0.05〜0.3μmの範囲にあることが好ましい。また、フィルム層に含有させる不活性粒子の含有量は、該フィルム層の重量を基準として、0.005〜1.0重量%、さらに0.01〜0.5重量%の範囲にあることが好ましい。もちろん、本発明の効果を損なわない範囲で、本発明の配向フィルムに、さらに他のフィルム層を積層したり、塗膜層を設けたりしても良い。   Usually, in order to increase the surface roughness of the film, the film layer may contain inert particles to form protrusions. As the inert particles to be contained, those known per se can be suitably used. From the viewpoint of runnability, the average particle diameter of the inert particles contained in the film layer is preferably in the range of 0.02 to 1.0 μm, more preferably 0.03 to 0.8 μm, particularly as a magnetic recording medium. When used, it is preferably in the range of 0.03 to 0.5 μm, more preferably 0.05 to 0.3 μm. The content of the inert particles contained in the film layer may be in the range of 0.005 to 1.0% by weight, more preferably 0.01 to 0.5% by weight, based on the weight of the film layer. preferable. Of course, another film layer or a coating film layer may be further laminated on the oriented film of the present invention as long as the effects of the present invention are not impaired.

ところで、本発明の配向フィルムは、前述の通り、芳香族ポリエステルAと芳香族ポリエステルBとをブレンドした樹脂組成物からなる。そのため、芳香族ポリエステルAと芳香族ポリエステルBとの親和性が乏しいと、得られる配向フィルムの表面は、非常に粗いものとなりやすい。そのため、上記のような平坦な表面を形成するため、芳香族ポリエステルAと芳香族ポリエステルBとは、繰り返し単位を示す前記式(1)および(2)のXが同じである。   By the way, the oriented film of this invention consists of a resin composition which blended the aromatic polyester A and the aromatic polyester B as above-mentioned. Therefore, if the affinity between the aromatic polyester A and the aromatic polyester B is poor, the surface of the obtained oriented film tends to be very rough. Therefore, in order to form the flat surface as described above, the aromatic polyester A and the aromatic polyester B have the same X in the formulas (1) and (2) indicating the repeating unit.

<樹脂組成物の製造方法>
本発明の樹脂組成物の製造方法について、以下説明する。まず、芳香族ポリエステルAは、テレフタル酸または2,6−ナフタレンジカルボン酸と、エチレングリコールとをエステル化反応させるか、テレフタル酸または2,6−ナフタレンジカルボン酸の低級アルキルエステルと、エチレングリコールとをエステル交換反応させ、得られたポリエステルの前駆体を、重縮合反応させればよい。つぎに、芳香族ポリエステルBは、テレフタル酸または2,6−ナフタレンジカルボン酸と、4,4’−ジフェニレンジオキシアルキレングリコールとをエステル化反応させるか、テレフタル酸または2,6−ナフタレンジカルボン酸の低級アルキルエステルと、4,4’−ジフェニレンジオキシアルキレングリコールとをエステル交換反応させ、得られたポリエステルの前駆体を、重縮合反応させればよい。なお、4,4’−ジフェニレンジオキシアルキレングリコールは、ビフェノールとビフェノールと目的とするRとなるアルキレングリコールとを反応させて、所望のビフェノールのアルキレンオキサイド付加物とすればよい。また、上述の製造方法は溶融重合法であるが、さらに必要に応じて固相重合などを施しても良い。
<Method for producing resin composition>
The method for producing the resin composition of the present invention will be described below. First, the aromatic polyester A is obtained by esterifying terephthalic acid or 2,6-naphthalenedicarboxylic acid and ethylene glycol, or lower alkyl ester of terephthalic acid or 2,6-naphthalenedicarboxylic acid and ethylene glycol. The polyester precursor obtained by the transesterification reaction may be subjected to a polycondensation reaction. Next, the aromatic polyester B is obtained by esterifying terephthalic acid or 2,6-naphthalenedicarboxylic acid with 4,4′-diphenylenedioxyalkylene glycol, or terephthalic acid or 2,6-naphthalenedicarboxylic acid. The lower alkyl ester of the above and 4,4′-diphenylenedioxyalkylene glycol may be transesterified, and the resulting polyester precursor may be subjected to a polycondensation reaction. Note that 4,4′-diphenylenedioxyalkylene glycol may be obtained by reacting biphenol, biphenol, and the desired alkylene glycol as R 2 to obtain an alkylene oxide adduct of the desired biphenol. Moreover, although the above-mentioned production method is a melt polymerization method, solid phase polymerization or the like may be further performed as necessary.

ポリエステルの前駆体を製造する際の反応温度としては、グリコール成分の沸点以上で行うことが好ましく、特に190℃〜250℃の範囲で行うことが好ましい。190℃よりも低いと反応が十分に進行しにくく、250℃よりも高いと副反応物が生成しやすい。また、反応を常圧下で行うこともできるが、さらに生産性を高めるために加圧下で反応を行ってもよい。より詳しくは、反応圧力は絶対圧力で10kPa以上200kPa以下、反応温度は通常150℃以上250℃以下、好ましくは180℃以上230℃以下で、反応時間10分以上10時間以下、好ましくは30分以上7時間以下行われるのが好ましい。このようなエステル交換反応またはエステル化反応によってポリエステル前駆体としての反応物が得られる。   The reaction temperature for producing the polyester precursor is preferably at or above the boiling point of the glycol component, particularly preferably in the range of 190 ° C to 250 ° C. When the temperature is lower than 190 ° C., the reaction does not proceed sufficiently, and when the temperature is higher than 250 ° C., a side reaction product is easily generated. In addition, the reaction can be performed under normal pressure, but the reaction may be performed under pressure in order to further increase productivity. More specifically, the reaction pressure is 10 to 200 kPa in absolute pressure, the reaction temperature is usually 150 to 250 ° C., preferably 180 to 230 ° C., and the reaction time is 10 to 10 hours, preferably 30 or more. It is preferably performed for 7 hours or less. By such a transesterification reaction or esterification reaction, a reactant as a polyester precursor is obtained.

ポリエステルの前駆体を製造する反応工程では、公知のエステル化もしくはエステル交換反応触媒を用いてもよい。例えばアルカリ金属化合物、アルカリ土類金属化合物、チタン化合物などが挙げられる。   In the reaction step for producing the polyester precursor, a known esterification or transesterification reaction catalyst may be used. For example, an alkali metal compound, an alkaline earth metal compound, a titanium compound, and the like can be given.

つぎに、重縮合反応について説明する。まず、重縮合温度は得られるポリマーの融点以上でかつ230〜280℃以下、より好ましくは融点より5℃以上高い温度から融点より30℃高い温度の範囲である。重縮合反応では通常30Pa以下の減圧下で行うのが好ましい。30Paより高いと重縮合反応に要する時間が長くなり且つ重合度の高い共重合芳香族ポリエステル樹脂を得ることが困難になる。   Next, the polycondensation reaction will be described. First, the polycondensation temperature is in the range from a temperature higher than the melting point of the polymer to be obtained and 230 to 280 ° C. or lower, more preferably 5 ° C. higher than the melting point to 30 ° C. higher than the melting point. The polycondensation reaction is usually preferably performed under a reduced pressure of 30 Pa or less. If it is higher than 30 Pa, the time required for the polycondensation reaction becomes long and it becomes difficult to obtain a copolymerized aromatic polyester resin having a high degree of polymerization.

重縮合触媒としては、少なくとも一種の金属元素を含む金属化合物が挙げられる。なお、重縮合触媒はエステル交換反応やエステル化反応においても使用することができる。金属元素としては、チタン、ゲルマニウム、アンチモン、アルミニウム、ニッケル、亜鉛、スズ、コバルト、ロジウム、イリジウム、ジルコニウム、ハフニウム、リチウム、カルシウム、マグネシウムなどが挙げられる。より好ましい金属としては、チタン、ゲルマニウム、アンチモン、アルミニウム、スズなどであり、中でも、チタン化合物はエステル交換反応と重縮合反応の双方の反応で、高い活性を発揮するので特に好ましい。   Examples of the polycondensation catalyst include metal compounds containing at least one metal element. The polycondensation catalyst can also be used in transesterification and esterification reactions. Examples of the metal element include titanium, germanium, antimony, aluminum, nickel, zinc, tin, cobalt, rhodium, iridium, zirconium, hafnium, lithium, calcium, and magnesium. More preferable metals are titanium, germanium, antimony, aluminum, tin, and the like. Among these, titanium compounds are particularly preferable because they exhibit high activity in both the transesterification reaction and the polycondensation reaction.

これらの触媒は単独でも、あるいは併用してもよい。かかる触媒量は、得られる芳香族ポリエステルの繰り返し単位のモル数に対して、0.001〜0.5モル%、さらには0.005〜0.2モル%が好ましい。   These catalysts may be used alone or in combination. The amount of the catalyst is preferably 0.001 to 0.5 mol%, more preferably 0.005 to 0.2 mol%, based on the number of moles of the repeating unit of the obtained aromatic polyester.

本発明の樹脂組成物は、このようにして得られた芳香族ポリエステルAと芳香族ポリエステルBとを、一軸または二軸溶融混練機にて所定の割合になるように溶融混練することによって得られる。なお、該樹脂組成物には、本発明の効果を阻害しない範囲で、他の熱可塑性ポリマー、紫外線吸収剤等の安定剤、酸化防止剤、可塑剤、滑剤、難燃剤、離型剤、顔料、核剤、充填剤あるいはガラス繊維、炭素繊維、層状ケイ酸塩などを必要に応じて配合しても良い。他の熱可塑性ポリマーとしては、脂肪族ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート、ABS樹脂、ポリメチルメタクリレート、ポリアミド系エラストマー、ポリエステル系エラストマー、ポリエーテルイミド、ポリイミドなどが挙げられる。   The resin composition of the present invention can be obtained by melt-kneading the aromatic polyester A and the aromatic polyester B obtained in this manner so as to have a predetermined ratio in a uniaxial or biaxial melt kneader. . The resin composition includes other thermoplastic polymers, stabilizers such as ultraviolet absorbers, antioxidants, plasticizers, lubricants, flame retardants, release agents, and pigments as long as the effects of the present invention are not impaired. Further, a nucleating agent, a filler or glass fiber, carbon fiber, layered silicate, etc. may be blended as necessary. Examples of other thermoplastic polymers include aliphatic polyester resins, polyamide resins, polycarbonates, ABS resins, polymethyl methacrylate, polyamide elastomers, polyester elastomers, polyether imides, polyimides, and the like.

<フィルムの製造方法>
本発明の配向フィルムは、少なくともフィルムの面方向における少なくとも一方向(通常は製膜方向か、幅方向である。)、好ましくは製膜方向と幅方向の二軸方向に延伸して、延伸の方向の分子配向を高めたものであり、例えば以下のような方法で製造することが、製膜性を維持しつつ、ヤング率を向上させやすいことから好ましい。
<Film production method>
The oriented film of the present invention is stretched in at least one direction (usually the film forming direction or the width direction) in the plane direction of the film, preferably in the biaxial direction of the film forming direction and the width direction. For example, the following method is preferable because it is easy to improve the Young's modulus while maintaining the film forming property.

まず、フィルムを形成する芳香族ポリエステルAと芳香族ポリエステルBとを原料とし、これらを乾燥後、溶融状態で混練して樹脂組成物とし、その樹脂組成物の融点(Tm:℃)以上(Tm+70)℃以下の温度でダイよりフィルム状に押出して、未延伸フィルムを作成し、これを一軸延伸もしくは二軸延伸する。なお、前述のヤング率、αt、αhなどを満足させるには、その後の延伸を進行させやすくするために、冷却ドラムによる冷却を非常に速やかに行うことが好ましい。そのような観点から、ダイよりフィルム状に押出された未延伸フィルムを冷却する冷却ドラムの温度は、20〜60℃という低温で行うことが好ましい。このような低温で行うことで、未延伸フィルムの状態での結晶化が抑制され、その後の延伸をよりスムーズに行うことができる。   First, the aromatic polyester A and the aromatic polyester B that form a film are used as raw materials, and these are dried and then kneaded in a molten state to obtain a resin composition. The resin composition has a melting point (Tm: ° C.) or higher (Tm + 70). ) Extruded into a film form from a die at a temperature of ℃ or less to prepare an unstretched film, which is uniaxially stretched or biaxially stretched. In order to satisfy the aforementioned Young's modulus, αt, αh, and the like, it is preferable to perform cooling with a cooling drum very quickly in order to facilitate the subsequent stretching. From such a viewpoint, it is preferable that the temperature of the cooling drum that cools the unstretched film extruded in a film form from the die is as low as 20 to 60 ° C. By performing at such a low temperature, crystallization in the state of an unstretched film is suppressed, and subsequent stretching can be performed more smoothly.

以下、二軸延伸を例にして、配向フィルムの製造方法を説明する。二軸延伸としては、逐次二軸延伸でも同時二軸延伸でもよい。ここでは、逐次二軸延伸で、縦延伸、横延伸および熱処理をこの順で行う製造方法を一例として挙げて説明する。まず、最初の縦延伸は樹脂組成物のガラス転移温度(Tg:℃)ないし(Tg+40)℃の温度で、2〜7倍に延伸し、次いで横方向に先の縦延伸よりも高温の(Tg+10)〜(Tg+50)℃の温度で3〜10倍に延伸し、さらに熱処理としてポリマーの融点以下の温度でかつ(Tg+50)〜(Tg+150)℃の温度で1〜20秒熱固定処理するのが好ましい。特に好ましい熱固定処理は、温度が180〜220℃、さらに190〜210℃の範囲で、時間は1〜15秒である。   Hereinafter, the manufacturing method of an oriented film is demonstrated taking biaxial stretching as an example. Biaxial stretching may be sequential biaxial stretching or simultaneous biaxial stretching. Here, a manufacturing method in which longitudinal stretching, lateral stretching, and heat treatment are performed in this order by sequential biaxial stretching will be described as an example. First, in the first longitudinal stretching, the glass transition temperature (Tg: ° C.) to (Tg + 40) ° C. of the resin composition is stretched 2 to 7 times, and then in the transverse direction (Tg + 10) higher than the previous longitudinal stretching. ) To (Tg + 50) ° C. at a temperature of 3 to 10 times, and further heat treatment is preferably performed at a temperature below the melting point of the polymer and at a temperature of (Tg + 50) to (Tg + 150) ° C. for 1 to 20 seconds. . A particularly preferable heat setting treatment is performed at a temperature of 180 to 220 ° C., further 190 to 210 ° C., and a time of 1 to 15 seconds.

前述の説明は逐次二軸延伸について説明したが、本発明の配向フィルムは縦延伸と横延伸とを同時に行う同時二軸延伸でも製造でき、例えば先で説明した延伸倍率や延伸温度などを参考にすればよい。なお、粒子を含有させる方法については、それ自体公知の方法を採用でき、例えばポリエステルの製造工程において、反応系に添加しても良いし、ポリエステルに溶融混練によって添加してもよい。粒子の分散性の点から、好ましくはポリエステルの反応系に添加して、粒子濃度の高いポリエステル組成物をマスターポリマーとして製造し、それを粒子を含まないか、粒子濃度低いポリエステル組成物と混ぜ合わせる方法が好ましい。本発明によれば、本発明の上記配向フィルムをベースフィルムとし、その一方の面、好ましくはより平坦な側の表面に非磁性層および磁性層をこの順で形成し、他方の面、好ましくはより平坦でない側の表面にバックコート層を形成することで、磁気記録テープとすることができる。   In the above description, sequential biaxial stretching has been described. However, the oriented film of the present invention can be produced by simultaneous biaxial stretching in which longitudinal stretching and lateral stretching are simultaneously performed. For example, referring to the stretching ratio and the stretching temperature described above. do it. In addition, about the method of containing particle | grains, a publicly known method can be employ | adopted, for example, in the manufacturing process of polyester, you may add to a reaction system and may add to polyester by melt-kneading. From the viewpoint of the dispersibility of the particles, it is preferably added to a polyester reaction system to produce a polyester composition having a high particle concentration as a master polymer, which is mixed with a polyester composition containing no particles or having a low particle concentration. The method is preferred. According to the present invention, the oriented film of the present invention is used as a base film, and a nonmagnetic layer and a magnetic layer are formed in this order on one surface, preferably on a flatter surface, and the other surface, preferably A magnetic recording tape can be obtained by forming a backcoat layer on the surface that is less flat.

以下に実施例及び比較例を挙げ、本発明をより具体的に説明する。なお、本発明では、以下の方法により、その特性を測定および評価した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In the present invention, the characteristics were measured and evaluated by the following methods.

(1)固有粘度
得られた共重合芳香族ポリエステルおよびフィルムの固有粘度は、P−クロロフェノール/1,1,2,2−テトラクロロエタン(重量比40/60)の混合溶媒を用いてポリマーを溶解して35℃で測定して求めた。
(1) Intrinsic viscosity The intrinsic viscosity of the obtained copolymerized aromatic polyester and film is determined by using a mixed solvent of P-chlorophenol / 1,1,2,2-tetrachloroethane (weight ratio 40/60) as a polymer. It melt | dissolved and calculated | required by measuring at 35 degreeC.

(2)ガラス転移点および融点
ガラス転移点、融点はDSC(TAインスツルメンツ株式会社製、商品名:Thermal Analyst2100)により昇温速度20℃/minで測定した。
(2) Glass transition point and melting point The glass transition point and melting point were measured by DSC (TA Instruments Co., Ltd., trade name: Thermal Analyst 2100) at a heating rate of 20 ° C / min.

(3)屈折率
フィルムの面方向において、製膜方向を0°、幅方向を90°として、10°ピッチでアッベの屈折計を用いて、測定した。なお、測定は23℃にてナトリウムD線に対する値として行い、最も屈折率の高い方向を主配向方向とした。
(3) Refractive index It measured using the Abbe's refractometer at 10 degree pitch by making the film forming direction into 0 degree and the width direction into 90 degrees in the surface direction of a film. The measurement was performed as a value for the sodium D line at 23 ° C., and the direction with the highest refractive index was defined as the main orientation direction.

(4)熱収縮率
前述の屈折率の測定で確認された主配向方向に添って、幅10mm長さ100mmの短冊状試片を切り出し、105℃に保持されたギアオーブン中に無緊張状態で放置して、30分後に取り出して処理前後の試片長さから算出した。
(4) Heat Shrinkage A strip-shaped specimen having a width of 10 mm and a length of 100 mm was cut out along the main orientation direction confirmed by the above-described refractive index measurement, and in a gear oven maintained at 105 ° C. in a non-tensioned state. The sample was left to stand, taken out after 30 minutes, and calculated from the specimen length before and after the treatment.

(5)ヤング率
得られたフィルムを試料巾10mm、長さ15cmで切り取り、チャック間100mm、引張速度10mm/分、チャート速度500mm/分の条件で万能引張試験装置(東洋ボールドウィン製、商品名:テンシロン)にて引っ張る。得られた荷重―伸び曲線の立ち上がり部の接線よりヤング率を計算する。
(5) Young's modulus The obtained film was cut out with a sample width of 10 mm and a length of 15 cm, and a universal tensile testing device (product name: manufactured by Toyo Baldwin, trade name: 100 mm between chucks, tensile speed 10 mm / min, chart speed 500 mm / min). Pull with Tensilon). The Young's modulus is calculated from the tangent of the rising portion of the obtained load-elongation curve.

(6)温度膨張係数(αt)
得られたフィルムを、フィルムの主配向方向が測定方向となるように長さ20mm、幅4mmに切り出し、SII製EXSTAR6000にセットし、窒素雰囲気下(0%RH)、80℃で30分前処理し、その後室温まで降温させる。その後30℃から70℃まで2℃/minで昇温して、各温度でのサンプル長を測定し、次式より温度膨張係数(αt)を算出する。なお、測定方向が切り出した試料の長手方向であり、5回測定し、その平均値を用いた。
αt={(L60−L40)}/(L40×△T)}+0.5
ここで、上記式中のL40は40℃のときのサンプル長(mm)、L60は60℃のときのサンプル長(mm)、△Tは20(=60−40)℃、0.5は石英ガラスの温度膨張係数(×10−6ppm/℃)である。
(6) Temperature expansion coefficient (αt)
The obtained film was cut into a length of 20 mm and a width of 4 mm so that the main orientation direction of the film would be the measurement direction, set in EXSTAR6000 manufactured by SII, and pretreated at 80 ° C. for 30 minutes in a nitrogen atmosphere (0% RH). Then, the temperature is lowered to room temperature. Thereafter, the temperature is raised from 30 ° C. to 70 ° C. at 2 ° C./min, the sample length at each temperature is measured, and the temperature expansion coefficient (αt) is calculated from the following equation. In addition, the measurement direction is the longitudinal direction of the sample cut out, the measurement was performed 5 times, and the average value was used.
αt = {(L 60 −L 40 )} / (L 40 × ΔT)} + 0.5
Here, L 40 in the above formula is the sample length (mm) at 40 ° C., L 60 is the sample length (mm) at 60 ° C., ΔT is 20 (= 60-40) ° C., 0.5 Is the temperature expansion coefficient of quartz glass (× 10 −6 ppm / ° C.).

(7)湿度膨張係数(αh)
得られたフィルムを、フィルムの主配向方向が測定方向となるように長さ15mm、幅5mmに切り出し、BRUKER製TMA4000SAにセットし、30℃の窒素雰囲気下で、湿度20%RHと湿度80%RHにおけるそれぞれのサンプルの長さを測定し、次式にて湿度膨張係数を算出する。なお、測定方向が切り出した試料の長手方向であり、5回測定し、その平均値をαh(ppm/%RH)とした。
αh=(L80−L20)/(L80×△H)
ここで、上記式中のL20は20%RHのときのサンプル長(mm)、L80は80%
RHのときのサンプル長(mm)、△H:60(=80−20)%RHである。
(7) Humidity expansion coefficient (αh)
The obtained film was cut into a length of 15 mm and a width of 5 mm so that the main orientation direction of the film was the measurement direction, set in TMA4000SA made by BRUKER, and in a nitrogen atmosphere at 30 ° C., humidity 20% RH and humidity 80%. The length of each sample in RH is measured, and a humidity expansion coefficient is calculated by the following equation. In addition, the measurement direction is the longitudinal direction of the cut out sample, the measurement was performed 5 times, and the average value was αh (ppm /% RH).
αh = (L 80 −L 20 ) / (L 80 × ΔH)
Here, L 20 in the above formula is a sample length (mm) at 20% RH, and L 80 is 80%.
Sample length at RH (mm), ΔH: 60 (= 80-20)% RH.

(8)フィルム伸び
得られたフィルムを、フィルムの製膜方向および幅方向がそれぞれ測定方向となるように長さ20mm、幅4mmに切り出し、SII製EXSTAR6000にセットし、窒素雰囲気下(0%RH)、30℃で保持した後、2℃/minで150℃まで昇温して、各温度でのサンプル長を測定し、30℃で保持したときのフィルム長に対し、110℃においてどの程度伸張したかを計算した。
(8) Film elongation The obtained film was cut into a length of 20 mm and a width of 4 mm so that the film forming direction and the width direction of the film would be the measuring direction, respectively, and set in EXSTAR6000 manufactured by SII, and under a nitrogen atmosphere (0% RH ), Held at 30 ° C., then heated up to 150 ° C. at 2 ° C./min, measured sample length at each temperature, and how much stretched at 110 ° C. relative to film length when held at 30 ° C. Calculated how you did.

(9)寸法安定性
フィルムとしての総合的な寸法安定性を評価するために、上記記載の(4)、(6)、(7)、(8)の測定値に対して、以下のイ〜ニの基準で評価した。
イ.主配向方の105℃における熱収縮:1%を超えるか、0%未満のとき×、0.9%以上1.0%以下であれば△、0.8%以上0.9%未満であれば○、0%以上0.8%未満で◎
ロ.主配向方向の温度膨張係数:−5〜−1ppm/℃のとき◎、−7〜+5ppm/℃のとき○、−10〜−10ppm/℃のとき△、―10ppm/℃未満もしくは10ppm/℃を超えるとき×
ハ.主配向方向の湿度膨張係数:7ppm/%RH以下のとき◎、7.3ppm/%RH以下のとき○、7.5ppm/%RH以下のとき△、7.5ppm/%RHを超えるとき×
ニ.110℃伸び:製膜方向(MD)と幅方向(TD)ともに、0.8%以下を◎、MDとTDがともに1.0%以下で、両者の合計が1.5%以下を○、MDとTDがともに1.5%以下で、両者の合計が2.0%を超えないものを△、MDとTDのいずれかでも1.5%を超えるか、両者の合計が2.0%を超えるものを×とした。
そして、◎が2つ以上で、残りが○のものをA、◎が1つと○が3つのものをB、×がなく△があるものをC、×が一つでもあるものをDとした。上記判定がAのものは、磁気記録テープとするときの加工性に優れ、磁気記録テープとしたときの温度や湿度変化に対する寸法安定性に優れるものであった。一方、上記判定がBやCのものは、上記判定Aのものより若干の劣るものの、磁気記録テープとして使用することが可能なものであった。しかし、上記判定がDのものは、磁気テープとして使用するには加工性や寸法安定性の点で問題があるものであった。
(9) Dimensional stability In order to evaluate the overall dimensional stability as a film, the following (i) to (4), (6), (7) and (8) measured values described above are used. Evaluation was made according to the criteria of D.
A. Thermal shrinkage at 105 ° C. in the main orientation: over 1% or less than 0% x, 0.9% to 1.0%, Δ, 0.8% to less than 0.9% ○, 0% or more and less than 0.8% ◎
B. Temperature expansion coefficient in the main orientation direction: と き when -5 to -1 ppm / ° C, ○ when -7 to +5 ppm / ° C, △ when -10 to -10 ppm / ° C, less than -10 ppm / ° C or 10 ppm / ° C When exceeding ×
C. Humidity expansion coefficient in the main orientation direction: と き when 7 ppm /% RH or less, と き when 7.3 ppm /% RH or less, △ when 7.5 ppm /% RH or less, and when exceeding 7.5 ppm /% RH ×
D. 110 ° C. elongation: ◎ 0.8% or less in both film forming direction (MD) and width direction (TD), MD and TD are both 1.0% or less, and the total of both is 1.5% or less. MD and TD are both 1.5% or less, and the total of both does not exceed 2.0%, either MD or TD exceeds 1.5%, or the total of both is 2.0% A value exceeding x was taken as x.
And ◎ is 2 or more, the remainder is A, A is 1 and ◎ is 3 and B is B, there is no x and there is C, and x is at least 1 . Those having the above judgment of A were excellent in workability when used as a magnetic recording tape, and excellent in dimensional stability against changes in temperature and humidity when used as a magnetic recording tape. On the other hand, those having the above judgments of B and C were slightly inferior to those of the above judgment A, but could be used as a magnetic recording tape. However, when the judgment is D, there are problems in terms of workability and dimensional stability when used as a magnetic tape.

[実施例1]
ジカルボン酸成分として2,6−ナフタレンジカルボン酸ジメチルとジオール成分としてエチレングリコールとをチタンテトラブトキシドの存在下でエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.62dl/gのポリエチレン−2,6−ナフタレンジカルボキシレートを得て、これを芳香族ポリエステルA1とした。この芳香族ポリエステルA1の融点は265℃、ガラス転移温度は121℃であった。
ジカルボン酸成分として2,6−ナフタレンジカルボン酸ジメチルとジオール成分として4,4’−ジフェニレンジエチレングリコールとをチタンテトラブトキシドの存在下でエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度1.2dl/gのポリ−4,4’−ジフェニレンジエトキシ−2,6−ナフタレンジカルボキシレートを得て、これを芳香族ポリエステルB1とした。この芳香族ポリエステルB1の融点は250℃、ガラス転移温度は114℃であった。
このようにして得られた芳香族ポリエステルA1と芳香族ポリエステルB1を、重量比90:10でブレンドし、樹脂組成物を得た。その後、該樹脂組成物を、押出機に供給して300℃でダイから溶融状態で回転中の温度60℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が135℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率3.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率5.0倍で延伸し、その後200℃で3秒間熱固定処理を行い、厚さ5μmの二軸延伸フィルムを得た。
得られた樹脂組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Example 1]
A transesterification reaction of dimethyl 2,6-naphthalenedicarboxylate as a dicarboxylic acid component and ethylene glycol as a diol component in the presence of titanium tetrabutoxide, followed by a polycondensation reaction, gave an intrinsic viscosity of 0.62 dl / g Of polyethylene-2,6-naphthalenedicarboxylate was obtained, and this was designated as aromatic polyester A1. The aromatic polyester A1 had a melting point of 265 ° C. and a glass transition temperature of 121 ° C.
A transesterification reaction between dimethyl 2,6-naphthalenedicarboxylate as the dicarboxylic acid component and 4,4′-diphenylenediethylene glycol as the diol component in the presence of titanium tetrabutoxide is carried out, followed by a polycondensation reaction. Poly-4,4′-diphenylenediethoxy-2,6-naphthalenedicarboxylate having a viscosity of 1.2 dl / g was obtained, and this was designated as aromatic polyester B1. The aromatic polyester B1 had a melting point of 250 ° C. and a glass transition temperature of 114 ° C.
The thus obtained aromatic polyester A1 and aromatic polyester B1 were blended at a weight ratio of 90:10 to obtain a resin composition. Thereafter, the resin composition was supplied to an extruder and extruded from a die at 300 ° C. in a molten state onto a cooling drum having a temperature of 60 ° C. and rotating into a sheet to obtain an unstretched film. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 135 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 3.0. Then, this uniaxially stretched film is guided to a stenter, stretched at 140 ° C. in the transverse direction (width direction) at a stretch ratio of 5.0 times, and then heat-fixed at 200 ° C. for 3 seconds, and biaxially stretched with a thickness of 5 μm. A film was obtained.
Table 1 shows the properties of the obtained resin composition and the biaxially oriented polyester film.

[実施例2]
実施例1で作成した芳香族ポリエステルA1と芳香族ポリエステルB1との重量比を85:15に変更した樹脂組成物を、押出機に供給して300℃でダイから溶融状態で回転中の温度60℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が135℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率3.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率5.0倍で延伸し、その後200℃で3秒間熱固定処理を行い、厚さ5μmの二軸延伸フィルムを得た。
得られた樹脂組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Example 2]
A resin composition in which the weight ratio of the aromatic polyester A1 and the aromatic polyester B1 prepared in Example 1 was changed to 85:15 was supplied to an extruder, and the temperature during rotation in a molten state from a die at 300 ° C. was 60. An unstretched film was extruded in a sheet form on a cooling drum at 0 ° C. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 135 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 3.0. Then, this uniaxially stretched film is guided to a stenter, stretched at 140 ° C. in the transverse direction (width direction) at a stretch ratio of 5.0 times, and then heat-fixed at 200 ° C. for 3 seconds, and biaxially stretched with a thickness of 5 μm. A film was obtained.
Table 1 shows the properties of the obtained resin composition and the biaxially oriented polyester film.

[実施例3]
実施例1で作成した芳香族ポリエステルA1と芳香族ポリエステルB1との重量比を80:20に変更した樹脂組成物を、押出機に供給して300℃でダイから溶融状態で回転中の温度60℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が135℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率3.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率5.0倍で延伸し、その後200℃で3秒間熱固定処理を行い、厚さ5μmの二軸延伸フィルムを得た。
得られた樹脂組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Example 3]
A resin composition in which the weight ratio of the aromatic polyester A1 and the aromatic polyester B1 prepared in Example 1 was changed to 80:20 was supplied to an extruder, and the temperature during rotation in a molten state from a die at 300 ° C. was 60. An unstretched film was extruded on a cooling drum at 0 ° C. in a sheet form. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 135 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 3.0. Then, this uniaxially stretched film is guided to a stenter, stretched at 140 ° C. in the transverse direction (width direction) at a stretch ratio of 5.0 times, and then heat-fixed at 200 ° C. for 3 seconds, and biaxially stretched with a thickness of 5 μm. A film was obtained.
Table 1 shows the properties of the obtained resin composition and the biaxially oriented polyester film.

[実施例4]
実施例1で作成した芳香族ポリエステルA1と芳香族ポリエステルB1との重量比を70:30に変更した樹脂組成物を、押出機に供給して300℃でダイから溶融状態で回転中の温度60℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が135℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率3.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率5.0倍で延伸し、その後200℃で3秒間熱固定処理を行い、厚さ5μmの二軸延伸フィルムを得た。
得られた樹脂組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Example 4]
A resin composition in which the weight ratio of the aromatic polyester A1 and the aromatic polyester B1 prepared in Example 1 was changed to 70:30 was supplied to an extruder, and the temperature during rotation in a molten state from a die at 300 ° C. was 60. An unstretched film was extruded in a sheet form on a cooling drum at 0 ° C. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 135 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 3.0. Then, this uniaxially stretched film is guided to a stenter, stretched at 140 ° C. in the transverse direction (width direction) at a stretch ratio of 5.0 times, and then heat-fixed at 200 ° C. for 3 seconds, and biaxially stretched with a thickness of 5 μm. A film was obtained.
Table 1 shows the properties of the obtained resin composition and the biaxially oriented polyester film.

[実施例5]
実施例1で作成した芳香族ポリエステルA1と芳香族ポリエステルB1との重量比を60:40に変更した樹脂組成物を、押出機に供給して300℃でダイから溶融状態で回転中の温度60℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が135℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率3.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率5.0倍で延伸し、その後200℃で3秒間熱固定処理を行い、厚さ5μmの二軸延伸フィルムを得た。
得られた樹脂組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Example 5]
The resin composition in which the weight ratio of the aromatic polyester A1 and the aromatic polyester B1 prepared in Example 1 was changed to 60:40 was supplied to an extruder, and the temperature during rotation in a molten state from a die at 300 ° C. 60 An unstretched film was extruded on a cooling drum at 0 ° C. in a sheet form. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 135 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 3.0. Then, this uniaxially stretched film is guided to a stenter, stretched at 140 ° C. in the transverse direction (width direction) at a stretch ratio of 5.0 times, and then heat-fixed at 200 ° C. for 3 seconds, and biaxially stretched with a thickness of 5 μm. A film was obtained.
Table 1 shows the properties of the obtained resin composition and the biaxially oriented polyester film.

[実施例6]
ジカルボン酸成分としてテレフタル酸ジメチルとジオール成分としてエチレングリコールとをチタンテトラブトキシドの存在下でエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.62dl/gのポリエチレンテレフタレートを得て、これを芳香族ポリエステルA2とした。この芳香族ポリエステルA2の融点は254℃、ガラス転移温度は76℃であった。
ジカルボン酸成分としてテレフタル酸ジメチルとジオール成分として4,4’−ジフェニレンジエチレングリコールとをチタンテトラブトキシドの存在下でエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度1.2dl/gのポリ−4,4’−ジフェニレンジエトキシテレフタレートを得て、これを芳香族ポリエステルB2とした。この芳香族ポリエステルB2の融点は235℃、ガラス転移温度は90℃であった。
このようにして得られた芳香族ポリエステルA2と芳香族ポリエステルB2を、重量比92.5:7.5でブレンドし、樹脂組成物を得た。その後、該樹脂組成物を、押出機に供給して280℃でダイから溶融状態で回転中の温度30℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が105℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率3.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、115℃で横方向(幅方向)に延伸倍率5.0倍で延伸し、その後200℃で3秒間熱固定処理後、170℃で幅方向に0.5%弛緩処理を行い、厚さ5μmの二軸延伸フィルムを得た。
得られた樹脂組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Example 6]
Transesterification of dimethyl terephthalate as the dicarboxylic acid component and ethylene glycol as the diol component in the presence of titanium tetrabutoxide followed by a polycondensation reaction yields polyethylene terephthalate with an intrinsic viscosity of 0.62 dl / g. This was designated as aromatic polyester A2. The aromatic polyester A2 had a melting point of 254 ° C. and a glass transition temperature of 76 ° C.
Transesterification of dimethyl terephthalate as the dicarboxylic acid component and 4,4'-diphenylenediethylene glycol as the diol component in the presence of titanium tetrabutoxide, followed by a polycondensation reaction, gave an intrinsic viscosity of 1.2 dl / g of poly-4,4′-diphenylenediethoxyterephthalate was obtained, and this was designated as aromatic polyester B2. The aromatic polyester B2 had a melting point of 235 ° C. and a glass transition temperature of 90 ° C.
Thus obtained aromatic polyester A2 and aromatic polyester B2 were blended at a weight ratio of 92.5: 7.5 to obtain a resin composition. Thereafter, the resin composition was supplied to an extruder and extruded from a die at 280 ° C. in a molten state onto a cooling drum having a temperature of 30 ° C. and rotating into a sheet to obtain an unstretched film. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 105 ° C., and stretching in the longitudinal direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 3.0. Then, this uniaxially stretched film is guided to a stenter, stretched at 115 ° C. in the transverse direction (width direction) at a draw ratio of 5.0 times, and then heat-fixed at 200 ° C. for 3 seconds and then at 170 ° C. in the width direction. A 5% relaxation treatment was performed to obtain a biaxially stretched film having a thickness of 5 μm.
Table 1 shows the properties of the obtained resin composition and the biaxially oriented polyester film.

[比較例1]
実施例1で作成した芳香族ポリエステルA1を、押出機に供給して300℃でダイから溶融状態で回転中の温度60℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が135℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率3.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率5.0倍で延伸し、その後200℃で3秒間熱固定処理を行い、厚さ5μmの二軸延伸フィルムを得た。
得られた樹脂組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 1]
The aromatic polyester A1 prepared in Example 1 was supplied to an extruder and extruded from a die onto a cooling drum having a rotating temperature of 60 ° C. in a molten state at 300 ° C. to form an unstretched film. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 135 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 3.0. Then, this uniaxially stretched film is guided to a stenter, stretched at 140 ° C. in the transverse direction (width direction) at a stretch ratio of 5.0 times, and then heat-fixed at 200 ° C. for 3 seconds, and biaxially stretched with a thickness of 5 μm. A film was obtained.
Table 1 shows the properties of the obtained resin composition and the biaxially oriented polyester film.

[比較例2]
実施例6で作成した芳香族ポリエステルA2を、押出機に供給して280℃でダイから溶融状態で回転中の温度30℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が90℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率3.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、100℃で横方向(幅方向)に延伸倍率5.0倍で延伸し、その後200℃で3秒間熱固定処理を行い、厚さ5μmの二軸延伸フィルムを得た。
得られた樹脂組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 2]
The aromatic polyester A2 prepared in Example 6 was supplied to an extruder and extruded from a die at 280 ° C. in a molten state onto a cooling drum having a temperature of 30 ° C. and rotating into a sheet to obtain an unstretched film. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated to 90 ° C. with an IR heater from above, and stretching in the longitudinal direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 3.0. Then, this uniaxially stretched film is guided to a stenter, stretched at 100 ° C. in the transverse direction (width direction) at a stretch ratio of 5.0 times, then heat-set at 200 ° C. for 3 seconds, and biaxially stretched with a thickness of 5 μm. A film was obtained.
Table 1 shows the properties of the obtained resin composition and the biaxially oriented polyester film.

[比較例3]
実施例1で作成した芳香族ポリエステルB1を、押出機に供給して280℃でダイから溶融状態で回転中の温度60℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、縦方向(製膜方向)をせず、ステンターに導き、130℃で横方向(幅方向)に延伸倍率5.5倍で延伸し、その後200℃で3秒間熱固定処理を行い、厚さ5μmの二軸延伸フィルムを得た。
得られた樹脂組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 3]
The aromatic polyester B1 prepared in Example 1 was supplied to an extruder and extruded from a die at 280 ° C. in a molten state onto a cooling drum having a temperature of 60 ° C. and rotating into a sheet to obtain an unstretched film. Then, without conducting the longitudinal direction (film forming direction), the film was guided to a stenter, stretched at a stretching ratio of 5.5 times in the transverse direction (width direction) at 130 ° C., and then heat-fixed at 200 ° C. for 3 seconds to obtain a thickness. A biaxially stretched film having a thickness of 5 μm was obtained.
Table 1 shows the properties of the obtained resin composition and the biaxially oriented polyester film.

[比較例4]
実施例6で作成した芳香族ポリエステルA2と実施例1で作成した芳香族ポリエステルB1を、重量比90:10になるようにブレンドし、樹脂組成物を得た。このようにして得られた樹脂組成物を、押出機に供給して280℃でダイから溶融状態で回転中の温度30℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が120℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率3.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、125℃で横方向(幅方向)に延伸倍率5.0倍で延伸し、その後200℃で3秒間熱固定処理を行い、厚さ5μmの二軸延伸フィルムを得た。
得られた樹脂組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 4]
The aromatic polyester A2 prepared in Example 6 and the aromatic polyester B1 prepared in Example 1 were blended in a weight ratio of 90:10 to obtain a resin composition. The resin composition thus obtained was supplied to an extruder and extruded from a die at 280 ° C. in a molten state onto a cooling drum having a rotating temperature of 30 ° C. to form an unstretched film. Then, between the two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 120 ° C., and stretching in the longitudinal direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 3.0. And this uniaxially stretched film is led to a stenter, stretched at 125 ° C. in the transverse direction (width direction) at a stretch ratio of 5.0 times, then heat-set at 200 ° C. for 3 seconds, and biaxially stretched with a thickness of 5 μm. A film was obtained.
Table 1 shows the properties of the obtained resin composition and the biaxially oriented polyester film.

[比較例5]
実施例6で作成した芳香族ポリエステルA2と実施例1で作成した芳香族ポリエステルB1を、重量比80:20になるようにブレンドし、樹脂組成物を得た。このようにして得られた樹脂組成物を、押出機に供給して280℃でダイから溶融状態で回転中の温度30℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が120℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率3.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、125℃で横方向(幅方向)に延伸倍率5.0倍で延伸し、その後200℃で3秒間熱固定処理を行い、厚さ5μmの二軸延伸フィルムを得た。
得られた樹脂組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 5]
The aromatic polyester A2 prepared in Example 6 and the aromatic polyester B1 prepared in Example 1 were blended in a weight ratio of 80:20 to obtain a resin composition. The resin composition thus obtained was supplied to an extruder and extruded from a die at 280 ° C. in a molten state onto a cooling drum having a rotating temperature of 30 ° C. to form an unstretched film. Then, between the two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 120 ° C., and stretching in the longitudinal direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 3.0. And this uniaxially stretched film is led to a stenter, stretched at 125 ° C. in the transverse direction (width direction) at a stretch ratio of 5.0 times, then heat-set at 200 ° C. for 3 seconds, and biaxially stretched with a thickness of 5 μm. A film was obtained.
Table 1 shows the properties of the obtained resin composition and the biaxially oriented polyester film.

[比較例6]
比較例2で作成した芳香族ポリエステルA2と芳香族ポリエステルB1を、重量比70:30になるようにブレンドし、樹脂組成物を得た。このようにして得られた樹脂組成物を、押出機に供給して280℃でダイから溶融状態で回転中の温度30℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が120℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率3.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、125℃で横方向(幅方向)に延伸倍率5.0倍で延伸し、その後200℃で3秒間熱固定処理を行い、厚さ5μmの二軸延伸フィルムを得た。
得られ樹脂組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 6]
Aromatic polyester A2 and aromatic polyester B1 prepared in Comparative Example 2 were blended in a weight ratio of 70:30 to obtain a resin composition. The resin composition thus obtained was supplied to an extruder and extruded from a die at 280 ° C. in a molten state onto a cooling drum having a rotating temperature of 30 ° C. to form an unstretched film. Then, between the two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 120 ° C., and stretching in the longitudinal direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 3.0. And this uniaxially stretched film is led to a stenter, stretched at 125 ° C. in the transverse direction (width direction) at a stretch ratio of 5.0 times, then heat-set at 200 ° C. for 3 seconds, and biaxially stretched with a thickness of 5 μm. A film was obtained.
Table 1 shows the properties of the obtained resin composition and the biaxially oriented polyester film.

[比較例7]
実施例1で得られた芳香族ポリエステルA1と実施例6で作成した芳香族ポリエステルB2を、重量比90:10でブレンドし、樹脂組成物を得た。その後、該樹脂組成物を、押出機に供給して300℃でダイから溶融状態で回転中の温度60℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が135℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率3.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率5.0倍で延伸し、その後200℃で3秒間熱固定処理を行い、厚さ5μmの二軸延伸フィルムを得た。
得られた樹脂組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 7]
The aromatic polyester A1 obtained in Example 1 and the aromatic polyester B2 prepared in Example 6 were blended at a weight ratio of 90:10 to obtain a resin composition. Thereafter, the resin composition was supplied to an extruder and extruded from a die at 300 ° C. in a molten state onto a cooling drum having a temperature of 60 ° C. and rotating into a sheet to obtain an unstretched film. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 135 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 3.0. Then, this uniaxially stretched film is guided to a stenter, stretched at 140 ° C. in the transverse direction (width direction) at a stretch ratio of 5.0 times, and then heat-fixed at 200 ° C. for 3 seconds, and biaxially stretched with a thickness of 5 μm. A film was obtained.
Table 1 shows the properties of the obtained resin composition and the biaxially oriented polyester film.

[比較例8]
ジカルボン酸成分として2,6−ナフタレンジカルボン酸ジメチルとジオール成分としてエチレングリコールと4,4’−ジフェニレンジエチレングリコールをチタンテトラブトキシドの存在下でエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.62dl/gで、かつ4,4’−ジフェニレンジエチレングリコール成分が10モル%の4,4’−ジフェニレンジエチレングリコール共重合ポリエチレン−2,6−ナフタレート(芳香族ポリエステルA3)を得た。この4,4’−ジフェニレンジエチレングリコール共重合ポリエチレン−2,6−ナフタレートの融点は264℃、ガラス転移温度は117℃であった。
こうして得られた芳香族ポリエステルA3を、押出機に供給して300℃でダイから溶融状態で回転中の温度60℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が135℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率3.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率5.0倍で延伸し、その後200℃で3秒間熱固定処理を行い、厚さ5μmの二軸延伸フィルムを得た。
得られた樹脂組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 8]
Transesterification of dimethyl 2,6-naphthalenedicarboxylate as the dicarboxylic acid component and ethylene glycol and 4,4'-diphenylenediethylene glycol as the diol component in the presence of titanium tetrabutoxide, followed by a polycondensation reaction 4,4′-diphenylenediethylene glycol copolymer polyethylene-2,6-naphthalate (aromatic polyester A3) having an intrinsic viscosity of 0.62 dl / g and 10 mol% of 4,4′-diphenylenediethylene glycol component It was. This 4,4′-diphenylenediethylene glycol copolymer polyethylene-2,6-naphthalate had a melting point of 264 ° C. and a glass transition temperature of 117 ° C.
The aromatic polyester A3 thus obtained was supplied to an extruder and extruded from a die at 300 ° C. in a molten state onto a cooling drum at a temperature of 60 ° C. while rotating in the form of a sheet to obtain an unstretched film. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 135 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 3.0. Then, this uniaxially stretched film is guided to a stenter, stretched at 140 ° C. in the transverse direction (width direction) at a stretch ratio of 5.0 times, and then heat-fixed at 200 ° C. for 3 seconds, and biaxially stretched with a thickness of 5 μm. A film was obtained.
Table 1 shows the properties of the obtained resin composition and the biaxially oriented polyester film.

[比較例9]
ジカルボン酸成分としてテレフタル酸ジメチルとジオール成分としてエチレングリコールと4,4’−ジフェニレンジエチレングリコールをチタンテトラブトキシドの存在下でエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.62dl/gでかつ、4,4’−ジフェニレンジエチレングリコール成分が10モル%の4,4’−ジフェニレンジエチレングリコール共重合ポリエチレンテレフタレート(芳香族ポリエステルA4)を得た。この4,4’−ジフェニレンジエチレングリコール共重合ポリエチレンテレフタレートの融点は251℃、ガラス転移温度は76℃であった。
こうして得られた芳香族ポリエステルA4を、押出機に供給して280℃でダイから溶融状態で回転中の温度30℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が90℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率3.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、100℃で横方向(幅方向)に延伸倍率5.0倍で延伸し、その後200℃で3秒間熱固定処理を行い、厚さ5μmの二軸延伸フィルムを得た。
得られた樹脂組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 9]
A transesterification reaction between dimethyl terephthalate as the dicarboxylic acid component and ethylene glycol and 4,4′-diphenylenediethylene glycol as the diol component in the presence of titanium tetrabutoxide is carried out, followed by a polycondensation reaction. A 4,4′-diphenylenediethylene glycol copolymer polyethylene terephthalate (aromatic polyester A4) was obtained at 62 dl / g and 10 mol% of the 4,4′-diphenylenediethylene glycol component. This 4,4′-diphenylenediethylene glycol copolymer polyethylene terephthalate had a melting point of 251 ° C. and a glass transition temperature of 76 ° C.
The aromatic polyester A4 thus obtained was supplied to an extruder and extruded from a die at 280 ° C. in a molten state onto a cooling drum having a rotating temperature of 30 ° C. to form an unstretched film. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated to 90 ° C. with an IR heater from above, and stretching in the longitudinal direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 3.0. Then, this uniaxially stretched film is guided to a stenter, stretched at 100 ° C. in the transverse direction (width direction) at a stretch ratio of 5.0 times, then heat-set at 200 ° C. for 3 seconds, and biaxially stretched with a thickness of 5 μm. A film was obtained.
Table 1 shows the properties of the obtained resin composition and the biaxially oriented polyester film.

Figure 0005735370
Figure 0005735370

表1中の、MDはフィルムの製膜方向、TDはフィルムの幅方向を示す。   In Table 1, MD indicates the film forming direction, and TD indicates the width direction of the film.

本発明の樹脂組成物から得られる配向ポリエステルフィルムは、従来のポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレートでは達成できなかったような優れた寸法安定性を有し、かつ高温時のフィルムの伸びが小さく、得られるフィルムの表面の平坦性にも優れるという特徴を有するため、寸法安定性が求められる用途、特に高密度磁気記録媒体のベースフィルムとして、好適に使用することができる。   The oriented polyester film obtained from the resin composition of the present invention has excellent dimensional stability that could not be achieved with conventional polyethylene terephthalate and polyethylene-2,6-naphthalate, and the elongation of the film at high temperature is high. Since it is small and has an excellent surface flatness, it can be suitably used as a base film for applications requiring dimensional stability, particularly for high-density magnetic recording media.

Claims (5)

主たる繰り返し単位が下記式(1)で示される芳香族ポリエステルAと、主たる繰り返し単位が下記式(2)で表される芳香族ポリエステルBとを重量比50:50〜95:5で含有し、下記式(1)と(2)におけるXが1,4−フェニレン基または2,6−ナフタレンジイル基のいずれかであることを特徴とする樹脂組成物。
Figure 0005735370
(上記構造式(1)および(2)中の、Xは1,4−フェニレン基または2,6−ナフタレンジイル基であり、Rはエチレン基、Rは炭素数2〜10のアルキレン基もしくは炭素数8〜10のシクロアルキレン基を示す。)
The main repeating unit contains an aromatic polyester A represented by the following formula (1) and an aromatic polyester B whose main repeating unit is represented by the following formula (2) in a weight ratio of 50:50 to 95: 5, X in the following formulas (1) and (2) is either a 1,4-phenylene group or a 2,6-naphthalenediyl group.
Figure 0005735370
(In the above structural formulas (1) and (2), X is a 1,4-phenylene group or a 2,6-naphthalenediyl group, R 1 is an ethylene group, and R 2 is an alkylene group having 2 to 10 carbon atoms. Or a cycloalkylene group having 8 to 10 carbon atoms.)
式(2)中のRがエチレン基である請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein R 2 in the formula (2) is an ethylene group. 請求項1または2のいずれかに記載の樹脂組成物からなる配向ポリエステルフィルム。   An oriented polyester film comprising the resin composition according to claim 1. フィルムの面方向における屈折率の最も高い方向(主配向方向)における105℃熱収縮率が0%以上1%以下である請求項3記載の配向ポリエステルフィルム。   The oriented polyester film according to claim 3, wherein the thermal shrinkage at 105 ° C. in the direction with the highest refractive index in the plane direction of the film (main orientation direction) is 0% or more and 1% or less. 配向ポリエステルフィルムが、磁気記録媒体のベースフィルムに用いられる請求項3または4のいずれかに記載の配向ポリエステルフィルム。   The oriented polyester film according to claim 3, wherein the oriented polyester film is used as a base film of a magnetic recording medium.
JP2011161007A 2011-07-22 2011-07-22 Aromatic polyester resin composition and oriented polyester film Active JP5735370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011161007A JP5735370B2 (en) 2011-07-22 2011-07-22 Aromatic polyester resin composition and oriented polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011161007A JP5735370B2 (en) 2011-07-22 2011-07-22 Aromatic polyester resin composition and oriented polyester film

Publications (2)

Publication Number Publication Date
JP2013023622A JP2013023622A (en) 2013-02-04
JP5735370B2 true JP5735370B2 (en) 2015-06-17

Family

ID=47782334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011161007A Active JP5735370B2 (en) 2011-07-22 2011-07-22 Aromatic polyester resin composition and oriented polyester film

Country Status (1)

Country Link
JP (1) JP5735370B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5788729B2 (en) * 2011-07-22 2015-10-07 帝人デュポンフィルム株式会社 Oriented polyester film
EP3747926A4 (en) 2018-01-31 2021-11-17 Toyobo Co., Ltd. Polyester composition, polyester film, and magnetic recording medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032669A (en) * 1990-05-01 1991-07-16 University Of Massachusetts At Amherst Liquid crystalline polyesters formed by reaction of bis(hydroxyalkoxy) biphenyls with terephthaloyl chloride
JPH07238154A (en) * 1994-03-02 1995-09-12 Kao Corp Polyester copolymer resin and hollow vessel made therefrom
JPH10204166A (en) * 1997-01-17 1998-08-04 Mitsui Chem Inc Polyethylene naphthalate copolymer and its production
JP2000204315A (en) * 1999-01-08 2000-07-25 Unitika Ltd Copolyester resin for forming coating film, and coating liquid obtained therefrom

Also Published As

Publication number Publication date
JP2013023622A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
KR101370218B1 (en) Polyester, composition thereof and film thereof
JP2010031174A (en) Polyester resin composition and biaxially oriented film using the same
JP5735370B2 (en) Aromatic polyester resin composition and oriented polyester film
JP2010031138A (en) Biaxially oriented film
JP5710937B2 (en) Biaxially oriented polyester film
JP5373313B2 (en) Biaxially oriented laminated polyester film
JP5271124B2 (en) Biaxially oriented multilayer laminated polyester film
JP5710938B2 (en) Biaxially oriented polyester film
JP5788729B2 (en) Oriented polyester film
JP5492569B2 (en) Polyester resin, process for producing the same, and biaxially oriented polyester film using the same
JP2010031116A (en) Biaxially oriented polyester film and magnetic recording medium using it
JP2010031139A (en) Copolyester resin composition, method for manufacturing the same, and biaxially oriented film comprising the same
JP5214903B2 (en) Biaxially oriented polyester film
JP5209219B2 (en) Biaxially oriented polyester film
JP5074298B2 (en) Copolyethylene-2,6-naphthalenedicarboxylate and biaxially oriented film
JP5199611B2 (en) Polyester composition
JP5209218B2 (en) Biaxially oriented polyester film
JP5265902B2 (en) Polyester composition
JP5346881B2 (en) Copolymerized aromatic polyester and biaxially oriented polyester film
JPH115855A (en) Polyester film and its production
JP5718717B2 (en) Biaxially oriented film
JP5694865B2 (en) Polyester composition, method for producing the same, and biaxially oriented polyester film
JP2009149808A (en) Polyester resin composition, and biaxially oriented film using the same
JP5623823B2 (en) Oriented film
JP2013129079A (en) Laminated film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150416

R150 Certificate of patent or registration of utility model

Ref document number: 5735370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250