JP2009149808A - Polyester resin composition, and biaxially oriented film using the same - Google Patents

Polyester resin composition, and biaxially oriented film using the same Download PDF

Info

Publication number
JP2009149808A
JP2009149808A JP2007330146A JP2007330146A JP2009149808A JP 2009149808 A JP2009149808 A JP 2009149808A JP 2007330146 A JP2007330146 A JP 2007330146A JP 2007330146 A JP2007330146 A JP 2007330146A JP 2009149808 A JP2009149808 A JP 2009149808A
Authority
JP
Japan
Prior art keywords
film
acid component
polyester
particles
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007330146A
Other languages
Japanese (ja)
Inventor
Tatsuya Ogawa
達也 小川
Tomoyuki Kishino
友行 岸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2007330146A priority Critical patent/JP2009149808A/en
Publication of JP2009149808A publication Critical patent/JP2009149808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester resin composition giving such a film as to be slight in voids developed around particles included therein, even if highly oriented in order to bring the film to low coefficients of thermal and humidity expansion. <P>SOLUTION: The polyester resin composition includes a polyester composed of an acid component and a glycol component and particles 0.1-5 μm in areal circle-equivalent average size with the ratio of its major axis to minor axis being 1.1-3. In this composition, the acid component consists of a 6,6'-(alkylenedioxy)di-2-naphthoic acid component and a phenyljiene-or naphthalenediyl-dicarboxylic acid component, with the proportion of the former being within the range of 5-80 mol% based on the number of moles of the total acid component, and the glycol component consists of a 2-4C alkylene glycol component. A biaxially oriented film using the above polyester resin composition is also provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸を共重合したポリエステル樹脂組成物およびそれを用いたフィルムに関する。   The present invention relates to a polyester resin composition copolymerized with 6,6 '-(alkylenedioxy) di-2-naphthoic acid and a film using the same.

ポリエチレンテレフタレートやポリエチレン−2,6−ナフタレートに代表される芳香族ポリエステルは優れた機械的特性、寸法安定性および耐熱性を有することから、フィルムなどに幅広く使用されている。特にポリエチレン−2,6−ナフタレートは、ポリエチレンテレフタレートよりも優れた機械的特性、寸法安定性および耐熱性を有することから、それらの要求の厳しい用途、例えば高密度磁気記録媒体などのベースフィルムなどに使用されている。しかしながら、近年の高密度磁気記録媒体などでの寸法安定性の要求はますます高くなってきており、さらなる特性、温度膨張係数と湿度膨張係数の低減が求められている。   Aromatic polyesters typified by polyethylene terephthalate and polyethylene-2,6-naphthalate have excellent mechanical properties, dimensional stability and heat resistance, and thus are widely used for films and the like. In particular, polyethylene-2,6-naphthalate has mechanical properties, dimensional stability, and heat resistance superior to those of polyethylene terephthalate, so that it is used in demanding applications such as a base film for high-density magnetic recording media. in use. However, the demand for dimensional stability in high-density magnetic recording media and the like in recent years is increasing, and further characteristics, reduction of temperature expansion coefficient and humidity expansion coefficient are required.

ところで、湿度膨張係数と温度膨張係数はともにヤング率と非常に密接な関係にあり、ヤング率が高いほど一般的に低くなる。しかしながら、ヤング率を高めるにはより高倍率でかつより低温で延伸を行なう必要があり、例えばフィルムに取扱い性を具備させるために含有させた粒子とポリマーの界面に剥離が生じ、ボイドと呼ばれる空隙が生じる。この傾向は、ポリマーとの界面に係る応力のバラツキが大きくなりやすい異形の粒子で、発生しやすい。
そのため、ヤング率はいくらでも高められるというわけではなく、同じヤング率ならより低い温度や湿度に対する膨張係数をもつフィルムが要求されていた。
By the way, both the humidity expansion coefficient and the temperature expansion coefficient are very closely related to the Young's modulus, and generally lower as the Young's modulus is higher. However, in order to increase the Young's modulus, it is necessary to perform stretching at a higher magnification and at a lower temperature. For example, peeling occurs at the interface between the particles and the polymer contained to make the film easy to handle, and voids called voids are generated. Occurs. This tendency is likely to occur with irregularly shaped particles that tend to have large variations in stress at the interface with the polymer.
For this reason, the Young's modulus is not increased as much as possible, and a film having an expansion coefficient with respect to lower temperature and humidity is required for the same Young's modulus.

一方、特許文献1〜4には6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸のエステル化合物であるジエチル−6,6’−(アルキレンジオキシ)ジ−2−ナフトエートから得られるポリアルキレン−6,6’−(アルキレンジオキシ)ジ−2−ナフトエートが提案されている。該公報によると、結晶性で、融点が294℃のポリエチレン−6,6’−(エチレンジオキシ)ジ−2−ナフトエートが具体的に提示されている。   On the other hand, Patent Documents 1 to 4 are obtained from diethyl-6,6 ′-(alkylenedioxy) di-2-naphthoate, which is an ester compound of 6,6 ′-(alkylenedioxy) di-2-naphthoic acid. Polyalkylene-6,6 ′-(alkylenedioxy) di-2-naphthoate has been proposed. According to this publication, polyethylene-6,6 '-(ethylenedioxy) di-2-naphthoate which is crystalline and has a melting point of 294 ° C. is specifically presented.

しかしながら、これら特許文献で提示されたポリアルキレン−6,6’−(アルキレンジオキシ)ジ−2−ナフトエートは、融点が非常に高く、また結晶性も非常に高いことからフィルムなどに製膜しようとすると、溶融状態での流動性に乏しくて押出しが不均一化したり、押出した後延伸しようとしても結晶化が進んで高倍率で延伸すると破断したりするなどの問題があった。また、特許文献3の実施例を見れば、湿度膨張係数は低いものの温度膨張係数が高いという問題もあった。
そのため、ポリエチレンテレフタレートはもちろん、ポリエチレン−2,6−ナフタレートや特許文献3に提示されたようなフィルムでも、近年の磁気記録媒体などにおける寸法安定性の要求に対しては十分ではなく、さらなる特性の向上が求められていた。
However, since polyalkylene-6,6 ′-(alkylenedioxy) di-2-naphthoate presented in these patent documents has a very high melting point and very high crystallinity, it should be formed into a film or the like. Then, there was a problem that the fluidity in the molten state was poor and the extrusion became non-uniform, or even when trying to stretch after extrusion, crystallization progressed and the film would break when stretched at a high magnification. Moreover, when the Example of patent document 3 was seen, there also existed a problem that the temperature expansion coefficient was high although the humidity expansion coefficient was low.
Therefore, polyethylene terephthalate as well as polyethylene-2,6-naphthalate and films such as those disclosed in Patent Document 3 are not sufficient for the demands of dimensional stability in recent magnetic recording media and the like. There was a need for improvement.

特開昭60−135428号公報JP-A-60-135428 特開昭60−221420号公報JP-A-60-212420 特開昭61−145724号公報JP 61-145724 A 特開平6−145323号公報JP-A-6-145323

本発明の目的は、フィルムなどにしたときに優れた寸法安定性を有し、しかも寸法安定性を高めるために高い倍率で延伸しても、含有させた長軸と短軸の長さの比が1.1〜3.0の特定の形状の粒子の周辺に発生するボイドと呼ばれる空隙が小さいポリエステル組成物およびそれを用いた二軸配向フィルムを提供することにある。   The object of the present invention is to have excellent dimensional stability when formed into a film and the like, and even if the film is stretched at a high magnification in order to enhance dimensional stability, the ratio of the length of the major axis to the minor axis contained Is to provide a polyester composition having small voids called voids generated around particles having a specific shape of 1.1 to 3.0, and a biaxially oriented film using the polyester composition.

本発明者は、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を共重合成分として用いたとき、驚くべきことにポリアルキレン−6,6’−(アルキレンジオキシ)ジ−2−ナフトエートとその共重合相手である芳香族ポリエステルの両方の優れた特性を兼備するフィルムが得られるとの知見を得た。そして、従来のポリエチレンテレフタレートやポリエチレン−2,6−ナフタレートに比べ、非常に延伸するときの応力が低く、前述の長軸と短軸の長さの比が1.1〜3.0の特定の形状の粒子を含有させても、同じヤング率のフィルムならよりボイドの小さなフィルムが得られることを見出し、本発明に到達した。   The present inventors surprisingly found that when a 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component is used as a copolymerization component, polyalkylene-6,6 ′-(alkylenedioxy) di- The present inventors have found that a film having excellent characteristics of both 2-naphthoate and the aromatic polyester which is a copolymerization partner thereof can be obtained. And compared with the conventional polyethylene terephthalate and polyethylene-2,6-naphthalate, the stress at the time of extending | stretching is very low, and the ratio of the length of the above-mentioned major axis and minor axis is 1.1-3.0. It was found that a film with smaller voids can be obtained with a film having the same Young's modulus even when particles having a shape are contained, and the present invention has been achieved.

かくして本発明によれば、酸成分が下記構造式(I)および(II)からなり、下記構造式(I)の割合が、全酸成分のモル数を基準として、5〜80モル%の範囲にあること、およびグリコール成分が下記構造式(III)であることを具備するポリエステルと、面積円相当平均径が0.1〜5μmで、かつ長軸と短軸の軸長さの比が1.1〜3である粒子とからなるポリエステル組成物が提供される。   Thus, according to the present invention, the acid component consists of the following structural formulas (I) and (II), and the ratio of the following structural formula (I) is in the range of 5 to 80 mol% based on the number of moles of the total acid component. And the polyester having the glycol component represented by the following structural formula (III), the area circle equivalent average diameter is 0.1 to 5 μm, and the ratio of the major axis to the minor axis length is 1. .1-3 particles are provided.

Figure 2009149808
(上記構造式(I)中のRは炭素数1〜10のアルキレン基を、上記構造式(II)中のRはフェニレン基またはナフタレンジイル基、上記構造式(III)中のRは炭素数2〜4のアルキレン基を示す。)
Figure 2009149808
(R 1 in the structural formula (I) is an alkylene group having 1 to 10 carbon atoms, R 2 in the structural formula (II) is a phenylene group or a naphthalenediyl group, and R 3 in the structural formula (III). Represents an alkylene group having 2 to 4 carbon atoms.)

また、本発明によれば、粒子の含有量が、ポリエステル組成物の重量を基準として、0.01〜10重量%の範囲にあること、粒子が炭酸カルシウム、カオリン、クレー、ケイ酸アルミニウムからなる群より選ばれる少なくとも一種の無機粒子であることの少なくともいずれかを具備するポリエステル組成物も提供される。
さらにまた、本発明によれば、上述の本発明のポリエステル樹脂組成物からなる二軸配向フィルムも提供される。
According to the invention, the content of the particles is in the range of 0.01 to 10% by weight based on the weight of the polyester composition, and the particles are composed of calcium carbonate, kaolin, clay, and aluminum silicate. There is also provided a polyester composition comprising at least one of at least one inorganic particle selected from the group.
Furthermore, according to this invention, the biaxially oriented film which consists of the polyester resin composition of the above-mentioned this invention is also provided.

本発明によれば、ポリアルキレン−6,6’−(アルキレンジオキシ)ジ−2−ナフトエートの優れた湿度膨張係数が小さいという特性を維持しつつ、製膜性を高度に高めることができ、その結果驚くべきことに従来の技術から予測できない優れた温度膨張係数が低いという寸法安定性をも同時に具備するポリエステル組成物が得られ、しかも該ポリエステル組成物は非常に延伸応力が小さい特性を有していることから、二軸配向フィルムにしようとするとき、長軸と短軸の軸長さの比が1.1〜3の粒子を含有させてもその周辺に生じるボイドをも極めて小さくすることができる。   According to the present invention, while maintaining the characteristic that the excellent coefficient of humidity expansion of polyalkylene-6,6 ′-(alkylenedioxy) di-2-naphthoate is small, the film-forming property can be highly enhanced, As a result, a polyester composition having surprisingly low dimensional stability, which has a low temperature expansion coefficient which cannot be predicted from the prior art, can be obtained, and the polyester composition has a characteristic of extremely low stretching stress. Therefore, when trying to make a biaxially oriented film, even if particles having a ratio of the major axis to the minor axis of 1.1 to 3 are contained, voids generated in the periphery thereof are extremely reduced. be able to.

したがって、本発明によれば、湿度と温度による影響も加味した高度の寸法安定性と優れた表面の平坦性が求められる用途、特に高密度磁気記録媒体のベースフィルムに適したフィルムが提供され、そして、本発明のフィルムを用いれば、優れた寸法安定性を有する高密度磁気記録媒体なども提供できる。   Therefore, according to the present invention, there is provided a film suitable for a base film of a high-density magnetic recording medium, particularly for applications that require high dimensional stability and excellent surface flatness in consideration of the influence of humidity and temperature. If the film of the present invention is used, a high-density magnetic recording medium having excellent dimensional stability can be provided.

<ポリエステル組成物>
本発明のポリエステル組成物を形成するポリエステルは、酸成分が前述の構造式(I)と構造式(II)からなり、グリコール成分が前述の構造式(III)からなるものである。
<Polyester composition>
In the polyester forming the polyester composition of the present invention, the acid component consists of the structural formula (I) and the structural formula (II), and the glycol component consists of the structural formula (III).

前述の構造式(I)で示される具体的な酸成分としては、Rの部分が炭素数1〜10のアルキレン基であるものであり、好ましくは6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分、6,6’−(トリメチレンジオキシ)ジ−2−ナフトエ酸成分および6,6’−(ブチレンジオキシ)ジ−2−ナフトエ酸成分などが挙げられ、これらの中でも本発明の効果の点からは、上記一般式(I)におけるR1の炭素数が偶数のものが好ましく、特にRの炭素数が2である6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分が好ましい。 Specific examples of the acid component represented by the structural formula (I) are those in which R 1 is an alkylene group having 1 to 10 carbon atoms, and preferably 6,6 ′-(ethylenedioxy) di -2-naphthoic acid component, 6,6 ′-(trimethylenedioxy) di-2-naphthoic acid component and 6,6 ′-(butyleneoxy) di-2-naphthoic acid component, etc. from the viewpoint of the effect of the present invention is preferable among them, those carbon atoms of an even number of R1 in the general formula (I), in particular the number of carbon atoms in R 1 are 2 6,6 '- (ethylenedioxy) di - A 2-naphthoic acid component is preferred.

前述の構造式(II)で示される酸成分としては、テレフタル酸成分、イソフタル酸成分、2,6−ナフタレンジカルボン酸成分、2,7−ナフタレンジカルボン酸成分などが挙げられる。これらの中でも、機械的特性などの点からテレフタル酸成分、2、6−ナフタレンジカルボン酸成分が好ましく、特に2、6−ナフタレンジカルボン酸成分が好ましい。   Examples of the acid component represented by the structural formula (II) include a terephthalic acid component, an isophthalic acid component, a 2,6-naphthalenedicarboxylic acid component, and a 2,7-naphthalenedicarboxylic acid component. Among these, a terephthalic acid component and a 2,6-naphthalenedicarboxylic acid component are preferable from the viewpoint of mechanical properties, and a 2,6-naphthalenedicarboxylic acid component is particularly preferable.

また、前述の構造式(III)で示される具体的なグリコール成分としては、エチレングリコール成分、トリメチレングリコール成分、テトラメチレングリコール成分などが挙げられ、機械的特性などの点からグリコール酸成分の90モル%以上はエチレングリコール成分であることが好ましく、さらに95〜100モル%がエチレングリコール成分であることが好ましい。   Specific examples of the glycol component represented by the structural formula (III) include an ethylene glycol component, a trimethylene glycol component, a tetramethylene glycol component, and the like. The mol% or more is preferably an ethylene glycol component, and more preferably 95 to 100 mol% is an ethylene glycol component.

ところで、本発明の特徴の一つは、ポリエステルの酸成分の内、5〜80モル%の範囲で上記構造式(I)で示される6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分が共重合されていることである。6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分の割合が下限未満では延伸応力が高くなりやすく、共重合による本発明のボイドの抑制効果や湿度膨張係数の低減効果などが発現されがたい。一方、上限は成形性などの観点から80モル%以下が好ましく、さらに50モル%未満であることが好ましい。また、驚くべきことに、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分によるボイドの抑制効果や湿度膨張係数の低減効果は、少量で非常に効率的に発現され、上限以下の部分ですでに特許文献3の実施例に記載されたフィルムと同等もしくはそれ以下の湿度膨張係数が達成されており、上限以上添加しても湿度膨張係数の観点からの効果は飽和状態になるともいえる。そのような観点から、好ましい6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分の共重合量の上限は、45モル%以下、さらに40モル%以下、よりさらに35モル%以下、特に30モル%以下であり、他方下限は、5モル%以上、さらに7モル%以上、よりさらに10モル%以上、特に15モル%以上である。   By the way, one of the characteristics of the present invention is that the 6,6 ′-(alkylenedioxy) di-2-naphthoate represented by the above structural formula (I) in the range of 5 to 80 mol% of the acid component of the polyester. The acid component is copolymerized. If the ratio of the 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component is less than the lower limit, the stretching stress tends to be high, and the effect of suppressing the voids of the present invention by copolymerization and the effect of reducing the humidity expansion coefficient are manifested. It is hard to be done. On the other hand, the upper limit is preferably 80 mol% or less, and more preferably less than 50 mol% from the viewpoint of moldability. Surprisingly, the effect of suppressing voids and the effect of reducing the coefficient of humidity expansion by the 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component are expressed very efficiently in a small amount, and below the upper limit. The humidity expansion coefficient equivalent to or lower than that of the film described in the example of Patent Document 3 has already been achieved in this part, and the effect from the viewpoint of the humidity expansion coefficient is saturated even when added above the upper limit. It can be said. From such a viewpoint, the upper limit of the copolymerization amount of the preferred 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component is 45 mol% or less, further 40 mol% or less, and further 35 mol% or less. In particular, it is 30 mol% or less, and the other lower limit is 5 mol% or more, further 7 mol% or more, still more 10 mol% or more, particularly 15 mol% or more.

このような特定量の6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を共重合したポリエステルを用いることで、ボイドが小さく、しかも温度膨張係数と湿度膨張係数も小さい成形品、例えばフィルムなどを製造することができる。   By using a polyester obtained by copolymerizing such a specific amount of 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component, a molded product having a small void and a small temperature expansion coefficient and humidity expansion coefficient, For example, a film etc. can be manufactured.

本発明における芳香族ポリエステルは、本発明の効果を阻害しない範囲で、それ自体公知の他の共重合成分を共重合しても良いし、また、ポリエーテルイミドや液晶性樹脂などをブレンドしてもよい。   The aromatic polyester in the present invention may be copolymerized with other copolymerization components known per se within a range not impairing the effects of the present invention, or may be blended with polyetherimide or liquid crystalline resin. Also good.

つぎに、本発明におけるポリエステルは、DSCで測定した融点が、200〜260℃の範囲、さらに210〜255℃の範囲、特に220〜253℃の範囲にあることが製膜性の点から好ましい。融点が上記上限を越えると、溶融押し出しして成形する際に、流動性を高めるにはより高温にすることが必要となって熱劣化しやすくなり、他方溶融温度を低くすると流動性が劣り、吐出などが不均一化しやすくなる。一方、上記下限未満になると、製膜性は優れるものの、ポリエステルの持つ機械的特性などが損なわれやすくなる。なお、通常他の酸成分を共重合して融点を下げれば、同時に機械的特性なども低下するが、製膜性が向上するためか、優れた機械的特性なども発現することができる。しかも、同じヤング率を出すにはより高い倍率での延伸が必要となるが、そのような高い延伸倍率で延伸してもボイドを極めて抑制することができる。   Next, the polyester according to the present invention preferably has a melting point measured by DSC in the range of 200 to 260 ° C., further in the range of 210 to 255 ° C., particularly in the range of 220 to 253 ° C. from the viewpoint of film forming property. When the melting point exceeds the above upper limit, when molding by melt extrusion, it is necessary to make the temperature higher to increase the fluidity, and it tends to be thermally deteriorated, and on the other hand, if the melting temperature is lowered, the fluidity is inferior, Discharge is likely to be non-uniform. On the other hand, when the ratio is less than the above lower limit, the film forming property is excellent, but the mechanical properties of the polyester are easily impaired. In general, when other acid components are copolymerized to lower the melting point, the mechanical properties and the like are also lowered at the same time. However, excellent mechanical properties and the like can be exhibited because the film-forming property is improved. In addition, in order to obtain the same Young's modulus, stretching at a higher magnification is required, but voids can be extremely suppressed even when stretching at such a high stretching ratio.

また、本発明におけるポリエステルは、DSCで測定したガラス転移温度(以下、Tgと称することがある。)が、90〜119℃の範囲、さらに95〜118℃の範囲、特に100〜117℃の範囲にあることが、耐熱性や寸法安定性の点から好ましい。なお、このような融点やガラス転移温度は、共重合成分の種類と共重合量、そして副生物であるジアルキレングリコールの制御などによって調整できる。   Further, the polyester in the present invention has a glass transition temperature (hereinafter sometimes referred to as Tg) measured by DSC in the range of 90 to 119 ° C, more preferably in the range of 95 to 118 ° C, particularly in the range of 100 to 117 ° C. It is preferable from the viewpoint of heat resistance and dimensional stability. Such a melting point and glass transition temperature can be adjusted by controlling the type and amount of copolymerization component, dialalkylene glycol as a byproduct.

ところで、本発明のポリエステル組成物は、フィルムなどにしたときの搬送性と表面の平坦性とを両立させる点から、長軸と短軸の軸長さの比が1.1〜3の面積円相当平均径が0.1〜5μmの粒子を含有していることが必要である。長軸と短軸の比が上記範囲にあることで、本願発明によるボイドを抑制する効果が発現されやすく、また複数の粒子を用いなくてもさまざまな形状の突起を形成できるなどの利点もある。なお、本発明における長軸および短軸とは、粒子を後述の操作型電子顕微鏡観察で見たときの、それぞれもっとも長い軸の長さおよび最も短い軸の長さである。   By the way, the polyester composition of the present invention is an area circle in which the ratio of the major axis to the minor axis length is 1.1 to 3 in order to achieve both transportability and surface flatness when formed into a film or the like. It is necessary to contain particles having an equivalent average diameter of 0.1 to 5 μm. When the ratio of the major axis to the minor axis is in the above range, the effect of suppressing voids according to the present invention is easily exhibited, and there are also advantages such as the formation of protrusions of various shapes without using a plurality of particles. . In addition, the long axis and the short axis in the present invention are the length of the longest axis and the length of the shortest axis, respectively, when the particles are viewed with an operation electron microscope described later.

本発明における好ましい面積円相当平均径の下限は、0.15μm以上、さらに0.2μm以上、特に0.3μm以上である。面積円相当平均径が下限未満のものだけでは、非常に粒子が小さくてボイドによる影響が発生しにくく、またフィルムとしたときの走行性や巻取り性の向上効果も十分に発現されがたい。もちろん、本発明のポリエステル組成物は、面積円相当平均径が上記範囲内の粒子を含有していれば良く、面積円相当平均径が上記下限未満の粒子を含有することを妨げるものではない。なお、面積円相当平均径の上限は、粒子の脱落などの抑制などの点から5μm以下であり、フィルムとして用いる場合、3μm以下であることが好ましく、特に磁気記録媒体として用いる場合、1μm以下であることが好ましい。   The lower limit of the preferred area circle equivalent average diameter in the present invention is 0.15 μm or more, further 0.2 μm or more, particularly 0.3 μm or more. If the average diameter equivalent to the area circle is less than the lower limit, the particles are very small and are not easily affected by voids, and the effect of improving the runnability and winding property when made into a film is hardly exhibited. Of course, the polyester composition of the present invention only needs to contain particles having an area circle equivalent average diameter in the above range, and does not preclude containing particles having an area circle equivalent average diameter of less than the above lower limit. In addition, the upper limit of the area circle equivalent average diameter is 5 μm or less from the viewpoint of suppression of dropout of particles, etc., and when used as a film, it is preferably 3 μm or less, particularly when used as a magnetic recording medium, 1 μm or less. Preferably there is.

本発明における粒子の含有量は、得られる成形品の取扱い性を向上させる観点から、少なくとも0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上である。上限は特に制限されないが、通常フィルムとして用いる場合は10重量%以下、特に磁気記録媒体用のフィルムとして用いる場合は1重量%以下であることが好ましい。   The content of the particles in the present invention is at least 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.1% by weight or more, from the viewpoint of improving the handleability of the obtained molded product. . The upper limit is not particularly limited, but it is preferably 10% by weight or less when used as a normal film, particularly 1% by weight or less when used as a film for a magnetic recording medium.

本発明で使用する長軸と短軸の軸長さの比が1.1〜3の面積円相当平均径が0.1〜5μmの粒子としては、炭酸カルシウム、カオリン、クレー、ケイ酸アルミニウムなどからなる無機粒子が好ましく例示される。もちろん、本発明のポリエステル樹脂組成物およびフィルムは、上述のような粒子を含有していればよく、単成分系に限られず2種以上を併用するも多成分系でもよい。   Examples of the particles having an area circle equivalent average diameter of 0.1 to 5 μm in which the ratio of the major axis to minor axis length used in the present invention is 1.1 to 3 include calcium carbonate, kaolin, clay, and aluminum silicate. Inorganic particles consisting of are preferably exemplified. Of course, the polyester resin composition and film of the present invention need only contain particles as described above, and are not limited to a single-component system, and may be a combination of two or more types or a multi-component system.

<成形品>
本発明のポリエステル組成物は、溶融製膜して、シート状に押出すことでフィルムとすることができる。磁気テープなどのベースフィルムとして用いる場合、ベースフィルムがフィルムにかかる応力などによって伸びないようにフィルム面方向における少なくとも一方向は、ヤング率が6.0GPa以上という高いヤング率を有することが好ましい。また、このように高いヤング率を得られるフィルムに具備させることで、通常ボイドが大量に発生しやすいが、本発明ではそのようなボイドの発生が抑制でき、しかも湿度膨張係数や温度膨張係数の低減を図ることができる。好ましいヤング率は、フィルムの長手方向が5.1〜11GPa、さらに5.2〜10GPa、特に5.5〜9GPaの範囲であり、フィルムの幅方向が5〜11GPa、さらに6〜10GPa、特に7〜10GPaの範囲である。
<Molded product>
The polyester composition of the present invention can be formed into a film by melting and forming into a sheet. When used as a base film such as a magnetic tape, it is preferable that at least one direction in the film surface direction has a high Young's modulus of 6.0 GPa or more so that the base film does not stretch due to stress applied to the film. In addition, by providing a film that can obtain such a high Young's modulus, usually a large amount of voids are likely to be generated, but in the present invention such voids can be suppressed, and the humidity expansion coefficient and the temperature expansion coefficient are reduced. Reduction can be achieved. Preferred Young's modulus is 5.1 to 11 GPa in the longitudinal direction of the film, more preferably 5.2 to 10 GPa, particularly 5.5 to 9 GPa, and 5 to 11 GPa in the width direction of the film, more preferably 6 to 10 GPa, particularly 7 It is in the range of -10 GPa.

<ポリエステル組成物の製造方法>
つぎに、本発明におけるポリエステル組成物の製造方法について、詳述する。
まず、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸もしくはそのエステル形成性誘導体と例えば2,6−ナフタレンジカルボン酸やテレフタル酸もしくはそのエステル形成性誘導体と、例えばエチレングリコールとをエステル化反応もしくはエステル交換反応させ、ポリエステル前駆体を製造する。そして、このようにして得られたポリエステル前駆体を重合触媒の存在下で重合し、必要に応じて固相重合などを施しても良い。このようにして得られるポリエステルのP−クロロフェノール/1,1,2,2−テトラクロロエタン(重量比40/60)の混合溶媒を用いて35℃で測定した固有粘度は、0.4〜1.5dl/g、さらに0.5〜1.3dl/gの範囲にあることが取扱い性や機械的特性などの点から好ましい。なお、前述の構造式(I)と(II)の割合が異なる2種類のポリマーを作り、前述の構造式(I)と(II)の割合が目的となるようにそれらを溶融混練してもよい。
<Method for producing polyester composition>
Below, the manufacturing method of the polyester composition in this invention is explained in full detail.
First, ester 6,6 ′-(alkylenedioxy) di-2-naphthoic acid or an ester-forming derivative thereof such as 2,6-naphthalenedicarboxylic acid or terephthalic acid or an ester-forming derivative thereof and ethylene glycol, for example. The polyester precursor is produced by the reaction of esterification or transesterification. The polyester precursor thus obtained may be polymerized in the presence of a polymerization catalyst, and solid phase polymerization or the like may be performed as necessary. The intrinsic viscosity measured at 35 ° C. using a mixed solvent of P-chlorophenol / 1,1,2,2-tetrachloroethane (weight ratio 40/60) of the polyester thus obtained is 0.4 to 1. 0.5 dl / g, and more preferably in the range of 0.5 to 1.3 dl / g is preferable from the viewpoints of handleability and mechanical properties. Two types of polymers having different proportions of the above structural formulas (I) and (II) can be prepared and melt kneaded so that the proportions of the above structural formulas (I) and (II) are aimed. Good.

また、前述のポリエステル前駆体を製造する工程でエチレングリコール成分は、全酸成分のモル数に対して、1.1〜6倍、さらに2〜5倍、特に3〜5倍用いることが生産性の点から好ましい。   Further, in the step of producing the above-mentioned polyester precursor, the ethylene glycol component is used in an amount of 1.1 to 6 times, further 2 to 5 times, particularly 3 to 5 times the number of moles of the total acid component. From the point of view, it is preferable.

また、ポリエステルの前駆体を製造する際の反応温度としてはエチレングリコールの沸点以上で行うことが好ましく、特に190℃〜250℃の範囲で行なうことが好ましい。190℃よりも低いと反応が十分に進行しにくく、250℃よりも高いと副反応物であるジエチレングリコールが生成しやすい。また、反応を常圧下で行うこともできるが、さらに生産性を高めるために加圧下で反応を行ってもよい。より詳しくは反応圧力は絶対圧力で10kPa以上200kPa以下、反応温度は通常150℃以上250℃以下、好ましくは180℃以上230℃以下で、反応時間10分以上10時間以下、好ましくは30分以上7時間以下行われるのが好ましい。このエステル化反応やエステル交換反応によってポリエステル前駆体としての反応物が得られる。   The reaction temperature for producing the polyester precursor is preferably at or above the boiling point of ethylene glycol, particularly preferably in the range of 190 ° C to 250 ° C. When the temperature is lower than 190 ° C., the reaction does not proceed sufficiently. When the temperature is higher than 250 ° C., diethylene glycol as a side reaction product is likely to be generated. In addition, the reaction can be performed under normal pressure, but the reaction may be performed under pressure in order to further increase productivity. More specifically, the reaction pressure is 10 to 200 kPa in absolute pressure, the reaction temperature is usually 150 to 250 ° C., preferably 180 to 230 ° C., the reaction time is 10 to 10 hours, preferably 30 to 7 minutes. It is preferable to be performed for less than an hour. A reaction product as a polyester precursor is obtained by this esterification reaction or transesterification reaction.

ポリエステルの前駆体を製造する反応工程では、公知のエステル化もしくはエステル交換反応触媒を用いてもよい。例えばアルカリ金属化合物、アルカリ土類金属化合物、チタン化合物などが上げられる。   In the reaction step for producing the polyester precursor, a known esterification or transesterification reaction catalyst may be used. For example, an alkali metal compound, an alkaline earth metal compound, a titanium compound, and the like can be given.

つぎに、重縮合反応について説明する。まず、重縮合温度は得られるポリエステルの融点以上でかつ230〜280℃以下、より好ましくは融点より5℃以上高い温度から融点より30℃高い温度の範囲である。重縮合反応では通常50Pa以下の減圧下で行うのが好ましい。50Paより高いと重縮合反応に要する時間が長くなり且つ重合度の高い共重合ポリエステルを得ることが困難になる。   Next, the polycondensation reaction will be described. First, the polycondensation temperature is in the range of a temperature not lower than the melting point of the obtained polyester and not higher than 230 to 280 ° C, more preferably not lower than 5 ° C and higher than the melting point by 30 ° C. The polycondensation reaction is usually preferably performed under a reduced pressure of 50 Pa or less. If it is higher than 50 Pa, the time required for the polycondensation reaction becomes long, and it becomes difficult to obtain a copolyester having a high degree of polymerization.

重縮合触媒としては、少なくとも一種の金属元素を含む金属化合物が挙げられる。なお、重縮合触媒はエステル化反応やエステル交換反応の触媒として併用してもよい。金属元素としては、チタン、ゲルマニウム、アンチモン、アルミニウム、ニッケル、亜鉛、スズ、コバルト、ロジウム、イリジウム、ジルコニウム、ハフニウム、リチウム、カルシウム、マグネシウムなどが挙げられる。より好ましい金属としては、チタン、ゲルマニウム、アンチモン、アルミニウム、スズなどであり、中でも、チタン化合物はエステル化反応やエステル交換反応と重縮合反応との双方の反応で、高い活性を発揮するので特に好ましい。   Examples of the polycondensation catalyst include metal compounds containing at least one metal element. In addition, you may use together a polycondensation catalyst as a catalyst of esterification reaction or transesterification. Examples of the metal element include titanium, germanium, antimony, aluminum, nickel, zinc, tin, cobalt, rhodium, iridium, zirconium, hafnium, lithium, calcium, and magnesium. More preferable metals are titanium, germanium, antimony, aluminum, tin, etc. Among them, titanium compounds are particularly preferable because they exhibit high activity in both esterification reaction, transesterification reaction and polycondensation reaction. .

これらの触媒は単独でも、あるいは併用してもよい。かかる触媒量は、共重合ポリエステルの繰り返し単位のモル数に対して、0.001〜0.5モル%、さらには0.005〜0.2モル%が好ましい。   These catalysts may be used alone or in combination. The amount of the catalyst is preferably 0.001 to 0.5 mol%, more preferably 0.005 to 0.2 mol%, based on the number of moles of the repeating unit of the copolyester.

具体的な重縮合触媒としてのチタン化合物としては、例えば、テトラ−n−プロピルチタネート、テトライソプロピルチタネート、テトラ−n−ブチルチタネート、テトライソブチルチタネート、テトラ−tert−ブチルチタネート、テトラシクロヘキシルチタネート、テトラフェエルチタネート、テトラベンジルチタネート、蓚酸チタン酸リチウム、蓚酸チタン酸カリウム、蓚酸チタン酸アンモニウム、酸化チタン、チタンの縮合オルトエステル、チタンのオルトエステル又は縮合オルトエステルとヒドロキシカルボン酸からなる反応生成物、チタンのオルトエステル又は縮合オルトエステルとヒドロキシカルボン酸とリン化合物からなる反応生成物、チタンのオルトエステル又は縮合オルトエステルと少なくとも2個のヒドロキシル基を有する多価アルコール、2−ヒドロキシカルボン酸、又は塩基からなる反応生成物などが挙げられる。   Specific examples of the titanium compound as the polycondensation catalyst include tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetraisobutyl titanate, tetra-tert-butyl titanate, tetracyclohexyl titanate, tetraphenyl titanate, and the like. Eltitanate, tetrabenzyl titanate, lithium oxalate titanate, potassium oxalate titanate, ammonium oxalate titanate, titanium oxide, titanium condensed orthoester, titanium orthoester or reaction product of condensed orthoester and hydroxycarboxylic acid, titanium A reaction product comprising an orthoester or condensed orthoester, a hydroxycarboxylic acid and a phosphorus compound, an orthoester or condensed orthoester of titanium and at least two hydroxyl groups Polyhydric alcohols having 2-hydroxy carboxylic acid, or a reaction product comprising a base and the like.

ところで、前述の粒子の添加方法としては、特に制限されず、それ自体公知の添加方法を採用できる。例えば、重合反応段階でグリコールスラリーの状態で粒子を添加する方法や、得られたポリマーに混練押出機で粒子を溶融混練する方法などが挙げられる。粒子の分散性の観点からは、重合反応段階でグリコールスラリーの状態で粒子を添加して高濃度で粒子を含有するポリエステル組成物の粒子マスターポリマーを作成し、該粒子マスターポリマーを、粒子を含有しないポリエステルで希釈するのが好ましい。   By the way, the addition method of the aforementioned particles is not particularly limited, and a known addition method can be employed. For example, a method of adding particles in the state of a glycol slurry in the polymerization reaction stage, a method of melt-kneading particles with a kneading extruder to the obtained polymer, and the like can be mentioned. From the viewpoint of particle dispersibility, a particle master polymer of a polyester composition containing particles at a high concentration is prepared by adding particles in a glycol slurry state in the polymerization reaction stage, and the particle master polymer contains particles. It is preferred to dilute with no polyester.

本発明のポリエステル組成物には、本発明の効果を阻害しない範囲で、他の熱可塑性ポリマー、紫外線吸収剤等の安定剤、酸化防止剤、可塑剤、滑剤、難燃剤、離型剤、顔料、核剤、充填剤あるいはガラス繊維、炭素繊維、層状ケイ酸塩などを必要に応じて配合しても良い。他種熱可塑性ポリマーとしては、脂肪族ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート、ABS樹脂、ポリメチルメタクリレート、ポリアミド系エラストマー、ポリエステル系エラストマー、ポリエーテルイミド、ポリイミドなどが挙げられる。   The polyester composition of the present invention includes other thermoplastic polymers, stabilizers such as ultraviolet absorbers, antioxidants, plasticizers, lubricants, flame retardants, mold release agents, and pigments, as long as the effects of the present invention are not impaired. Further, a nucleating agent, a filler or glass fiber, carbon fiber, layered silicate, etc. may be blended as necessary. Examples of other types of thermoplastic polymers include aliphatic polyester resins, polyamide resins, polycarbonates, ABS resins, polymethyl methacrylate, polyamide elastomers, polyester elastomers, polyetherimides, polyimides, and the like.

<フィルムの製造方法>
本発明のポリエステル組成物を原料とし、これを乾燥後、該ポリエステル組成物の融点(Tm:℃)ないし(Tm+50)℃の温度に加熱された押出機に供給して、例えばTダイなどのダイよりシート状に押出す。なお、使用する本発明のポリエステル組成物は、1種類に限られず、例えば前述の構造式(I)の割合が多いポリマーと、前述の構造式(II)の多いポリマーとを作り、前述の構造式(I)と(II)の割合が目的の範囲となるようにそれらを溶融混練して用いてもよく、そのような方法を採用することで、前述の構造式(I)と(II)の割合を任意に且つ簡便に変更することができる。この押出されたシート状物を回転している冷却ドラムなどで急冷固化して未延伸フィルムとし、さらに該未延伸フィルムを二軸延伸することで二軸配向フィルムとすることができる。
<Film production method>
The polyester composition of the present invention is used as a raw material, dried, and then supplied to an extruder heated to a temperature of the melting point (Tm: ° C.) to (Tm + 50) ° C. of the polyester composition. Extrude into a sheet. In addition, the polyester composition of the present invention to be used is not limited to one type, for example, a polymer having a large proportion of the above structural formula (I) and a polymer having a large amount of the above structural formula (II) are prepared. They may be used by being melt-kneaded so that the ratio of the formulas (I) and (II) is within the target range. By adopting such a method, the above structural formulas (I) and (II) The ratio can be arbitrarily and easily changed. The extruded sheet can be rapidly cooled and solidified with a rotating cooling drum or the like to form an unstretched film, and the unstretched film can be biaxially stretched to obtain a biaxially oriented film.

なお、後述の延伸を進行させやすくする観点から、冷却ドラムによる冷却は非常に速やかに行なうことが好ましく、特許文献4に記載されるような80℃といった高温ではなく、20〜60℃という低温で行なうことが好ましい。このような低温で行うことで、未延伸フィルムの状態での結晶化が抑制され、その後の延伸をよりスムーズに行える。   In addition, from the viewpoint of facilitating the later-described stretching, it is preferable to perform cooling with a cooling drum very quickly, not at a high temperature of 80 ° C. as described in Patent Document 4, but at a low temperature of 20-60 ° C. It is preferable to do so. By performing at such a low temperature, crystallization in the state of an unstretched film is suppressed, and subsequent stretching can be performed more smoothly.

二軸延伸としては、逐次二軸延伸でも同時二軸延伸でもよい。
ここでは、逐次二軸延伸で、縦延伸、横延伸および熱処理をこの順で行う製造方法を一例として挙げて説明する。まず、最初の縦延伸はポリエステルのガラス転移温度(Tg:℃)ないし(Tg+40)℃の温度で、3〜8倍に延伸し、次いで横方向に先の縦延伸よりも高温で(Tg+10)〜(Tg+50)℃の温度で3〜8倍に延伸し、さらに熱処理としてポリマーの融点以下の温度でかつ(Tg+50)〜(Tg+150)℃の温度で1〜20秒熱固定処理するのが好ましい。なお、熱固定の時間はさらに1〜15秒が好ましい。
Biaxial stretching may be sequential biaxial stretching or simultaneous biaxial stretching.
Here, a manufacturing method in which longitudinal stretching, lateral stretching, and heat treatment are performed in this order by sequential biaxial stretching will be described as an example. First, the first longitudinal stretching is performed at a glass transition temperature (Tg: ° C.) to (Tg + 40) ° C. of polyester at 3 to 8 times, and then at a higher temperature than the previous longitudinal stretching (Tg + 10) in the transverse direction. It is preferable that the film is stretched 3 to 8 times at a temperature of (Tg + 50) ° C., and further heat-treated at a temperature not higher than the melting point of the polymer and at a temperature of (Tg + 50) to (Tg + 150) ° C. for 1 to 20 seconds. The heat setting time is preferably 1 to 15 seconds.

なお、通常であれば、延伸倍率を上げると製膜安定性が損なわれるが、本発明にかかるポリエステル組成物は延伸性が非常に高いので、そのような問題は無く、特に延伸倍率をより高くできることから、厚みが10μm以下、さらに8μm以下の薄いフィルムで特に有用である。なお、フィルムの厚みの下限は特に制限されないが、通常1μm程度、好ましくは3μmである。
前述の説明は逐次二軸延伸について説明したが、縦延伸と横延伸とを同時に行う同時二軸延伸でも製造でき、例えば先で説明した延伸倍率や延伸温度などを参考にすればよい。
Normally, when the stretch ratio is increased, the film-forming stability is impaired, but the polyester composition according to the present invention has very high stretchability, so there is no such problem, and in particular, the stretch ratio is higher. Therefore, it is particularly useful for a thin film having a thickness of 10 μm or less, more preferably 8 μm or less. The lower limit of the thickness of the film is not particularly limited, but is usually about 1 μm, preferably 3 μm.
In the above description, sequential biaxial stretching has been described. However, simultaneous biaxial stretching in which longitudinal stretching and lateral stretching are simultaneously performed can also be produced. For example, the stretching ratio and the stretching temperature described above may be referred to.

また、二軸配向フィルムが積層フィルムの場合、2種以上の溶融ポリエステル組成物をダイ内で積層してからフィルム状に押出し、好ましくはそれぞれのポリエステル組成物の融点(Tm:℃)ないし(Tm+70)℃の温度で押出すか、2種以上の溶融ポリエステル組成物をダイから押出した後に積層し、急冷固化して積層未延伸フィルムとし、ついで前述の単層フィルムの場合と同様な方法で二軸延伸および熱処理を行うとよい。このとき、全てのフィルム層が本発明のポリエステル組成物である必要はなく、少なくとも一つのフィルム層が本発明のポリエステル組成物からなるものであれば良い。また、二軸配向フィルムの表面に塗布層を設けてもよく、その場合、前記した未延伸フィルムまたは一軸延伸フィルムの片面または両面に所望の塗布液を塗布し、後は前述の単層フィルムの場合と同様な方法で二軸延伸および熱処理を行うことが好ましい。   When the biaxially oriented film is a laminated film, two or more types of molten polyester compositions are laminated in a die and then extruded into a film, preferably the melting point (Tm: ° C.) to (Tm + 70) of each polyester composition. ) Extrude at a temperature of ° C. or extrude two or more molten polyester compositions from a die, laminate them, quench and solidify them into a laminated unstretched film, Stretching and heat treatment may be performed. At this time, it is not necessary that all the film layers are the polyester composition of the present invention, and it is sufficient that at least one film layer is made of the polyester composition of the present invention. In addition, a coating layer may be provided on the surface of the biaxially oriented film. In that case, a desired coating solution is applied to one side or both sides of the unstretched film or the uniaxially stretched film described above, and after that, Biaxial stretching and heat treatment are preferably performed in the same manner as in the case.

本発明によれば、本発明のポリエステル組成物からなる二軸配向フィルムをベースフィルムとし、その一方の面に非磁性層および磁性層をこの順で形成し、他方の面にバックコート層を形成することで磁気記録テープとすることもできる。   According to the present invention, a biaxially oriented film made of the polyester composition of the present invention is used as a base film, a nonmagnetic layer and a magnetic layer are formed in this order on one side, and a backcoat layer is formed on the other side. Thus, a magnetic recording tape can be obtained.

以下に実施例及び比較例を挙げ、本発明をより具体的に説明する。なお、本発明では、以下の方法により、その特性を測定および評価した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In the present invention, the characteristics were measured and evaluated by the following methods.

(1)固有粘度
得られたポリエステルの固有粘度はP−クロロフェノール/1,1,2,2−テトラクロロエタン(40/60重量比)の混合溶媒を用いてポリマーを溶解して35℃で測定して求めた。
(1) Intrinsic viscosity The intrinsic viscosity of the obtained polyester was measured at 35 ° C by dissolving the polymer using a mixed solvent of P-chlorophenol / 1,1,2,2-tetrachloroethane (40/60 weight ratio). And asked.

(2)ガラス転移点および融点
ガラス転移点、融点はDSC(TAインスツルメンツ株式会社製、商品名:Thermal lyst2100)により昇温速度20℃/minで測定した。
(2) Glass transition point and melting point Glass transition point and melting point were measured by DSC (TA Instruments Co., Ltd., trade name: Thermal lyst 2100) at a heating rate of 20 ° C / min.

(3)共重合量
グリコール成分については、試料10mgをp−クロロフェノール:1,1,2,2−テトラクロロエタン=3:1(容積比)混合溶液0.5mlに80℃で溶解し、イソプロピルアミンを加えて、十分に混合した後に600MのH−NMR(日立電子製 JEOL A600)にて80℃で測定し、それぞれのグリコール成分量を測定した。
また、芳香族ジカルボン酸成分については、試料50mgをp−クロロフェノール:1,1,2,2−テトラクロロエタン=3:1混合溶液0.5mlに140℃で溶解し、400M 13C−NMR(日立電子 JEOL A600)にて140℃で測定し、それぞれの酸成分量を測定した。
(3) Copolymerization amount For the glycol component, 10 mg of a sample was dissolved in 0.5 ml of a mixed solution of p-chlorophenol: 1,1,2,2-tetrachloroethane = 3: 1 (volume ratio) at 80 ° C., and isopropyl was added. amine was added, measured at 80 ° C. at 1 600M after thorough mixing H-NMR (Hitachi Denshi Ltd. JEOL A600), were measured each glycol component amount.
As for the aromatic dicarboxylic acid component, 50 mg of a sample was dissolved in 0.5 ml of a mixed solution of p-chlorophenol: 1,1,2,2-tetrachloroethane = 3: 1 at 140 ° C., and 400 M 13 C-NMR ( Hitachi Electron JEOL A600) was measured at 140 ° C., and the amount of each acid component was measured.

(4)ヤング率
得られたフィルムを試料巾10mm、長さ15cmで切り取り、チャック間100mm、引張速度10mm/分、チャート速度500mm/分の条件で万能引張試験装置(東洋ボールドウィン製、商品名:テンシロン)にて引っ張る。得られた荷重―伸び曲線の立ち上がり部の接線よりヤング率を計算する。
(4) Young's modulus The obtained film was cut out with a sample width of 10 mm and a length of 15 cm, and a universal tensile testing device (product name: manufactured by Toyo Baldwin, trade name: 100 mm between chucks, tensile speed 10 mm / min, chart speed 500 mm / min). Pull with Tensilon). The Young's modulus is calculated from the tangent of the rising portion of the obtained load-elongation curve.

(5)温度膨張係数(αt)
得られたフィルムを、フィルムの幅方向が測定方向となるように長さ15mm、幅5mmに切り出し、真空理工製TMA3000にセットし、窒素雰囲気下(0%RH)、60℃で30分前処理し、その後室温まで降温させる。その後25℃から70℃まで2℃/minで昇温して、各温度でのサンプル長を測定し、次式より温度膨張係数(αt)を算出する。なお、測定方向が切り出した試料の長手方向であり、5回測定し、その平均値を用いた。
αt={(L60−L40)}/(L40×△T)}+0.5
ここで、上記式中のL40は40℃のときのサンプル長(mm)、L60は60℃のときのサンプル長(mm)、△Tは20(=60−40)℃、0.5は石英ガラスの温度膨張係数(×10−6/℃)である。
(5) Temperature expansion coefficient (αt)
The obtained film was cut into a length of 15 mm and a width of 5 mm so that the width direction of the film was a measurement direction, set in TMA3000 manufactured by Vacuum Riko, and pretreated at 60 ° C. for 30 minutes in a nitrogen atmosphere (0% RH). Then, the temperature is lowered to room temperature. Thereafter, the temperature is raised from 25 ° C. to 70 ° C. at 2 ° C./min, the sample length at each temperature is measured, and the temperature expansion coefficient (αt) is calculated from the following equation. In addition, the measurement direction is the longitudinal direction of the sample cut out, the measurement was performed 5 times, and the average value was used.
αt = {(L 60 −L 40 )} / (L 40 × ΔT)} + 0.5
Here, L 40 in the above formula is the sample length (mm) at 40 ° C., L 60 is the sample length (mm) at 60 ° C., ΔT is 20 (= 60-40) ° C., 0.5 Is the temperature expansion coefficient (× 10 −6 / ° C.) of quartz glass.

(6)湿度膨張係数(αh)
得られたフィルムを、フィルムの幅方向が測定方向となるように長さ15mm、幅5mmに切り出し、真空理工製TMA3000にセットし、30℃の窒素雰囲気下で、湿度30%RHと湿度70%RHにおけるそれぞれのサンプルの長さを測定し、次式にて湿度膨張係数を算出する。なお、測定方向が切り出した試料の長手方向であり、5回測定し、その平均値をαhとした。
αh=(L70−L30)/(L30×△H)
ここで、上記式中のL30は30%RHのときのサンプル長(mm)、L70は70%RHのときのサンプル長(mm)、△H:40(=70−30)%RHである。
(6) Humidity expansion coefficient (αh)
The obtained film was cut into a length of 15 mm and a width of 5 mm so that the width direction of the film would be the measurement direction, set in TMA3000 manufactured by Vacuum Riko, and a humidity of 30% RH and a humidity of 70% under a nitrogen atmosphere at 30 ° C. The length of each sample in RH is measured, and a humidity expansion coefficient is calculated by the following equation. In addition, the measurement direction is the longitudinal direction of the cut out sample, the measurement was performed 5 times, and the average value was αh.
αh = (L 70 −L 30 ) / (L 30 × ΔH)
Here, L 30 in the above formula is a sample length (mm) when 30% RH, L 70 is a sample length (mm) when 70% RH, ΔH: 40 (= 70-30)% RH is there.

(7)粒子の面積円相当平均径(μm)、および長軸と短軸の比
試料フィルム小片を走査型電子顕微鏡用試料台に固定し、日本電子(株)製スパッターリング装置(JFC−1100型イオンエッチング装置)を用いてフィルム表面に下記条件にてイオンエッチング処理を施す。条件は、ベルジャー内に試料を設置し、約10−3Torrの真空状態まで真空度を上げ、電圧0.25kV、電流12.5mAにて約10分間イオンエッチングを実施する。更に同装置にて、フィルム表面に金スパッターを施し、走査型電子顕微鏡にて5,000〜10,000倍で観察し、日本レギュレーター(株)製ルーゼックス500にて各粒子の面積円相当径を求めた。
また、長軸と短軸の比は、前述の画像解析処理装置ルーゼックス500(日本レギュレーター社製)を用い、投影面におけるもっとも長い軸の長さを長軸の長さとして読み取り、他方もっとも短い軸の長さを短軸の長さとして読み取り、長軸の長さを短軸の長さで割り、求めた。
上記の測定を各々粒子100個について実施し、その平均値をもって、粒子の面積円相当平均径および長軸と短軸の比とした。
(7) Area circle equivalent average diameter (μm) of particle and ratio of major axis to minor axis A sample film piece is fixed to a sample table for a scanning electron microscope, and a sputtering apparatus manufactured by JEOL Ltd. (JFC-1100) Ion etching treatment is performed on the film surface under the following conditions using a type ion etching apparatus. The condition is that a sample is placed in a bell jar, the degree of vacuum is increased to a vacuum state of about 10 −3 Torr, and ion etching is performed at a voltage of 0.25 kV and a current of 12.5 mA for about 10 minutes. Furthermore, with the same apparatus, the film surface was sputtered with gold, observed with a scanning electron microscope at 5,000 to 10,000 times, and the area equivalent circle diameter of each particle was measured with Luzex 500 manufactured by Japan Regulator Co., Ltd. Asked.
The ratio of the long axis to the short axis is determined by using the image analysis processing apparatus Luzex 500 (manufactured by Nippon Regulator Co., Ltd.), reading the length of the longest axis on the projection plane as the length of the long axis, and the other shortest axis. Was obtained as the length of the short axis, and the length of the long axis was divided by the length of the short axis.
The above measurement was carried out for 100 particles, and the average value was taken as the area diameter equivalent diameter of the particles and the ratio of the major axis to the minor axis.

(8)粒子の含有量
ポリエステル樹脂は溶解し粒子は溶解させない溶媒を選択し、ポリエステル樹脂組成物を溶解処理した後、粒子をポリエステル樹脂から遠心分離し、粒子の全体重量に対する比率(重量%)をもって粒子の含有量とする。尚、長軸と短軸の軸長さの比が1.1未満の粒子が併存する場合は、前述の「(7)粒子の面積円相当径(μm)、および長軸と短軸の比」の測定結果に基づき、それぞれの粒子の存在比率から含有量を算出した。
(8) Content of particles Select a solvent that dissolves the polyester resin and does not dissolve the particles, dissolves the polyester resin composition, and then centrifuges the particles from the polyester resin to obtain a ratio (% by weight) to the total weight of the particles. Is the particle content. When particles having a major axis / minor axis length ratio of less than 1.1 coexist, the above-mentioned “(7) Particle area circle equivalent diameter (μm)” and major axis / minor axis ratio The content was calculated from the abundance ratio of each particle on the basis of the measurement results.

(9)ボイド比の測定
試料フィルム小片を走査型電子顕微鏡用試料台に固定し、日本電子(株)製スパッターリング装置(JFC−1100型イオンエッチング装置)を用いてフィルム表面に下記条件にてイオンエッチング処理を施す。条件は、ベルジャー内に試料を設置し、約10−3Torrの真空状態まで真空度を上げ、電圧0.25kV、電流12.5mAにて約10分間イオンエッチングを実施する。更に同装置にて、フィルム表面に金スパッターを施し、走査型電子顕微鏡にて20,000倍で観察し、得られた画像から日本レギュレーター(株)製ルーゼックス500により画像解析処理を行い、粒子の周囲にボイドによる境界が確認できるものを抽出し、個々の粒子について粒子面積及びボイド面積を求め、次の定義によりボイド比を算出する。
ボイド比=(粒子面積+ボイド面積)/粒子面積
この測定を粒子100個について実施し、その平均値をもってボイド比とした。ボイド比が小さいほどボイドが小さく良好と判断される。
(9) Measurement of void ratio A sample film piece is fixed on a sample stage for a scanning electron microscope, and the surface of the film is subjected to the following conditions using a sputtering apparatus (JFC-1100 type ion etching apparatus) manufactured by JEOL Ltd. Ion etching treatment is performed. The condition is that a sample is placed in a bell jar, the degree of vacuum is increased to a vacuum state of about 10 −3 Torr, and ion etching is performed at a voltage of 0.25 kV and a current of 12.5 mA for about 10 minutes. Further, using the same apparatus, the film surface was sputtered with gold, observed with a scanning electron microscope at a magnification of 20,000 times, and image analysis processing was performed from the obtained image with a Luzex 500 manufactured by Japan Regulator Co., Ltd. Extract the boundary where void boundaries can be confirmed, obtain the particle area and void area for each particle, and calculate the void ratio according to the following definition.
Void ratio = (particle area + void area) / particle area This measurement was performed on 100 particles, and the average value was defined as the void ratio. The smaller the void ratio, the smaller the void and the better.

[実施例1]
2,6−ナフタレンジカルボン酸ジメチル、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸そしてエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.66dl/gで、酸成分の73モル%が2,6−ナフタレンジカルボン酸成分、酸成分の27モル%が6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分、グリコール成分の98モル%がエチレングリコール成分、2モル%がジエチレングリコール成分であるポリエステル組成物を得た。なお、該ポリエステル組成物には、重縮合反応の前に、表1に示す炭酸カルシウム粒子を、得られる樹脂組成物の重量を基準として、0.2重量%となるように含有させた。この芳香族ポリエステルの融点は240℃、ガラス転移温度は117℃であった。
[Example 1]
Dimethyl 2,6-naphthalenedicarboxylate, 6,6 ′-(ethylenedioxy) di-2-naphthoic acid and ethylene glycol were subjected to esterification and transesterification in the presence of titanium tetrabutoxide, and then further The polycondensation reaction was carried out to give an intrinsic viscosity of 0.66 dl / g, 73 mol% of the acid component being 2,6-naphthalenedicarboxylic acid component, and 27 mol% of the acid component being 6,6 ′-(alkylenedioxy). A polyester composition was obtained in which 98 mol% of the di-2-naphthoic acid component and glycol component were ethylene glycol components and 2 mol% were diethylene glycol components. In addition, in the polyester composition, before the polycondensation reaction, calcium carbonate particles shown in Table 1 were contained so as to be 0.2% by weight based on the weight of the resin composition to be obtained. The aromatic polyester had a melting point of 240 ° C. and a glass transition temperature of 117 ° C.

このようにして得られたポリエステル組成物を、押し出し機に供給して290℃でダイから溶融状態で回転中の温度50℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が135℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率6.2倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率6.3倍で延伸し、その後200℃で10秒間熱固定処理を行い、厚さ6μmの二軸延伸フィルムを得た。
得られたポリエステル樹脂組成物および二軸配向フィルムの特性を表1に示す。
The polyester composition thus obtained was supplied to an extruder and extruded from a die at 290 ° C. onto a cooling drum having a rotating temperature of 50 ° C. to form an unstretched film. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 135 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 6.2. And this uniaxially stretched film is led to a stenter, stretched at 140 ° C. in the transverse direction (width direction) at a stretching ratio of 6.3 times, then heat-set at 200 ° C. for 10 seconds, and biaxially stretched with a thickness of 6 μm. A film was obtained.
Table 1 shows the characteristics of the obtained polyester resin composition and biaxially oriented film.

[実施例2〜5]
実施例1において、炭酸カルシウム粒子の代わりに、表1に示すとおり、粒子種および含有量を変更した以外は同様な操作を繰り返した。
得られたポリエステル樹脂組成物および二軸配向フィルムの特性を表1に示す。
[Examples 2 to 5]
In Example 1, instead of calcium carbonate particles, as shown in Table 1, the same operation was repeated except that the particle type and content were changed.
Table 1 shows the characteristics of the obtained polyester resin composition and biaxially oriented film.

[実施例6]
2,6−ナフタレンジカルボン酸ジメチル、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸そしてエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.72dl/gで、酸成分の94モル%が2,6−ナフタレンジカルボン酸成分、酸成分の6モル%が6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分、グリコール成分の99モル%がエチレングリコール成分、1モル%がジエチレングリコール成分であるポリエステル組成物を得た。なお、該ポリエステル組成物には、重縮合反応の前に表1に示すとおり、炭酸カルシウム粒子を含有させた。このポリエステル組成物の融点は255℃、ガラス転移温度は119℃であった。
[Example 6]
Dimethyl 2,6-naphthalenedicarboxylate, 6,6 ′-(ethylenedioxy) di-2-naphthoic acid and ethylene glycol were subjected to esterification and transesterification in the presence of titanium tetrabutoxide, and then further The polycondensation reaction was carried out, the intrinsic viscosity was 0.72 dl / g, 94 mol% of the acid component was 2,6-naphthalenedicarboxylic acid component, and 6 mol% of the acid component was 6,6 ′-(ethylenedioxy). A polyester composition was obtained in which 99 mol% of the di-2-naphthoic acid component and glycol component were an ethylene glycol component and 1 mol% was a diethylene glycol component. The polyester composition contained calcium carbonate particles as shown in Table 1 before the polycondensation reaction. The melting point of this polyester composition was 255 ° C., and the glass transition temperature was 119 ° C.

このようにして得られたポリエステル組成物を、押し出し機に供給して290℃でダイから溶融状態で回転中の温度60℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が140℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率5.3倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率4.0倍で延伸し、その後200℃で10秒間熱固定処理を行い、厚さ8μmの二軸延伸フィルムを得た。
得られた二軸配向フィルムの特性を表1に示す。
The polyester composition thus obtained was supplied to an extruder and extruded from a die at 290 ° C. onto a cooling drum having a rotating temperature of 60 ° C. to form an unstretched film. Then, between the two sets of rollers having different rotation speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 140 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 5.3 times. Then, this uniaxially stretched film is guided to a stenter, stretched in the transverse direction (width direction) at 140 ° C. at a stretch ratio of 4.0 times, and then heat-set at 200 ° C. for 10 seconds, and biaxially stretched with a thickness of 8 μm A film was obtained.
The characteristics of the obtained biaxially oriented film are shown in Table 1.

[実施例7]
2,6−ナフタレンジカルボン酸ジメチル、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸そしてエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.77dl/gで、酸成分の80モル%が2,6−ナフタレンジカルボン酸成分、酸成分の20モル%が6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分、グリコール成分の99モル%がエチレングリコール成分、1モル%がジエチレングリコール成分である芳香族ポリエステルを得た。なお、該芳香族ポリエステルには、重縮合反応の前に表1に示すとおり、炭酸カルシウム粒子を含有させた。このポリエステル組成物の融点は252℃、ガラス転移温度は116℃であった。
[Example 7]
Dimethyl 2,6-naphthalenedicarboxylate, 6,6 ′-(ethylenedioxy) di-2-naphthoic acid and ethylene glycol were subjected to esterification and transesterification in the presence of titanium tetrabutoxide, and then further The polycondensation reaction was carried out, the intrinsic viscosity was 0.77 dl / g, 80 mol% of the acid component was 2,6-naphthalenedicarboxylic acid component, and 20 mol% of the acid component was 6,6 ′-(ethylenedioxy). An aromatic polyester in which 99 mol% of the di-2-naphthoic acid component and glycol component was an ethylene glycol component and 1 mol% of a diethylene glycol component was obtained. The aromatic polyester contained calcium carbonate particles as shown in Table 1 before the polycondensation reaction. The melting point of this polyester composition was 252 ° C., and the glass transition temperature was 116 ° C.

このようにして得られたポリエステル組成物を、押し出し機に供給して290℃でダイから溶融状態で回転中の温度50℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が135℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率5.5倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率4.3倍で延伸し、その後210℃で10秒間熱固定処理を行い、厚さ6μmの二軸延伸フィルムを得た。
得られたポリエステル組成物および二軸配向フィルムの特性を表1に示す。
The polyester composition thus obtained was supplied to an extruder and extruded from a die at 290 ° C. onto a cooling drum having a rotating temperature of 50 ° C. to form an unstretched film. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 135 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 5.5. Then, this uniaxially stretched film is led to a stenter, stretched at a stretching ratio of 4.3 times in the transverse direction (width direction) at 140 ° C., and then heat-set at 210 ° C. for 10 seconds, and biaxially stretched with a thickness of 6 μm. A film was obtained.
The properties of the obtained polyester composition and biaxially oriented film are shown in Table 1.

[実施例8]
2,6−ナフタレンジカルボン酸ジメチル、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸そしてエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.77dl/gで、酸成分の65モル%が2,6−ナフタレンジカルボン酸成分、酸成分の35モル%が6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分、グリコール成分の98モル%がエチレングリコール成分、2モル%がジエチレングリコール成分である芳香族ポリエステルを得た。なお、該芳香族ポリエステルには、重縮合反応の前に表1に示すとおり、炭酸カルシウム粒子を含有させた。このポリエステル組成物の融点は247℃、ガラス転移温度は116℃であった。
[Example 8]
Dimethyl 2,6-naphthalenedicarboxylate, 6,6 ′-(ethylenedioxy) di-2-naphthoic acid and ethylene glycol were subjected to esterification and transesterification in the presence of titanium tetrabutoxide, and then further The polycondensation reaction was performed, and the intrinsic viscosity was 0.77 dl / g, 65 mol% of the acid component was 2,6-naphthalenedicarboxylic acid component, and 35 mol% of the acid component was 6,6 ′-(ethylenedioxy). An aromatic polyester in which 98 mol% of the di-2-naphthoic acid component and glycol component was an ethylene glycol component and 2 mol% was a diethylene glycol component was obtained. The aromatic polyester contained calcium carbonate particles as shown in Table 1 before the polycondensation reaction. The melting point of this polyester composition was 247 ° C., and the glass transition temperature was 116 ° C.

このようにして得られたポリエステル組成物を、押し出し機に供給して290℃でダイから溶融状態で回転中の温度50℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が140℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率5.5倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率6.0倍で延伸し、その後210℃で10秒間熱固定処理を行い、厚さ7μmの二軸延伸フィルムを得た。
得られたポリエステル組成物および二軸配向フィルムの特性を表1に示す。
The polyester composition thus obtained was supplied to an extruder and extruded from a die at 290 ° C. onto a cooling drum having a rotating temperature of 50 ° C. to form an unstretched film. Then, between the two sets of rollers having different rotation speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 140 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 5.5. Then, this uniaxially stretched film is guided to a stenter, stretched at 140 ° C. in the transverse direction (width direction) at a stretch ratio of 6.0 times, and then heat-set at 210 ° C. for 10 seconds to be biaxially stretched with a thickness of 7 μm A film was obtained.
The properties of the obtained polyester composition and biaxially oriented film are shown in Table 1.

[実施例9]
テレフタル酸ジメチル、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸そしてエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.73dl/gで、酸成分の65モル%がテレフタル酸成分、酸成分の35モル%が6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分、グリコール成分の98.5モル%がエチレングリコール成分、1.5モル%がジエチレングリコール成分である芳香族ポリエステルを得た。なお、該芳香族ポリエステルには、重縮合反応の前に表1に示すとおり、炭酸カルシウム粒子を含有させた。このポリエステル組成物の融点は233℃、ガラス転移温度は91℃であった。
[Example 9]
Esterification and transesterification of dimethyl terephthalate, 6,6 '-(ethylenedioxy) di-2-naphthoic acid and ethylene glycol in the presence of titanium tetrabutoxide, followed by polycondensation reaction And the intrinsic viscosity is 0.73 dl / g, 65 mol% of the acid component is terephthalic acid component, 35 mol% of the acid component is 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component, glycol component An aromatic polyester having 98.5 mol% of ethylene glycol component and 1.5 mol% of diethylene glycol component was obtained. The aromatic polyester contained calcium carbonate particles as shown in Table 1 before the polycondensation reaction. The melting point of this polyester composition was 233 ° C., and the glass transition temperature was 91 ° C.

このようにして得られた芳香族ポリエステルを、押し出し機に供給して290℃でダイから溶融状態で回転中の温度40℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が110℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率4.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、120℃で横方向(幅方向)に延伸倍率4.5倍で延伸し、その後210℃で3秒間熱固定処理を行い、厚さ10μmの二軸延伸フィルムを得た。
得られたポリエステル組成物および二軸配向フィルムの特性を表1に示す。
The aromatic polyester thus obtained was supplied to an extruder and extruded from a die at 290 ° C. onto a cooling drum having a temperature of 40 ° C. while rotating in a molten state to form an unstretched film. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 110 ° C., and stretching in the longitudinal direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 4.0. And this uniaxially stretched film is led to a stenter, stretched at 120 ° C. in the transverse direction (width direction) at a stretch ratio of 4.5 times, and then heat-fixed at 210 ° C. for 3 seconds to be biaxially stretched with a thickness of 10 μm A film was obtained.
The properties of the obtained polyester composition and biaxially oriented film are shown in Table 1.

[実施例10]
テレフタル酸ジメチル、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸そしてエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.68dl/gで、酸成分の80モル%がテレフタル酸成分、酸成分の20モル%が6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分、グリコール成分の98モル%がエチレングリコール成分、2モル%がジエチレングリコール成分である芳香族ポリエステルを得た。なお、該芳香族ポリエステルには、重縮合反応の前に表1に示すとおり、炭酸カルシウム粒子を含有させた。このポリエステル組成物の融点は230℃、ガラス転移温度は85℃であった。
[Example 10]
Esterification and transesterification of dimethyl terephthalate, 6,6 '-(ethylenedioxy) di-2-naphthoic acid and ethylene glycol in the presence of titanium tetrabutoxide, followed by polycondensation reaction And the intrinsic viscosity is 0.68 dl / g, 80 mol% of the acid component is terephthalic acid component, 20 mol% of the acid component is 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component, glycol component An aromatic polyester having 98 mol% of ethylene glycol component and 2 mol% of diethylene glycol component was obtained. The aromatic polyester contained calcium carbonate particles as shown in Table 1 before the polycondensation reaction. The melting point of this polyester composition was 230 ° C., and the glass transition temperature was 85 ° C.

このようにして得られたポリエステル組成物を、押し出し機に供給して290℃でダイから溶融状態で回転中の温度30℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が105℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率5.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、115℃で横方向(幅方向)に延伸倍率5.0倍で延伸し、その後210℃で3秒間熱固定処理を行い、厚さ10mの二軸延伸フィルムを得た。
得られたポリエステル組成物および二軸配向フィルムの特性を表1に示す。
The polyester composition thus obtained was supplied to an extruder and extruded from a die at 290 ° C. onto a cooling drum having a rotating temperature of 30 ° C. to form an unstretched film. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 105 ° C., and stretching in the longitudinal direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 5.0. Then, this uniaxially stretched film is guided to a stenter, stretched at 115 ° C. in the transverse direction (width direction) at a stretch ratio of 5.0 times, and then heat-fixed at 210 ° C. for 3 seconds to be biaxially stretched with a thickness of 10 m. A film was obtained.
The properties of the obtained polyester composition and biaxially oriented film are shown in Table 1.

[実施例11]
2,6−ナフタレンジカルボン酸ジメチル、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸そしてエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.70dl/gで、酸成分の70モル%が2,6−ナフタレンジカルボン酸成分、酸成分の30モル%が6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分、グリコール成分の98モル%がエチレングリコール成分、2モル%がジエチレングリコール成分である芳香族ポリエステルを得た。なお、該芳香族ポリエステルには、重縮合反応の前に表1に示すとおり、炭酸カルシウム粒子を含有させた。このポリエステル組成物の融点は268℃、ガラス転移温度は101℃であった。
[Example 11]
Dimethyl 2,6-naphthalenedicarboxylate, 6,6 ′-(ethylenedioxy) di-2-naphthoic acid and ethylene glycol were subjected to esterification and transesterification in the presence of titanium tetrabutoxide, and then further The polycondensation reaction was carried out, the intrinsic viscosity was 0.70 dl / g, 70 mol% of the acid component was 2,6-naphthalenedicarboxylic acid component, and 30 mol% of the acid component was 6,6 ′-(alkylenedioxy). An aromatic polyester in which 98 mol% of the di-2-naphthoic acid component and glycol component was an ethylene glycol component and 2 mol% was a diethylene glycol component was obtained. The aromatic polyester contained calcium carbonate particles as shown in Table 1 before the polycondensation reaction. The melting point of this polyester composition was 268 ° C., and the glass transition temperature was 101 ° C.

このようにして得られたポリエステル組成物を、押し出し機に供給して300℃でダイから溶融状態で回転中の温度50℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が135℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率4.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率3.8倍で延伸し、その後200℃で10秒間熱固定処理を行い、厚さ10μmの二軸延伸フィルムを得た。
得られたポリエステル組成物および二軸配向フィルムの特性を表1に示す。
The polyester composition thus obtained was supplied to an extruder and extruded from a die at 300 ° C. in a molten state onto a cooling drum having a rotating temperature of 50 ° C. to form an unstretched film. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 135 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 4.0. And this uniaxially stretched film is led to a stenter, stretched at 140 ° C. in the transverse direction (width direction) at a stretching ratio of 3.8 times, then heat-set at 200 ° C. for 10 seconds, and biaxially stretched with a thickness of 10 μm. A film was obtained.
The properties of the obtained polyester composition and biaxially oriented film are shown in Table 1.

[比較例1]
2,6−ナフタレンジカルボン酸ジメチルとエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.62dl/gで、グリコール成分の1.5モル%がジエチレングリコール成分であるポリエチレン−2,6−ナフタレートを得た。なお、該ポリエチレン−2,6−ナフタレートには、重縮合反応の前に平均粒径0.5μmのシリカ粒子を、得られる樹脂組成物の重量を基準として、0.2重量%となるように含有させた。このポリエチレン−2,6−ナフタレートの融点は270℃、ガラス転移温度は120℃であった。
[Comparative Example 1]
Dimethyl 2,6-naphthalenedicarboxylate and ethylene glycol are subjected to an esterification reaction and a transesterification reaction in the presence of titanium tetrabutoxide, followed by a polycondensation reaction to obtain an intrinsic viscosity of 0.62 dl / g. Polyethylene-2,6-naphthalate in which 1.5 mol% of the glycol component was a diethylene glycol component was obtained. The polyethylene-2,6-naphthalate contains silica particles having an average particle diameter of 0.5 μm before the polycondensation reaction so that the amount is 0.2% by weight based on the weight of the resin composition obtained. Contained. This polyethylene-2,6-naphthalate had a melting point of 270 ° C. and a glass transition temperature of 120 ° C.

このようにして得られたポリエチレン−2,6−ナフタレートを、押し出し機に供給して300℃でダイから溶融状態で回転中の温度60℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が140℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率3.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率4.3倍で延伸し、その後200℃で10秒間熱固定処理を行い、厚さ10μmの二軸延伸フィルムを得た。
得られたポリエステル組成物および二軸配向フィルムの特性を表1に示す。
The polyethylene-2,6-naphthalate thus obtained was supplied to an extruder and extruded from a die at 300 ° C. in a molten state onto a cooling drum at a temperature of 60 ° C. during rotation to form an unstretched film. . Then, between the two sets of rollers having different rotation speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 140 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 3.0. And this uniaxially stretched film is led to a stenter, stretched at a stretching ratio of 4.3 times in the transverse direction (width direction) at 140 ° C., and then heat-set at 200 ° C. for 10 seconds to be biaxially stretched with a thickness of 10 μm. A film was obtained.
The properties of the obtained polyester composition and biaxially oriented film are shown in Table 1.

[比較例2]
比較例1において、製膜方向の延伸温度を140℃に、製膜方向の延伸倍率を4.0倍に、幅方向の延伸温度を140℃に、幅方向の延伸倍率を4.0倍に、熱固定処理温度を200℃に変更するほかは同様な操作を繰り返して二軸延伸フィルムを得た。
得られたポリエステル組成物および二軸配向フィルムの特性を表1に示す。
[Comparative Example 2]
In Comparative Example 1, the stretching temperature in the film forming direction is 140 ° C., the stretching ratio in the film forming direction is 4.0 times, the stretching temperature in the width direction is 140 ° C., and the stretching ratio in the width direction is 4.0 times. The same operation was repeated except that the heat setting treatment temperature was changed to 200 ° C. to obtain a biaxially stretched film.
The properties of the obtained polyester composition and biaxially oriented film are shown in Table 1.

[比較例3]
比較例1において、製膜方向の延伸温度を140℃に、製膜方向の延伸倍率を4.5倍に、幅方向の延伸温度を140℃に、幅方向の延伸倍率を3.4倍に、熱固定処理温度を200℃に変更するほかは同様な操作を繰り返して二軸延伸フィルムを得た。
得られたポリエステル組成物および二軸配向フィルムの特性を表1に示す。
[Comparative Example 3]
In Comparative Example 1, the stretching temperature in the film forming direction is 140 ° C., the stretching ratio in the film forming direction is 4.5 times, the stretching temperature in the width direction is 140 ° C., and the stretching ratio in the width direction is 3.4 times. The same operation was repeated except that the heat setting treatment temperature was changed to 200 ° C. to obtain a biaxially stretched film.
The properties of the obtained polyester composition and biaxially oriented film are shown in Table 1.

[比較例4]
比較例3において、含有させる粒子種および含有量を、表1に示すとおり変更したほかは同様な操作を繰り返した。
得られたポリエステル組成物および二軸配向フィルムの特性を表1に示す。
[Comparative Example 4]
In Comparative Example 3, the same operation was repeated except that the particle type and content to be contained were changed as shown in Table 1.
The properties of the obtained polyester composition and biaxially oriented film are shown in Table 1.

Figure 2009149808
Figure 2009149808

表1中のENA成分は6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分、MDはフィルムの製膜方向、TDはフィルムの幅方向、dは面積円相当平均径を示す。   In Table 1, the ENA component is a 6,6 '-(ethylenedioxy) di-2-naphthoic acid component, MD is the film forming direction, TD is the film width direction, and d is the area circle equivalent average diameter.

本発明のポリエステル組成物は、従来のポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレートやポリアルキレン−6,6’−(アルキレンジオキシ)ジ−2−ナフトエートでは達成できなかったような優れた寸法安定性を有し、寸法安定性が求められる用途、特に高密度磁気記録媒体のベースフィルムとして、好適に使用することができる。   The polyester composition of the present invention has excellent dimensional stability that cannot be achieved with conventional polyethylene terephthalate, polyethylene-2,6-naphthalate, and polyalkylene-6,6 ′-(alkylenedioxy) di-2-naphthoate. Therefore, it can be suitably used as a base film of a high-density magnetic recording medium, in particular, in applications where dimensional stability is required.

Claims (4)

酸成分が下記構造式(I)および(II)からなり、下記構造式(I)の割合が、全酸成分のモル数を基準として、5〜80モル%の範囲にあること、およびグリコール成分が下記構造式(III)であることを具備するポリエステルと、面積円相当平均径が0.1〜5μmで、かつ長軸と短軸の軸長さの比が1.1〜3である粒子とからなることを特徴とするポリエステル組成物。
Figure 2009149808
(上記構造式(I)中のRは炭素数1〜10のアルキレン基を、上記構造式(II)中のRはフェニレン基またはナフタレンジイル基、上記構造式(III)中のRは炭素数2〜4のアルキレン基を示す。)
The acid component comprises the following structural formulas (I) and (II), and the proportion of the following structural formula (I) is in the range of 5 to 80 mol% based on the number of moles of the total acid component, and the glycol component Having the following structural formula (III), particles having an area circle equivalent average diameter of 0.1 to 5 μm and a ratio of the major axis to the minor axis length of 1.1 to 3 A polyester composition comprising:
Figure 2009149808
(R 1 in the structural formula (I) is an alkylene group having 1 to 10 carbon atoms, R 2 in the structural formula (II) is a phenylene group or a naphthalenediyl group, and R 3 in the structural formula (III). Represents an alkylene group having 2 to 4 carbon atoms.)
粒子の含有量が、ポリエステル組成物の重量を基準として、0.01〜10重量%の範囲にある請求項1記載のポリエステル組成物。   The polyester composition according to claim 1, wherein the content of the particles is in the range of 0.01 to 10% by weight based on the weight of the polyester composition. 粒子が炭酸カルシウム、カオリン、クレー、ケイ酸アルミニウムからなる群より選ばれる少なくとも一種の無機粒子である請求項1記載のポリエステル組成物。   The polyester composition according to claim 1, wherein the particles are at least one inorganic particle selected from the group consisting of calcium carbonate, kaolin, clay, and aluminum silicate. 請求項1に記載のポリエステル樹脂組成物からなることを特徴とする二軸配向フィルム。   A biaxially oriented film comprising the polyester resin composition according to claim 1.
JP2007330146A 2007-12-21 2007-12-21 Polyester resin composition, and biaxially oriented film using the same Pending JP2009149808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007330146A JP2009149808A (en) 2007-12-21 2007-12-21 Polyester resin composition, and biaxially oriented film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007330146A JP2009149808A (en) 2007-12-21 2007-12-21 Polyester resin composition, and biaxially oriented film using the same

Publications (1)

Publication Number Publication Date
JP2009149808A true JP2009149808A (en) 2009-07-09

Family

ID=40919321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007330146A Pending JP2009149808A (en) 2007-12-21 2007-12-21 Polyester resin composition, and biaxially oriented film using the same

Country Status (1)

Country Link
JP (1) JP2009149808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110099740A (en) * 2016-12-22 2019-08-06 Dic株式会社 Dispersant for calcium carbonate, calcium carbonate composition, thermoplastic resin composition and formed body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110099740A (en) * 2016-12-22 2019-08-06 Dic株式会社 Dispersant for calcium carbonate, calcium carbonate composition, thermoplastic resin composition and formed body
KR20190091449A (en) * 2016-12-22 2019-08-06 디아이씨 가부시끼가이샤 Dispersant for calcium carbonate, calcium carbonate composition, thermoplastic resin composition and molded body
JPWO2018116812A1 (en) * 2016-12-22 2019-10-24 Dic株式会社 Dispersant for calcium carbonate, calcium carbonate composition, thermoplastic resin composition, and molded article
TWI724263B (en) * 2016-12-22 2021-04-11 日商迪愛生股份有限公司 Thermoplastic resin composition and molded body for molding
CN110099740B (en) * 2016-12-22 2021-08-03 Dic株式会社 Dispersant for calcium carbonate, calcium carbonate composition, thermoplastic resin composition, and molded article
US11427674B2 (en) 2016-12-22 2022-08-30 Dic Corporation Dispersant for calcium carbonate, calcium carbonate composition, thermoplastic resin composition and molded body
KR102498695B1 (en) * 2016-12-22 2023-02-13 디아이씨 가부시끼가이샤 Dispersant for calcium carbonate, calcium carbonate composition, thermoplastic resin composition and molded article

Similar Documents

Publication Publication Date Title
EP2116560B1 (en) Polyester, composition thereof and film thereof
JP5275849B2 (en) Biaxially oriented multilayer laminated polyester film
JP2010031174A (en) Polyester resin composition and biaxially oriented film using the same
JP5074108B2 (en) Biaxially oriented laminated polyester film
JP2010031138A (en) Biaxially oriented film
JP5373313B2 (en) Biaxially oriented laminated polyester film
JP5710937B2 (en) Biaxially oriented polyester film
JP5492569B2 (en) Polyester resin, process for producing the same, and biaxially oriented polyester film using the same
JP5199611B2 (en) Polyester composition
JP2009149808A (en) Polyester resin composition, and biaxially oriented film using the same
JP4971875B2 (en) Biaxially oriented polyester film
JP5074215B2 (en) Biaxially oriented laminated film
JP5214903B2 (en) Biaxially oriented polyester film
JP2010031116A (en) Biaxially oriented polyester film and magnetic recording medium using it
JP2010031139A (en) Copolyester resin composition, method for manufacturing the same, and biaxially oriented film comprising the same
JP5735370B2 (en) Aromatic polyester resin composition and oriented polyester film
JP5209219B2 (en) Biaxially oriented polyester film
JP2010208274A (en) Biaxially oriented multi-layer laminated polyester film
JP4934063B2 (en) Biaxially oriented polyester film
JP5265902B2 (en) Polyester composition
JP5209263B2 (en) Polyester composition
JP5788729B2 (en) Oriented polyester film
JP5209218B2 (en) Biaxially oriented polyester film
JP2009155426A (en) Polyester composition and biaxially oriented film using the same
JP5346881B2 (en) Copolymerized aromatic polyester and biaxially oriented polyester film