JP5733034B2 - Wastewater treatment equipment - Google Patents

Wastewater treatment equipment Download PDF

Info

Publication number
JP5733034B2
JP5733034B2 JP2011127071A JP2011127071A JP5733034B2 JP 5733034 B2 JP5733034 B2 JP 5733034B2 JP 2011127071 A JP2011127071 A JP 2011127071A JP 2011127071 A JP2011127071 A JP 2011127071A JP 5733034 B2 JP5733034 B2 JP 5733034B2
Authority
JP
Japan
Prior art keywords
concentration
wastewater
treatment
waste water
wastewater treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011127071A
Other languages
Japanese (ja)
Other versions
JP2012250218A (en
Inventor
和之 田口
和之 田口
栄寿 中田
栄寿 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011127071A priority Critical patent/JP5733034B2/en
Priority to CN201210177292.7A priority patent/CN102815816B/en
Priority to TW101120134A priority patent/TW201302620A/en
Priority to MYPI2012002550A priority patent/MY155451A/en
Publication of JP2012250218A publication Critical patent/JP2012250218A/en
Application granted granted Critical
Publication of JP5733034B2 publication Critical patent/JP5733034B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Description

本発明は、各種の生産設備から排出される排水であって、該排水中の処理対象成分の濃度が生産工程によって変化するものに適用される排水処理装置に関する。   The present invention relates to a wastewater treatment apparatus applied to wastewater discharged from various production facilities, in which the concentration of a component to be treated in the wastewater changes depending on a production process.

各種産業において限りある水資源の節約および地球環境保全の観点から産業排水の再利用が積極的に行われている。また、生産している製品により様々な薬品が使用されているため、排水処理が必須である。   Industrial wastewater is actively reused from the viewpoint of conserving limited water resources and protecting the global environment in various industries. In addition, wastewater treatment is essential because various chemicals are used depending on the products being produced.

例えば、半導体製造工場では半導体のエッチング処理のため大量のフッ酸が使用されており、その処理にはカルシウム塩を利用した凝集沈澱処理が行われている。これは、フッ素イオン混入排水にカルシウム塩を添加して不溶性のフッ化カルシウムを生成させ、凝集沈殿させることにより、産業排水中のフッ素イオンを除去する処理方法である。この凝集沈澱処理においてはフッ素の不溶化はフッ素とカルシウムの化学反応であるので、両者の濃度が濃い方が反応速度が早く、短時間で、高効率でフッ素イオンを除去することができる。フッ素イオンの排出基準値は8mg/L以下であるので、各メーカーではこの基準値を超えないような排水処理を実施している。   For example, a large amount of hydrofluoric acid is used in a semiconductor manufacturing factory for etching a semiconductor, and a coagulation precipitation process using a calcium salt is performed for the process. This is a treatment method for removing fluorine ions in industrial wastewater by adding calcium salt to fluorine ion-mixed wastewater to produce insoluble calcium fluoride and coagulating it. In this coagulation precipitation treatment, fluorine insolubilization is a chemical reaction between fluorine and calcium. Therefore, the higher the concentration of both, the faster the reaction rate, and fluorine ions can be removed with high efficiency in a short time. Since the emission standard value of fluoride ions is 8 mg / L or less, each manufacturer implements waste water treatment so as not to exceed this standard value.

一方、半導体製造工揚での半導体のエッチング処理ではフッ酸による処理ののち大量の純水による洗浄が行われる。そのため、生産設備から排出される排水には大きく分けて、フッ酸濃度が濃い使用済みフッ酸とフッ酸濃度が薄い洗浄排水が発生することになる。   On the other hand, in a semiconductor etching process at a semiconductor manufacturing factory, cleaning with a large amount of pure water is performed after treatment with hydrofluoric acid. For this reason, wastewater discharged from production facilities is roughly divided into used hydrofluoric acid having a high hydrofluoric acid concentration and cleaning wastewater having a low hydrofluoric acid concentration.

従来、この半導体製造工場から排出される排水は、例えば図5に示すような排水処理装置1によって行われている。この排水処理装置1は、半導体製造設備2と、該設備から排出される排水を処理する排水処理手段3と、半導体製造設備2で発生する排水を排水処理手段3に送る排水路4とを備えている。半導体製造設備2は、基板等の原料に対して、少なくともエッチング処理工程Aと洗浄処理工程Bとを行って、製品を得るように構成されており、エッチング処理工程Aによって発生する高濃度排水と、洗浄処理工程Bによって発生する低濃度排水とは、いずれも排水路4を通って排水処理手段3に送られるようになっている。排水処理手段4では、排水にカルシウム塩や凝集剤を添加して、フッ素を凝集沈殿させて、排水中のフッ素濃度を低減するようにしている。   Conventionally, waste water discharged from this semiconductor manufacturing factory is performed by a waste water treatment apparatus 1 as shown in FIG. 5, for example. The wastewater treatment apparatus 1 includes a semiconductor manufacturing facility 2, a wastewater treatment means 3 for treating wastewater discharged from the equipment, and a drainage channel 4 for sending wastewater generated in the semiconductor production facility 2 to the wastewater treatment means 3. ing. The semiconductor manufacturing facility 2 is configured to obtain a product by performing at least an etching process A and a cleaning process B on a raw material such as a substrate, and a high-concentration waste water generated by the etching process A. The low-concentration wastewater generated by the cleaning process B is sent to the wastewater treatment means 3 through the drainage channel 4. In the waste water treatment means 4, calcium salt or a flocculant is added to the waste water to coagulate and precipitate fluorine, thereby reducing the fluorine concentration in the waste water.

しかしながら、半導体製造設備2から排出されるフッ酸濃度が薄い洗浄排水は、高濃度排水よりも大量であるためフッ素の凝集沈澱処理において、カルシウム塩や凝集剤を過剰に投入する必要がある。そのため、薬品の使用量および汚泥発生量が増大し、処理費用の増大および地球環境の汚染につながっていた。また、処理不良のためフッ素イオンの排水基準を超過したりする恐れがあった。   However, cleaning wastewater having a low hydrofluoric acid concentration discharged from the semiconductor manufacturing facility 2 is larger in volume than high-concentration wastewater, and therefore it is necessary to add an excessive amount of calcium salt and a flocculant in the fluorine aggregation and precipitation treatment. For this reason, the amount of chemicals used and the amount of sludge generated increased, leading to an increase in processing costs and pollution of the global environment. Moreover, there was a risk of exceeding the fluorine ion drainage standards due to poor processing.

このような問題に対して、特許文献1には、半導体工場における排水処理システムに関する発明が開示されている。その排水処理システムでは、排水の電導度とフッ素イオン濃度及びpH値の相関から設定された電導度により、各工程排水を中間槽に分離し適切な排水処理施設への送水を自動かつ連続で制御できるように構成したので、各処理施設の負荷を軽減でき、また人手が要らず安全に分離を行える効果があるとされている(特許文献1の〔発明の効果〕参照)。   With respect to such a problem, Patent Document 1 discloses an invention relating to a wastewater treatment system in a semiconductor factory. In the wastewater treatment system, wastewater from each process is separated into intermediate tanks based on the electrical conductivity set based on the correlation between the electrical conductivity of the wastewater, the fluorine ion concentration and the pH value, and the water supply to the appropriate wastewater treatment facility is automatically and continuously controlled. Since it is configured so that it can be performed, the load on each processing facility can be reduced, and it is said that there is an effect that the separation can be performed safely without requiring manual labor (see [Effects of the Invention] in Patent Document 1).

また、特許文献2には、排水処理の負担を軽減して排水処理コストを低減することができ、かつ工場設備等の源水の使用量を低減することができる排水処理方法に関する発明が開示されている。その排水処理方法では、各種の製造装置から排出された排水の不純物濃度を測定する工程と、前記不純物濃度の測定結果に基づいて、不純物濃度が基準値以上のものと基準値よりも低いものとに分離する工程と、不純物濃度が基準値以上の排水に所定の排水処理を施して放流する工程と、不純物濃度が基準値よりも低い排水を回収する工程とを具備する構成とされている(特許文献2の〔請求項10〕参照)。   Patent Document 2 discloses an invention relating to a wastewater treatment method that can reduce wastewater treatment burdens and reduce wastewater treatment costs, and can reduce the amount of source water used in factory facilities and the like. ing. In the wastewater treatment method, based on the process of measuring the impurity concentration of wastewater discharged from various manufacturing apparatuses and the measurement result of the impurity concentration, the impurity concentration is higher than the reference value and lower than the reference value. And a step of discharging the wastewater having an impurity concentration equal to or higher than a reference value by performing a predetermined wastewater treatment, and a step of collecting wastewater having an impurity concentration lower than the reference value. (See claim 10 of Patent Document 2).

特開平1−123685号公報Japanese Patent Laid-Open No. 1-123685 特開2000−176434号公報JP 2000-176434 A

しかしながら、上記従来の排水処理方法は、排水の電導度や、排水中の処理対象成分や不純物の濃度を測定して排水処理の制御を行うので、測定器の高濃度排水に対する性能面での耐久性などを考慮する必要があった。また、生産設備の各種工程の処理時間、排水の排出時間、排出量などに応じた効率的な排水処理を行うことができなかった。   However, the above-mentioned conventional wastewater treatment method controls the wastewater treatment by measuring the conductivity of wastewater and the concentration of impurities and impurities to be treated in the wastewater. It was necessary to consider sex. In addition, efficient wastewater treatment according to the processing time of various processes of the production facility, drainage time, discharge amount, etc. could not be performed.

したがって、本発明の目的は、各種の生産設備から排出される排水であって、該排水中の処理対象成分の濃度が生産工程によって変化するものに適用される排水処理装置であって、生産工程の処理の状況に即した効率的な排水処理ができるようにした排水処理装置を提供することにある。   Therefore, an object of the present invention is a wastewater treatment apparatus applied to wastewater discharged from various production facilities, in which the concentration of the component to be treated in the wastewater varies depending on the production process, An object of the present invention is to provide a wastewater treatment apparatus capable of performing an efficient wastewater treatment in accordance with the state of treatment.

上記目的を達成するため、本発明は、各種の生産設備から排出される排水であって、該排水中の処理対象成分の濃度が生産工程によって変化するものに適用される排水処理装置において、
前記処理対象成分の濃度が低い排水を処理するための低濃度排水処理手段と、
前記処理対象成分の濃度が高い排水を処理するための高濃度排水処理手段と、
前記生産設備から前記低濃度排水処理手段と前記高濃度排水処理手段とに排水を送る排水路と、
前記排水路を通る排水を前記低濃度排水処理手段又は前記高濃度排水処理手段に切り替えて排水させる流路切り替え手段と、
前記生産設備での生産工程の前記処理対象成分濃度データを含むプロセスデータ信号を送信するプロセスデータ信号送信手段と、
前記プロセスデータ信号を受信して、該プロセスデータ信号に基づいて、前記排水路を通る排水の前記処理対象成分の濃度を判断して、該濃度が所定値よりも低いか高いかを判定し、該濃度が所定値よりも低いと判定したときは、該排水を前記低濃度排水処理手段に流し、該濃度が所定値よりも高いと判定したときは、該排水を前記高濃度排水処理手段に流すように、前記流路切り替え手段に動作信号を送る制御手段とを備えていることを特徴とする排水処理装置を提供するものである。
In order to achieve the above object, the present invention is a wastewater treatment apparatus applied to wastewater discharged from various production facilities, in which the concentration of the component to be treated in the wastewater varies depending on the production process.
Low concentration wastewater treatment means for treating wastewater having a low concentration of the component to be treated;
High-concentration wastewater treatment means for treating wastewater having a high concentration of the treatment target component;
A drainage channel for sending wastewater from the production facility to the low-concentration wastewater treatment means and the high-concentration wastewater treatment means;
Channel switching means for switching the drainage water passing through the drainage channel to the low-concentration wastewater treatment means or the high-concentration wastewater treatment means,
A process data signal transmitting means for transmitting a process data signal including the processing target component concentration data of the production process in the production facility;
Receiving the process data signal, based on the process data signal, determine the concentration of the treatment target component of the wastewater passing through the drainage channel, determine whether the concentration is lower or higher than a predetermined value, When it is determined that the concentration is lower than a predetermined value, the waste water is caused to flow to the low concentration waste water treatment means. When it is determined that the concentration is higher than a predetermined value, the waste water is passed to the high concentration waste water treatment means. A waste water treatment apparatus is provided that includes control means for sending an operation signal to the flow path switching means.

本発明の排水処理装置によれば、プロセスデータ信号送信手段が、生産設備での生産工程のプロセスデータ信号を送信し、制御手段が、該プロセスデータ信号を受信して、該プロセスデータ信号に基づいて、排水路を通る排水の処理対象成分の濃度を判断して、該濃度が所定値よりも低いか高いかを判定し、該濃度が所定値よりも低いと判定したときは、該排水を低濃度排水処理手段に流し、該濃度が所定値よりも高いと判定したときは、該排水を高濃度排水処理手段に流すように、流路切り替え手段に動作信号を送るので、排水の電導度や、排水中の処理対象成分の濃度等を測定しなくても、排水中の処理対象成分の濃度に応じて、排水を低濃度排水処理手段と高濃度排水処理手段とに効率的に切り分けて流すことができる。   According to the waste water treatment apparatus of the present invention, the process data signal transmission means transmits the process data signal of the production process in the production facility, and the control means receives the process data signal and based on the process data signal Determining the concentration of the component to be treated of the wastewater passing through the drainage channel, determining whether the concentration is lower or higher than a predetermined value, and determining that the concentration is lower than the predetermined value, When it is determined that the concentration is higher than a predetermined value, an operation signal is sent to the flow path switching unit so that the drainage flows to the high-concentration wastewater treatment unit. Even without measuring the concentration of the treatment target component in the wastewater, according to the concentration of the treatment target component in the wastewater, the wastewater is efficiently separated into the low concentration wastewater treatment means and the high concentration wastewater treatment means. It can flow.

本発明の排水処理装置においては、前記プロセスデータ信号送信手段が送信するプロセスデータは、前記処理対象成分濃度データと、前記生産設備でなされる各処理の処理時間と、該処理によって発生する排水の排出時間と、該排水の排水量とを含み、前記制御手段は、前記生産設備でなされる処理が変更されて、前記処理対象成分の濃度が変化した排水がなされるとき、該排水によって前記排水路を通る排水の処理対象成分の濃度が変化する時間を求め、その時間を考慮して前記流路切り替え手段に動作信号を送るように構成されていることが好ましい。   In the wastewater treatment apparatus of the present invention, the process data transmitted by the process data signal transmission means includes the component concentration data to be treated, the treatment time of each treatment performed in the production facility, and the wastewater generated by the treatment. A drainage time and a drainage amount of the drainage, and the control means is configured to change the treatment performed in the production facility, and when the drainage in which the concentration of the component to be treated is changed is performed, the drainage channel causes the drainage channel to flow. It is preferable that a time for changing the concentration of the component to be treated of the waste water passing through the flow is obtained and an operation signal is sent to the flow path switching means in consideration of the time.

上記態様によれば、生産設備でなされる各処理の処理時間と、該処理によって発生する排水の排出時間と、該排水の排水量とによって、処理対象成分の濃度が変化した排水がなされるとき、該排水によって排水路を通る排水の処理対象成分の濃度が変化する時間を求めることができるので、低濃度排水と高濃度排水とを正確に切り分けて、それぞれに対応する排水処理手段に流すことができる。   According to the above aspect, when drainage in which the concentration of the component to be treated is changed by the treatment time of each treatment performed in the production facility, the drainage time of the wastewater generated by the treatment, and the wastewater amount of the wastewater, Since it is possible to determine the time during which the concentration of the component to be treated of the wastewater passing through the drainage path is changed by the wastewater, it is possible to accurately separate the low-concentration wastewater and the high-concentration wastewater and flow them to the corresponding wastewater treatment means it can.

本発明の排水処理装置においては、前記排水路には、前記排水中の処理対象成分の濃度を直接又は間接的に測定する濃度測定手段が設けられており、前記制御手段は、前記プロセスデータ信号と、前記濃度測定手段によって測定された濃度とに基づいて、前記流路切り替え手段に動作信号を送るように構成されていることが好ましい。   In the wastewater treatment apparatus of the present invention, the drainage channel is provided with a concentration measuring means for directly or indirectly measuring the concentration of the component to be treated in the wastewater, and the control means is configured to receive the process data signal. It is preferable that an operation signal is sent to the flow path switching means based on the concentration measured by the concentration measuring means.

上記態様によれば、プロセスデータ信号に基づいて、排水路を通る排水の処理対象成分の濃度を迅速に判断して、流路を効率よく切り替えることができると共に、排水中の処理対象成分の濃度が突発的に変化した場合などでも、濃度測定手段により測定された濃度に基づいて、流路を適正な方向に切り替えることができる。   According to the above aspect, based on the process data signal, it is possible to quickly determine the concentration of the treatment target component of the wastewater passing through the drainage channel, and to efficiently switch the flow path, and the concentration of the treatment target component in the wastewater. Even if, for example, changes suddenly, the flow path can be switched in an appropriate direction based on the concentration measured by the concentration measuring means.

本発明の排水処理装置においては、前記濃度測定手段は、前記流路切り替え手段から前記低濃度排水処理手段に至る排水路の途中に設けられており、前記制御手段は、前記濃度測定手段によって測定される排水中の処理対象成分の濃度が所定値よりも高いときには、該排水を前記高濃度排水処理手段に流すように、前記流路切り替え手段に動作信号を送るように構成されていることが好ましい。   In the wastewater treatment apparatus of the present invention, the concentration measuring means is provided in the middle of the drainage channel from the flow path switching means to the low concentration wastewater treatment means, and the control means is measured by the concentration measuring means. When the concentration of the processing target component in the wastewater is higher than a predetermined value, the operation signal is sent to the flow path switching means so that the wastewater flows to the high concentration wastewater treatment means. preferable.

上記態様によれば、濃度測定手段が、流路切り替え手段から低濃度排水処理手段に至る排水路の途中に設けられているので、濃度測定手段が高濃度排水とできるだけ接触しないようにして、濃度測定手段の耐久性を向上させることができると共に、排水が低濃度排水処理手段へ送られている状態で、排水の処理対象成分の濃度が突発的に上昇した場合には排水を高濃度排水処理手段に送るように切り替えることができる。   According to the above aspect, since the concentration measuring means is provided in the middle of the drainage channel from the flow path switching means to the low-concentration wastewater treatment means, the concentration measuring means is kept from contacting the high-concentration wastewater as much as possible. In addition to improving the durability of the measurement means, if the concentration of the wastewater treatment target component suddenly increases while the wastewater is sent to the low-concentration wastewater treatment means, the wastewater is treated with high-concentration wastewater. Can be switched to send to means.

本発明の排水処理装置においては、前記生産設備が半導体生産設備であり、前記処理対象成分がフッ酸であることが好ましい。   In the wastewater treatment apparatus of the present invention, it is preferable that the production facility is a semiconductor production facility and the treatment target component is hydrofluoric acid.

本発明の排水処理装置によれば、プロセスデータ信号送信手段が、生産設備での生産工程のプロセスデータ信号を送信し、制御手段が、該プロセスデータ信号を受信して、該プロセスデータ信号に基づいて、排水路を通る排水の処理対象成分の濃度を判断して、該濃度が所定値よりも低いか高いかを判定し、該濃度が所定値よりも低いと判定したときは、該排水を低濃度排水処理手段に流し、該濃度が所定値よりも高いと判定したときは、該排水を高濃度排水処理手段に流すように、流路切り替え手段に動作信号を送るので、排水の電導度や、排水中の処理対象成分の濃度等を測定しなくても、排水中の処理対象成分の濃度に応じて、排水を低濃度排水処理手段と高濃度排水処理手段とに効率的に切り分けて流すことができる。   According to the waste water treatment apparatus of the present invention, the process data signal transmission means transmits the process data signal of the production process in the production facility, and the control means receives the process data signal and based on the process data signal Determining the concentration of the component to be treated of the wastewater passing through the drainage channel, determining whether the concentration is lower or higher than a predetermined value, and determining that the concentration is lower than the predetermined value, When it is determined that the concentration is higher than a predetermined value, an operation signal is sent to the flow path switching unit so that the drainage flows to the high-concentration wastewater treatment unit. Even without measuring the concentration of the treatment target component in the wastewater, according to the concentration of the treatment target component in the wastewater, the wastewater is efficiently separated into the low concentration wastewater treatment means and the high concentration wastewater treatment means. It can flow.

本発明の排水処理装置の第1の実施形態を示す概略構成図である。It is a schematic block diagram which shows 1st Embodiment of the waste water treatment equipment of this invention. 同排水処理装置における制御手段のフローチャートである。It is a flowchart of the control means in the waste water treatment equipment. 本発明の排水処理装置の第2の実施形態を示す概略構成図である。It is a schematic block diagram which shows 2nd Embodiment of the waste water treatment equipment of this invention. 同排水処理装置における制御手段のフローチャートである。It is a flowchart of the control means in the waste water treatment equipment. 従来の排水処理装置の概略構成図である。It is a schematic block diagram of the conventional waste water treatment equipment.

以下、図面を参照して、本発明の排水処理装置の実施形態を説明する。ただし、これらの例は本発明の範囲を限定するものではない。   Hereinafter, an embodiment of a wastewater treatment apparatus of the present invention will be described with reference to the drawings. However, these examples do not limit the scope of the present invention.

図1,2には、本発明を半導体製造設備における排水処理に適用した一実施形態が示されている。なお、本発明における生産設備は、半導体製造設備に限らず、例えば液晶製造、太陽電池製造、金属表面加工等の生産設備の排水処理にも適用することができる。   1 and 2 show an embodiment in which the present invention is applied to wastewater treatment in a semiconductor manufacturing facility. The production equipment in the present invention is not limited to semiconductor production equipment, and can be applied to wastewater treatment of production equipment such as liquid crystal production, solar cell production, and metal surface processing.

図1に示すように、この排水処理装置10は、半導体製造設備2の排水処理に適用されるものであり、半導体製造設備2は、エッチング処理工程A、洗浄処理工程Bを行うようになっている。そして、エッチング処理工程A時には、フッ酸濃度の高い高濃度排水を排出し、洗浄処理工程B時には、フッ酸濃度が比較的低い低濃度排水を排出するようになっている。この実施形態では、フッ酸が本発明における処理対象成分となる。これらの排水は、配管4を通して流出する。   As shown in FIG. 1, this waste water treatment apparatus 10 is applied to waste water treatment of a semiconductor manufacturing facility 2, and the semiconductor manufacturing facility 2 performs an etching process A and a cleaning process B. Yes. In the etching process A, high-concentration wastewater having a high hydrofluoric acid concentration is discharged. In the cleaning process B, low-concentration wastewater having a relatively low hydrofluoric acid concentration is discharged. In this embodiment, hydrofluoric acid is a component to be treated in the present invention. These waste water flows out through the pipe 4.

配管4は、分岐配管11、12に分岐し、一方の分岐配管11は低濃度排水処理手段13に連結され、他方の分岐配管12は高濃度排水処理手段14に連結されている。これらの配管4,11,12が、本発明における排水路を構成している。低濃度排水処理手段13は、この実施形態の場合、活性炭処理および陰イオン交換樹脂、陽イオン交換樹脂を用いた排水からイオン成分の除去を行う手段からなっており、そこで処理された排水は、洗浄水として再利用することができる。また、高濃度排水処理手段14は、例えば、フッ酸を含む排水に塩化カルシウムを加え、排水中のフッ素をフッ化カルシウムとして析出させ、さらにポリ塩化アルミニウムなどの凝集剤によりフッ化カルシウムを沈降させ除去を行う手段からなっており、処理された排水は下水として放流される。   The pipe 4 branches into branch pipes 11 and 12, one branch pipe 11 is connected to the low concentration waste water treatment means 13, and the other branch pipe 12 is connected to the high concentration waste water treatment means 14. These pipes 4, 11, and 12 constitute the drainage channel in the present invention. In this embodiment, the low-concentration wastewater treatment means 13 is composed of means for removing the ionic components from wastewater using activated carbon treatment, anion exchange resin, and cation exchange resin. It can be reused as washing water. The high-concentration waste water treatment means 14 adds, for example, calcium chloride to waste water containing hydrofluoric acid, precipitates fluorine in the waste water as calcium fluoride, and precipitates calcium fluoride with a flocculant such as polyaluminum chloride. It consists of means for removal, and the treated waste water is discharged as sewage.

分岐配管11には、バルブ15が設けられ、分岐配管12には、バルブ16が設けられており、これらのバルブ15,16が、本発明における流路切り替え手段をなしている。ただし、流路切り替え手段としては、上記のようなバルブに限らず、分岐配管11、12の分岐部に設けられた三方弁などを用いることもできる。   The branch pipe 11 is provided with a valve 15, and the branch pipe 12 is provided with a valve 16, and these valves 15, 16 constitute the flow path switching means in the present invention. However, the flow path switching means is not limited to the valve as described above, and a three-way valve provided at a branch portion of the branch pipes 11 and 12 can also be used.

半導体製造設備2には、該設備におけるプロセスデータ信号を送信するプロセスデータ信号送信手段17が設けられている。このプロセスデータ信号としては、例えば、排水を生じる各処理の処理時間(開始時間、終了時間等)、各処理によって生じる排水時間(開始時間、終了時間等)、各処理によって生じる排水量、処理に使用するフッ酸液の濃度、処理に使用するフッ酸液量などが挙げられる。   The semiconductor manufacturing facility 2 is provided with process data signal transmission means 17 for transmitting process data signals in the facility. As this process data signal, for example, the processing time (start time, end time, etc.) of each process that generates waste water, the drain time (start time, end time, etc.) generated by each process, the amount of waste water generated by each process, and used for processing The concentration of the hydrofluoric acid solution to be used, the amount of the hydrofluoric acid solution used for the treatment, etc.

また、上記プロセスデータ信号送信手段17から送信されるプロセスデータ信号を受信して、前記バルブ15,16に作動信号を送る制御手段18が設けられている。制御手段18は、流路切り替え手段であるバルブ15,16に接続されており、上記プロセスデータ信号に基づいて、バルブ15、16に作動信号を送るようになっている。   Further, there is provided control means 18 for receiving a process data signal transmitted from the process data signal transmitting means 17 and sending an operation signal to the valves 15 and 16. The control means 18 is connected to valves 15 and 16 which are flow path switching means, and sends an operation signal to the valves 15 and 16 based on the process data signal.

制御手段18における制御フローを図2に基づいて説明すると、まず、プロセスデータ信号を受信し(ステップS1)、このプロセスデータ信号に基づいて排水中のフッ酸濃度を判断する(ステップS2)。例えば、プロセスデータ信号として、排水を生じる各処理の処理時間(開始時間、終了時間等)、各処理によって生じる排水時間(開始時間、終了時間等)、各処理によって生じる排水量が受信された場合、それらに基づいて、処理に使用するフッ酸の濃度、フッ酸の使用量から排水中のフッ酸の総量を算出し、排水中のフッ酸の総量を受信された排水量で除算する方法で、排水中のフッ酸濃度を判断することができる。   The control flow in the control means 18 will be described with reference to FIG. 2. First, a process data signal is received (step S1), and the hydrofluoric acid concentration in the waste water is determined based on the process data signal (step S2). For example, when a process data signal is received as the process time (start time, end time, etc.) of each process that generates drainage, the drainage time (start time, end time, etc.) generated by each process, and the amount of drainage generated by each process, Based on these, the total amount of hydrofluoric acid in the wastewater is calculated from the concentration of hydrofluoric acid used in the treatment and the amount of hydrofluoric acid used, and the total amount of hydrofluoric acid in the wastewater is divided by the received amount of wastewater. The concentration of hydrofluoric acid can be determined.

この判断の際、半導体製造設備2でなされる処理が変更されて、フッ酸濃度が変化した排水がなされるとき、該排水によって配管4,11,12を通る排水の処理対象成分の濃度が変化する時間、言い換えると、配管4,11,12に残っている排水が流出して濃度が変化した排水が流入するまでの時間を求め、その時間を考慮して上記フッ酸濃度を判断することが好ましい。   At the time of this judgment, when the treatment performed in the semiconductor manufacturing facility 2 is changed and wastewater having a changed hydrofluoric acid concentration is made, the concentration of the component to be treated of the wastewater passing through the pipes 4, 11, and 12 is changed by the wastewater. To calculate the hydrofluoric acid concentration in consideration of this time, and in other words, the time until the wastewater remaining in the pipes 4, 11, 12 flows out and the wastewater whose concentration has changed flows in. preferable.

そして、上記フッ酸濃度が所定以上か否かを判断し(ステップS3)、フッ酸濃度が所定以上の場合には、バルブ15を閉じ、バルブ16を開き(ステップS4)、ルーチンを終了する。その結果、排水は、高濃度排水処理手段14に送られ、そこでフッ酸を含む排水に塩化カルシウムを加え、排水中のフッ素をフッ化カルシウムとして析出させ、さらにポリ塩化アルミニウムなどの凝集剤によりフッ化カルシウムを沈降させ除去する処理を受けて、フッ酸濃度を低減されて下水に放流される。   Then, it is determined whether or not the hydrofluoric acid concentration is higher than a predetermined value (step S3). If the hydrofluoric acid concentration is higher than a predetermined value, the valve 15 is closed and the valve 16 is opened (step S4), and the routine is terminated. As a result, the wastewater is sent to the high-concentration wastewater treatment means 14, where calcium chloride is added to the wastewater containing hydrofluoric acid, and the fluorine in the wastewater is precipitated as calcium fluoride. In response to the treatment to settle and remove calcium fluoride, the hydrofluoric acid concentration is reduced and discharged into sewage.

また、フッ酸濃度が所定値未満の場合には、バルブ15を開き、バルブ16を閉じ(ステップS5)、ルーチンを終了する。その結果、排水は、低濃度排水処理手段13に送られ、そこで活性炭処理および陰イオン交換樹脂、陽イオン交換樹脂を用いた排水からイオン成分を除去する処理を受けて、洗浄水として再利用される。   When the hydrofluoric acid concentration is less than the predetermined value, the valve 15 is opened, the valve 16 is closed (step S5), and the routine is terminated. As a result, the wastewater is sent to the low-concentration wastewater treatment means 13 where it is subjected to activated carbon treatment and a treatment for removing ionic components from the wastewater using the anion exchange resin and cation exchange resin, and is reused as washing water. The

このように、この排水処理装置10によれば、半導体製造設備2のプロセスデータ信号に基づいて、排水が、フッ酸濃度の低い低濃度排水か、フッ酸濃度が高い高濃度排水かを判断し、低濃度排水の場合は、低濃度排水処理手段13に送り、高濃度排水の場合は、高濃度排水処理手段14に送るようにしたので、簡単な装置によって流路切り替えを効率よく行い、排水処理手段の負荷をできるだけ軽減できると共に、洗浄水の再利用を図ることができる。なお、低濃度排水は、低濃度排水処理手段13で処理した後、そのまま下水に放流してもよい。   As described above, according to the wastewater treatment apparatus 10, based on the process data signal of the semiconductor manufacturing facility 2, it is determined whether the wastewater is a low concentration wastewater having a low hydrofluoric acid concentration or a high concentration wastewater having a high hydrofluoric acid concentration. In the case of low-concentration wastewater, it is sent to the low-concentration wastewater treatment means 13, and in the case of high-concentration wastewater, it is sent to the high-concentration wastewater treatment means 14. The load on the processing means can be reduced as much as possible, and the reuse of the washing water can be achieved. The low-concentration wastewater may be discharged into sewage as it is after being treated by the low-concentration wastewater treatment means 13.

図3,4には、本発明を半導体製造設備における排水処理に適用した他の実施形態が示されている。なお、図中、図1,2に示した実施形態と実質的に同一部分には、同符号を付してその説明を省略することとする。   3 and 4 show another embodiment in which the present invention is applied to wastewater treatment in a semiconductor manufacturing facility. In the figure, parts that are substantially the same as those of the embodiment shown in FIGS.

図3に示すように、この排水処理装置10aは、基本的に、図1,2に示した排水処理装置10と同様な構成をなしている。ただし、分岐管11のバルブ15と低濃度排水処理手段13との間に、排水中のフッ酸濃度を直接又は間接的に測定する濃度測定手段19が設けられており、この濃度測定手段19は、制御手段18に接続されていて、制御手段18は、プロセスデータ信号送信手段17から送信されるプロセスデータ信号と、濃度測定手段19から送信されるフッ酸濃度との両方に基づいて、バルブ15,16を制御するようになっている点が相違する。   As shown in FIG. 3, the waste water treatment apparatus 10a basically has the same configuration as the waste water treatment apparatus 10 shown in FIGS. However, a concentration measuring means 19 for directly or indirectly measuring the concentration of hydrofluoric acid in the waste water is provided between the valve 15 of the branch pipe 11 and the low concentration waste water treatment means 13. The control means 18 is connected to the control means 18, and the control means 18 is based on both the process data signal transmitted from the process data signal transmission means 17 and the hydrofluoric acid concentration transmitted from the concentration measurement means 19. , 16 is different.

上記濃度測定手段19としては、例えばフッ素イオン電極を用いたフッ素イオン測定装置のようなフッ酸濃度を直接測定する装置や、排水中の塩濃度、電気伝導度、pHなどを測定して、フッ酸濃度を間接的に測定する装置などが用いられる。このような測定装置としては、例えばフッ酸濃度モニタ(堀場製作所)が知られている。   Examples of the concentration measuring means 19 include a device that directly measures the hydrofluoric acid concentration, such as a fluorine ion measuring device using a fluorine ion electrode, or a salt concentration, electrical conductivity, pH, and the like in the waste water. An apparatus for indirectly measuring the acid concentration is used. As such a measuring apparatus, for example, a hydrofluoric acid concentration monitor (Horiba Seisakusho) is known.

制御手段18における制御フローを図4に基づいて説明すると、まず、プロセスデータ信号を受信し(ステップS1)、このプロセスデータ信号に基づいて、前記実施形態と同様に、排水中のフッ酸濃度を判断する(ステップS2)。   The control flow in the control means 18 will be described with reference to FIG. 4. First, a process data signal is received (step S1). Based on this process data signal, the hydrofluoric acid concentration in the waste water is determined in the same manner as in the above embodiment. Determination is made (step S2).

この判断の際、半導体製造設備2でなされる処理が変更されて、フッ酸濃度が変化した排水がなされるとき、該排水によって配管4,11,12を通る排水の処理対象成分の濃度が変化する時間、言い換えると、配管4,11,12に残っている排水が流出して濃度が変化した排水が流入するまでの時間を求め、その時間を考慮して上記フッ酸濃度を判断することが好ましい。   At the time of this judgment, when the treatment performed in the semiconductor manufacturing facility 2 is changed and wastewater having a changed hydrofluoric acid concentration is made, the concentration of the component to be treated of the wastewater passing through the pipes 4, 11, and 12 is changed by the wastewater. To calculate the hydrofluoric acid concentration in consideration of this time, and in other words, the time until the wastewater remaining in the pipes 4, 11, 12 flows out and the wastewater whose concentration has changed flows in. preferable.

そして、上記フッ酸濃度が所定以上か否かを判断し(ステップS3)、フッ酸濃度が所定以上の場合には、バルブ15を閉じ、バルブ16を開き(ステップS4)、ルーチンを終了する。その結果、排水は、高濃度排水処理手段14に送られ、フッ酸濃度を低減されて下水に放流される。   Then, it is determined whether or not the hydrofluoric acid concentration is higher than a predetermined value (step S3). If the hydrofluoric acid concentration is higher than a predetermined value, the valve 15 is closed and the valve 16 is opened (step S4), and the routine is terminated. As a result, the wastewater is sent to the high-concentration wastewater treatment means 14, where the hydrofluoric acid concentration is reduced and discharged into the sewage.

また、フッ酸濃度が所定値未満の場合には、濃度測定手段19の信号を受信して、そのフッ酸濃度が所定値以上か否かを判断する(ステップS6)。そして、フッ酸濃度が所定値以上の場合には、ステップS3でフッ酸濃度が所定値以上と判断された場合と同様に、バルブ15を閉じ、バルブ16を開く(ステップS4)。その結果、排水は、高濃度排水処理手段14に送られ、フッ酸濃度を低減されて下水に放流される。   If the hydrofluoric acid concentration is less than the predetermined value, a signal from the concentration measuring means 19 is received to determine whether the hydrofluoric acid concentration is equal to or higher than the predetermined value (step S6). If the hydrofluoric acid concentration is equal to or higher than the predetermined value, the valve 15 is closed and the valve 16 is opened (step S4), as in the case where the hydrofluoric acid concentration is determined to be higher than the predetermined value in step S3. As a result, the wastewater is sent to the high-concentration wastewater treatment means 14, where the hydrofluoric acid concentration is reduced and discharged into the sewage.

また、フッ酸濃度が所定未満の場合には、バルブ15を開き、バルブ16を閉じる(ステップS7)。その結果、排水は、低濃度排水処理手段13に送られ、そこで再生処理を受けて、洗浄水として再利用される。   If the hydrofluoric acid concentration is less than the predetermined value, the valve 15 is opened and the valve 16 is closed (step S7). As a result, the wastewater is sent to the low-concentration wastewater treatment means 13, where it undergoes a regeneration treatment and is reused as washing water.

したがって、この実施形態では、プロセスデータ信号に基づいて判断されるフッ酸濃度と、濃度測定手段19によって測定されるフッ酸濃度との両方が所定値未満のときだけ、低濃度排水処理手段13に排水が流されるようになっている。したがって、低濃度排水処理手段13に排水が流されている状態で、突発的に高濃度のフッ酸を含有する排水が流されてきたときには、直ちに流路が切り替えられて、高濃度排水処理手段14に流れるようになるので、排水処理をより安全かつ確実に行うことが可能となる。   Therefore, in this embodiment, only when both the hydrofluoric acid concentration determined based on the process data signal and the hydrofluoric acid concentration measured by the concentration measuring means 19 are less than a predetermined value, the low concentration wastewater treatment means 13 is provided. The drainage is made to flow. Therefore, when the wastewater containing the high concentration hydrofluoric acid is suddenly flowed in the state where the wastewater is being flowed to the low concentration wastewater treatment means 13, the flow path is immediately switched to the high concentration wastewater treatment means. 14, the wastewater treatment can be performed more safely and reliably.

また、濃度測定手段14は、分岐管11のバルブ15と低濃度排水処理手段13との間に配置されているので、通常は高濃度排水に曝されることはなく、高濃度のフッ酸排水による腐食から保護することができる。また性能面で高濃度排水には使用できない測定器であっても使用することができる。   Further, since the concentration measuring means 14 is disposed between the valve 15 of the branch pipe 11 and the low-concentration waste water treatment means 13, the high-concentration hydrofluoric acid waste water is not usually exposed to the high-concentration waste water. Can be protected from corrosion by. Moreover, it can be used even if it is a measuring instrument which cannot be used for high concentration waste water in terms of performance.

2 半導体製造設備
4 配管
10,10a 排水処理装置
11,12 分岐管
13 低濃度排水処理手段
14 高濃度排水処理手段
15,16 バルブ
17 プロセス信号送信手段
18 制御手段
19 濃度測定手段
A エッチング処理工程
B 洗浄処理工程
2 Semiconductor manufacturing equipment 4 Pipe 10, 10a Waste water treatment device 11, 12 Branch pipe 13 Low concentration waste water treatment means 14 High concentration waste water treatment means 15, 16 Valve 17 Process signal transmission means 18 Control means 19 Concentration measurement means A Etching process B Cleaning process

Claims (5)

各種の生産設備から排出される排水であって、該排水中の処理対象成分の濃度が生産工程によって変化するものに適用される排水処理装置において、
前記処理対象成分の濃度が低い排水を処理するための低濃度排水処理手段と、
前記処理対象成分の濃度が高い排水を処理するための高濃度排水処理手段と、
前記生産設備から前記低濃度排水処理手段と前記高濃度排水処理手段とに排水を送る排水路と、
前記排水路を通る排水を前記低濃度排水処理手段又は前記高濃度排水処理手段に切り替えて排水させる流路切り替え手段と、
前記生産設備での生産工程の前記処理対象成分濃度データを含むプロセスデータ信号を送信するプロセスデータ信号送信手段と、
前記プロセスデータ信号を受信して、該プロセスデータ信号に基づいて、前記排水路を通る排水の前記処理対象成分の濃度を判断して、該濃度が所定値よりも低いか高いかを判定し、該濃度が所定値よりも低いと判定したときは、該排水を前記低濃度排水処理手段に流し、該濃度が所定値よりも高いと判定したときは、該排水を前記高濃度排水処理手段に流すように、前記流路切り替え手段に動作信号を送る制御手段とを備えていることを特徴とする排水処理装置。
In wastewater treatment equipment applied to wastewater discharged from various production facilities, in which the concentration of components to be treated in the wastewater varies depending on the production process,
Low concentration wastewater treatment means for treating wastewater having a low concentration of the component to be treated;
High-concentration wastewater treatment means for treating wastewater having a high concentration of the treatment target component;
A drainage channel for sending wastewater from the production facility to the low-concentration wastewater treatment means and the high-concentration wastewater treatment means;
Channel switching means for switching the drainage water passing through the drainage channel to the low-concentration wastewater treatment means or the high-concentration wastewater treatment means,
A process data signal transmitting means for transmitting a process data signal including the processing target component concentration data of the production process in the production facility;
Receiving the process data signal, based on the process data signal, determine the concentration of the treatment target component of the wastewater passing through the drainage channel, determine whether the concentration is lower or higher than a predetermined value, When it is determined that the concentration is lower than a predetermined value, the waste water is caused to flow to the low concentration waste water treatment means. When it is determined that the concentration is higher than a predetermined value, the waste water is passed to the high concentration waste water treatment means. A wastewater treatment apparatus comprising: control means for sending an operation signal to the flow path switching means so as to flow.
前記プロセスデータ信号送信手段が送信するプロセスデータは、前記処理対象成分濃度データと、前記生産設備でなされる各処理の処理時間と、該処理によって発生する排水の排出時間と、該排水の排水量とを含み、前記制御手段は、前記生産設備でなされる処理が変更されて、前記処理対象成分の濃度が変化した排水がなされるとき、該排水によって前記排水路を通る排水の処理対象成分の濃度が変化する時間を求め、その時間を考慮して前記流路切り替え手段に動作信号を送るように構成されている請求項1記載の排水処理装置。   The process data transmitted by the process data signal transmission means includes the processing target component concentration data, the processing time of each processing performed in the production facility, the drainage time of wastewater generated by the processing, and the drainage amount of the wastewater. And the control means is configured such that when the treatment performed in the production facility is changed and the wastewater whose concentration of the treatment target component is changed is discharged, the concentration of the treatment target component of the wastewater passing through the drainage channel by the wastewater. The wastewater treatment apparatus according to claim 1, wherein the wastewater treatment apparatus is configured to obtain a time during which the change occurs and to send an operation signal to the flow path switching means in consideration of the time. 前記排水路には、前記排水中の処理対象成分の濃度を直接又は間接的に測定する濃度測定手段が設けられており、
前記制御手段は、前記プロセスデータ信号と、前記濃度測定手段によって測定された濃度とに基づいて、前記流路切り替え手段に動作信号を送るように構成されている請求項1又は2記載の排水処理装置。
The drainage channel is provided with a concentration measuring means for directly or indirectly measuring the concentration of the component to be treated in the wastewater,
The waste water treatment according to claim 1 or 2, wherein the control means is configured to send an operation signal to the flow path switching means based on the process data signal and the concentration measured by the concentration measuring means. apparatus.
前記濃度測定手段は、前記流路切り替え手段から前記低濃度排水処理手段に至る排水路の途中に設けられており、前記制御手段は、前記濃度測定手段によって測定される排水中の処理対象成分の濃度が所定値よりも高いときには、該排水を前記高濃度排水処理手段に流すように、前記流路切り替え手段に動作信号を送るように構成されている請求項記載の排水処理装置。 The concentration measuring means is provided in the middle of a drainage channel from the flow path switching means to the low-concentration wastewater treatment means, and the control means is a process target component in the wastewater measured by the concentration measurement means. 4. The waste water treatment apparatus according to claim 3 , wherein when the concentration is higher than a predetermined value, an operation signal is sent to the flow path switching means so that the waste water flows to the high concentration waste water treatment means. 前記生産設備が半導体生産設備であり、前記処理対象成分がフッ酸である請求項1〜4のいずれか1つに記載の排水処理装置。
The wastewater treatment apparatus according to any one of claims 1 to 4, wherein the production facility is a semiconductor production facility, and the processing target component is hydrofluoric acid.
JP2011127071A 2011-06-07 2011-06-07 Wastewater treatment equipment Expired - Fee Related JP5733034B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011127071A JP5733034B2 (en) 2011-06-07 2011-06-07 Wastewater treatment equipment
CN201210177292.7A CN102815816B (en) 2011-06-07 2012-05-31 Drainage processing device
TW101120134A TW201302620A (en) 2011-06-07 2012-06-05 Drainage treatment device
MYPI2012002550A MY155451A (en) 2011-06-07 2012-06-07 Drainage water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011127071A JP5733034B2 (en) 2011-06-07 2011-06-07 Wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2012250218A JP2012250218A (en) 2012-12-20
JP5733034B2 true JP5733034B2 (en) 2015-06-10

Family

ID=47300325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011127071A Expired - Fee Related JP5733034B2 (en) 2011-06-07 2011-06-07 Wastewater treatment equipment

Country Status (4)

Country Link
JP (1) JP5733034B2 (en)
CN (1) CN102815816B (en)
MY (1) MY155451A (en)
TW (1) TW201302620A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6093071B1 (en) * 2016-05-19 2017-03-08 株式会社スイレイ Wastewater treatment method
JP6821530B2 (en) * 2016-12-09 2021-01-27 株式会社堀場製作所 Fluid analyzer and fluid analysis method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123685A (en) * 1987-11-07 1989-05-16 Mitsubishi Electric Corp Waste water treatment system
JP3141785B2 (en) * 1996-08-02 2001-03-05 日本電気株式会社 Wastewater transfer device
JPH11238716A (en) * 1998-02-19 1999-08-31 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus
JPH11300370A (en) * 1998-04-21 1999-11-02 Japan Organo Co Ltd Device for treating fluorine-containing waste water
JP4583520B2 (en) * 1998-12-11 2010-11-17 東京エレクトロン株式会社 Waste water treatment apparatus and method
JP2003327487A (en) * 2002-05-08 2003-11-19 Kurita Water Ind Ltd Apparatus for manufacturing matured compost-like material
JP4312016B2 (en) * 2003-09-30 2009-08-12 大日本スクリーン製造株式会社 Substrate processing equipment
JP2006061779A (en) * 2004-08-25 2006-03-09 Japan Organo Co Ltd Method and apparatus for treating and separating waste water
CN201765510U (en) * 2010-09-17 2011-03-16 中冶东方工程技术有限公司 Intelligent integration system and regional system of industrial circulation water treatment

Also Published As

Publication number Publication date
JP2012250218A (en) 2012-12-20
MY155451A (en) 2015-10-15
CN102815816A (en) 2012-12-12
TW201302620A (en) 2013-01-16
CN102815816B (en) 2015-01-21

Similar Documents

Publication Publication Date Title
AU2017201329B2 (en) Method of treating industrial water
CN101160264B (en) Apparatus for producing pure water
WO2019044197A1 (en) Treatment apparatus and treatment method for hardness component-containing water
WO2015075835A1 (en) Control method and control program for water treatment facility and water treatment system
KR101079071B1 (en) Method of treating wastewater and apparatus for treating wastewater
US9255018B2 (en) Cost-efficient treatment of fluoride waste
JP5733034B2 (en) Wastewater treatment equipment
JP2008183526A (en) Method for treating acid waste liquid and alkali waste liquid
WO2017154393A1 (en) Ammonia-containing waste water processing method and processing device
JP5943196B2 (en) Water treatment facility control method, control program, and water treatment system
JP6735830B2 (en) Membrane filtration method and membrane filtration system
JP3731454B2 (en) Method for determining amount of coagulant injection and control device for drug injection
JP4678599B2 (en) Treatment method for wastewater containing phosphoric acid
JP5532017B2 (en) Industrial wastewater treatment method and treatment equipment
JP4789017B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP2018158296A (en) Method of treating hydrosilicofluoric acid-containing waste liquid
JP7135310B2 (en) Distributing method and distributing device for rinse waste water of substrate washing machine
JP6026586B2 (en) Fluorine-containing wastewater treatment method and fluorine-containing wastewater treatment apparatus
JP6467578B2 (en) Method for treating hydrofluoric acid-containing waste liquid
JP2019042646A (en) Treatment device and treatment method of silica-containing water
JP2019155296A (en) Pure water production apparatus
CN114031209B (en) Method for supervising and treating water in thermal power plant
JP7251373B2 (en) Wastewater treatment method
CN112479463B (en) Treatment device and method for sodium hypochlorite wastewater resource utilization
WO2023149414A1 (en) Ultrapure water production apparatus, and operation management method of ultrapure water production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140514

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141217

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20141216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150330

R150 Certificate of patent or registration of utility model

Ref document number: 5733034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees