JP5732903B2 - Vibration element, vibrator, oscillator, gyro sensor and electronic equipment - Google Patents

Vibration element, vibrator, oscillator, gyro sensor and electronic equipment Download PDF

Info

Publication number
JP5732903B2
JP5732903B2 JP2011039519A JP2011039519A JP5732903B2 JP 5732903 B2 JP5732903 B2 JP 5732903B2 JP 2011039519 A JP2011039519 A JP 2011039519A JP 2011039519 A JP2011039519 A JP 2011039519A JP 5732903 B2 JP5732903 B2 JP 5732903B2
Authority
JP
Japan
Prior art keywords
vibration
arm
vibrating
groove
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011039519A
Other languages
Japanese (ja)
Other versions
JP2012178644A (en
JP2012178644A5 (en
Inventor
隆伸 松本
隆伸 松本
明法 山田
明法 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011039519A priority Critical patent/JP5732903B2/en
Priority to TW101105680A priority patent/TW201242246A/en
Priority to KR1020120019073A priority patent/KR20120098491A/en
Priority to CN2012200653413U priority patent/CN202713243U/en
Priority to US13/404,527 priority patent/US8973440B2/en
Priority to CN2012100457304A priority patent/CN102651640A/en
Publication of JP2012178644A publication Critical patent/JP2012178644A/en
Publication of JP2012178644A5 publication Critical patent/JP2012178644A5/en
Application granted granted Critical
Publication of JP5732903B2 publication Critical patent/JP5732903B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、圧電振動素子、振動ジャイロ素子等に関し、特に小型化を図ると共に周波数温度特性を改善した圧電振動素子、圧電振動子、圧電発振器、振動ジャイロ素子、振動ジャイロセンサー及びそれらを用いた電子機器に関する。   The present invention relates to a piezoelectric vibration element, a vibration gyro element, and the like, and in particular, a piezoelectric vibration element, a piezoelectric vibrator, a piezoelectric oscillator, a vibration gyro element, a vibration gyro sensor, and an electronic device using the same that are miniaturized and have improved frequency temperature characteristics. Regarding equipment.

従来より、モバイルコンピューター、ハードディスク・ドライブ等の小型情報機器や、携帯電話等の移動体通信機には、基準周波数源として圧電デバイスが広く用いられている。圧電デバイスを搭載した電子機器の小型化が進むに伴い、圧電デバイスには更なる小型化が求められている。
特許文献1には、水晶の電気軸(結晶軸の1つ)の回りに0°から−15°の範囲で切り出された音叉型水晶振動子が開示されている。音叉型水晶振動子に励振される屈曲振動モード、捩れ振動モードの夫々の共振周波数f、fを互いに近接させ、結合させることにより主振動の屈曲振動モードの周波数温度特性を改善した水晶振動子である。
一般的に水晶振動子の周波数温度特性Δf/fは、温度Tに関する多項式で表わされるが、実用的には三次式で近似され、その一次係数〜三次係数はα、β、γで表わされる。
屈曲振動モードの周波数温度特性Tfは、捩れ振動モードの影響を受け、圧電基板hに依存する。種々の切断角θに対し、一次係数α=0となるように厚みhを設定し、更に二次係数βが零になる切断角度θと厚さhとを、予め計算で求めた値から設定する。これにより、周波数温度特性Tfは三次係数γのみに依存し、温度特性の良好な水晶振動子が得られると開示されている。
Conventionally, piezoelectric devices have been widely used as reference frequency sources in small information devices such as mobile computers and hard disk drives, and mobile communication devices such as mobile phones. As electronic devices equipped with a piezoelectric device are further downsized, the piezoelectric device is required to be further downsized.
Patent Document 1 discloses a tuning fork type crystal resonator cut out in the range of 0 ° to −15 ° around an electric axis of crystal (one of crystal axes). Quartz vibration with improved frequency temperature characteristics of the flexural vibration mode of the main vibration by bringing the resonance frequencies f F and f T of the flexural vibration mode and the torsional vibration mode excited by the tuning fork crystal resonator close to each other and coupling them. A child.
In general, the frequency-temperature characteristic Δf / f of a crystal resonator is expressed by a polynomial relating to the temperature T, but is practically approximated by a cubic equation, and the first to third coefficients are represented by α, β, and γ.
The frequency temperature characteristic Tf F in the flexural vibration mode is affected by the torsional vibration mode and depends on the piezoelectric substrate h. For various cutting angles θ, the thickness h is set so that the primary coefficient α = 0, and further, the cutting angle θ and the thickness h at which the secondary coefficient β becomes zero are set from values obtained by calculation in advance. To do. Thus, it is disclosed that the frequency temperature characteristic Tf F depends only on the third-order coefficient γ, and a crystal resonator having a good temperature characteristic can be obtained.

また、特許文献2には、互いに平行な複数の振動腕の各先端部に、振動腕より幅広の拡大部を設けた音叉型圧電振動子が開示されている。この拡大部は有底の孔を有し、この有底の孔には圧電材料より比重が大きい材料が充填して錘とすることにより、音叉型圧電振動子の小型化が図られると記されている。
また、特許文献3には、振動ジャイロ素子が開示されている。振動ジャイロ素子は、基部と、基部から直線状に両側へ延出された1対の検出用振動腕と、基部から両側へ検出用振動腕に直交する方向に延出された1対の連結腕と、各連結腕の先端部からそれと直交して両側へ延出された各1対の駆動用振動腕を備えている。更に、基部から各検出用腕に沿って延出される2対の梁と、同方向に延出された各梁が連結された1対の支持部と、を同一平面に備え、支持部を検出用振動腕の延出する方向であって検出用振動腕の外側で、且つ前記駆動用振動腕の間に配置するように構成されている。
Further, Patent Document 2 discloses a tuning fork type piezoelectric vibrator in which an enlarged portion wider than the vibrating arm is provided at each tip portion of a plurality of vibrating arms parallel to each other. The enlarged portion has a bottomed hole, and it is noted that the bottomed hole is filled with a material having a specific gravity greater than that of the piezoelectric material to form a weight, thereby reducing the size of the tuning fork type piezoelectric vibrator. ing.
Patent Document 3 discloses a vibrating gyro element. The vibration gyro element includes a base, a pair of detection vibrating arms linearly extending from the base to both sides, and a pair of connecting arms extending from the base to both sides in a direction perpendicular to the detection vibrating arms. And a pair of drive vibration arms each extending from the front end of each connecting arm to both sides perpendicularly to the connecting arm. In addition, two pairs of beams extending from the base along each detection arm and a pair of support portions connected to each beam extending in the same direction are provided on the same plane, and the support portions are detected. The vibration arm for use is extended in the direction outside the detection vibration arm and between the drive vibration arms.

特開昭55−75326号公報JP-A-55-75326 特開2004−282230公報JP 2004-282230 A 特開2010−2430公報JP 2010-2430 A

しかしながら、特許文献1に記載された、屈曲振動モードと捩じり振動モード夫々の周波数を近接させ互いに結合させることにより周波数温度特性を改善した音叉型圧電振動子は、小型化が難しいという問題があった。
また、特許文献2に記載の音叉型圧電振動子は、振動腕の先端部に錘部を形成することにより小型化は可能であるが、周波数温度特性は二次特性であり、周波数安定度に問題があった。
また、特許文献3の記載の振動ジャイロ素子は、温度変化により角速度の感度が変わるという問題があった。
本発明は上記問題を解決するためになされたもので、小型化と周波数温度特性の改善とを図った圧電振動素子、圧電振動子、圧電発振器、振動ジャイロセンサー、及びこれらを用いた電子機器を提供することにある。
However, the tuning-fork type piezoelectric vibrator described in Patent Document 1 in which the frequency temperature characteristics are improved by bringing the frequencies of the bending vibration mode and the torsional vibration mode close to each other and coupling them to each other is difficult to downsize. there were.
Further, the tuning fork type piezoelectric vibrator described in Patent Document 2 can be miniaturized by forming a weight portion at the tip of the vibrating arm, but the frequency temperature characteristic is a secondary characteristic, and the frequency stability is improved. There was a problem.
Further, the vibrating gyro element described in Patent Document 3 has a problem that the sensitivity of the angular velocity changes due to a temperature change.
The present invention has been made in order to solve the above problems, and includes a piezoelectric vibration element, a piezoelectric vibrator, a piezoelectric oscillator, a vibration gyro sensor, and an electronic device using these, which are reduced in size and improved in frequency temperature characteristics. It is to provide.

本発明は、上記の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
本発明のある形態に係る振動素子は、基部と、前記基部から第1方向に延出し、前記第1方向と直交する第2方向に並び、且つ、屈曲振動及び捩じり振動が結合して振動する一対の振動腕と、を含み、前記振動腕は、平面視で、錘部と、前記錘部よりも前記基部側に配置されている腕部と、を含み、前記錘部は、互いに表裏の関係にある表面及び裏面の少なくとも一方の面に、前記腕部側とは反対側の外縁から中間部にかけて延在している第1の溝部が設けられ、前記腕部は、互いに表裏の関係にある表面及び裏面の少なくとも一方の面に前記第1方向に沿って第2の溝部が設けられ、前記腕部の前記表面と前記裏面とを接続している側面と、前記第2の溝部の内面に電極が設けられていることを特徴とする。
本発明のある形態に係る振動素子は、基部と、前記基部から第1方向に延出し、前記第1方向と直交する第2方向に並び、且つ、屈曲振動及び捩じり振動が結合して振動する一対の振動腕と、を含み、前記振動腕は、平面視で、錘部と、前記錘部よりも前記基部側に配置されている腕部と、を含み、前記錘部は、互いに表裏の関係にある表面及び裏面の少なくとも一方の面に第1の溝部が設けられ、前記腕部は、互いに表裏の関係にある表面及び裏面の少なくとも一方の面に前記第1方向に沿って第2の溝部が設けられ、前記第1の溝部は、前記第2の溝部と接続していると共に、前記錘部の前記腕部側とは反対側の外縁まで延在しており、前記腕部の前記表面と前記裏面とを接続している側面と、前記第2の溝部の内面に電極が設けられていることを特徴とする。
本発明のある形態に係る振動素子は、上記振動素子において、前記第1の溝部の少なくとも一部は、前記第2の溝部よりも前記第2方向に沿った幅が広いことを特徴とする。
本発明のある形態に係る振動素子は、上記振動素子において、前記錘部は、前記腕部よりも前記第2方向に沿った幅が広いことを特徴とする。
本発明のある形態に係る振動素子は、上記振動素子において、前記振動素子は水晶板から構成され、前記水晶板の主面の法線と水晶結晶の光学軸とのなす角度が、0度から−15度の範囲内であることを特徴とする。
本発明のある形態に係る振動素子は、上記振動素子において、前記基部は、前記振動腕が延出している基部本体と、平面視で、前記基部本体の前記振動腕とは反対側の端部から延出し、前記基部本体の前記第2方向に沿った幅よりも狭い連結部と、平面視で、前記連結部の前記基部とは反対側の端部から延出している支持腕と、を備えていることを特徴とする。
本発明のある形態に係る振動子は、上記振動素子と、前記振動素子が載置されている基板と、を備えていることを特徴とする。
本発明のある形態に係る発振器は、上記振動素子と、前記振動素子を駆動するICと、を備えていることを特徴とする。
発明のある形態に係るジャイロセンサーは、上記振動素子を備えていることを特徴とする。
発明のある形態に係る電子機器は、上記振動素子を備えていることを特徴とする。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.
A vibration element according to an aspect of the present invention includes a base portion, the base portion extending in the first direction, arranged in a second direction orthogonal to the first direction, and coupled with bending vibration and torsional vibration. A pair of vibrating arms that vibrate, wherein the vibrating arm includes a weight portion and an arm portion disposed on the base side of the weight portion in plan view, and the weight portions are A first groove portion extending from the outer edge on the opposite side to the arm portion side to the intermediate portion is provided on at least one of the front surface and the back surface in a front-back relationship, and the arm portions are A second groove portion is provided along the first direction on at least one of the front surface and the back surface, and the side surface connecting the front surface and the back surface of the arm portion; and the second groove portion An electrode is provided on the inner surface of the substrate.
A vibration element according to an aspect of the present invention includes a base portion, the base portion extending in the first direction, arranged in a second direction orthogonal to the first direction, and coupled with bending vibration and torsional vibration. A pair of vibrating arms that vibrate, wherein the vibrating arm includes a weight portion and an arm portion disposed on the base side of the weight portion in plan view, and the weight portions are A first groove is provided on at least one of the front and back surfaces in a front-back relationship, and the arm portion is formed along the first direction on at least one of the front and back surfaces in a front-back relationship. The first groove portion is connected to the second groove portion and extends to an outer edge of the weight portion on the opposite side to the arm portion side. An electrode is provided on a side surface connecting the front surface and the back surface of the second groove portion and an inner surface of the second groove portion. And wherein the Rukoto.
The vibration element according to an aspect of the present invention is characterized in that, in the vibration element, at least a part of the first groove portion is wider in the second direction than the second groove portion.
The vibration element according to an aspect of the present invention is characterized in that, in the vibration element, the weight portion is wider in the second direction than the arm portion.
The vibration element according to an aspect of the present invention is the vibration element described above, wherein the vibration element is formed of a quartz plate, and an angle formed between a normal line of a main surface of the quartz plate and an optical axis of the quartz crystal is from 0 degrees. It is in the range of −15 degrees.
The vibrating element according to an aspect of the present invention is the above vibrating element, wherein the base is a base body from which the vibrating arm extends, and an end of the base body opposite to the vibrating arm in plan view. A connecting portion that is narrower than a width along the second direction of the base body, and a support arm that extends from an end of the connecting portion opposite to the base portion in a plan view. It is characterized by having.
A vibrator according to an aspect of the present invention includes the above vibration element and a substrate on which the vibration element is placed.
An oscillator according to an aspect of the present invention includes the above vibration element and an IC that drives the vibration element.
The gyro sensor which concerns on a certain form of invention is equipped with the said vibration element, It is characterized by the above-mentioned.
An electronic apparatus according to an aspect of the invention includes the above-described vibration element.

[適用例1]本圧明係る圧電振動素子は、複数の振動腕、該各振動腕の一方の端部間を連接する基部、前記各振動腕の他方の端部に夫々連接され該各振動腕の他方の端部の幅よりも幅広の錘部と、前記錘部の表面及び裏面の少なくとも一方の面に前記各振動腕の長手方向に沿って延びる第1の溝部、及び、前記各振動腕の表裏面に夫々形成された第2の溝部、を備えた圧電基板と、前記錘部の表裏面と前記各第2の溝部内を含めた前記各振動腕の表裏面及び両側面とに夫々形成され、且つ前記基部に設けた複数の電極パッドとの間を夫々電気的に接続される励振電極と、を備えた屈曲−捩じり結合振動をする圧電振動素子であって、前記圧電振動素子の周波数温度特性が温度に関し三次特性であることを特徴とする。   Application Example 1 A piezoelectric vibrating element according to the present invention includes a plurality of vibrating arms, a base portion that connects one end of each vibrating arm, and the other end portion of each vibrating arm that is connected to each other. A weight portion wider than the width of the other end portion of the arm, a first groove portion extending along a longitudinal direction of each vibration arm on at least one of the front and back surfaces of the weight portion, and each vibration A piezoelectric substrate provided with second grooves formed on the front and back surfaces of the arms, and on the front and back surfaces of the vibrating arms including both the front and back surfaces of the weight portion and the second groove portions; A piezoelectric vibration element that performs bending-torsion coupled vibration, and includes excitation electrodes that are respectively formed and electrically connected to a plurality of electrode pads provided on the base portion, The frequency temperature characteristic of the vibration element is a cubic characteristic with respect to temperature.

音叉型圧電振動素子の各振動腕の先端部に夫々錘部を形成し、該錘部の表裏面に振動腕の長手方向に沿って直線状に延びる第1の溝部を形成すると共に、各振動腕の振動中心線に沿った表裏面に夫々第2の溝部を形成する。このように構成すると、音叉型圧電振動素子に励振される屈曲振動と捩れ振動とを近接させ、結合させることが可能となる。屈曲−捩じり結合振動の屈曲振動の周波数温度特性が、温度に関し三次特性となり、優れた温度特性を有すると共に小型化された圧電振動素子が得られるという効果がある。   A weight portion is formed at the tip of each vibration arm of the tuning fork type piezoelectric vibration element, and first grooves extending linearly along the longitudinal direction of the vibration arm are formed on the front and back surfaces of the weight portion. Second grooves are respectively formed on the front and back surfaces along the vibration center line of the arm. With this configuration, the bending vibration and the torsional vibration excited by the tuning fork type piezoelectric vibration element can be brought close to each other and coupled. The frequency temperature characteristic of the flexural vibration of the flexural-torsional coupled vibration becomes a third-order characteristic with respect to temperature, and there is an effect that an excellent temperature characteristic and a miniaturized piezoelectric vibration element are obtained.

[適用例2]また圧電振動素子は、前記基部は、前記振動腕の前記一方の端部と連接した一端を備える基部本体と、該基部本体の前記振動腕と連接した一端と対向する側の他端に連接した連結部と、該連結部を介して連接され且つ前記基部本体とは離間して延びる支持腕と、を備えていることを特徴とする適用例1に記載の圧電振動素子である。   Application Example 2 In the piezoelectric vibration element, the base has a base body having one end connected to the one end of the vibrating arm, and a side facing the one end of the base main body connected to the vibrating arm. The piezoelectric vibration element according to Application Example 1, further comprising: a connecting portion connected to the other end; and a support arm connected via the connecting portion and extending away from the base body. is there.

圧電振動素子の基部が、基部本体と、連結部と、L字状及び逆L字状の各支持腕と、を有し、L字状及び逆L字状の各端部同志を連接し、この連接部を連結部を介して基部本体の一方の端部中央に連接して構成されている。このため、振動腕より各支持腕に漏洩する振動エネルギーを低減することでき、CI値が小さくなると共に、耐衝撃性が改善される。この結果、衝撃による欠損、破損等による周波数変動の虞のない圧電振動素子が得られるという効果がある。   The base portion of the piezoelectric vibration element has a base body, a connecting portion, and L-shaped and inverted L-shaped support arms, and connects the L-shaped and inverted L-shaped end portions. The connecting portion is connected to the center of one end of the base body through a connecting portion. For this reason, the vibration energy leaking from the vibrating arm to each support arm can be reduced, the CI value is reduced, and the impact resistance is improved. As a result, there is an effect that a piezoelectric vibration element having no risk of frequency fluctuation due to deficiency or breakage due to impact can be obtained.

[適用例3]また圧電振動素子は、前記圧電基板は水晶板から構成され、前記水晶板の主面の法線が、水晶結晶の光学軸に対して水晶結晶の電気軸の回りに0度から−15度の範囲内の角度で傾いていることを特徴とする適用例1又は2に記載の圧電振動素子である。   Application Example 3 In the piezoelectric vibration element, the piezoelectric substrate is formed of a crystal plate, and the normal line of the main surface of the crystal plate is 0 degree around the electric axis of the crystal crystal with respect to the optical axis of the crystal crystal. The piezoelectric vibration element according to Application Example 1 or 2, wherein the piezoelectric vibration element is tilted at an angle within a range of -15 degrees to -15 degrees.

圧電基板の切断角度が電気軸(X軸)に回りに0度から−15度に範囲で回転された音叉型圧電振動素子を構成する。このような切断角度を選ぶと、屈曲−捩じり結合振動の周波数温度特性を表わす多項式の一次係数及び二次係数をほぼ零とすることが可能となり、優れた温度特性の圧電振動素子が得られるという効果がある。   A tuning fork type piezoelectric vibration element is configured in which the cutting angle of the piezoelectric substrate is rotated in the range of 0 ° to −15 ° around the electric axis (X axis). By selecting such a cutting angle, it becomes possible to make the first and second coefficients of the polynomial representing the frequency temperature characteristic of the flexural-torsion coupled vibration almost zero, and a piezoelectric vibration element having excellent temperature characteristics can be obtained. There is an effect that it is.

[適用例4]また圧電振動素子は、前記第一の溝部は、前記長手方向に沿って離間して並ぶ複数の溝を備えていることを特徴とする適用例1乃至3の何れか一項に記載の圧電振動素子である。   Application Example 4 In the piezoelectric vibration element, any one of Application Examples 1 to 3, wherein the first groove portion includes a plurality of grooves that are separated from each other along the longitudinal direction. It is a piezoelectric vibration element as described in above.

第一の溝部が前記のように形成された圧電振動素子を構成することにより、屈曲−捩じり結合振動の屈曲振動の周波数温度特性が温度に関し三次特性となり、優れた温度特性を有する圧電振動素子が得られるという効果と、錘部平坦面に励振電極間を電気的に接続するリード電極を形成することができるという利点もある。   By configuring the piezoelectric vibration element in which the first groove portion is formed as described above, the frequency temperature characteristic of the bending vibration of the bending-torsion coupled vibration becomes a third-order characteristic with respect to temperature, and the piezoelectric vibration having excellent temperature characteristics. There is also an advantage that an element can be obtained and that a lead electrode that electrically connects the excitation electrodes can be formed on the flat surface of the weight portion.

[適用例5]また圧電振動素子は、前記第一の溝部は、前記錘部の先端縁から前記錘部の中間部にかけて延在し、且つ前記振動腕における振動中心線に対し線対称となる前記錘部の表裏面の位置に形成されていることを特徴とする適用例1乃至3の何れか一項に記載の圧電振動素子である。   Application Example 5 In the piezoelectric vibration element, the first groove portion extends from a tip edge of the weight portion to an intermediate portion of the weight portion and is symmetrical with respect to the vibration center line of the vibration arm. It is a piezoelectric vibration element as described in any one of the application examples 1 thru | or 3 currently formed in the position of the front and back of the said weight part.

第一の溝部を前記のように形成した圧電振動素子を構成することにより、屈曲−捩じり結合振動の主振動の周波数温度特性が温度に関し三次特性となり、温度特性が改善されるという効果と、錘部平坦面に励振電極間を電気的に接続するリード電極を形成することができるという利点もある。   By configuring the piezoelectric vibration element in which the first groove portion is formed as described above, the frequency temperature characteristic of the main vibration of the bending-torsion coupled vibration becomes a third-order characteristic with respect to temperature, and the temperature characteristic is improved. There is also an advantage that a lead electrode for electrically connecting the excitation electrodes can be formed on the flat surface of the weight portion.

[適用例6]また圧電振動素子は、前記第一の溝部は、前記第二の溝部と連続形成されると共に、該第一の溝部の先端部は前記錘部の先端縁まで延在し、且つ前記振動中心線に対し線対称となる前記錘部の表裏面の位置に形成されていることを特徴とする適用例1乃至3の何れか一項に記載の圧電振動素子である。   Application Example 6 In the piezoelectric vibration element, the first groove portion is formed continuously with the second groove portion, and the tip portion of the first groove portion extends to the tip edge of the weight portion. The piezoelectric vibration element according to any one of Application Examples 1 to 3, wherein the piezoelectric vibration element is formed at positions of front and back surfaces of the weight portion that are line-symmetric with respect to the vibration center line.

第一の溝部を前記のように形成した圧電振動素子を構成することにより、屈曲−捩じり結合振動の屈曲振動の周波数温度特性が温度に関し三次特性となり、圧電振動素子の温度特性が改善されるという効果と、第一及び第二溝部形成用マスクが容易になるという利点もある。   By configuring the piezoelectric vibration element in which the first groove portion is formed as described above, the frequency temperature characteristic of the bending vibration of the bending-torsion coupled vibration becomes a third-order characteristic with respect to the temperature, and the temperature characteristic of the piezoelectric vibration element is improved. There is also an advantage that the first and second groove forming masks become easy.

[適用例7]また圧電振動素子は、前記第一の溝部は、その少なくとも一部の幅が前記第二の溝部よりも幅広に形成されていることを特徴とする適用例5に記載の圧電振動素子である。   Application Example 7 In the piezoelectric vibration element according to Application Example 5, wherein the first groove portion is formed such that at least a part of the width is wider than the second groove portion. It is a vibration element.

第一の溝部を前記のように形成した圧電振動素子を構成することにより、屈曲−捩じり結合振動の屈曲振動の周波数温度特性が温度に関し三次特性となり、圧電振動素子の温度特性が改善されるという効果と、第一の溝部の幅を適切に設定することにより屈曲振動周波数と捩れ振動周波数との結合が容易になるという利点もある。   By configuring the piezoelectric vibration element in which the first groove portion is formed as described above, the frequency temperature characteristic of the bending vibration of the bending-torsion coupled vibration becomes a third-order characteristic with respect to the temperature, and the temperature characteristic of the piezoelectric vibration element is improved. There is also an advantage that the bending vibration frequency and the torsional vibration frequency can be easily coupled by appropriately setting the width of the first groove portion.

[適用例8]本発明に係る圧電振動子は、適用例1乃至6の何れか一項に記載の圧電振動素子と、該圧電振動素子を載置する絶縁基板とを備えたことを特徴とする圧電振動子である。   Application Example 8 A piezoelectric vibrator according to the present invention includes the piezoelectric vibration element according to any one of Application Examples 1 to 6 and an insulating substrate on which the piezoelectric vibration element is mounted. This is a piezoelectric vibrator.

音叉型圧電振動素子に励起される屈曲振動と捩れ振動を互いに近接させ、屈曲−捩じり結合振動が励起される音叉型圧電振動素子を絶縁基板に収容して、圧電振動子を構成することにより、小型でQ値が高く、周波数温度特性の優れた圧電振動子が得られるという効果がある。   A bending vibrator and a torsional vibration excited by a tuning fork type piezoelectric vibration element are brought close to each other, and a tuning fork type piezoelectric vibration element excited by a bending-torsion coupled vibration is accommodated in an insulating substrate to constitute a piezoelectric vibrator. Thus, there is an effect that a piezoelectric vibrator having a small size, a high Q value, and excellent frequency temperature characteristics can be obtained.

[適用例9]本発明に係る圧電発振器は、適用例1乃至6の何れか一項に記載の圧電振動素子と、該圧電振動素子を励振するIC部品と、前記圧電振動素子を気密封止すると共に前記IC部品を収容するパッケージと、を備えたことを特徴とする圧電発振器である。   Application Example 9 A piezoelectric oscillator according to the present invention includes a piezoelectric vibration element according to any one of Application Examples 1 to 6, an IC component that excites the piezoelectric vibration element, and the piezoelectric vibration element that is hermetically sealed. And a package for accommodating the IC component.

屈曲振動と捩れ振動を互いに近接させ、屈曲−捩じり結合振動が励起される音叉型圧電振動素子と、IC部品と、これらを収容するパッケージと、を備えた圧電発振器を構成することにより、小型で周波数温度特性の優れた圧電発振器が得られるという効果がある。   By constructing a piezoelectric oscillator including a tuning fork type piezoelectric vibration element in which bending vibration and torsional vibration are brought close to each other, and bending-torsional coupled vibration is excited, an IC component, and a package for accommodating these components, There is an effect that a piezoelectric oscillator having a small size and excellent frequency temperature characteristics can be obtained.

[適用例10]本発明に係る振動ジャイロ素子は、適用例1に記載の圧電振動素子が、前記基部から連接した角速度を検出するための検出用振動腕を備えることを特徴とする振動ジャイロ素子である。   Application Example 10 A vibration gyro element according to the present invention is characterized in that the piezoelectric vibration element according to Application Example 1 includes a detection vibrating arm for detecting an angular velocity connected from the base. It is.

各駆動腕用振動腕の先端部に夫々錘部を形成し、該錘部の表裏面に振動腕の長手方向に沿って直線状に延びる第1の溝部を形成すると共に、各駆動腕用振動腕の振動中心線に沿った表面裏面に夫々第2の溝部を形成した振動ジャイロ素子を構成する。このような振動ジャイロ素子を構成すると、各駆動腕用振動腕に励振される屈曲−捩じり結合振動のうちの主振動である屈曲振動の周波数温度特性が温度に関し三次特性となり、優れた温度特性を有すると共に小型の振動ジャイロ素子が得られるという効果がある。   A weight portion is formed at the tip of each vibration arm for each drive arm, and a first groove portion extending linearly along the longitudinal direction of the vibration arm is formed on the front and back surfaces of the weight portion. A vibrating gyro element is formed by forming second grooves on the front and back surfaces along the vibration center line of the arm. When such a vibration gyro element is configured, the frequency temperature characteristic of the bending vibration, which is the main vibration of the bending-torsion coupled vibration excited by the vibration arm for each driving arm, becomes a third-order characteristic with respect to the temperature, and the excellent temperature There is an effect that a small vibration gyro element having characteristics can be obtained.

[適用例11]振動ジャイロセンサーは、適用例10に記載の振動ジャイロ素子と、該振動ジャイロ素子を収容するパッケージとを備えたることを特徴とする振動ジャイロセンサーである。   Application Example 11 A vibration gyro sensor is a vibration gyro sensor including the vibration gyro element according to Application Example 10 and a package that accommodates the vibration gyro element.

以上のように振動ジャイロセンサーを構成すると、各駆動腕用振動腕に励振される屈曲−捩じり結合振動の主振動の周波数温度特性が改善されると共に、錘部を設けることにより小型化された振動ジャイロセンサーが得られるという効果とがある。   When the vibration gyro sensor is configured as described above, the frequency temperature characteristic of the main vibration of the bending-torsion coupled vibration excited by the vibration arm for each drive arm is improved, and the size is reduced by providing the weight portion. The effect is that a vibration gyro sensor can be obtained.

[適用例12]本発明に係る電子機器は、適用例8に記載の圧電振動子、又は適用例11に記載の振動ジャイロセンサーを備えることを特徴とする電子機器である。   Application Example 12 An electronic device according to the present invention is an electronic device including the piezoelectric vibrator described in Application Example 8 or the vibration gyro sensor described in Application Example 11.

以上のように圧電振動子を備えた電子機器を構成することにより、電子機器の周波数源の安定が改善さるという効果がある。また、以上の振動ジャイロセンサーを備えた電子機器を構成することにより、温度による角速度の感度変化を低減できるという効果がある。   As described above, by configuring the electronic device including the piezoelectric vibrator, there is an effect that the stability of the frequency source of the electronic device is improved. In addition, by configuring an electronic device including the above vibration gyro sensor, there is an effect that the change in sensitivity of the angular velocity due to temperature can be reduced.

(a)は本発明に係る圧電振動素子の構造を示した概略平面図であり、(b)は振動腕の断面図。(A) is the schematic plan view which showed the structure of the piezoelectric vibration element which concerns on this invention, (b) is sectional drawing of a vibrating arm. 振動腕の先端部に設けた錘部の断面図。Sectional drawing of the weight part provided in the front-end | tip part of a vibrating arm. (a)〜(c)は夫々錘部の変形例を示す平面図。(A)-(c) is a top view which shows the modification of a weight part, respectively. (a)は梁の先端部に溝を形成する場合の屈曲振動、捩れ振動夫々の周波数変化を示す説明図、(b)は梁の中央部に溝を形成する場合の屈曲振動、捩れ振動夫々の周波数変化を示す説明図、(c)は梁の板厚を変えた場合の屈曲振動、捩れ振動夫々の周波数変化を示す説明図。(A) is explanatory drawing which shows the frequency change of each of bending vibration and torsional vibration when a groove is formed at the tip of the beam, and (b) is each of bending vibration and torsional vibration when a groove is formed at the center of the beam. Explanatory drawing which shows the frequency change of (c), (c) is explanatory drawing which shows the frequency change of each of bending vibration and torsional vibration at the time of changing the plate | board thickness of a beam. (a)(b)は錘部の表裏面に凹部を設けた場合、(c)は錘部の先端部の表裏面に溝を設けた場合の平面図。(A) (b) is a top view at the time of providing a recessed part in the front and back of a weight part, (c) is a top view at the time of providing a groove in the front and back of the front-end | tip part of a weight part. 図5(a)〜(c)は夫々対応した屈曲振動、捩れ振動の共振周波数及び共振周波数差(Δf)を示す図。FIGS. 5A to 5C are diagrams showing the corresponding resonance frequency and resonance frequency difference (Δf) of bending vibration and torsional vibration, respectively. (a)は音叉振動(屈曲振動)の周波数温度特性、(b)は捩れ振動の周波数温度特性、(c)は屈曲−捩れ結合振動の周波数温度特性を示す図。(A) is a frequency temperature characteristic of tuning fork vibration (bending vibration), (b) is a frequency temperature characteristic of torsional vibration, and (c) is a diagram showing frequency temperature characteristics of bending-torsion coupled vibration. 振動腕の板厚hを変えた場合の屈曲振動と捩れ振動との結合示す図。The figure which shows the coupling | bonding of the bending vibration and torsional vibration at the time of changing the board thickness h of a vibrating arm. (a)は屈曲−捩れ結合振動の、板厚hと屈曲振動及び捩れ振動夫々の一次係数、二次係数との関係を示す図、(b)はその要部拡大図。(A) is a diagram showing the relationship between the plate thickness h and the respective primary and secondary coefficients of flexural-torsional vibration, and (b) is an enlarged view of the main part thereof. 屈曲−捩れ結合振動を用いた圧電振動子の断面図。Sectional drawing of the piezoelectric vibrator using bending-torsion coupling vibration. 圧電発振器の断面図。Sectional drawing of a piezoelectric oscillator. (a)は振動ジャイロセンサーの平面図、(b)は断面図、(c)は動作を説明する模式図。(A) is a top view of a vibration gyro sensor, (b) is sectional drawing, (c) is a schematic diagram explaining operation | movement. 電子機器の模式図。FIG.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は、本発明の一実施形態に係る圧電振動素子1の構成を示す概略平面図である。圧電振動素子1は、平板状の圧電基板7と、圧電基板7の表裏面及び側面に形成した薄膜の電極25と、を備えている。
圧電基板7は、図1(a)に示すように、互いに並行(平行)して直線状に延びる細幅帯状の複数(本例では二本)の振動腕15a、15bと、各振動腕15a、15bの一方の端部(基端部)間を連接する基部10と、各振動腕15a、15bの他方の端部(先端部)に夫々連接して一体形成され、且つ各振動腕15a、15bの前記他方の端部の幅よりも幅広な錘部20a、20bと、各振動腕15a、15bの振動中心線Cに沿った表面及び裏面に夫々形成された第2の溝部17a(17b)、18a(18b)と、を備えている。
錘部20a、20bは、振動中心線Cに沿った表面及び裏面の少なくとも一方の面(本例では両面)に、各振動腕15a、15bの長手方向(振動腕の一方の端部と他方の端部とを結ぶ線分に沿った延び方向)に沿って直線状に延びる第1の溝部22a(22b)、24a(24b)を備えている。図2、図3で、22b、24bは、錘部20a、20bの裏面に夫々形成された第1の溝部を示している。
なお、振動中心線Cとは振動腕の重心を通る振動腕の長手方向に延びた線のことである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic plan view showing a configuration of a piezoelectric vibration element 1 according to an embodiment of the present invention. The piezoelectric vibration element 1 includes a flat plate-like piezoelectric substrate 7 and thin film electrodes 25 formed on the front and back surfaces and side surfaces of the piezoelectric substrate 7.
As shown in FIG. 1A, the piezoelectric substrate 7 includes a plurality of (in this example, two) vibrating arms 15a and 15b that are linear (parallel to each other) and extend linearly, and each vibrating arm 15a. , 15b are connected integrally to the base 10 that connects between one end (base end) and the other ends (tips) of the vibrating arms 15a and 15b, respectively, and each vibrating arm 15a, Weight portions 20a, 20b wider than the width of the other end of 15b, and second grooves 17a (17b) formed on the front and back surfaces along the vibration center line C of each of the vibrating arms 15a, 15b, respectively. , 18a (18b).
The weight portions 20a and 20b are provided on at least one surface (both surfaces in this example) along the vibration center line C in the longitudinal direction of one of the vibrating arms 15a and 15b (one end of the vibrating arm and the other). First groove portions 22a (22b) and 24a (24b) extending linearly along an extending direction along a line connecting the end portions are provided. 2 and FIG. 3, 22b and 24b have shown the 1st groove part formed in the back surface of the weight parts 20a and 20b, respectively.
The vibration center line C is a line extending in the longitudinal direction of the vibrating arm passing through the center of gravity of the vibrating arm.

図1(b)に示した薄膜の電極25は、錘部20a、20bの夫々の表裏面及び第1の溝部22a、22b、24a、24bと、図1(b)に示すように、各第2の溝部17a(17b)、18a(18b)内を含めた各振動腕15a、15bの表裏面及び側面と、に夫々形成され、且つ基部10に設けた複数の電極パッド(図示せず)との間を夫々リード電極(図示せず)にて電気的に接続される励振電極30、32、34、36と、を備えている。薄膜の電極25は、蒸着法、又はスパッタ法を用いて真空装置の中で形成される。なお、第1の溝部22a、22b、24a、24b内に密度の大きい金属、例えば金Au等を付着するだけで錘部20a、20bとしての機能を果たせる場合には、必ずしも錘部20a、20bの平坦面に電極を形成する必要はない。   The thin film electrode 25 shown in FIG. 1B includes front and back surfaces of the weight portions 20a and 20b and the first groove portions 22a, 22b, 24a, and 24b, as shown in FIG. A plurality of electrode pads (not shown) formed on the front and back surfaces and side surfaces of the vibrating arms 15a and 15b including the inside of the two groove portions 17a (17b) and 18a (18b), respectively, and provided on the base portion 10; Excitation electrodes 30, 32, 34, and 36 that are electrically connected to each other by lead electrodes (not shown). The thin film electrode 25 is formed in a vacuum apparatus using a vapor deposition method or a sputtering method. In the case where the function as the weight parts 20a and 20b can be achieved only by attaching a metal having a high density in the first groove parts 22a, 22b, 24a and 24b, such as gold Au, the weight parts 20a and 20b are not necessarily provided. There is no need to form electrodes on a flat surface.

図1(a)に示す基部10は、振動漏れ低減と耐衝撃性改善のために、基部本体12aと、基部本体12aの振動腕15a、15bとは反対側の他端縁中間部(振動腕と連接した一端と対抗する側の他端)に設けた細幅の連結部12dと、連結部12dを介して連接され且つ基部本体12aとは離間した状態で幅方向に沿って延びた先から、振動腕15a、15bとを間に置いて長手方向に沿って延びる左右一対の支持腕12b、12cと、を備えている。つまり、L字状の支持腕12bの基端部と、逆L字状の支持腕12cの基端部とが連接され、この連接部分が連結部12dを介して基部本体12aの一方の端縁中央に連結されてコ字状をなし、基部本体12aの他方の端縁には各振動腕15a、15bの基端部が連結されている基部の例である。
図1の実施形態において、基部10は、基部本体12aと、連結部12dと、左右一対の支持腕12b、12cと、を備えていると説明したが、基部本体12aのみでもよい。
また、各振動腕15a、15bは、基部体12aの端部より間隔を隔して互いに平行に延出し、各振動腕15a、15bの先端部には夫々振動腕15a、15bの他方の端部の幅よりも幅広の錘部20a、20bが連設一体化されている。
A base 10 shown in FIG. 1A includes a base main body 12a and a middle portion of the other end edge (vibrating arm) opposite to the vibrating arms 15a and 15b of the base main body 12a in order to reduce vibration leakage and improve impact resistance. A narrow connecting portion 12d provided at one end connected to the other end and the other end connected to the base portion 12d and extending from the tip of the base portion 12a along the width direction. And a pair of left and right support arms 12b and 12c extending in the longitudinal direction with the vibrating arms 15a and 15b interposed therebetween. That is, the base end portion of the L-shaped support arm 12b and the base end portion of the inverted L-shaped support arm 12c are connected, and this connection portion is one end edge of the base main body 12a via the connecting portion 12d. This is an example of a base portion that is connected to the center and has a U-shape, and the base ends of the vibrating arms 15a and 15b are connected to the other end edge of the base portion main body 12a.
In the embodiment of FIG. 1, the base 10 has been described as including the base main body 12a, the connecting portion 12d, and the pair of left and right support arms 12b and 12c, but only the base main body 12a may be used.
The vibrating arms 15a and 15b extend in parallel with each other at an interval from the end of the base body 12a, and the other ends of the vibrating arms 15a and 15b are provided at the distal ends of the vibrating arms 15a and 15b, respectively. The weight portions 20a and 20b which are wider than the width are integrated and integrated.

圧電基板7は、例えば水晶基板を用いる場合には、Z板(光軸(Z軸)に垂直に切り出された基板)を電気軸(X軸)の回りに0°から−15°回転して切り出した基板を用いる。なお、圧電基板7の外形、錘部20a、20bの第1の溝部22a、22b、24a、24b、各振動腕15a、15bの第2の溝部17a(17b)、18a(18b)は、フォトリソグラフィ技術を用いたエッチング加工で形成されている。   For example, when a piezoelectric substrate is used as the piezoelectric substrate 7, a Z plate (a substrate cut out perpendicular to the optical axis (Z axis)) is rotated from 0 ° to −15 ° around the electric axis (X axis). A cut out substrate is used. Note that the outer shape of the piezoelectric substrate 7, the first groove portions 22a, 22b, 24a, 24b of the weight portions 20a, 20b and the second groove portions 17a (17b), 18a (18b) of the vibrating arms 15a, 15b are formed by photolithography. It is formed by etching using technology.

図1(b)は、(a)のP−P断面図であり、各振動腕15a、15bに夫々形成された励振電極30、32、34、36の配置を示す図である。励振電極30、34は、各溝部17a(17b)、18a(18b)の表面、及び側面に形成され、励振電極32、36は各振動腕15a、15bの夫々両側面に形成されている。
励振電極30、36と、励振電極32、34とは、互いに異符号の電圧が前記電極パッドを介して印加される。つまり、励振電極30、36に+電圧が印加されるとき、励振電極32、34には−電圧が印加され、図1(b)の矢印で示すような電界が生じ、圧電振動素子1の重心を通る中心線Cgに対し対称な音叉振動(屈曲振動)が励振される。
なお、溝部17a(17b)、18a(18b)を形成することにより、電界強度が強まり、音叉振動をより効率的に励振することができる。即ち、圧電振動素子のCI(クリスタルインピーダンスー)を小さくすることができる。
FIG. 1B is a cross-sectional view taken along the line P-P in FIG. 1A and shows the arrangement of the excitation electrodes 30, 32, 34, and 36 formed on the vibrating arms 15a and 15b, respectively. The excitation electrodes 30 and 34 are formed on the surface and side surfaces of the grooves 17a (17b) and 18a (18b), and the excitation electrodes 32 and 36 are formed on both side surfaces of the vibration arms 15a and 15b, respectively.
The excitation electrodes 30 and 36 and the excitation electrodes 32 and 34 are applied with voltages having different signs from each other via the electrode pads. That is, when a positive voltage is applied to the excitation electrodes 30 and 36, a negative voltage is applied to the excitation electrodes 32 and 34, and an electric field as shown by an arrow in FIG. A tuning fork vibration (bending vibration) that is symmetrical with respect to the center line Cg passing through is excited.
In addition, by forming the groove portions 17a (17b) and 18a (18b), the electric field strength is increased, and tuning fork vibration can be excited more efficiently. That is, the CI (crystal impedance) of the piezoelectric vibration element can be reduced.

図2は、図1(a)のQ−Q断面図である。錘部20a、20bは、図1(a)の平面図、図2の断面図に示すように、矩形平板状であって、第1の溝部22a、22b、24a、24bは、各振動腕15a、15bの長手方向に沿った錘部20a、20bの両端部に離間して配置され、且つ振動中心線Cに対して線対称であり、先端側の第1の溝部、及び基端側の第1の溝部を備えている。
図3(a)〜(c)は、第1の溝部22a、22b、24a、24bの変形例を示す平面図である。なお、図1(a)に示すように、錘部20a、20bは同一形状であるので、一方の錘部20aを用いて説明する。図3(a)に示す第1の溝部22a(22b)は、錘部20aの振動腕15aの長手方向先端縁から長手方向中間部にかけて延在し、且つ振動中心線Cに対し線対称に形成されている。
FIG. 2 is a QQ cross-sectional view of FIG. As shown in the plan view of FIG. 1A and the cross-sectional view of FIG. 2, the weight portions 20a and 20b have a rectangular flat plate shape, and the first groove portions 22a, 22b, 24a, and 24b correspond to the vibrating arms 15a. , 15b are spaced apart from both ends of the weights 20a, 20b along the longitudinal direction, are symmetrical with respect to the vibration center line C, and have a first groove on the distal end side and a first groove on the proximal end side. 1 groove portion is provided.
3A to 3C are plan views showing modifications of the first groove portions 22a, 22b, 24a, and 24b. As shown in FIG. 1A, the weight portions 20a and 20b have the same shape, and therefore, description will be made using one weight portion 20a. The first groove portion 22a (22b) shown in FIG. 3A extends from the longitudinal tip edge of the vibrating arm 15a of the weight portion 20a to the middle portion in the longitudinal direction and is symmetrical with respect to the vibration center line C. Has been.

図3(b)に示す第1の溝部22a(22b)は、第1の溝部22a(22b)の基端部が第2の溝部17a(17b)の先端部と連続形成されると共に、第1の溝部22a(22b)の先端部は、錘部20aの先端縁まで延在し、且つ振動中心線Cに対し線対称に形成されている。
図3(c)に示す第1の溝部22a(22b)は、その少なくとも一部の幅が第2の溝部17a(17b)の幅よりも幅広に形成されている。
The first groove portion 22a (22b) shown in FIG. 3B has a first end portion of the first groove portion 22a (22b) continuously formed with a distal end portion of the second groove portion 17a (17b), The tip portion of the groove portion 22a (22b) extends to the tip edge of the weight portion 20a and is symmetrical with respect to the vibration center line C.
As for the 1st groove part 22a (22b) shown in FIG.3 (c), the width | variety of the at least one part is formed wider than the width | variety of the 2nd groove part 17a (17b).

音叉型水晶振動素子1には、その重心を通り、振動腕15a、15b方向の中心線Cgに対し、互いに対称に振動する屈曲振動と、中心線Cgに対し、互いに対称な捩れ振動とが励振される。励振電極を適切に形成することにより何れの振動モードを主振動とするかが選択できる。図1は音叉振動(屈曲振動)を主振動モードする実施例である。
本発明の圧電振動素子の一例として、水晶Z板を電気軸(X軸)回りにθ(0度から−15度の範囲)回転して切り出した基板を用いて、音叉型水晶振動素子1を形成する。各振動腕15a、15bには、第2の溝部17a、17b、18a、18bを形成すると共に、各振動腕15a、15bの先端部に設けた錘部20a、20bの表裏面に第1の溝部22a、22b、24a、24bを形成する。
つまり、切断角度θと、第1の溝部22a、22b、24a、24bと、第2の溝部17a、17b、18a、18bとを適切に選定することにより、音叉型水晶振動素子1に励起される屈曲振動(音叉振動)及び捩れ振動の共振周波数f、fを、互いに近接させることによって二つ振動モードを結合させ、主振動の屈曲振動の周波数温度特性を改善すると共に、小型化を図った音叉型水晶振動素子を構成している。
The tuning fork type crystal resonator element 1 is excited by bending vibration that passes through the center of gravity and vibrates symmetrically with respect to the center line Cg in the direction of the vibrating arms 15a and 15b, and torsional vibration that is symmetrical with respect to the center line Cg. Is done. By appropriately forming the excitation electrodes, it is possible to select which vibration mode is the main vibration. FIG. 1 shows an embodiment in which tuning fork vibration (bending vibration) is set as a main vibration mode.
As an example of the piezoelectric vibration element of the present invention, a tuning fork type crystal vibration element 1 is formed by using a substrate cut out by rotating a quartz crystal Z plate around an electric axis (X axis) by θ (range of 0 ° to −15 °). Form. Second vibrating portions 17a, 17b, 18a, and 18b are formed in the vibrating arms 15a and 15b, and the first groove portions are formed on the front and back surfaces of the weight portions 20a and 20b provided at the distal ends of the vibrating arms 15a and 15b. 22a, 22b, 24a and 24b are formed.
That is, the tuning fork type crystal resonator element 1 is excited by appropriately selecting the cutting angle θ, the first groove portions 22a, 22b, 24a, 24b, and the second groove portions 17a, 17b, 18a, 18b. The two vibration modes are coupled by bringing the resonance frequencies f F and f T of the bending vibration (tuning fork vibration) and the torsion vibration close to each other, thereby improving the frequency temperature characteristic of the bending vibration of the main vibration and reducing the size. A tuning fork-type crystal resonator element is formed.

屈曲振動及び捩れ振動夫々の共振周波数f、fを互いに近接させる手段を図4(a)〜(c)を用いて説明する。
図4(a)〜(c)は、図1(a)に示す圧電振動素子(音叉型圧電振動素子)に励起される屈曲振動の共振周波数fと、捩じり振動の共振周波数fとが、錘部20a、20bの第1の溝部22a(22b)、24a(24b)、振動腕15a、15bの第2の溝部17a、17b、及び振動腕15a、15bの厚さhにより、どのように変化するかを定性的に説明する図である。なお、図4(a)、(b)の横軸のA、Bは梁(振動腕)15の形状を示し、Aは梁15に溝を形成する前、Bは溝を形成した場合である。図4(c)は梁15の板厚を変えた場合である。
Means for bringing the resonance frequencies f F and f T of the bending vibration and the torsional vibration close to each other will be described with reference to FIGS.
4A to 4C show the resonance frequency f F of flexural vibration excited by the piezoelectric vibration element (tuning fork type piezoelectric vibration element) shown in FIG. 1A and the resonance frequency f T of torsional vibration. Depending on the thickness h of the first groove portions 22a (22b) and 24a (24b) of the weight portions 20a and 20b, the second groove portions 17a and 17b of the vibrating arms 15a and 15b, and the vibrating arms 15a and 15b. It is a figure explaining qualitatively how it changes. 4A and 4B, the horizontal axes A and B indicate the shape of the beam (vibrating arm) 15. A is a case where a groove is formed in the beam 15, and B is a case where a groove is formed. . FIG. 4C shows a case where the plate thickness of the beam 15 is changed.

溝部を形成する前の梁15に励振される屈曲振動及び捩じり振動の共振周波数をf、fとし、梁15の先端部に溝部22a(22b)を形成した場合の共振周波数を夫々f’、f’とする。図4(a)に示すように、梁(振動腕)15の先端部に溝部22a(22b)を形成すると、屈曲振動、捩じり振動夫々の共振周波数f’、f’は、共に上昇するが、捩じり振動の周波数増加幅df=(f’−f)に対し、屈曲振動の周波数増加幅df=(f’−f)の方が大きい。 The resonance frequencies of the bending vibration and the torsional vibration excited by the beam 15 before forming the groove are f F and f T, and the resonance frequencies when the groove 22a (22b) is formed at the tip of the beam 15 are respectively shown. Let f ′ F and f ′ T. As shown in FIG. 4A, when the groove 22a (22b) is formed at the tip of the beam (vibrating arm) 15, the resonance frequencies f ′ T and f ′ F of the bending vibration and the torsional vibration are both The frequency increase width df F = (f ′ F −f F ) of the bending vibration is larger than the frequency increase width df T = (f ′ T −f T ) of the torsional vibration.

一方、図4(b)に示すように、梁(振動腕)15の中央部に溝部17a(17b)を形成すると、捩じり振動、屈曲振動の共振周波数f’、f’は共に低下するが、捩じり振動の周波数減少幅df=(f−f’)は、屈曲振動の周波数減少幅df=(f−f’)に比べて、大きくなる。
また、図4(c)に示すように、梁15の板厚hを厚くすると、屈曲振動の周波数f’は元の周波数fより僅かに減少するが、捩じり振動の共振周波数f’は元の周波数fより増加する。
以上のように、梁(振動腕)15に形成する溝部の位置、梁(振動腕)15の厚さを適切に選ぶことにより、屈曲振動、捩じり振動の夫々の共振周波数を近接させることが可能となる。
On the other hand, as shown in FIG. 4B, when the groove portion 17a (17b) is formed in the central portion of the beam (vibrating arm) 15, the resonance frequencies f ′ T and f ′ F of torsional vibration and bending vibration are both obtained. Although it decreases, the frequency reduction width df T = (f T −f ′ T ) of the torsional vibration becomes larger than the frequency reduction width df F = (f F −f ′ F ) of the bending vibration.
Further, as shown in FIG. 4C, when the plate thickness h of the beam 15 is increased, the bending vibration frequency f ′ F slightly decreases from the original frequency f F, but the torsional vibration resonance frequency f. 'T is increased than the original frequency f T.
As described above, by appropriately selecting the position of the groove formed on the beam (vibrating arm) 15 and the thickness of the beam (vibrating arm) 15, the respective resonant frequencies of bending vibration and torsional vibration are made close to each other. Is possible.

図5(a)〜(c)は、音叉型水晶振動素子1の外形形状は変えずに、錘部20a、20bの表裏面に形成する凹部、溝部のみを変化させた場合の錘部20a、20bの平面図である。図5(a)、(b)は錘部20a、20bの表裏面の中央部に、振動腕15a、15bの長さ方向に沿い、振動中心線Cに対し線対称に、対向する凹部21a(21b)、21’a(21’b)を形成した例である。図5(b)の凹部21a(21b)、21’a(21’b)の面積の方が、図5(a)の凹部21a(21b)、21’a(21’b)の面積より大きく形成してある。図5(c)は、錘部20a、20bの表裏面に先端より中央部にかけ、振動腕15a、15bの長さ方向に沿い、振動中心線Cに対し線対称に溝部22a(22b)、24a(24b)を形成した例である。   FIGS. 5A to 5C show the weight portion 20a when only the concave portions and the groove portions formed on the front and back surfaces of the weight portions 20a and 20b are changed without changing the outer shape of the tuning-fork type crystal vibrating element 1. It is a top view of 20b. 5 (a) and 5 (b) show concave portions 21a (axisymmetrically opposed to the vibration center line C along the longitudinal direction of the vibrating arms 15a and 15b in the central portions of the front and back surfaces of the weight portions 20a and 20b. 21b) and 21′a (21′b) are formed. The area of the recesses 21a (21b) and 21′a (21′b) in FIG. 5B is larger than the area of the recesses 21a (21b) and 21′a (21′b) in FIG. It is formed. FIG. 5C shows groove portions 22a (22b), 24a that are placed symmetrically with respect to the vibration center line C along the longitudinal direction of the vibrating arms 15a, 15b from the front and back surfaces of the weight portions 20a, 20b. This is an example in which (24b) is formed.

図6は、図5(a)〜(c)に示した形状の錘部20a、20を有する音叉型水晶振動素子1に、励振される屈曲振動及び捩れ振動の夫々の共振周波数f、fと、差周波数Δf=(f−f)と、を有限要素法を用いたシミュレーションで求めた図である。縦軸左側が共振周波数f、fを示し、縦軸右側が差周波数Δfを示している。横軸は図5(a)〜(c)に示した形状の錘部20a、20を有する音叉型水晶振動素子1に対応して符号a、b、cで示している。
図6のaとbとの夫々の共振周波数を比べると、音叉型水晶振動素子1の外形形状を変えずに、錘部20a、20bの凹部の大きさを変化させた場合は、凹部の面積の大きい方が、差周波数Δfが小さくなることが分かる。これは図4(a)に示すように、梁(振動腕)15の先端部の質量を減ずると屈曲振動の周波数の上昇の方が、捩れ振動の周波数の上昇より大きく、差周波数Δf=(f−f)が減少することからも説明できる。また、aの屈曲振動の周波数よりbの屈曲振動の周波数の方が、周波数が高くなることも図4(a)より説明できる。
図6のcは、錘部20a、20bの先端部に溝部22a(22b)、24a(24b)を形成した例で、差周波数Δf=(f−f)を更に小さくできることを示している。差周波数Δf=(f−f)を小さくすることにより、例えばΔf/((f−f)/2)の値を10%以下にすると、屈曲振動と捩じり振動の結合が密になり、主振動とする屈曲振動の周波数温度特性が改善される。
FIG. 6 shows the resonance frequencies f F and f of the bending vibration and the torsional vibration excited in the tuning-fork type crystal vibrating element 1 having the weight portions 20a and 20 having the shapes shown in FIGS. and T, the difference frequency Δf = (f T -f F) , which is a diagram obtained by the simulation using the finite element method the. The left side of the vertical axis shows the resonance frequencies f F and f T, and the right side of the vertical axis shows the difference frequency Δf. The horizontal axis is indicated by reference symbols a, b, and c corresponding to the tuning-fork type crystal vibrating element 1 having the weight portions 20a and 20 having the shapes shown in FIGS.
Comparing the respective resonance frequencies of a and b in FIG. 6, when the size of the concave portions of the weight portions 20 a and 20 b is changed without changing the outer shape of the tuning fork type crystal vibrating element 1, the area of the concave portion It can be seen that the difference frequency Δf is smaller as the difference is larger. As shown in FIG. 4A, when the mass of the tip of the beam (vibrating arm) 15 is reduced, the increase in the frequency of bending vibration is larger than the increase in the frequency of torsional vibration, and the difference frequency Δf = ( This can also be explained by the fact that f T −f F ) decreases. It can also be explained from FIG. 4A that the frequency of the bending vibration of b is higher than the frequency of bending vibration of a.
FIG. 6c shows an example in which the groove portions 22a (22b) and 24a (24b) are formed at the tip portions of the weight portions 20a and 20b, and shows that the difference frequency Δf = (f T −f F ) can be further reduced. . By reducing the difference frequency Δf = (f T −f F ), for example, when the value of Δf / ((f T −f F ) / 2) is 10% or less, the coupling between the bending vibration and the torsional vibration is reduced. It becomes dense and the frequency temperature characteristic of the bending vibration as the main vibration is improved.

図7は、音叉型水晶振動素子1で励振される屈曲振動と捩じり振動とを互いに結合させることにより、主振動の屈曲振動の周波数温度特性が改善される様子を、図を用いて定性的に表わしたものである。一般的に水晶振動子の周波数温度特性Δf/f(=(f−f)/f、fは所定の温度における周波数)は、式(1)のように温度Tの多項式で表わすことができる。
Δf/f=α(T−T)+β(T−T+γ(T−T+・・ (1)
図7(a)は主振動である屈曲振動の周波数温度特性で、温度Tに関し、二次曲線を呈している。図7(b)は捩れ振動の周波数温度特性で、周波数Δf/fは温度Tに関し、一次式で近似される。図7(c)は、屈曲振動と捩れ振動を結合させた場合の主振動である屈曲振動の周波数温度特性を示す図である。主振動の屈曲振動に捩れ振動を結合させることにより、屈曲振動の周波数温度特性を表わす多項式Δf/fの一次係数αと、二次係数βをほぼ零とすることが可能となり、主振動の屈曲振動の周波数温度特性は三次係数γで近似でき、図7(c)に示すよう常温を含む所望の温度範囲において三次曲線(三次特性)を呈する。
FIG. 7 is a qualitative view showing how the frequency temperature characteristic of the main vibration is improved by coupling the bending vibration and the torsional vibration excited by the tuning-fork type crystal resonator element 1 with each other. It is a representation. In general, the frequency-temperature characteristic Δf / f (= (f−f 0 ) / f, f 0 is a frequency at a predetermined temperature) of a crystal resonator can be expressed by a polynomial of temperature T as shown in Equation (1). it can.
Δf / f = α (T−T 0 ) + β (T−T 0 ) 2 + γ (T−T 0 ) 3 + (1)
FIG. 7A is a frequency temperature characteristic of flexural vibration, which is the main vibration, and exhibits a quadratic curve with respect to temperature T. FIG. FIG. 7B shows the frequency-temperature characteristics of torsional vibration, and the frequency Δf / f is approximated with respect to the temperature T by a linear expression. FIG. 7C is a diagram showing the frequency temperature characteristics of the bending vibration, which is the main vibration when bending vibration and torsional vibration are combined. By coupling the torsional vibration to the bending vibration of the main vibration, it becomes possible to make the primary coefficient α and the secondary coefficient β of the polynomial Δf / f representing the frequency temperature characteristic of the bending vibration substantially zero, and the bending of the main vibration The frequency-temperature characteristic of vibration can be approximated by a third-order coefficient γ and exhibits a cubic curve (third-order characteristic) in a desired temperature range including room temperature as shown in FIG.

図8は、音叉型水晶振動子1の振動腕15a、15bの板厚hを変化させた場合、屈曲振動と捩れ振動との結合の度合いをシミュレーションで求め、図示したものである。屈曲振動の共振周波数fは、厚さhに関しほぼ平坦で、hの増加につれて僅かに減少する。一方、捩れ振動の共振周波数fは、厚さhの増加に応じ、ほぼ比例するように増加する。図8の例では、86μmより少し薄い板厚hで結合が大きくなることが分かる。 FIG. 8 shows the degree of coupling between flexural vibration and torsional vibration obtained by simulation when the plate thickness h of the vibrating arms 15a and 15b of the tuning fork crystal resonator 1 is changed. The resonance frequency f F of the bending vibration is almost flat with respect to the thickness h, and decreases slightly as h increases. Meanwhile, the resonance frequency f T of the torsional vibration, depending on the increase in the thickness h, increases so as to be substantially proportional. In the example of FIG. 8, it can be seen that the coupling increases with a plate thickness h slightly less than 86 μm.

図9(a)は、音叉型水晶振動子1に励振される屈曲振動の一次係数α、二次系数βと、捩れ振動の一次係数α’、二次係数β’と、をシミュレーションで求め、それを図示したものである。屈曲振動の一次係数α、二次係数βを夫々菱形◆、四角■で示し、捩れ振動の一次係数α’、二次係数β’を夫々白抜き菱形◇、白抜き四角□で示している。図9(a)より捩れ振動の一次係数α’が他の係数に比べ大きいことが分かる。つまり、捩れ振動では一次係数α’が支配的である。
また、屈曲振動の一次係数α、二次係数βは、図9の例では、振動腕15a、15bの板厚hが84μmから85μmの範囲で極めて小さくなることが分かる。
FIG. 9A shows, by simulation, the primary coefficient α, the secondary coefficient β, the primary coefficient α ′, and the secondary coefficient β ′ of the torsional vibration excited by the tuning fork type crystal resonator 1. This is illustrated. The primary coefficient α and the secondary coefficient β of the bending vibration are indicated by diamonds ◆ and squares ■, respectively, and the primary coefficient α ′ and the secondary coefficient β ′ of the torsional vibration are indicated by white diamonds ◇ and white squares □, respectively. It can be seen from FIG. 9A that the primary coefficient α ′ of the torsional vibration is larger than the other coefficients. That is, the primary coefficient α ′ is dominant in torsional vibration.
Further, it can be seen that the primary coefficient α and the secondary coefficient β of the bending vibration are extremely small in the example of FIG. 9 when the plate thickness h of the vibrating arms 15a and 15b is in the range of 84 μm to 85 μm.

図9(b)は、振動腕15a、15bの板厚hを82μmから86μmの範囲で変化させた場合の屈曲振動、捩れ振動の夫々の一次係数、二次係数α、β、α’、β’を板厚hに対し示した図である。図9(b)の例では、屈曲振動の一次係数α、二次係数βとも板厚h=84.5μm近辺でほぼ零になることが判明した。また捩れ振動の二次係数β’も板厚h=84.5μm近傍でほぼ零になることが分かる。
つまり、図9の音叉型水晶振動素子1の例では、板厚hを84.5μmに設定することにより、主振動である屈曲振動の周波数温度特性の一次係数α、二次係数βを共に零とすることができる。そのため屈曲振動の周波数温度特性は3次曲線を呈し、周波数温度特性が大幅に改善されると共に、錘部20a、20bの設けることにより振動腕が短縮され、小型の音叉型水晶振動素子1が得られる。
FIG. 9B shows the first and second coefficients α, β, α ′, β of the bending vibration and the torsional vibration when the plate thickness h of the vibrating arms 15a, 15b is changed in the range of 82 μm to 86 μm. It is the figure which showed 'with respect to plate thickness h. In the example of FIG. 9B, it has been found that both the primary coefficient α and the secondary coefficient β of the bending vibration become substantially zero in the vicinity of the plate thickness h = 84.5 μm. It can also be seen that the secondary coefficient β ′ of the torsional vibration is almost zero in the vicinity of the plate thickness h = 84.5 μm.
In other words, in the example of the tuning fork type crystal resonator element 1 of FIG. 9, by setting the plate thickness h to 84.5 μm, both the primary coefficient α and the secondary coefficient β of the frequency temperature characteristic of the bending vibration that is the main vibration are zero. It can be. Therefore, the frequency temperature characteristic of the bending vibration exhibits a cubic curve, and the frequency temperature characteristic is greatly improved, and the vibrating arms are shortened by providing the weight portions 20a and 20b, so that a small tuning fork type crystal vibrating element 1 is obtained. It is done.

また、錘部20a、20bの表裏面に形成した電極、第一の溝部22a、22b、24a、24b内に形成した電極、振動腕15a、15bに形成した電極をレーザー光を照射することにより、音叉型圧電振動子に励振される屈曲振動と捩れ振動との結合度の微調整をすることが可能である。
また、落下衝撃等による周波数変動を考慮すると錘部の表裏面の電極(特に先端部)は避け、第一の溝部内にのみに錘用の電極を形成する方がよい場合がある。
Further, by irradiating the electrodes formed on the front and back surfaces of the weight portions 20a and 20b, the electrodes formed in the first groove portions 22a, 22b, 24a and 24b, and the electrodes formed on the vibrating arms 15a and 15b with laser light, It is possible to finely adjust the degree of coupling between the bending vibration and the torsional vibration excited by the tuning fork type piezoelectric vibrator.
In consideration of frequency fluctuation due to drop impact or the like, it may be better to avoid the electrodes on the front and back surfaces of the weight portion (particularly the tip portion) and to form the weight electrode only in the first groove portion.

図1に示すように、本発明の圧電振動素子(音叉型圧電振動素子)1は、各振動腕の先端部に夫々錘部を形成し、該錘部の表裏面に振動腕の長手方向に沿って直線状に延びる第1の溝部を形成すると共に、各振動腕の振動中心線に沿って表裏面に夫々第2の溝部を形成する。このように構成すると、音叉型圧電振動素子1に励起される屈曲振動と捩れ振動とを近接させ、結合させることが可能となる。屈曲−捩じり結合振動の主振動である屈曲振動の周波数温度特性が、温度に関し三次特性となり、優れた温度特性を有すると共に小型化された圧電振動素子が得られるという効果がある。   As shown in FIG. 1, a piezoelectric vibrating element (tuning fork type piezoelectric vibrating element) 1 according to the present invention has a weight portion formed at the tip of each vibrating arm, and is arranged on the front and back surfaces of the weight portion in the longitudinal direction of the vibrating arm. A first groove extending linearly along the first groove is formed, and a second groove is formed on the front and rear surfaces along the vibration center line of each vibrating arm. With this configuration, the bending vibration and the torsional vibration excited by the tuning fork type piezoelectric vibration element 1 can be brought close to each other and coupled. The frequency temperature characteristic of the flexural vibration, which is the main vibration of the flexural-torsional coupled vibration, becomes a third-order characteristic with respect to temperature, and there is an effect that a piezoelectric vibration element having excellent temperature characteristics and a reduced size can be obtained.

また、図1(a)に示すように、圧電振動素子(音叉型圧電振動素子)1の基部が、基部本体と、連結部と、L字状及び逆L字状の各支持腕と、を有し、L字状及び逆L字状の各端部同志を連接し、この連接部を連結部を介して基部本体の一方の端部中央に連接して構成されている。このため、振動腕より各支持腕に漏洩する振動エネルギーを低減することができ、CI値が小さくなると共に、耐衝撃性が改善される。この結果、衝撃による欠損、破損等による周波数変動の虞のない圧電振動素子が得られるという効果がある。   Further, as shown in FIG. 1A, the base of the piezoelectric vibration element (tuning fork type piezoelectric vibration element) 1 includes a base body, a connecting portion, and L-shaped and inverted L-shaped support arms. The L-shaped and the inverted L-shaped end portions are connected to each other, and the connecting portion is connected to the center of one end portion of the base body through a connecting portion. For this reason, the vibration energy leaking from the vibrating arm to each support arm can be reduced, the CI value is reduced, and the impact resistance is improved. As a result, there is an effect that a piezoelectric vibration element having no risk of frequency fluctuation due to deficiency or breakage due to impact can be obtained.

また、図1(a)に示す圧電基板7の切断角度が、電気軸(X軸)に回りに0度から−15度に範囲で回転された圧電振動素子(音叉型圧電振動素子)1を構成する。このように切断角度を選ぶと、屈曲-捩れ結合振動の周波数温度特性を表わす多項式の一次係数及び二次係数をほぼ零とすることが可能となり、優れた温度特性の圧電振動素子が得られるという効果がある。
また、第一の溝部22a〜24bが、図1(a)に示すように形成された圧電振動素子1を構成することにより、屈曲−捩じり結合振動の屈曲振動の周波数温度特性が温度に関し三次特性となり、優れた温度特性を有する圧電振動素子が、得られるという効果と、錘部20a、20bの平坦面に励振電極間を電気的に接続するリード電極を形成することができるという利点もある。
Further, the piezoelectric vibration element (tuning fork type piezoelectric vibration element) 1 in which the cutting angle of the piezoelectric substrate 7 shown in FIG. 1A is rotated in the range of 0 degrees to -15 degrees around the electric axis (X axis) is provided. Configure. By selecting the cutting angle in this way, it becomes possible to make the first and second coefficients of the polynomial representing the frequency-temperature characteristics of the bending-torsion coupled vibration almost zero, and a piezoelectric vibration element having excellent temperature characteristics can be obtained. effective.
Further, since the first groove portions 22a to 24b constitute the piezoelectric vibration element 1 formed as shown in FIG. 1A, the frequency temperature characteristic of the bending vibration of the bending-torsional coupled vibration is related to the temperature. An effect that a piezoelectric vibration element having tertiary characteristics and excellent temperature characteristics can be obtained, and an advantage that a lead electrode for electrically connecting the excitation electrodes to the flat surfaces of the weight portions 20a and 20b can be formed. is there.

また、第一の溝部22a〜24bが、図3(a)〜(c)に示すように形成された圧電振動素子を構成することにより、屈曲−捩じり結合振動の主振動の周波数温度特性が温度に関し三次特性となり、温度特性が改善されるという効果ある。更に、図3(a)の例では錘部20aの平坦面に励振電極間を電気的に接続するリード電極を形成することができるという利点、図3(b)の例では、第一及び第二溝部形成用マスクが容易になるという利点、図3(c)の例では、第一の溝部の幅を適切に設定することにより屈曲振動周波数と捩れ振動周波数との結合が容易になるという利点もある。   Further, the first groove portions 22a to 24b constitute the piezoelectric vibration element formed as shown in FIGS. 3A to 3C, so that the frequency temperature characteristics of the main vibration of the flexure-torsion coupled vibration are obtained. Has a third-order characteristic with respect to temperature, and the temperature characteristic is improved. Further, in the example of FIG. 3A, an advantage that a lead electrode for electrically connecting the excitation electrodes can be formed on the flat surface of the weight portion 20a. In the example of FIG. The advantage that the two-groove portion forming mask becomes easy, and in the example of FIG. 3C, the advantage that the flexural vibration frequency and the torsional vibration frequency can be easily combined by appropriately setting the width of the first groove portion. There is also.

図10は、本発明に係る第2の実施の形態の圧電振動子2の構成を示す断面図である。圧電振動子2は、上記の圧電振動素子1と、圧電振動素子1を収容するパッケージとを備えている。パッケージは、矩形の箱状に形成されているパッケージ本体40と、ガラス等からなる窓部材54を有する蓋部材52とから成る。
パッケージ本体40は、図10に示すように、絶縁基板として第1の基板41と、第2の基板42と、第3の基板43とを積層して形成されており、絶縁材料として、酸化アルミニウム質のセラミック・グリーンシートを成形し箱状とした後で、焼結して形成されている。実装端子45は、第1の基板41の外部底面に複数形成されている。
第3の基板43は中央部が除去されており、第3の基板43の上部周縁に例えばコバール等の金属シールリング44が形成されている。
第3の基板43と第2の基板42とにより、圧電振動素子1を収容する凹部が形成されている。第2の基板42の上面の所定の位置には、導体46により実装端子45と電気的に導通する複数の素子搭載パッド47が設けられている。
素子搭載パッド47の位置は、圧電振動素子1を載置した際に支持腕12b、12cに形成したパッド電極(図示せず)に対応するように配置されている。
FIG. 10 is a cross-sectional view showing a configuration of the piezoelectric vibrator 2 according to the second embodiment of the present invention. The piezoelectric vibrator 2 includes the piezoelectric vibration element 1 and a package that accommodates the piezoelectric vibration element 1. The package includes a package main body 40 formed in a rectangular box shape, and a lid member 52 having a window member 54 made of glass or the like.
As shown in FIG. 10, the package body 40 is formed by laminating a first substrate 41, a second substrate 42, and a third substrate 43 as an insulating substrate, and an aluminum oxide as an insulating material. It is formed by forming a quality ceramic green sheet into a box shape and then sintering it. A plurality of mounting terminals 45 are formed on the outer bottom surface of the first substrate 41.
The central portion of the third substrate 43 is removed, and a metal seal ring 44 such as Kovar is formed on the upper peripheral edge of the third substrate 43.
The third substrate 43 and the second substrate 42 form a recess that accommodates the piezoelectric vibration element 1. A plurality of element mounting pads 47 that are electrically connected to the mounting terminals 45 by conductors 46 are provided at predetermined positions on the upper surface of the second substrate 42.
The positions of the element mounting pads 47 are arranged so as to correspond to pad electrodes (not shown) formed on the support arms 12b and 12c when the piezoelectric vibration element 1 is placed.

圧電振動子2の構成は、パッケージ本体40の素子搭載パッド47に導電性接着剤50、例えばエポキシ系接着剤、ポリイミド系接着剤、ビスマレイミド系接着剤の何れかを適量塗布し、その上に圧電振動素子1を載置して荷重をかける。
パッケージ本体40に搭載された圧電振動子1の導電性接着剤50を硬化させるために所定の温度の高温炉に所定の時間入れる。アニール処理を施した後、上方からレーザー光を照射して各錘部20a、20b、各振動腕15a、15bに形成された周波数調整用金属膜の一部を蒸散させて周波数粗調を行う。ガラス窓部54を備えて蓋部材52を、パッケージ本体40の上面に形成したシールリング44に、シーム溶接する。
パッケージの貫通孔48を封止する前に、加熱処理を施す。パッケージの上下を逆にして、貫通孔48内の段差部上に金属球の充填材48aを載置する。充填材48aとしては金−ゲルマニウム合金等がよい。充填材48aにレーザー光を照射して溶融させ、貫通孔48を封止すると共にパッケージ内部を真空とする。パッケージの外部から窓部材54を介してレーザー光をパッケージ内に照射し、振動腕15a、15bに形成した周波数調整用金属膜を蒸散させて周波数微調整を行い、圧電振動子2を完成する。
The piezoelectric vibrator 2 is configured by applying an appropriate amount of a conductive adhesive 50, for example, an epoxy adhesive, a polyimide adhesive, or a bismaleimide adhesive, to the element mounting pad 47 of the package body 40, and then applying it. The piezoelectric vibration element 1 is placed and a load is applied.
In order to cure the conductive adhesive 50 of the piezoelectric vibrator 1 mounted on the package body 40, it is placed in a high temperature furnace at a predetermined temperature for a predetermined time. After performing the annealing treatment, the laser light is irradiated from above, and the frequency adjustment is performed by evaporating a part of the metal film for frequency adjustment formed on each of the weight portions 20a and 20b and each of the vibrating arms 15a and 15b. A lid member 52 having a glass window 54 is seam welded to a seal ring 44 formed on the upper surface of the package body 40.
Before sealing the through-hole 48 of the package, heat treatment is performed. A metal ball filler 48 a is placed on the stepped portion in the through hole 48 with the package upside down. The filler 48a is preferably a gold-germanium alloy or the like. The filler 48a is irradiated with a laser beam and melted to seal the through hole 48 and to make the inside of the package vacuum. Laser light is irradiated into the package from the outside of the package through the window member 54, and the frequency adjusting metal film formed on the vibrating arms 15a and 15b is evaporated to finely adjust the frequency, thereby completing the piezoelectric vibrator 2.

図10の構成の圧電振動子2に、落下などの衝撃が加えられたときの圧電振動素子1の変形について説明する。圧電振動子2のパッケージの主面に直交方向に衝撃力が加えられると、圧電振動素子1は、素子搭載パッド47を支点として、変形し易い支持腕支持部12b、12cがパッケージ本体40の底面に向かって変形する。次に、この変形が基部10の外側端縁12eで反射し、変形が基部本体12aの中央部に伝搬し、基部本体12aを含めた全体がパッケージ本体40の底面側に沈み込む。その結果、振動腕15a、15bは、その先端側がパッケージ底面に向かって変形する。つまり、基部10の構造が基部本体12aに連結部12dを介して支持腕12b、12cに連接されていることにより、加えられた衝撃を基部10の構造で緩和するように構成されている。
図10の断面図に示すように、音叉型圧電振動素子に励起される屈曲振動と捩れ振動を互いに近接させ、屈曲−捩じり結合振動が励起される音叉型圧電振動素子1を絶縁基板40に収容して、圧電振動子2を構成することにより、小型でQ値が高く、周波数温度特性の優れた圧電振動子が得られるという効果がある。
Deformation of the piezoelectric vibration element 1 when an impact such as dropping is applied to the piezoelectric vibrator 2 having the configuration shown in FIG. When an impact force is applied in the orthogonal direction to the main surface of the package of the piezoelectric vibrator 2, the piezoelectric vibration element 1 has the support arm support portions 12 b and 12 c that are easily deformed with the element mounting pad 47 as a fulcrum. Deforms toward. Next, this deformation is reflected by the outer edge 12 e of the base portion 10, the deformation propagates to the central portion of the base body 12 a, and the whole including the base body 12 a sinks to the bottom surface side of the package body 40. As a result, the vibrating arms 15a and 15b are deformed toward the bottom surface of the package at their distal ends. In other words, the structure of the base 10 is connected to the support arms 12b and 12c through the connecting portion 12d to the base body 12a, so that the applied impact is mitigated by the structure of the base 10.
As shown in the cross-sectional view of FIG. 10, the tuning fork type piezoelectric vibration element 1 in which the bending vibration and the torsion vibration excited by the tuning fork type piezoelectric vibration element are brought close to each other and the bending-torsion coupled vibration is excited. The piezoelectric vibrator 2 is housed in the housing so that a piezoelectric vibrator having a small size, a high Q value, and excellent frequency temperature characteristics can be obtained.

図11は、本発明に係る第3の実施の形態圧電発振器3の構成を示す断面図である。圧電発振器3は、上記の圧電振動素子1と、圧電振動素子1を励振するIC部品78と、圧電振動素子1を真空封止すると共にIC部品78を収容するパッケージ本体60、及び窓部材75a有する蓋部材75と、を備えている。圧電振動素子1にレーザー光を照射しての粗調製、微調整する手法、また、パッケージの内部を真空にして貫通孔68の封止する手法等は、圧電振動子2の場合と同様であるので省略する。IC部品78はパッケージ本体60のIC部品搭載パッド69に、金属バンプ76等を用いて電気的に導通接続する。
なお、図11に示した圧電発振器3では、IC部品78が気密封止されていない例を示したが、IC部品78をパッケージ内部に配置し、気密封止してもよい。
FIG. 11 is a sectional view showing a configuration of a piezoelectric oscillator 3 according to the third embodiment of the present invention. The piezoelectric oscillator 3 includes the piezoelectric vibration element 1 described above, an IC component 78 that excites the piezoelectric vibration element 1, a package body 60 that vacuum seals the piezoelectric vibration element 1 and accommodates the IC component 78, and a window member 75a. And a lid member 75. The method of rough preparation and fine adjustment by irradiating the piezoelectric vibration element 1 with laser light, and the method of sealing the through hole 68 by evacuating the inside of the package are the same as in the case of the piezoelectric vibrator 2. I will omit it. The IC component 78 is electrically connected to the IC component mounting pad 69 of the package body 60 by using a metal bump 76 or the like.
In the piezoelectric oscillator 3 shown in FIG. 11, the IC component 78 is not hermetically sealed. However, the IC component 78 may be disposed inside the package and hermetically sealed.

図11の断面図に示すように、屈曲振動と捩れ振動を互いに近接させ、屈曲−捩じり結合振動が励起される音叉型圧電振動素子1と、IC部品78と、これらを収容するパッケージ60と、を備えた圧電発振器を構成することにより、小型で周波数温度特性の優れた圧電発振器が得られるという効果がある。   As shown in the cross-sectional view of FIG. 11, the tuning fork type piezoelectric vibration element 1 in which bending vibration and torsional vibration are brought close to each other to excite bending-torsion coupled vibration, an IC component 78, and a package 60 that accommodates them. And, there is an effect that a piezoelectric oscillator having a small size and excellent frequency temperature characteristics can be obtained.

図12は、本発明に係る第4の実施の形態の振動ジャイロセンサー4の構成を示す図であり、蓋体を取り除いて示している。図12(a)は、振動ジャイロセンサー4の平面図であり、同図(b)はP−P断面図である。
振動ジャイロセンサー4は、振動ジャイロ素子80と、振動ジャイロ素子80を収容するパッケージと、を概略備えている。パッケージは、絶縁基板(パッケージ本体)79と、絶縁基板79を気密封止する蓋体と、を備えている。
振動ジャイロ素子80は、基部本体81と、基部本体81の対向する2つの端縁から夫々同一直線上に突設された1対の検出用振動腕85a、85bとを備えた基部を備えている。更に、振動ジャイロ素子80は、基部本体81の対向する他の2つの端縁から夫々検出用振動腕85a、85bと直交する方向に同一直線上に突設された1対の第1の連結腕82a、82bと、各第1の連結腕82a、82bの先端部からそれと直交する両方向へ夫々突設された各1対の駆動用振動腕83a、83b及び84a、84bと、を備えている。
FIG. 12 is a diagram showing the configuration of the vibration gyro sensor 4 according to the fourth embodiment of the present invention, with the lid removed. 12A is a plan view of the vibration gyro sensor 4, and FIG. 12B is a cross-sectional view taken along the line PP.
The vibration gyro sensor 4 generally includes a vibration gyro element 80 and a package that houses the vibration gyro element 80. The package includes an insulating substrate (package body) 79 and a lid that hermetically seals the insulating substrate 79.
The vibration gyro element 80 includes a base portion including a base body 81 and a pair of detection vibrating arms 85 a and 85 b that are provided on the same straight line from two opposing edges of the base body 81. . Further, the vibration gyro element 80 is a pair of first connecting arms that are projected from the other two opposite edges of the base body 81 on the same straight line in a direction orthogonal to the detection vibrating arms 85a and 85b. 82a, 82b, and a pair of drive vibration arms 83a, 83b and 84a, 84b that respectively project from the distal ends of the first connecting arms 82a, 82b in both directions orthogonal thereto.

更に、基部は、基部本体81の対向する他の2つの端縁から夫々検出用振動腕85a、85bと直交する方向に同一直線上に突設された各1対の第2の連結腕と、各第2の連結腕の先端部からそれと直交する両方向へ夫々突設され、検出用振動腕85a、85bと、駆動用振動腕83a、3b及び84a、84bとの間に配置された各1対の支持腕86a、86b及び87a、87bと、を備えている。
励振電極は、少なくとも1対の検出用振動腕85a、85bと、各1対の駆動用振動腕83a、83b及び84a、84bと、に夫々形成されている。支持腕86a、86b及び87a、87bには、複数の電極パッド(図示せず)が形成され、この電極パッドと励振電極との間は、夫々電気的に接続されている。
Further, the base portion is a pair of second connecting arms that protrude from the other two opposite edges of the base body 81 in the direction perpendicular to the detection vibrating arms 85a and 85b. Each pair of projections is provided so as to project from the tip of each second connecting arm in both directions orthogonal thereto, and arranged between the detection vibrating arms 85a and 85b and the driving vibrating arms 83a and 3b and 84a and 84b. Support arms 86a, 86b and 87a, 87b.
The excitation electrodes are formed on at least one pair of detection vibrating arms 85a and 85b and each pair of driving vibrating arms 83a and 83b and 84a and 84b. A plurality of electrode pads (not shown) are formed on the support arms 86a and 86b and 87a and 87b, and the electrode pads and the excitation electrodes are electrically connected to each other.

図12(c)は振動ジャイロ素子の動作を説明する模式平面図である。振動ジャイロセンサー4は角速度が加わらない状態では、駆動用振動腕83a、83b、84a、84bが矢印Eで示す方向に屈曲振動を行う。このとき、駆動用振動腕83a、83bと、駆動用振動腕84a、84bとが、重心Gを通るY’軸方向の直線に関して線対称の振動を行っているため、基部本体81、連結腕82a、82b、検出用振動腕85a、85bはほとんど振動しない。
振動ジャイロセンサー4にZ’軸回りの角速度ωが加わると、駆動用振動腕83a、83b、84a、84b及び第1の連結腕82a、82bにコリオリ力が働き、新たな振動が励起される。この振動は重心Gに対して周方向の振動である。同時に、検出用振動腕85a、85bは、この振動に応じて検出振動が励起される。この振動により発生した歪を検出用振動腕85a、85bに形成した検出電極が検出して角速度が求められる。
FIG. 12C is a schematic plan view for explaining the operation of the vibrating gyro element. When the angular velocity is not applied to the vibration gyro sensor 4, the driving vibration arms 83a, 83b, 84a, and 84b perform bending vibration in the direction indicated by the arrow E. At this time, the driving vibrating arms 83a and 83b and the driving vibrating arms 84a and 84b vibrate symmetrically with respect to the straight line in the Y′-axis direction passing through the center of gravity G, so that the base main body 81 and the connecting arm 82a. 82b and the vibrating arms for detection 85a and 85b hardly vibrate.
When an angular velocity ω about the Z ′ axis is applied to the vibration gyro sensor 4, Coriolis force acts on the drive vibration arms 83a, 83b, 84a, 84b and the first connection arms 82a, 82b, thereby exciting new vibrations. This vibration is a vibration in the circumferential direction with respect to the center of gravity G. At the same time, the detection vibration arms 85a and 85b are excited to detect vibration in response to this vibration. A detection electrode formed on the vibrating arms for detection 85a and 85b detects the distortion generated by this vibration, and the angular velocity is obtained.

本発明の振動ジャイロセンサー4の特徴は、駆動用振動腕83a、83b、84a、84bの先端部に錘部26が設けられ、各錘部26の表裏面には振動腕の長さ方向に沿って振動中心線に線対称に第1の溝部27が形成されている。さらに、駆動用振動腕83a、83b、84a、84bには、振動腕の長さ方向に沿って振動中心線に線対称に第2の溝部28が形成されている。振動ジャイロ素子80の圧電振動基板の切断角度θと、錘部26の第1の溝部27と、駆動腕83a、83b、84a、84bの第2の溝部28と、駆動腕83a、83b、84a、84bの板厚を適切に選定することにより、振動ジャイロ素子80に励起される屈曲振動及び捩れ振動の夫々の共振周波数f、fを互いに近接させることができる。二つ振動モードを結合させ、主振動の屈曲振動の周波数温度特性を改善すると共に、錘部26を設けることにより駆動用振動腕、検出用親王腕を短縮することにより、小型の振動ジャイロセンサー4を構成することができる。 The vibration gyro sensor 4 according to the present invention is characterized in that a weight portion 26 is provided at the tip of the drive vibration arms 83a, 83b, 84a, 84b, and the front and back surfaces of each weight portion 26 are along the length direction of the vibration arm. Thus, the first groove portion 27 is formed symmetrically with respect to the vibration center line. Further, in the driving vibrating arms 83a, 83b, 84a, 84b, second grooves 28 are formed symmetrically with respect to the vibration center line along the length direction of the vibrating arms. The cutting angle θ of the piezoelectric vibration substrate of the vibration gyro element 80, the first groove portion 27 of the weight portion 26, the second groove portion 28 of the drive arms 83a, 83b, 84a, 84b, and the drive arms 83a, 83b, 84a, By appropriately selecting the thickness 84b, the resonance frequencies f F and f T of the bending vibration and the torsional vibration excited by the vibration gyro element 80 can be brought close to each other. The two vibration modes are combined to improve the frequency temperature characteristic of the flexural vibration of the main vibration, and by providing the weight portion 26, the drive vibration arm and the detection master arm are shortened, so that the small vibration gyro sensor 4 is provided. Can be configured.

図12(a)に示すように、各駆動腕用振動腕83a〜84bの先端部に夫々錘部26を形成し、該錘部26の表裏面に振動腕の長手方向に沿って直線状に延びる第1の溝部27を形成すると共に、各駆動腕用振動腕の振動中心線に沿った表面裏面に夫々第2の溝部28を形成した振動ジャイロ素子80を構成する。このような振動ジャイロ素子80を構成すると、各駆動腕用振動腕に励振される屈曲−捩じり結合振動のうちの主振動である屈曲振動の周波数温度特性が温度に関し三次特性となり、優れた温度特性を有すると共に小型の振動ジャイロ素子が得られるという効果がある。
また、図12(a)に示すように、振動ジャイロ素子をパッケージに収容して振動ジャイロセンサーを構成すると、各駆動腕用振動腕に励振される屈曲−捩じり結合振動の主振動の周波数温度特性が改善されると共に、錘部を設けることにより小型化された振動ジャイロセンサーが得られるという効果とがある。
As shown in FIG. 12 (a), a weight portion 26 is formed at the tip of each drive arm vibrating arm 83a to 84b, and linearly along the longitudinal direction of the vibrating arm on the front and back surfaces of the weight portion 26. The extending first groove 27 is formed, and the vibrating gyro element 80 is formed in which the second groove 28 is formed on the front and back surfaces along the vibration center line of each driving arm vibrating arm. When such a vibrating gyro element 80 is configured, the frequency temperature characteristic of the bending vibration, which is the main vibration among the bending-torsional coupled vibrations excited by the driving arm vibrating arms, becomes a third-order characteristic with respect to the temperature. There is an effect that a small vibration gyro element having temperature characteristics can be obtained.
Also, as shown in FIG. 12A, when the vibration gyro sensor is configured by housing the vibration gyro element in a package, the frequency of the main vibration of the bending-torsion coupled vibration excited by the vibration arm for each drive arm. The temperature characteristics are improved, and there is an effect that a vibration gyro sensor reduced in size can be obtained by providing the weight portion.

図13は本発明に係る電子機器の構成を示す概略構成図である。電子機器5には上記の第2の実施形態で説明した圧電振動子2を備えている。圧電振動子2を用いた電子機器5として、携帯電話やデジタルカメラ、ビデオカメラなどの携帯用電子機器が挙げられる。これらの電子機器5において圧電振動子5は、基準信号源として用いられ、小型で精度の良い圧電振動子2を備えることにより、小型で携帯性に優れ、特性の良好な電子機器を提供できる。
図13に示すように、図10の圧電振動子2を備えた電子機器を構成することにより、電子機器の周波数源の安定が改善さるという効果がある。また、図12(a)の振動ジャイロセンサーを備えた電子機器を構成することにより、温度による角速度の感度変化を低減できるという効果がある。
FIG. 13 is a schematic configuration diagram showing a configuration of an electronic apparatus according to the present invention. The electronic device 5 includes the piezoelectric vibrator 2 described in the second embodiment. Examples of the electronic device 5 using the piezoelectric vibrator 2 include portable electronic devices such as a mobile phone, a digital camera, and a video camera. In these electronic devices 5, the piezoelectric vibrator 5 is used as a reference signal source. By including the small and accurate piezoelectric vibrator 2, an electronic device having a small size, excellent portability, and good characteristics can be provided.
As shown in FIG. 13, by configuring the electronic apparatus including the piezoelectric vibrator 2 of FIG. 10, there is an effect that the stability of the frequency source of the electronic apparatus is improved. In addition, by configuring the electronic device including the vibration gyro sensor of FIG. 12A, there is an effect that the change in sensitivity of the angular velocity due to temperature can be reduced.

1…圧電振動素子、2…圧電振動子、3…圧電発振器、4…振動ジャイロセンサー、5…電子機器、7…圧電基板、10…基部、12a…基部本体、12b、12c…支持腕、12d…連結部、12e…外側端縁、15…梁、15a、15b…振動腕、17a、17b、18a、18b、28…第2の溝部、20a、20b、26…錘部、21a、21b、21’a、21’b…凹部、22a、22b、24a、24b、27…第1の溝部、25…電極、30、32、34、36…励振電極、40、60、79…パッケージ本体、41…第1の基板、42…第2の基板、43…第3の基板、44…金属シールリング、45…実装端子、46…導体、47…素子搭載パッド、48、68…貫通孔、48a…充填材、50…導電性接着剤、52、75…蓋部材、54、75a…窓部材、部品搭載パッド…69、78…IC部品、80…振動ジャイロ素子、81…基部本体、82a、82b…第1の連結腕、83a、83b、84a、84b…駆動用振動腕、85a、85b…検出用振動腕、86a、86b、87a、87b…支持腕、C…振動中心線 DESCRIPTION OF SYMBOLS 1 ... Piezoelectric vibration element, 2 ... Piezoelectric vibrator, 3 ... Piezoelectric oscillator, 4 ... Vibration gyro sensor, 5 ... Electronic device, 7 ... Piezoelectric substrate, 10 ... Base part, 12a ... Base part main body, 12b, 12c ... Support arm, 12d ... Connecting part, 12e ... outer edge, 15 ... beam, 15a, 15b ... vibrating arm, 17a, 17b, 18a, 18b, 28 ... second groove part, 20a, 20b, 26 ... weight part, 21a, 21b, 21 'a, 21'b ... recess, 22a, 22b, 24a, 24b, 27 ... first groove, 25 ... electrode, 30, 32, 34, 36 ... excitation electrode, 40, 60, 79 ... package body, 41 ... 1st board | substrate, 42 ... 2nd board | substrate, 43 ... 3rd board | substrate, 44 ... metal seal ring, 45 ... mounting terminal, 46 ... conductor, 47 ... element mounting pad, 48, 68 ... through-hole, 48a ... filling 50, conductive adhesive, 52, 5 ... Lid member, 54, 75a ... Window member, component mounting pad ... 69, 78 ... IC component, 80 ... Vibrating gyro element, 81 ... Base body, 82a, 82b ... First connecting arm, 83a, 83b, 84a, 84b ... vibration arm for driving, 85a, 85b ... vibration arm for detection, 86a, 86b, 87a, 87b ... support arm, C ... vibration center line

Claims (10)

基部と、
前記基部から第1方向に延出し、前記第1方向と直交する第2方向に並び、且つ、屈曲振動及び捩じり振動が結合して振動する一対の振動腕と、
を含み、
前記振動腕は、平面視で、
錘部と、
前記錘部よりも前記基部側に配置されている腕部と、
を含み、
前記錘部は、
互いに表裏の関係にある表面及び裏面の少なくとも一方の面に、前記腕部側とは反対側の外縁から中間部にかけて延在している第1の溝部が設けられ、
前記腕部は、
互いに表裏の関係にある表面及び裏面の少なくとも一方の面に前記第1方向に沿って第2の溝部が設けられ、
前記腕部の前記表面と前記裏面とを接続している側面と、前記第2の溝部の内面に電極が設けられていることを特徴とする振動素子。
The base,
A pair of vibrating arms extending in a first direction from the base, arranged in a second direction orthogonal to the first direction, and vibrating by combining bending vibration and torsional vibration;
Including
The vibrating arm is a plan view,
A weight part;
An arm portion arranged on the base side from the weight portion;
Including
The weight portion is
A first groove portion extending from the outer edge on the opposite side to the arm portion side to the middle portion is provided on at least one of the front surface and the back surface that are in a front-back relationship with each other,
The arm is
A second groove is provided along the first direction on at least one of the front and back surfaces that are in a front-back relationship with each other,
Vibrating elements, characterized in that electrodes are provided on the a side and the surface of the arm portion which connects the said rear face, said second groove of the inner surface.
基部と、The base,
前記基部から第1方向に延出し、前記第1方向と直交する第2方向に並び、且つ、屈曲振動及び捩じり振動が結合して振動する一対の振動腕と、A pair of vibrating arms extending in a first direction from the base, arranged in a second direction orthogonal to the first direction, and vibrating by combining bending vibration and torsional vibration;
を含み、Including
前記振動腕は、平面視で、The vibrating arm is a plan view,
錘部と、A weight part;
前記錘部よりも前記基部側に配置されている腕部と、An arm portion arranged on the base side from the weight portion;
を含み、Including
前記錘部は、The weight portion is
互いに表裏の関係にある表面及び裏面の少なくとも一方の面に第1の溝部が設けられ、A first groove is provided on at least one of the front and back surfaces that are in a relationship of front and back,
前記腕部は、The arm is
互いに表裏の関係にある表面及び裏面の少なくとも一方の面に前記第1方向に沿って第2の溝部が設けられ、A second groove is provided along the first direction on at least one of the front and back surfaces that are in a front-back relationship with each other,
前記第1の溝部は、前記第2の溝部と接続していると共に、前記錘部の前記腕部側とは反対側の外縁まで延在しており、The first groove portion is connected to the second groove portion, and extends to an outer edge of the weight portion opposite to the arm portion side,
前記腕部の前記表面と前記裏面とを接続している側面と、前記第2の溝部の内面に電極が設けられていることを特徴とする振動素子。The vibrating element is characterized in that an electrode is provided on a side surface connecting the front surface and the back surface of the arm portion and an inner surface of the second groove portion.
請求項1又は2において、
前記第1の溝部の少なくとも一部は、前記第2の溝部よりも前記第2方向に沿った幅が広いことを特徴とする振動素子。
In claim 1 or 2 ,
At least a part of the first groove is wider than the second groove in the second direction.
請求項1乃至3の何れか一項において、
前記錘部は、前記腕部よりも前記第2方向に沿った幅が広いことを特徴とする振動素子。
In any one of Claims 1 thru | or 3 ,
The vibrating element is characterized in that the weight portion is wider in the second direction than the arm portion.
請求項1乃至4の何れか一項において、
前記振動素子は水晶板から構成され、
前記水晶板の主面の法線と水晶結晶の光学軸とのなす角度が、0度から−15度の範囲内であることを特徴とする振動素子。
In any one of Claims 1 thru | or 4 ,
The vibration element is composed of a quartz plate,
An oscillating element characterized in that an angle formed between a normal line of a main surface of the quartz plate and an optical axis of the quartz crystal is in a range of 0 degrees to -15 degrees.
請求項1乃至の何れか一項において、
前記基部は、
前記振動腕が延出している基部本体と、
平面視で、前記基部本体の前記振動腕とは反対側の端部から延出し、前記基部本体の前記第2方向に沿った幅よりも狭い連結部と、
平面視で、前記連結部の前記基部とは反対側の端部から延出している支持腕と、
を備えていることを特徴とする振動素子。
In any one of Claims 1 thru | or 5 ,
The base is
A base body from which the vibrating arm extends;
A connecting portion that extends from an end of the base body opposite to the vibrating arm in a plan view and is narrower than a width of the base body along the second direction;
A support arm extending from an end of the connecting portion opposite to the base in a plan view;
A vibration element comprising:
請求項1乃至の何れか一項に記載の振動素子と、
前記振動素子が載置されている基板と、
を備えていることを特徴とする振動子。
The vibration element according to any one of claims 1 to 6 ,
A substrate on which the vibration element is mounted;
A vibrator characterized by comprising:
請求項1乃至の何れか一項に記載の振動素子と、
前記振動素子を駆動するICと、
を備えていることを特徴とする発振器。
The vibration element according to any one of claims 1 to 6 ,
An IC for driving the vibration element;
An oscillator comprising:
請求項1乃至の何れか一項に記載の振動素子を備えていることを特徴とするジャイロセンサー。 Gyro sensor, characterized in that it comprises a vibrating element according to any one of claims 1 to 6. 請求項1乃至の何れか一項に記載の振動素子を備えていることを特徴とする電子機器。 An electronic apparatus characterized by comprising a vibration device according to any one of claims 1 to 6.
JP2011039519A 2011-02-25 2011-02-25 Vibration element, vibrator, oscillator, gyro sensor and electronic equipment Expired - Fee Related JP5732903B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011039519A JP5732903B2 (en) 2011-02-25 2011-02-25 Vibration element, vibrator, oscillator, gyro sensor and electronic equipment
TW101105680A TW201242246A (en) 2011-02-25 2012-02-21 Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, vibration gyro element, vibration gyro sensor, and electronic apparatus
CN2012200653413U CN202713243U (en) 2011-02-25 2012-02-24 Piezoelectric vibration element, piezoelectric device possessing the piezoelectric vibration element and electronic equipment
US13/404,527 US8973440B2 (en) 2011-02-25 2012-02-24 Piezoelectric resonator element, piezoelectric resonator, piezoelectric oscillator, resonator gyro element, resonator gyro sensor, and electronic apparatus
KR1020120019073A KR20120098491A (en) 2011-02-25 2012-02-24 Piezoelectric vibration element, piezoelectric device provided with same and electric apparatus
CN2012100457304A CN102651640A (en) 2011-02-25 2012-02-24 Piezoelectric resonator element, piezoelectric device and electronic device having piezoelectric resonator element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011039519A JP5732903B2 (en) 2011-02-25 2011-02-25 Vibration element, vibrator, oscillator, gyro sensor and electronic equipment

Publications (3)

Publication Number Publication Date
JP2012178644A JP2012178644A (en) 2012-09-13
JP2012178644A5 JP2012178644A5 (en) 2014-04-10
JP5732903B2 true JP5732903B2 (en) 2015-06-10

Family

ID=46980222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011039519A Expired - Fee Related JP5732903B2 (en) 2011-02-25 2011-02-25 Vibration element, vibrator, oscillator, gyro sensor and electronic equipment

Country Status (1)

Country Link
JP (1) JP5732903B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6777496B2 (en) * 2016-10-25 2020-10-28 京セラ株式会社 A tuning fork type crystal element and a crystal device on which the tuning fork type crystal element is mounted.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202720A (en) * 1983-05-02 1984-11-16 Seiko Instr & Electronics Ltd Tuning fork type crystal resonator
JPS61187411A (en) * 1985-02-14 1986-08-21 Seiko Instr & Electronics Ltd Tuning fork type crystal resonator
JP2004282230A (en) * 2003-03-13 2004-10-07 Seiko Epson Corp Piezoelectric oscillating piece, piezoelectric device using this, portable telephone using this and electronic apparatus
JP5341647B2 (en) * 2009-07-10 2013-11-13 リバーエレテック株式会社 Piezoelectric vibrating piece, piezoelectric vibrator and piezoelectric oscillator

Also Published As

Publication number Publication date
JP2012178644A (en) 2012-09-13

Similar Documents

Publication Publication Date Title
TWI447353B (en) Vibrator element, sensor unit, electronic apparatus, manufacturing method of vibrator element, and manufacturing method of sensor unit
US8973440B2 (en) Piezoelectric resonator element, piezoelectric resonator, piezoelectric oscillator, resonator gyro element, resonator gyro sensor, and electronic apparatus
US7368861B2 (en) Piezoelectric resonator element and piezoelectric device
JP4301200B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP4709260B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP4415389B2 (en) Piezoelectric device
JP6078968B2 (en) Manufacturing method of vibrating piece
JP4301201B2 (en) Piezoelectric oscillator
JP2012120014A (en) Piezoelectric vibration element, method for manufacturing the same, piezoelectric vibrator, and piezoelectric oscillator
JP2004200917A (en) Piezoelectric vibrating piece, piezoelectric device employing the same, cellular telephone device employing the piezoelectric device, and electronic equipment employing the piezoelectric device
JP2006148856A (en) Piezoelectric resonator element, piezoelectric device and gyro sensor
JP2007258917A (en) Piezoelectric device
JP2006352771A (en) Piezoelectric oscillating piece, piezoelectric device, electronic equipment and portable telephone set
US7759848B2 (en) Tuning fork type piezoelectric resonator having a node of common mode vibration in constructed part of base
JP5652122B2 (en) Vibrating piece, vibrating device and electronic device
JP2013186029A (en) Vibration piece, sensor unit, and electronic apparatus
JP2008048274A (en) Piezo-electric vibrating piece and piezo-electric device
JP2004297198A (en) Piezoelectric vibration chip, piezoelectric device, mobile phone utilizing piezoelectric device, and electronic apparatus utilizing piezoelectric device
JP3743913B2 (en) Quartz crystal unit, crystal unit, crystal oscillator, and manufacturing method thereof
JP2011234072A (en) Piezoelectric vibration piece and piezoelectric device
JP4784168B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP2012074807A (en) Piezoelectric vibration element, surface-mounted piezoelectric vibrator and surface-mounted piezoelectric oscillator
JP2012186586A (en) Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, vibration gyro element, vibration gyro sensor, and electronic device
JP5732903B2 (en) Vibration element, vibrator, oscillator, gyro sensor and electronic equipment
JP2005123828A (en) Tuning-fork piezo-electric oscillation piece and piezo-electric device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150330

R150 Certificate of patent or registration of utility model

Ref document number: 5732903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees