JP2005123828A - Tuning-fork piezo-electric oscillation piece and piezo-electric device - Google Patents

Tuning-fork piezo-electric oscillation piece and piezo-electric device Download PDF

Info

Publication number
JP2005123828A
JP2005123828A JP2003355701A JP2003355701A JP2005123828A JP 2005123828 A JP2005123828 A JP 2005123828A JP 2003355701 A JP2003355701 A JP 2003355701A JP 2003355701 A JP2003355701 A JP 2003355701A JP 2005123828 A JP2005123828 A JP 2005123828A
Authority
JP
Japan
Prior art keywords
length
value
tuning
fork type
vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003355701A
Other languages
Japanese (ja)
Inventor
Masayuki Kikushima
正幸 菊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003355701A priority Critical patent/JP2005123828A/en
Publication of JP2005123828A publication Critical patent/JP2005123828A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optimum channel structure which can realize simultaneously with a sufficient balance between a high performance by suppressing a fundamental wave CI value and a high stability assured 1.0 or more CI value ratio (harmonic CI value/fundamental wave CI value) in a tuning-fork piezo-electric oscillation piece of oscillating arm structure with channels which are further size-reduced. <P>SOLUTION: In the tuning-fork piezo-electric oscillation piece 10, a length L1 of channels 14, 15 provided on a main surface is set to 0.7L0 to a length L0 of oscillating arms 12, 13 which are extended from a base 11, and first electrodes 16a, 17a of a drive electrode of the main surface side are formed in the full length of the channels. Second electrodes 16b, 17b of drive electrodes of a side face side are formed on each side face of the oscillating arms. When a predetermined AC voltage is applied to these drive electrodes, stable oscillating characteristics are obtained by eliminating an influence of secondary harmonic waves. Furthermore, the length of the base can be shortened, and the size can be reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、様々な電子機器に広く使用される圧電振動子や圧電発振器、角速度センサとして用いられる圧電振動ジャイロ等の圧電デバイスに関し、より詳細に言えば、それらについて使用する音叉型圧電振動片に関する。   The present invention relates to a piezoelectric device such as a piezoelectric vibrator and a piezoelectric oscillator widely used in various electronic devices, and a piezoelectric vibration gyro used as an angular velocity sensor. More specifically, the present invention relates to a tuning-fork type piezoelectric vibrating piece used for them. .

近年、圧電デバイスは、これを搭載する電子機器の小型化に伴い、より一層の小型化が要求されると共に、低いCI(クリスタルインピーダンス)値を確保した高品質、高い安定性が要求されている。CI値を低く保持するために、振動腕の表裏主面に溝を設けた構造の音叉型圧電振動片が開発されている(例えば、特許文献1、2を参照)。この溝付き振動腕構造の音叉型圧電振動片は、振動腕の各主面にその長手方向に沿って直線状に延長する溝の側面及び底面に成膜された第1電極と、振動腕の各側面に成膜された第2電極とにより駆動電極が構成され、これに交流電圧を印加すると、隣接する第1電極と第2電極間で各主面に平行な電界が発生するので、電界効率が大幅に向上し、CI値を低く抑制することができる。   2. Description of the Related Art In recent years, piezoelectric devices are required to be further miniaturized along with miniaturization of electronic devices on which they are mounted, and are also required to have high quality and high stability ensuring a low CI (crystal impedance) value. . In order to keep the CI value low, a tuning fork type piezoelectric vibrating piece having a structure in which grooves are provided on the front and back main surfaces of a vibrating arm has been developed (see, for example, Patent Documents 1 and 2). The tuning-fork type piezoelectric vibrating piece having the grooved vibrating arm structure includes a first electrode formed on the side and bottom surfaces of the groove extending linearly along the longitudinal direction on each main surface of the vibrating arm, A drive electrode is constituted by the second electrode formed on each side surface, and when an AC voltage is applied thereto, an electric field parallel to each main surface is generated between the adjacent first electrode and the second electrode. The efficiency is greatly improved, and the CI value can be suppressed low.

また、音叉型圧電振動片は、その振動により目的とする基本波の周波数で信号を発振すると同時に、振動子等の機器にとって動作上好ましくない高調波の周波数でも同様の信号を発振してしまう特性がある。高調波の影響を防止する方法として、CI値比(高調波CI値/基本波CI値)を基準に音叉型圧電振動片を設計する方法が知られている。高調波CI値を基本波CI値より大きく、即ちCI値比を1.0以上にすると、高調波が発生し難くなる。CI値比を1.0以上にするには、振動腕の溝に形成された主面側の駆動電極の長さを振動腕の長さ(L)に対して50%(0.5L)に設定すればよいことが知られている。ところが、一般に高調波CI値を上昇させると、基本波CI値も大きくなり、主面側の駆動電極の長さを長くするほど、基本波CI値は下降するが、同時にCI値比も1.0に近付く傾向があるので、これを1.0以上にすることは容易でない。   In addition, the tuning fork type piezoelectric resonator element oscillates a signal at the target fundamental frequency due to the vibration, and at the same time, oscillates a similar signal even at a harmonic frequency that is undesirable for the operation of a device such as a vibrator. There is. As a method for preventing the influence of harmonics, a method of designing a tuning fork type piezoelectric vibrating piece based on the CI value ratio (harmonic CI value / fundamental CI value) is known. When the harmonic CI value is larger than the fundamental CI value, that is, when the CI value ratio is 1.0 or more, harmonics are hardly generated. In order to make the CI value ratio 1.0 or more, the length of the drive electrode on the main surface side formed in the groove of the vibrating arm is set to 50% (0.5 L) with respect to the length (L) of the vibrating arm. It is known that it may be set. However, in general, when the harmonic CI value is raised, the fundamental wave CI value is also increased. As the length of the drive electrode on the main surface side is increased, the fundamental wave CI value is lowered, but at the same time the CI value ratio is 1. Since it tends to approach 0, it is not easy to make this 1.0 or more.

そこで、先に本願出願人は、このような溝付き構造の振動腕を有し、基本波のCI値を低く抑えながらCI値比を一定に保持し、基部を短くしても振動片、素子間のCI値のばらつきを小さくでき、しかも振動片全体も小型化できる音叉型圧電振動片を提案している(特許文献3を参照)。この音叉型圧電振動片は、図7及び図8に例示するように、基部1から突出する1対の振動腕2,3の表裏各主面に溝部4,5が、該振動腕の長さ(L)に対して70%の長さ(0.7L)に形成され、該溝部には、主面側の駆動電極6a,7aが振動腕の長さ(L)に対して50%の長さ(0.5L)に形成され、振動腕2,3の側面には、側面側の駆動電極6b,7bが形成されている。このように溝部4,5の長さを設定することによって基本波のCI値を低く抑制でき、かつこのような割合で主面側の駆動電極6a,7aを設けることによってCI値比が1.0以上となり、高調波で誤った発振をし難くなるので、高性能な振動片が得られる。   Therefore, the applicant of the present application has a vibrating arm having such a grooved structure, and maintains the CI value ratio constant while keeping the CI value of the fundamental wave low. A tuning fork-type piezoelectric vibrating piece has been proposed (see Patent Document 3) in which the variation in CI value can be reduced, and the entire vibrating piece can be reduced in size. As illustrated in FIGS. 7 and 8, the tuning fork type piezoelectric vibrating piece includes grooves 4 and 5 on the main surfaces of the front and back surfaces of the pair of vibrating arms 2 and 3 protruding from the base 1, and the length of the vibrating arms. (L) is formed with a length of 70% (0.7L), and the drive electrodes 6a and 7a on the main surface side of the groove are 50% with respect to the length (L) of the vibrating arm. The drive electrodes 6b and 7b on the side surface side are formed on the side surfaces of the vibrating arms 2 and 3, respectively. By setting the lengths of the grooves 4 and 5 in this way, the CI value of the fundamental wave can be suppressed to a low level, and by providing the drive electrodes 6a and 7a on the main surface side at such a ratio, the CI value ratio is 1. Since it becomes 0 or more and it becomes difficult to oscillate erroneously with harmonics, a high-performance vibrating piece can be obtained.

更に、基部において片持ちに固定支持される音叉型圧電振動片は、一般に基部の長さを振動腕の長さの40%以上に確保しないと、CI値が安定せず、性能を低下させる虞がある。これは、振動腕の小型化によりその長さが短くなって幅も狭くなると、振動腕の振動が垂直方向の成分を含むようになり、垂直方向の振動が振動片の基部へ漏れると、基部のパッケージへの固定領域からエネルギが逃げて振動が不安定になるので、これを防止するためで、振動片の小型化に障害となっていた。   Further, a tuning fork type piezoelectric vibrating piece that is fixedly supported in a cantilever manner at the base generally has a possibility that the CI value will not be stable and the performance may be lowered unless the length of the base is secured to 40% or more of the length of the vibrating arm. There is. This is because if the length of the vibrating arm is shortened and the width is narrowed, the vibration of the vibrating arm includes a vertical component, and if the vertical vibration leaks to the base of the vibrating piece, Since energy escapes from the fixed region to the package and the vibration becomes unstable, this has been an obstacle to downsizing the resonator element.

そこで、本願出願人は、音叉型圧電振動片の基部の両側に、振動腕の振動を阻害したりパッケージへ固定に影響しないように、その固定領域よりも先の位置に切り込み部を設けた構造を提案している(同じく、特許文献3を参照)。振動腕の垂直成分の振動が基部に漏れても、切り込み部により後方へ基部の固定領域までは伝わり難く、従ってエネルギの逃げが生じ難くなるので、基部を小型化しても、振動片間でのCI値のばらつき及びその増大を有効に防止することができる。   Therefore, the applicant of the present invention has a structure in which cut portions are provided at positions ahead of the fixing region on both sides of the base portion of the tuning fork type piezoelectric vibrating piece so as not to inhibit the vibration of the vibrating arm or affect the fixing to the package. (See also Patent Document 3). Even if the vibration of the vertical component of the vibrating arm leaks to the base, it is difficult for the notch to propagate backward to the fixed area of the base, and therefore it is difficult for energy to escape. It is possible to effectively prevent variation and increase in CI values.

特開昭56−65517号公報JP-A-56-65517 再表00−44092号公報No. 00-44092 特開2002−280870号公報JP 2002-280870 A

しかしながら、現在の音叉型圧電振動子は更に一層の小型化が要求されており、それに伴って振動片の支持構造などの影響により、特に2次の高調波が強く振動片の振動に作用する傾向がある。振動腕は通常その主面を含む平面内で振動するが、2次の高調波のCI値は、振動腕の剛性に関係して変化する。例えば、この溝付き振動腕構造の音叉型水晶振動片において、基本波が32.768kHzの場合、2次の高調波が約250kHzに存在し、振動腕の長さ1300μmに対して溝の長さを1000μmに設定すると、2次の高調波のCI値は約10kΩとなり、基本波のCI値約50kΩより小さくなる。この音叉型水晶振動片への供給電圧を変化させてそのドライブレベル(励振レベル)を高くすると、基本波で正常に振動していた振動片に、2次高調波が作用してパラメトリック励振即ち間欠的な異常発振が発生し、振動が不安定になる。   However, the current tuning fork type piezoelectric vibrator is required to be further reduced in size, and accordingly, the second harmonic is strongly acting on the vibration of the vibrating piece due to the support structure of the vibrating piece. There is. The resonating arm usually vibrates in a plane including its main surface, but the CI value of the second harmonic changes in relation to the rigidity of the resonating arm. For example, in this tuning-fork type crystal vibrating piece with a grooved vibrating arm structure, when the fundamental wave is 32.768 kHz, the second harmonic exists at about 250 kHz, and the length of the groove with respect to the length of the vibrating arm is 1300 μm. Is set to 1000 μm, the CI value of the second harmonic is about 10 kΩ, which is smaller than the CI value of the fundamental wave of about 50 kΩ. When the drive voltage (excitation level) is increased by changing the supply voltage to the tuning-fork type crystal vibrating piece, the second harmonic acts on the vibrating piece that has normally vibrated with the fundamental wave, and parametric excitation, that is, intermittent. Abnormal oscillation occurs and the vibration becomes unstable.

また、上記特許文献3では、その図13において、振動腕の長さに対する電極の長さの割合に関する基本波CI値及びCI値比の関係が示され、駆動(励振)電極の長さが振動腕の長さに対して短くなればなるほど、基本波CI値が上昇し、かつこれによりCI値比も上昇すること、及び逆に励振電極の長さが長くなればなるほど、基本波CI値が下降すると同時にCI値比も1.0に近づく傾向を示している。しかし、同図は、電極の長さの割合が45〜55%の範囲に限られており、それ以外の範囲における傾向は明らかになっていない。同様に、上記特許文献3において、基本波CI値と溝長さとの関係を示す図3も、溝長/音叉長(%)が70%までの範囲しか示されていない。   FIG. 13 shows the relationship between the fundamental wave CI value and the CI value ratio in relation to the ratio of the electrode length to the length of the vibrating arm, and the drive (excitation) electrode length varies in FIG. The shorter the length of the arm, the higher the fundamental CI value, and thus the CI value ratio, and conversely, the longer the length of the excitation electrode, the greater the fundamental CI value. The CI value ratio also tends to approach 1.0 at the same time as it falls. However, in the figure, the ratio of the electrode length is limited to the range of 45 to 55%, and the tendency in other ranges is not clear. Similarly, in the above-mentioned Patent Document 3, FIG. 3 showing the relationship between the fundamental wave CI value and the groove length only shows a range where the groove length / tuning fork length (%) is up to 70%.

更に、上記特許文献3において提案した構造では、振動腕に対する基部の長さはせいぜい34%程度であり、却って切り込み部の存在に制限されて、基部の長さをそれ以上小さくすることを困難にしている。   Further, in the structure proposed in Patent Document 3, the length of the base portion relative to the vibrating arm is at most about 34%, and on the contrary, it is limited to the presence of the cut portion, making it difficult to further reduce the length of the base portion. ing.

本発明は、上述した従来の様々な問題点に鑑みてなされたものであり、その目的は、溝付き振動腕構造を有する音叉型圧電振動片において、より一層の小型化を図ることを前提として、溝長さ及び電極の長さと基本波及び高調波(特に、2次)のCI値との関係をより広い範囲に亘って解析し、基本波CI値を低くして高性能化を図ると同時に、高調波CI値を大きくしてCI値比を1.0以上に維持し、高い安定性を実現し得る最適の溝構造を提供することにある。   The present invention has been made in view of the above-described conventional problems, and its purpose is based on the premise that the tuning-fork type piezoelectric vibrating piece having the grooved vibrating arm structure is further miniaturized. Analyzing the relationship between the groove length and electrode length and the fundamental and harmonic (especially second-order) CI values over a wider range and lowering the fundamental CI value to improve performance At the same time, it is to provide an optimum groove structure capable of realizing high stability by increasing the harmonic CI value and maintaining the CI value ratio at 1.0 or more.

また本発明の目的は、このような音叉型圧電振動片を利用した高品質かつ高安定性の圧電デバイスを提供することにある。   Another object of the present invention is to provide a high-quality and high-stability piezoelectric device using such a tuning-fork type piezoelectric vibrating piece.

本願発明者は、溝付き振動腕構造の音叉型水晶振動片について、振動腕の長さが、上記特許文献3において「短い」とされた1.644mmよりも更に短い1.300mm(約80%)とし、かつ振動腕の溝の全長に亘って主面側の駆動電極を設けた場合に、溝長さ(=電極の長さ)に関する基本波CI値の変化を、溝長さ/振動腕長さの割合約50〜100%の範囲に亘って解析した。図1は、そのFEM(finite element method)解析及び実験により得られた基本波CI値を示している。基本波CI値は、溝の長さ(=電極の長さ)が増すに連れて低下し、溝長さが振動腕長さに対して50%に近づくと、その変化量が小さくなっている。   The inventor of the present application has a 1.300 mm (about 80%) shorter than the 1.644 mm in which the length of the vibrating arm of the tuning fork type crystal vibrating piece having the grooved vibrating arm structure is “short” in Patent Document 3 above. ) And the drive electrode on the main surface side is provided over the entire length of the groove of the vibrating arm, the change in the fundamental wave CI value with respect to the groove length (= electrode length) is expressed as: groove length / vibrating arm Analysis was performed over a range of length ratios of about 50-100%. FIG. 1 shows the fundamental wave CI value obtained by the FEM (finite element method) analysis and experiment. The fundamental CI value decreases as the groove length (= electrode length) increases, and the amount of change decreases as the groove length approaches 50% of the vibration arm length. .

更に本願発明者は、溝長さに関する基本波CI値と2次高調波CI値との関係を、溝長さ/振動腕長さの割合約60〜80%の範囲に亘って解析した。図2は、そのFEM解析による結果を示している。溝の長さ(=電極の長さ)が振動腕の長さに対して約70%を超えると、基本波CI値が2次高調波CI値より大きくなり、CI値比が1.0以下になることが分かる。   Furthermore, the inventor of the present application analyzed the relationship between the fundamental wave CI value and the second harmonic CI value related to the groove length over a range of the groove length / vibrating arm length ratio of about 60 to 80%. FIG. 2 shows the result of the FEM analysis. When the groove length (= electrode length) exceeds about 70% of the length of the vibrating arm, the fundamental CI value becomes larger than the second harmonic CI value, and the CI value ratio is 1.0 or less. I understand that

これら図1及び図2の解析結果から、次のように判断される。
(1)溝の長さ(=電極の長さ)が振動腕の長さに対して約70%以下であれば、基本波のCI値を十分に低く抑制できる。
(2)実際には、個々の振動片について基本波のCI値に或る程度のばらつきがあることを考慮すれば、2次高調波CI値が100kΩ以上であれば、1.0以上のCI値比を確保できる。
From the analysis results of FIG. 1 and FIG. 2, the following determination is made.
(1) If the groove length (= electrode length) is about 70% or less with respect to the length of the vibrating arm, the CI value of the fundamental wave can be suppressed sufficiently low.
(2) Actually, considering that there is some variation in the CI value of the fundamental wave for each resonator element, if the second harmonic CI value is 100 kΩ or more, a CI of 1.0 or more A value ratio can be secured.

本発明は、かかる知見に基づいてなされたもので、その或る側面によれば、基部と、該基部から延出する1対の振動腕と、各振動腕の表裏主面に設けられる第1電極及びその側面に設けられる第2電極からなる駆動電極と、振動腕の少なくとも一方の主面に該振動腕の基部側端部から長手方向に沿って延長する溝部とを有し、該溝部の長さL1 が振動腕の長さL0 に対して0.7L0 であり、かつ、前記少なくとも一方の主面に設けられる第1電極が、溝部の内面にその全長に亘って形成された音叉型圧電振動片が提供される。圧電材料としては、従来から一般に採用されている水晶が好ましい。   The present invention has been made based on such knowledge, and according to one aspect thereof, a base, a pair of vibrating arms extending from the base, and first and second main surfaces of each vibrating arm are provided. A driving electrode comprising the electrode and a second electrode provided on the side surface thereof, and a groove extending along the longitudinal direction from the base side end of the vibrating arm on at least one main surface of the vibrating arm; A tuning-fork type piezoelectric element in which the length L1 is 0.7L0 with respect to the length L0 of the vibrating arm and the first electrode provided on the at least one main surface is formed on the inner surface of the groove portion over the entire length thereof. A vibrating piece is provided. As the piezoelectric material, quartz that has been generally employed is preferable.

上記解析結果から分かるように、このように振動腕の長さに対する溝の長さ及び駆動電極の長さを設定することによって、音叉型圧電振動片をより一層小型化する上で、基本波CI値の抑制による高性能化と、1.0以上のCI値比の確保による高い安定性とを、バランス良く同時に実現し得る最適の溝構造が得られる。   As can be seen from the above analysis result, by setting the length of the groove and the length of the drive electrode with respect to the length of the vibrating arm in this way, the tuning-fork type piezoelectric vibrating piece can be further reduced in size, and the fundamental wave CI It is possible to obtain an optimum groove structure capable of simultaneously realizing a high performance by suppressing the value and a high stability by securing a CI value ratio of 1.0 or more in a balanced manner.

更に本発明の音叉型圧電振動片によれば、その基部に切り込み部を設けなくても、基部の固定領域からパッケージ側への振動エネルギの漏れによる不安定な振動が解消され、振動腕の長さに対する基部の長さを更に小さくできることが分かった。或る実施例では、基部の長さLb を振動腕の長さL0 に対して0.2〜0.25L0 に設定することができ、これにより音叉型圧電振動片をより小型化することが可能である。   Furthermore, according to the tuning-fork type piezoelectric vibrating piece of the present invention, even if the base portion is not provided with a notch, unstable vibration due to leakage of vibration energy from the fixed region of the base portion to the package side is eliminated, and the length of the vibrating arm is reduced. It has been found that the length of the base relative to the thickness can be further reduced. In one embodiment, the base length Lb can be set to 0.2 to 0.25L0 with respect to the vibrating arm length L0, thereby making it possible to further reduce the size of the tuning fork type piezoelectric vibrating piece. It is.

別の実施例では、前記音叉型圧電振動片が、基部から前記1対の振動片とは逆向きに延出する別の1対の振動腕を更に有することにより、圧電振動ジャイロに使用することができる。   In another embodiment, the tuning fork type piezoelectric vibrating piece further includes another pair of vibrating arms extending in a direction opposite to the pair of vibrating pieces from a base, so that the tuning fork type piezoelectric vibrating piece is used in a piezoelectric vibrating gyroscope. Can do.

本発明の別の側面によれば、上述した本発明の音叉型圧電振動片と、該音叉型圧電振動片をその基部において固定支持して内部に封止するパッケージとを備える圧電デバイス、及び、該パッケージに更にIC素子を搭載した圧電デバイスが提供される。   According to another aspect of the present invention, a piezoelectric device comprising the above-described tuning-fork type piezoelectric vibrating piece of the present invention, and a package that fixes and supports the tuning-fork type piezoelectric vibrating piece at its base and seals the inside. A piezoelectric device in which an IC element is further mounted on the package is provided.

以下に、本発明の好適実施例について添付図面を参照しつつ詳細に説明する。図3は、本発明を適用した音叉型水晶振動片の好適な実施例を概略的に示している。音叉型水晶振動片10は、基部11から図中上向きに平行に延長する1対の振動腕12,13を有し、その表裏各主面には、それぞれ基部側端部即ち音叉の股部から先端部に向けて長手方向に延長する直線状の溝14、15が形成されている。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 3 schematically shows a preferred embodiment of a tuning-fork type crystal vibrating piece to which the present invention is applied. The tuning fork type crystal vibrating piece 10 has a pair of vibrating arms 12 and 13 extending in parallel upward from the base 11 in the figure, and the main surfaces of the front and back surfaces are respectively from the base side end, that is, the tuning fork crotch. Linear grooves 14 and 15 extending in the longitudinal direction toward the distal end are formed.

図4に良く示すように、各溝14、15には、その側面及び底面に成膜した電極膜からなる第1電極16a、17aが形成され、かつ各振動腕12,13の側面には第2電極16b、17bが形成され、これらは互いに一方の振動腕の第1電極16a(17a)が他方の振動腕の第2電極17b(16b)に電気的に接続されて、音叉型水晶振動片10を振動させる駆動電極を構成している。基部11には、後述するようにパッケージ側に接続するために、前記駆動電極から引き出された接続電極18、19が設けられている。接続端子18、19から前記駆動電極に所定の交流電圧を印加すると、隣接する第1電極16a、17aと第2電極16b、17b間で電界が交互に逆向きに発生し、振動腕12,13が互いに逆向きに屈曲運動を繰り返し行う。   As shown well in FIG. 4, the grooves 14, 15 are formed with first electrodes 16 a, 17 a made of electrode films formed on the side surfaces and the bottom surface, and the side surfaces of the vibrating arms 12, 13 are the first electrodes 16 a, 17 a. Two electrodes 16b and 17b are formed, and the first electrode 16a (17a) of one vibrating arm is electrically connected to the second electrode 17b (16b) of the other vibrating arm, and a tuning fork type crystal vibrating piece is formed. The drive electrode which vibrates 10 is comprised. As will be described later, the base 11 is provided with connection electrodes 18 and 19 drawn from the drive electrodes for connection to the package side. When a predetermined AC voltage is applied from the connection terminals 18 and 19 to the drive electrode, an electric field is alternately generated in the opposite direction between the adjacent first electrodes 16a and 17a and the second electrodes 16b and 17b. Repeatedly perform bending motions in opposite directions.

本実施例において、溝14、15の長さL1 は振動腕12,13の長さL0 に対して70%即ち0.7L0 に設定する。第1電極16a、17aは溝14、15の全長に亘って形成し、その長さL2 を溝の長さL1 と等しくする。   In this embodiment, the length L1 of the grooves 14 and 15 is set to 70% or 0.7L0 with respect to the length L0 of the vibrating arms 12 and 13. The first electrodes 16a and 17a are formed over the entire length of the grooves 14 and 15, and their length L2 is made equal to the length L1 of the groove.

或る実施例において、振動腕の長さL0 を1.300mm、溝の長さL1 =第1電極16a、17aの長さL2 を0.9mm(=0.69L0 )に設定した。この音叉型水晶振動片に所定の交流電圧を印加して振動させたところ、図1及び図2に関連して上述したように、基本波CI値が低く抑制されると同時に、2次高調波CI値を基本波CI値より大きくして1.0以上のCI値比を確保することができた。   In one embodiment, the length L0 of the vibrating arm is set to 1.300 mm, the length L1 of the groove = the length L2 of the first electrodes 16a and 17a is set to 0.9 mm (= 0.69L0). When a predetermined alternating voltage is applied to the tuning-fork type crystal vibrating piece and vibrated, as described above with reference to FIGS. 1 and 2, the fundamental wave CI value is suppressed to a low level, and at the same time, the second harmonic. It was possible to secure a CI value ratio of 1.0 or more by making the CI value larger than the fundamental wave CI value.

しかも、この実施例では、基部の長さLbを0.28mmとし、振動腕の長さに対してLb=0.21L0 (約21%)に設定したが、音叉型水晶振動片の動作は安定しており、基部の固定領域からパッケージ側への振動エネルギの漏れに起因する不安定な振動は認められなかった。   Moreover, in this embodiment, the base length Lb is 0.28 mm and is set to Lb = 0.21L0 (about 21%) with respect to the length of the vibrating arm, but the operation of the tuning-fork type crystal vibrating piece is stable. Therefore, unstable vibration due to leakage of vibration energy from the fixed region of the base portion to the package side was not recognized.

別の実施例では、振動腕の長さL0 を1.040mm、溝の長さL1 =第1電極16a、17aの長さL2 を0.73mm(=0.70L0 )、基部の長さLbを0.26mm(=0.25L0 )に設定した。この実施例においても、同様に基本波CI値を低く抑制し、1.0以上のCI値比を確保すると共に、安定した音叉型水晶振動片の動作が得られた。   In another embodiment, the length L0 of the vibrating arm is 1.040 mm, the length L1 of the groove = the length L2 of the first electrodes 16a and 17a is 0.73 mm (= 0.70L0), and the base length Lb is It was set to 0.26 mm (= 0.25 L0). Also in this example, the fundamental wave CI value was similarly suppressed to a low value, a CI value ratio of 1.0 or more was secured, and a stable operation of the tuning-fork type crystal vibrating piece was obtained.

図5は、図3の音叉型水晶振動片を用いた本発明の水晶振動子の構造を概略的に示している。この水晶振動子20は、複数のセラミックス薄板を積層した概ね矩形箱状のベース21と蓋22とからなるパッケージ23を備え、その内部に音叉型水晶振動片10が気密に封止されている。音叉型水晶振動片10はベース21内部の空所底部に、基部11の接続電極18、19をベース21底面の対応する接続端子24に導電性接着剤25で固着して、片持ちで略水平に支持されかつ電気的に接続されている。ガラス又はセラミックス等の絶縁材料からなる矩形薄板の蓋22は、ベース21の上端面に低融点ガラスで気密に接合される。   FIG. 5 schematically shows the structure of the crystal resonator of the present invention using the tuning-fork type crystal vibrating piece of FIG. The crystal resonator 20 includes a package 23 including a base 21 and a lid 22 each having a substantially rectangular box shape in which a plurality of ceramic thin plates are stacked, and the tuning fork crystal resonator element 10 is hermetically sealed therein. The tuning fork type crystal vibrating piece 10 is cantilevered substantially at the bottom of the space inside the base 21 by connecting the connection electrodes 18 and 19 of the base 11 to the corresponding connection terminals 24 on the bottom of the base 21 with a conductive adhesive 25. Supported and electrically connected. A rectangular thin plate lid 22 made of an insulating material such as glass or ceramics is hermetically bonded to the upper end surface of the base 21 with low melting point glass.

別の実施例では、図5と同様のパッケージ内に、更に音叉型水晶振動片の駆動回路等を構成するICを搭載することにより、圧電発振器やリアルタイムクロックのような圧電デバイスを構成することができる。   In another embodiment, a piezoelectric device such as a piezoelectric oscillator or a real-time clock can be configured by further mounting an IC constituting a driving circuit of a tuning fork type crystal vibrating piece in a package similar to FIG. it can.

また、別の実施例では、音叉型水晶振動片10の基部11から振動腕12,13とは逆向きに延出する別の1対の振動腕を更に設けることができる。図6は、このような音叉型圧電振動片26を示しており、図3の圧電振動片10と同じ1対の振動腕12,13が中央の基部27から一方の側に延出し、それとは反対側に1対の検出腕28、29が延出している。振動腕12,13は、図3に関連して上述したように駆動電極が設けられ、検出腕28、29は、その側面に2対の検出用電極30a、30bが設けられている。圧電振動片26は、基部27に設けられた支持部31a、31bを接着固定することにより所定のパッケージ(図示せず)内にマウントされて、角速度センサまたは回転センサとして使用される圧電振動ジャイロを構成する。   In another embodiment, another pair of vibrating arms extending from the base 11 of the tuning fork type crystal vibrating piece 10 in the direction opposite to the vibrating arms 12 and 13 can be further provided. FIG. 6 shows such a tuning-fork type piezoelectric vibrating piece 26. The same pair of vibrating arms 12 and 13 as the piezoelectric vibrating piece 10 of FIG. 3 extend from the central base 27 to one side. A pair of detection arms 28 and 29 extend on the opposite side. As described above with reference to FIG. 3, the vibrating arms 12 and 13 are provided with drive electrodes, and the detection arms 28 and 29 are provided with two pairs of detection electrodes 30a and 30b on their side surfaces. The piezoelectric vibrating piece 26 is mounted in a predetermined package (not shown) by bonding and fixing support portions 31a and 31b provided on the base 27, and a piezoelectric vibration gyro used as an angular velocity sensor or a rotation sensor is mounted. Constitute.

振動腕12,13は、一方の支持部31aに設けられた電極パッド32を介して前記駆動電極に所定の交流電圧を印加すると、互いに逆向きに屈曲振動する。この状態で音叉型水晶振動片26が図中Y軸33を中心に回転すると、その回転角速度に対してコリオリ力が振動方向と直交する向きに働いて、振動腕12,13がZ方向に振動する。この振動が基部27を介して伝達されて、検出腕28、29をその共振振動数で同じくZ方向に振動させるので、これを電気信号として他方の支持部31bに設けられた電極パッド34から検出すると、音叉型水晶振動片26の回転角速度及びその回転方向等が求められる。   The vibrating arms 12 and 13 bend and vibrate in opposite directions when a predetermined AC voltage is applied to the drive electrode via an electrode pad 32 provided on one support portion 31a. In this state, when the tuning fork type crystal vibrating piece 26 rotates around the Y axis 33 in the figure, the Coriolis force acts in the direction perpendicular to the vibration direction with respect to the rotational angular velocity, and the vibrating arms 12 and 13 vibrate in the Z direction. To do. This vibration is transmitted through the base 27 and vibrates the detection arms 28 and 29 in the Z direction at the resonance frequency, and this is detected as an electric signal from the electrode pad 34 provided on the other support 31b. Then, the rotational angular velocity of the tuning fork type crystal vibrating piece 26 and the rotational direction thereof are obtained.

以上、本発明の好適実施例について詳細に説明したが、当業者に明らかなように、本発明はその技術的範囲内において上記各実施例に様々な変更・変形を加えて実施することができる。例えば、本発明の音叉型圧電振動片は、水晶以外にニオブ酸リチウム等の様々な圧電単結晶材料を用いることができる。   The preferred embodiments of the present invention have been described in detail above. However, as will be apparent to those skilled in the art, the present invention can be carried out with various modifications and changes made to the above embodiments within the technical scope thereof. . For example, the tuning fork type piezoelectric vibrating piece of the present invention can use various piezoelectric single crystal materials such as lithium niobate in addition to quartz.

溝付き振動腕構造の音叉型水晶振動片において、溝長さ/振動腕長さに関する基本波CI値の変化を示す線図。The diagram which shows the change of the fundamental wave CI value regarding a groove length / vibration arm length in the tuning fork type crystal vibrating piece of a vibration arm structure with a groove | channel. 溝付き振動腕構造の音叉型水晶振動片において、溝長さ/振動腕長さに関する基本波及び2次高調波のCI値の変化を示す線図。The diagram which shows the change of CI value of the fundamental wave regarding a groove length / vibration arm length, and the 2nd harmonic in the tuning fork type crystal vibrating piece of a grooved vibration arm structure. 本発明による音叉型水晶振動片の好適実施例の平面図。1 is a plan view of a preferred embodiment of a tuning fork type crystal vibrating piece according to the present invention. 図3のIV−IV線における振動腕の断面図。Sectional drawing of the vibrating arm in the IV-IV line of FIG. 図3の音叉型水晶振動片を用いた水晶振動子の縦断面図。FIG. 4 is a longitudinal sectional view of a crystal resonator using the tuning fork type crystal vibrating piece of FIG. 3. 本発明による音叉型水晶振動片の別の実施例の平面図。The top view of another Example of the tuning fork type crystal vibrating piece by this invention. 従来の溝付き構造の振動腕を有する音叉型水晶振動片の平面図。The top view of the tuning fork type crystal vibrating piece which has the vibration arm of the conventional grooved structure. 図7のVIII−VIII線における振動腕の断面図。Sectional drawing of the vibrating arm in the VIII-VIII line of FIG.

符号の説明Explanation of symbols

1,11,27…基部、2,3,12,13…振動腕、4,5,14,15…溝、6a,7a,16a,17a…第1電極、6b,7b,16b,17b…第2電極、10,26…音叉型水晶振動片、18,19…接続電極、20…水晶振動子、21…ベース、22…蓋、23…パッケージ、24…接続端子、25…導電性接着剤、28,29…検出腕、30a,30b…検出用電極、31a,31b…支持部、32,34…電極パッド、33…Y軸。 1, 11, 27 ... base, 2, 3, 12, 13 ... vibrating arm, 4, 5, 14, 15 ... groove, 6a, 7a, 16a, 17a ... first electrode, 6b, 7b, 16b, 17b ... first 2 electrodes, 10, 26 ... tuning fork type crystal vibrating piece, 18, 19 ... connection electrode, 20 ... crystal resonator, 21 ... base, 22 ... lid, 23 ... package, 24 ... connection terminal, 25 ... conductive adhesive, 28, 29 ... detection arm, 30a, 30b ... detection electrode, 31a, 31b ... support part, 32, 34 ... electrode pad, 33 ... Y axis.

Claims (4)

基部と、前記基部から延出する1対の振動腕と、前記各振動腕の表裏主面に設けられる第1電極及びその側面に設けられる第2電極からなる駆動電極と、前記振動腕の少なくとも一方の前記主面に該振動腕の基部側端部から長手方向に沿って延長する溝部とを有し、前記溝部の長さL1 が前記振動腕の長さL0 に対して0.7L0 であり、かつ、前記少なくとも一方の前記主面に設けられる前記第1電極が、前記溝部の内面にその全長に亘って形成されていることを特徴とする音叉型圧電振動片。 A base, a pair of resonating arms extending from the base, a drive electrode comprising a first electrode provided on the front and back main surfaces of each resonating arm and a second electrode provided on the side thereof, and at least the resonating arm One of the main surfaces has a groove extending along the longitudinal direction from the base side end of the vibrating arm, and the length L1 of the groove is 0.7L0 with respect to the length L0 of the vibrating arm. The tuning fork type piezoelectric vibrating piece is characterized in that the first electrode provided on the at least one main surface is formed on the inner surface of the groove portion over the entire length thereof. 前記基部の長さLb が前記振動腕の長さL0 に対して0.2〜0.25L0 であることを特徴とする請求項1に記載の音叉型圧電振動片。 2. A tuning-fork type piezoelectric vibrating piece according to claim 1, wherein a length Lb of the base portion is 0.2 to 0.25L0 with respect to a length L0 of the vibrating arm. 前記基部から前記1対の振動片とは逆向きに延出する別の1対の振動腕を更に有することを特徴とする請求項1または2に記載の音叉型圧電振動片。 The tuning fork type piezoelectric vibrating piece according to claim 1, further comprising another pair of vibrating arms extending from the base portion in a direction opposite to the pair of vibrating pieces. 請求項1乃至3のいずれかに記載の音叉型圧電振動片と、前記音叉型圧電振動片を前記基部において固定支持しかつその内部に封止するパッケージとを備えることを特徴とする圧電デバイス。 4. A piezoelectric device comprising: the tuning fork type piezoelectric vibrating piece according to claim 1; and a package for fixing and supporting the tuning fork type piezoelectric vibrating piece at the base portion and sealing the inside thereof.
JP2003355701A 2003-10-15 2003-10-15 Tuning-fork piezo-electric oscillation piece and piezo-electric device Pending JP2005123828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003355701A JP2005123828A (en) 2003-10-15 2003-10-15 Tuning-fork piezo-electric oscillation piece and piezo-electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003355701A JP2005123828A (en) 2003-10-15 2003-10-15 Tuning-fork piezo-electric oscillation piece and piezo-electric device

Publications (1)

Publication Number Publication Date
JP2005123828A true JP2005123828A (en) 2005-05-12

Family

ID=34613168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003355701A Pending JP2005123828A (en) 2003-10-15 2003-10-15 Tuning-fork piezo-electric oscillation piece and piezo-electric device

Country Status (1)

Country Link
JP (1) JP2005123828A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081698A (en) * 2005-09-13 2007-03-29 Daishinku Corp Tuning-fork piezoelectric oscillating member and piezoelectric oscillating device
WO2009041362A1 (en) * 2007-09-27 2009-04-02 Nippon Telegraph And Telephone Corporation Logical element
CN102098022A (en) * 2009-12-10 2011-06-15 精工爱普生株式会社 Vibrating reed, vibrator, physical quantity sensor, and electronic equipment
US8018127B2 (en) 2009-02-18 2011-09-13 Epson Toyocom Corporation Flexural resonator element and flexural resonator for reducing energy loss due to heat dissipation
JP2012010253A (en) * 2010-06-28 2012-01-12 Nippon Dempa Kogyo Co Ltd Tuning-fork type piezoelectric vibration piece and piezoelectric device
JP2012217140A (en) * 2011-03-29 2012-11-08 Nippon Dempa Kogyo Co Ltd Tuning-fork type piezoelectric vibration piece and piezoelectric device
JP2014179901A (en) * 2013-03-15 2014-09-25 Sii Crystal Technology Inc Piezoelectric vibration piece, piezoelectric vibrator, oscillator, electronic apparatus, and radio clock
US10326427B2 (en) 2016-04-26 2019-06-18 Seiko Epson Corporation Resonator, oscillator, electronic apparatus, and vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081698A (en) * 2005-09-13 2007-03-29 Daishinku Corp Tuning-fork piezoelectric oscillating member and piezoelectric oscillating device
WO2009041362A1 (en) * 2007-09-27 2009-04-02 Nippon Telegraph And Telephone Corporation Logical element
US8159307B2 (en) 2007-09-27 2012-04-17 Nippon Telegraph And Telephone Corporation Logical element
JP5006402B2 (en) * 2007-09-27 2012-08-22 日本電信電話株式会社 Logic element
US8018127B2 (en) 2009-02-18 2011-09-13 Epson Toyocom Corporation Flexural resonator element and flexural resonator for reducing energy loss due to heat dissipation
CN102098022A (en) * 2009-12-10 2011-06-15 精工爱普生株式会社 Vibrating reed, vibrator, physical quantity sensor, and electronic equipment
JP2012010253A (en) * 2010-06-28 2012-01-12 Nippon Dempa Kogyo Co Ltd Tuning-fork type piezoelectric vibration piece and piezoelectric device
JP2012217140A (en) * 2011-03-29 2012-11-08 Nippon Dempa Kogyo Co Ltd Tuning-fork type piezoelectric vibration piece and piezoelectric device
JP2014179901A (en) * 2013-03-15 2014-09-25 Sii Crystal Technology Inc Piezoelectric vibration piece, piezoelectric vibrator, oscillator, electronic apparatus, and radio clock
US10326427B2 (en) 2016-04-26 2019-06-18 Seiko Epson Corporation Resonator, oscillator, electronic apparatus, and vehicle

Similar Documents

Publication Publication Date Title
TW201242246A (en) Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, vibration gyro element, vibration gyro sensor, and electronic apparatus
JP2004200917A (en) Piezoelectric vibrating piece, piezoelectric device employing the same, cellular telephone device employing the piezoelectric device, and electronic equipment employing the piezoelectric device
JP4548148B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP2007013391A (en) Piezo-electric oscillating piece and piezo-electric device
JP2006270177A (en) Piezoelectric vibration reed and piezoelectric device
JP2010098531A (en) Piezoelectric vibration piece and piezoelectric device
JP5789913B2 (en) Tuning fork type piezoelectric vibrating piece and piezoelectric device
JP5789914B2 (en) Tuning fork type piezoelectric vibrating piece and piezoelectric device
JP2012019441A (en) Vibration piece, vibrator, and oscillator
JP4207873B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP2011155628A (en) Vibrating reed, vibrator, oscillator, electronic device, and frequency adjustment method
JP5652122B2 (en) Vibrating piece, vibrating device and electronic device
JP2004208237A (en) Piezoelectric device, mobile telephone equipment utilizing piezoelectric device, and electronic equipment utilizing piezoelectric device
JP2004297198A (en) Piezoelectric vibration chip, piezoelectric device, mobile phone utilizing piezoelectric device, and electronic apparatus utilizing piezoelectric device
JP2007081570A (en) Piezoelectric device
JP4265499B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP2005123828A (en) Tuning-fork piezo-electric oscillation piece and piezo-electric device
JP4784168B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP2007163200A (en) Vibrating reed and angular velocity sensor
JP2006266969A (en) Tuning fork type piezo-electric oscillating gyroscope
JP5130502B2 (en) Piezoelectric vibrator and piezoelectric oscillator
JP2003273703A (en) Quartz vibrator and its manufacturing method
JP5732903B2 (en) Vibration element, vibrator, oscillator, gyro sensor and electronic equipment
JP2004236008A (en) Piezo-electric oscillating member, piezo-electric device using the same, and cell phone unit and electric apparatus using piezo-electric device
JP2004297580A (en) Tuning fork piezoelectric oscillating piece and tuning fork piezoelectric vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050930

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A131 Notification of reasons for refusal

Effective date: 20080617

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080818

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20080924

Free format text: JAPANESE INTERMEDIATE CODE: A02