JP5730056B2 - Exhaust gas recirculation system for internal combustion engines - Google Patents

Exhaust gas recirculation system for internal combustion engines Download PDF

Info

Publication number
JP5730056B2
JP5730056B2 JP2011030804A JP2011030804A JP5730056B2 JP 5730056 B2 JP5730056 B2 JP 5730056B2 JP 2011030804 A JP2011030804 A JP 2011030804A JP 2011030804 A JP2011030804 A JP 2011030804A JP 5730056 B2 JP5730056 B2 JP 5730056B2
Authority
JP
Japan
Prior art keywords
exhaust gas
intake
pressure
gas recirculation
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011030804A
Other languages
Japanese (ja)
Other versions
JP2012167639A (en
Inventor
内田 克己
克己 内田
高明 武本
高明 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2011030804A priority Critical patent/JP5730056B2/en
Publication of JP2012167639A publication Critical patent/JP2012167639A/en
Application granted granted Critical
Publication of JP5730056B2 publication Critical patent/JP5730056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)

Description

本発明は、過給機を備える内燃機関において排気ガスの一部を吸気通路に還流させる内燃機関の排気ガス再循環システムに関するものである。   The present invention relates to an exhaust gas recirculation system for an internal combustion engine that recirculates part of the exhaust gas to an intake passage in an internal combustion engine equipped with a supercharger.

従来、例えば車両に搭載される内燃機関にあっては、排気ガス中の大気汚染物質の低減及び燃費の向上を図るために、排気ガスの一部を吸気通路に還流する排気ガス再循環システムを備えるものが知られている。例えば、特許文献1に記載のものでは、ターボチャージャのコンプレッサ下流側に吸気絞り弁を設け、低負荷運転時に排気ガスを還流する場合、吸気絞り弁を閉じることで吸気通路内の圧力を低下させ、タービン上流側とコンプレッサ下流側とを連通するEGR通路の吸気通路側と排気通路側との差圧を増大し、排気ガスを吸気通路内に還流させる構成である。   2. Description of the Related Art Conventionally, for example, in an internal combustion engine mounted on a vehicle, an exhaust gas recirculation system that recirculates part of the exhaust gas to the intake passage is used in order to reduce air pollutants in the exhaust gas and improve fuel consumption. What you have is known. For example, in the one described in Patent Document 1, when an intake throttle valve is provided on the downstream side of the compressor of the turbocharger and exhaust gas is recirculated during low load operation, the pressure in the intake passage is reduced by closing the intake throttle valve. The differential pressure between the intake passage side and the exhaust passage side of the EGR passage connecting the upstream side of the turbine and the downstream side of the compressor is increased, and the exhaust gas is recirculated into the intake passage.

上記構成にあって、吸気絞り弁を閉じることで、前記差圧を増大することはできるが、内燃機関の運転状態によっては前記差圧を増大するまで吸気絞り弁を閉じると、吸気絞り弁の開度がきわめて小さくなる場合がある。このような場合、吸気絞り弁の開度が小さくなることで、吸気絞り弁が吸気抵抗を生み出すことになり、ポンピングロスが増加することになる。   In the above configuration, the differential pressure can be increased by closing the intake throttle valve, but depending on the operating state of the internal combustion engine, if the intake throttle valve is closed until the differential pressure is increased, the intake throttle valve The opening may be very small. In such a case, when the opening of the intake throttle valve is reduced, the intake throttle valve generates intake resistance, and the pumping loss increases.

このような事情に鑑みて、吸気絞り弁を開いた状態で排気ガスを吸気通路内に還流させようとすると、内燃機関の運転状態によっては排気ガスの圧力よりコンプレッサで圧縮された吸入空気となる新気の圧力の方が高くなり、排気ガスを還流できない場合が生じる。つまり、前記差圧が発生せず、しかも排気ガスの圧力が新気の圧力より低いために、新気がEGR通路を介して排気通路に流れ込むことがある。この場合、新気が触媒に達すると、触媒内の雰囲気が排気ガスの浄化に必要な酸素量より過剰な状態となって、排気ガス浄化能力が低下する可能性がある。   In view of such circumstances, if the exhaust gas is recirculated into the intake passage with the intake throttle valve opened, the intake air is compressed by the compressor from the pressure of the exhaust gas depending on the operating state of the internal combustion engine. The fresh air pressure becomes higher and the exhaust gas cannot be recirculated. That is, since the differential pressure does not occur and the pressure of the exhaust gas is lower than the pressure of fresh air, fresh air may flow into the exhaust passage through the EGR passage. In this case, when the fresh air reaches the catalyst, the atmosphere in the catalyst becomes more than the amount of oxygen necessary for purifying the exhaust gas, and the exhaust gas purification ability may be reduced.

特開平10‐266866号公報Japanese Patent Laid-Open No. 10-266866

そこで本発明は以上の点に着目し、圧縮された吸入空気となる新気の圧力が排気ガスの圧力を上回る内燃機関の運転領域にあっても排気ガスの一部を還流して、燃費の向上及びノッキングの抑制によるトルクの向上を図ることを目的としている。   Therefore, the present invention pays attention to the above points and recirculates a part of the exhaust gas even in the operating region of the internal combustion engine in which the pressure of the fresh air that becomes the compressed intake air exceeds the pressure of the exhaust gas, thereby improving the fuel efficiency. The purpose is to improve the torque by improving and suppressing knocking.

すなわち、本発明の内燃機関の排気ガス再循環システムは、吸入空気を過給するための過給機及び吸気通路におけるコンプレッサの下流に接続する排気ガス再循環管路を有し排気ガスの一部を吸気通路に還流する排気ガス再循環装置備える内燃機関の排気ガス再循環システムであって、吸気通路におけるコンプレッサの下流に接続する管部及び管部に連通し所定容量の気体を貯留し得る容器からなり、排気ガス再循環装置により排気ガスの一部を吸気通路に還流している状態でコンプレッサ下流の吸気圧が排気圧より高くなる可能性がある運転領域において、吸気脈動と異なる位相の脈動を出力し吸気脈動に干渉することによりコンプレッサ下流の吸気圧を排気圧よりも低下させる位相変更手段と、位相変更手段と吸気通路との連通状態を制御する開閉弁と、排気ガス再循環装置による排気ガスの還流を検知する還流検知手段と、排気ガス再循環装置により排気ガスの一部を吸気通路に還流している状態でコンプレッサ下流の吸気圧が排気圧より高くなる可能性がある運転領域において、開閉弁を開いて位相変更手段を作動させる弁制御手段とを備えてなることを特徴とする。 That is, an exhaust gas recirculation system for an internal combustion engine according to the present invention has a supercharger for supercharging intake air and an exhaust gas recirculation line connected downstream of the compressor in the intake passage, and a part of the exhaust gas. the a exhaust gas recirculation system of an internal combustion engine having an exhaust gas recirculation device for recirculating to the intake passage, and storing the gas in a given volume communicating with the pipe portion and the tube portion connected downstream of the compressor definitive intake passage In the operating region where the intake pressure downstream of the compressor may be higher than the exhaust pressure in a state where a part of the exhaust gas is recirculated to the intake passage by the exhaust gas recirculation device, a phase different from the intake pulsation a phase changing means for reducing than exhaust pressure to intake pressure of the compressor downstream by interfering with output to intake pulsation of the pulsation of the communication with the phase changing means and the intake passage And Gosuru off valve, a reflux detecting means for detecting a refluxing the exhaust gas by the exhaust gas recirculation device, the intake pressure of the compressor downstream in a state where the exhaust gas recirculation system is recirculating part of exhaust gas to the intake passage In an operating region where the pressure may be higher than the exhaust pressure, the valve control means for opening the on-off valve and operating the phase changing means is provided.

このような構成によれば、排気ガス再循環装置により排気ガスの一部を吸気通路に還流している運転状態を還流検知手段により検知した場合、弁制御手段が開閉弁を開くことにより吸気通路から位相変更手段の管部に吸入空気が流入出し、容器内の気体に作用して吸入空気の脈動と1/2波長異なる位相で容器内の気体が吸気通路の吸入空気に作用する。これにより、吸入空気の圧力を排気ガスの圧力より低くすることが可能になる。   According to such a configuration, when the operating state in which a part of the exhaust gas is recirculated to the intake passage by the exhaust gas recirculation device is detected by the recirculation detection means, the valve control means opens the on-off valve to open the intake passage. The suction air flows into and out of the pipe portion of the phase change means, acts on the gas in the container, and the gas in the container acts on the suction air in the suction passage with a phase that is ½ wavelength different from the pulsation of the suction air. As a result, the pressure of the intake air can be made lower than the pressure of the exhaust gas.

本発明は、以上説明したような構成であり、排気ガス再循環装置が作動している運転状態において、吸入空気の圧力が排気ガスの圧力を上回るような運転状態であっても、吸入空気つまり新気が排気ガス再循環装置を介して排気通路に逆流することを抑制することができる。このため、より多量の排気ガスを吸気通路に還流することができ、燃費を向上させることができるとともに、ノッキングを抑制することでトルクを向上させることができる。加えて、新気により空燃比がリーン側に変化した排気ガスが触媒に流入することを抑制できるので、排出物質の浄化性能が低下することを防止することができる。   The present invention is configured as described above, and in the operating state in which the exhaust gas recirculation device is operating, even in the operating state in which the pressure of the intake air exceeds the pressure of the exhaust gas, It is possible to prevent fresh air from flowing back into the exhaust passage via the exhaust gas recirculation device. Therefore, a larger amount of exhaust gas can be recirculated to the intake passage, fuel efficiency can be improved, and torque can be improved by suppressing knocking. In addition, since the exhaust gas whose air-fuel ratio has changed to the lean side due to fresh air can be suppressed from flowing into the catalyst, it is possible to prevent the exhaust gas purification performance from being deteriorated.

本発明の実施形態のエンジンの概略構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic structure explanatory drawing of the engine of embodiment of this invention. 同実施形態の作用を説明するための吸気圧と排圧との変化を示すグラフ。The graph which shows the change of the intake pressure and exhaust pressure for demonstrating the effect | action of the embodiment.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

このエンジン100は、二気筒360°位相のもので、シリンダ1と、各シリンダ1に吸入空気を供給するための吸気通路2と、排気ガスを排出するための排気通路3と、排気通路3に配置されるタービン4a及び吸気通路2に配置されるコンプレッサ4bを備える排気タービン式のターボチャージャ4とを基本的に備えている。   The engine 100 has a two-cylinder 360 ° phase, and includes a cylinder 1, an intake passage 2 for supplying intake air to each cylinder 1, an exhaust passage 3 for discharging exhaust gas, and an exhaust passage 3. An exhaust turbine turbocharger 4 having a turbine 4a and a compressor 4b disposed in the intake passage 2 is basically provided.

吸気通路2には、コンプレッサ4b以外に、エアクリーナ7、エアフロメータ6、吸気絞り弁8、インタークーラ9及び電子制御式スロットル弁(以下、電子スロットル弁と称する)10を、吸気通路2の上流から下流に向かってこの順に配置している。すなわち、エアクリーナ7の下流、したがって吸気絞り弁8の上流に、空気流量を検出するためのエアフロメータ6を配置する。このように、吸気通路2は、エアクリーナ7の下流に、エアフロメータ6、吸気絞り弁8、インタークーラ9及び電子スロットル弁10を配置しているので、その全長が長くなる。   In addition to the compressor 4b, the intake passage 2 includes an air cleaner 7, an air flow meter 6, an intake throttle valve 8, an intercooler 9, and an electronically controlled throttle valve (hereinafter referred to as an electronic throttle valve) 10 from the upstream side of the intake passage 2. It arranges in this order toward the downstream. That is, the air flow meter 6 for detecting the air flow rate is disposed downstream of the air cleaner 7 and thus upstream of the intake throttle valve 8. Thus, since the air flow meter 6, the intake throttle valve 8, the intercooler 9, and the electronic throttle valve 10 are arranged downstream of the air cleaner 7, the intake passage 2 has a long overall length.

また、エアフロメータ6と吸気絞り弁8との間の吸気通路2には、スロットルバルブ10の上流でインタークーラ9の下流に通じる吸気バイパス通路24aと吸気バイパス通路24aを開閉する吸気バイパス弁24bとからなる過給圧迂回機構24が設けてある。   Further, in the intake passage 2 between the air flow meter 6 and the intake throttle valve 8, an intake bypass passage 24a communicating upstream of the throttle valve 10 and downstream of the intercooler 9 and an intake bypass valve 24b opening and closing the intake bypass passage 24a are provided. A supercharging pressure bypass mechanism 24 is provided.

各シリンダ1に対して、点火プラグ15及び燃料噴射弁16が取り付けてある。燃料噴射弁16には、デリバリパイプ17を介して高圧燃料ポンプ18から燃料が供給される。   A spark plug 15 and a fuel injection valve 16 are attached to each cylinder 1. Fuel is supplied to the fuel injection valve 16 from a high-pressure fuel pump 18 via a delivery pipe 17.

排気通路3には、タービン4a以外に、空燃比センサ20、三元触媒21及びリアO2センサ22を、排気通路3の上流から下流に向かってこの順に配置している。すなわち、タービン5の下流に空燃比センサ20が配置され、その空燃比センサ20の下流に三元触媒21が、さらに三元触媒21の下流にリアO2センサ22が配置される構成である。空燃比センサ20及びリアO2センサ22は、後述する電子制御装置33に電気的に接続される。 In the exhaust passage 3, in addition to the turbine 4a, an air-fuel ratio sensor 20, a three-way catalyst 21, and a rear O 2 sensor 22 are arranged in this order from upstream to downstream of the exhaust passage 3. That is, the air-fuel ratio sensor 20 is disposed downstream of the turbine 5, the three-way catalyst 21 is disposed downstream of the air-fuel ratio sensor 20, and the rear O 2 sensor 22 is disposed downstream of the three-way catalyst 21. The air-fuel ratio sensor 20 and the rear O 2 sensor 22 are electrically connected to an electronic control device 33 described later.

ターボチャージャ4は、この分野でよく知られたものを適用することができ、過給圧を制御するために、タービン4aの上流と下流とを連通可能にする排気バイパス通路23aを備え、その排気バイパス通路23aを開閉するウェイストゲート弁23bを備えている。   As the turbocharger 4, those well-known in this field can be applied. In order to control the supercharging pressure, the turbocharger 4 includes an exhaust bypass passage 23 a that allows communication between the upstream side and the downstream side of the turbine 4 a. A waste gate valve 23b for opening and closing the bypass passage 23a is provided.

エンジン100は、吸気通路2と排気通路3との間に、エアクリーナ7を介して吸気通路2に流入する新気に排気ガスを混合するための、いわゆる高圧ループ式の排気ガス再循環装置(以下、EGR装置と称する)25を備えている。吸気通路2と排気通路3とを連通する排気ガス再循環管路(以下、EGR管路と称する)26と、EGR管路26に設けられてEGR管路26を通過する排気ガスの一部つまりEGRガスの量を制御する排気ガス再循環制御弁(以下、EGR弁と称する)27とを備えている。EGR管路26は、その一端が吸気通路2を構成する吸気マニホルド2aに接続され、かつその他端が排気通路3を構成する排気マニホルド3aに接続される。   The engine 100 is a so-called high-pressure loop type exhaust gas recirculation device (hereinafter referred to as “high pressure loop”) for mixing exhaust gas into fresh air flowing into the intake passage 2 via the air cleaner 7 between the intake passage 2 and the exhaust passage 3. , Referred to as an EGR device) 25. An exhaust gas recirculation conduit (hereinafter referred to as an EGR conduit) 26 that communicates the intake passage 2 and the exhaust passage 3, and a part of the exhaust gas that is provided in the EGR conduit 26 and passes through the EGR conduit 26, that is, And an exhaust gas recirculation control valve (hereinafter referred to as an EGR valve) 27 for controlling the amount of EGR gas. One end of the EGR pipe 26 is connected to the intake manifold 2 a constituting the intake passage 2, and the other end is connected to the exhaust manifold 3 a constituting the exhaust passage 3.

このEGR装置25に加えて、電子スロットル弁10の下流で、かつ吸気マニホルド2aの上流には、吸気通路2に連通する管部40及び管部40に連通し所定容量の気体を貯留し得る容器41からなり吸気脈動の位相を変更する位相変更手段42と、吸気通路2と管部40との間に設けられ位相変更手段42と吸気通路2との連通状態を制御する開閉弁43とが取り付けてある。位相変更手段42は、いわゆるヘルムホルツの共振の原理を用いるレゾネータである。位相変更手段42は、開閉弁43を開いている間に、管部40が吸気マニホルド2aの上流位置の吸気通路2部分と連通し、ヘルムホルツの共振の原理により、吸入空気の脈動の位相と半波長異なる位相の脈動を生成する。これにより、吸入空気の脈動が低減される。   In addition to the EGR device 25, a pipe 40 communicating with the intake passage 2 and a container capable of storing a predetermined volume of gas downstream of the electronic throttle valve 10 and upstream of the intake manifold 2a. And a phase change means 42 for changing the phase of the intake pulsation, and an opening / closing valve 43 provided between the intake passage 2 and the pipe portion 40 for controlling the communication state between the phase change means 42 and the intake passage 2. It is. The phase changing means 42 is a resonator that uses the so-called Helmholtz resonance principle. While the opening / closing valve 43 is open, the phase changing means 42 communicates with the intake passage 2 at the upstream position of the intake manifold 2a while the pipe portion 40 communicates with the intake air pulsation phase and half of the intake air pulsation phase based on the Helmholtz resonance principle. Generates pulsations with different wavelengths. Thereby, the pulsation of intake air is reduced.

以上に説明した位相変更手段42と、後述する還流検知手段及び弁制御手段と、EGR装置25とにより、排気ガス再循環システムが構成される。   The phase change means 42 described above, the recirculation detection means and valve control means described later, and the EGR device 25 constitute an exhaust gas recirculation system.

電子制御装置33は、プロセッサ33a、メモリ33b、入力インターフェース33c、出力インターフェース33dなどを備えるコンピュータシステムである。入力インターフェース33cには、エアフロメータ6から出力される空気流量信号a、車速を検出する車速センサから出力される車速信号b、エンジン回転数を検出する回転数センサから出力される回転数信号c、スロットルバルブ10の開度すなわちスロットル開度を検出するスロットルセンサから出力されるスロットル開度信号d、吸気マニホルド2aの上流に吸気マニホルド2aと一体であるサージタンク(図示しない)に取り付けられて吸気圧を検出する吸気圧センサから出力される吸気圧信号e、冷却水温を検出する水温センサから出力される水温信号f、空燃比センサ20から出力される第一空燃比信号g、リアO2センサから出力される第二空燃比信号hなどが入力される。また出力インターフェース33dからは、吸気絞り弁8に対して絞り弁開度信号k、スロットルバルブ10に対して弁駆動信号m、EGR弁27に対してEGR弁開度信号n、燃料噴射弁15に対して燃料噴射信号o、点火プラグ16に対して点火信号p、開閉弁43に対して開閉信号qなどが出力される。 The electronic control device 33 is a computer system including a processor 33a, a memory 33b, an input interface 33c, an output interface 33d, and the like. The input interface 33c includes an air flow rate signal a output from the air flow meter 6, a vehicle speed signal b output from a vehicle speed sensor that detects the vehicle speed, a rotation speed signal c output from a rotation speed sensor that detects the engine speed, A throttle opening signal d output from a throttle sensor that detects the opening of the throttle valve 10, that is, a throttle opening, is attached upstream of the intake manifold 2 a to a surge tank (not shown) integral with the intake manifold 2 a and intake pressure An intake pressure signal e output from the intake pressure sensor for detecting the coolant, a water temperature signal f output from the water temperature sensor for detecting the coolant temperature, a first air-fuel ratio signal g output from the air-fuel ratio sensor 20, and a rear O 2 sensor. The output second air-fuel ratio signal h or the like is input. From the output interface 33d, the throttle valve opening signal k for the intake throttle valve 8, the valve drive signal m for the throttle valve 10, the EGR valve opening signal n for the EGR valve 27, and the fuel injection valve 15 are supplied. On the other hand, the fuel injection signal o, the ignition signal p to the ignition plug 16, the opening / closing signal q to the opening / closing valve 43, and the like are output.

この電子制御装置33は、還流検知手段及び弁制御手段としても機能する。還流検知手段は、EGR装置25により排気ガスの一部が吸気通路2に還流されていることを検知するもので、この実施形態にあっては、EGR装置25のEGR弁27のEGR弁開度信号sに基づいてEGR弁27の弁開度を推定し、その弁開度によりEGR装置25が排気ガスの一部を還流していることを検知するものである。そして、この還流を検知することで、電子制御装置33は開閉弁43に対して、開弁するための開閉信号qを出力する。したがって、電子制御装置33が還流検知手段及び弁制御手段として機能するものである。   The electronic control device 33 also functions as a reflux detection unit and a valve control unit. The recirculation detection means detects that a part of the exhaust gas is recirculated to the intake passage 2 by the EGR device 25. In this embodiment, the EGR valve opening degree of the EGR valve 27 of the EGR device 25 is detected. The valve opening degree of the EGR valve 27 is estimated based on the signal s, and it is detected from the valve opening degree that the EGR device 25 is recirculating a part of the exhaust gas. Then, by detecting this reflux, the electronic control unit 33 outputs an opening / closing signal q for opening the valve to the opening / closing valve 43. Therefore, the electronic control unit 33 functions as a reflux detection unit and a valve control unit.

このような構成において、運転状態に応じてEGR装置25により排気ガスの一部を吸気通路2に還流している低回転中高負荷運転領域において、図2に示すように、ターボチャージャ4により新気を過給しているために、吸入空気の圧力つまり吸気圧が排気ガスの圧力つまり排圧より高くなる場合がある(図中の区間A、B)。この場合に、還流検知手段が排気ガスのEGR装置25による還流を検知し、弁制御手段が開閉弁43を開くと、吸気圧の脈動に対して位相変更手段が作動し、吸気圧の脈動とは異なる位相で位相変更手段から脈動が出力される。つまり、位相変更手段42の管部40に流入出した吸入空気により容器41内の気体が圧縮と膨張を繰り返し、吸気圧の脈動とは異なる位相で振動する。これにより、吸気圧の脈動が干渉され、吸気圧が低下し、排圧を下回るものとなる。 In such a configuration, as shown in FIG. 2, fresh air is generated by the turbocharger 4 in the low-rotation medium-high load operation region in which a part of the exhaust gas is recirculated to the intake passage 2 by the EGR device 25 according to the operation state. Therefore, the pressure of the intake air, that is, the intake pressure, may be higher than the pressure of the exhaust gas, that is, the exhaust pressure (sections A and B in the figure). In this case, when the recirculation detection means detects recirculation of the exhaust gas by the EGR device 25 and the valve control means opens the on-off valve 43, the phase changing means is activated for the pulsation of the intake pressure, and the pulsation of the intake pressure The pulsation is output from the phase changing means at different phases. That is, the gas in the container 41 is repeatedly compressed and expanded by the intake air flowing into and out of the pipe portion 40 of the phase changing means 42, and vibrates at a phase different from the pulsation of the intake pressure. As a result, the pulsation of the intake pressure is interfered, and the intake pressure is reduced to be lower than the exhaust pressure.

その結果、吸気マニホルド2aにおいて排圧が吸気圧を上回ることになるので、EGR装置25のEGR管路26及びEGR弁27を介して排気ガスの一部が吸入空気に混合されることになる。したがって、このように吸気圧が排圧を上回るような運転状態であっても、排気ガスの還流を行うことができ、燃費及びトルクの向上を図ることができる。又、排圧が吸気圧より高くなっているので、吸入空気がEGR管路26を介して排気マニホルド3aに吹き抜けることを抑制することができる。このため、排気ガスの酸素濃度が高くなることを抑制でき、三元触媒21内の空燃比がリーンになることを抑制することができる。したがって、三元触媒21の排気ガス浄化性能が低下することを防ぐことができる。   As a result, since the exhaust pressure exceeds the intake pressure in the intake manifold 2a, a part of the exhaust gas is mixed with the intake air via the EGR pipe line 26 and the EGR valve 27 of the EGR device 25. Therefore, even in such an operating state where the intake pressure exceeds the exhaust pressure, the exhaust gas can be recirculated, and fuel efficiency and torque can be improved. Further, since the exhaust pressure is higher than the intake pressure, it is possible to suppress the intake air from being blown into the exhaust manifold 3a via the EGR pipe line 26. For this reason, it can suppress that the oxygen concentration of exhaust gas becomes high, and can suppress that the air fuel ratio in the three-way catalyst 21 becomes lean. Therefore, it is possible to prevent the exhaust gas purification performance of the three-way catalyst 21 from being deteriorated.

以上のようにして、開閉弁43を開いた運転状態にあって、例えば電子スロットル弁10を全開にするあるいは全閉にするような運転状態になり、EGR弁27を閉じる制御をする、つまりEGR装置25により排気ガスの還流を行わない場合は、還流検知手段がEGR弁27の開度に基づいて排気ガスを還流していないことを検知する。この結果、弁制御手段は、開閉弁43に対して所定の遅延時間の後に閉弁するための開閉信号qを出力する。所定の遅延時間は、排圧が吸気圧を上回っている状態で排気ガスの還流を完了するべくEGR弁27を閉じるに要する十分な時間に設定する。このように、開閉弁43の閉弁のための開閉信号qを出力して開閉弁43を閉じることで、確実に新気が排気通路3に吹き抜けることを防止するものである。したがって、上記したように、三元触媒21の排気ガス浄化性能が低下することを防ぐことができる。   As described above, when the on-off valve 43 is open, the electronic throttle valve 10 is fully opened or fully closed, and the EGR valve 27 is controlled to be closed. When the exhaust gas is not recirculated by the device 25, the recirculation detection means detects that the exhaust gas is not recirculated based on the opening degree of the EGR valve 27. As a result, the valve control means outputs an opening / closing signal q for closing the opening / closing valve 43 after a predetermined delay time. The predetermined delay time is set to a sufficient time required to close the EGR valve 27 in order to complete the exhaust gas recirculation in a state where the exhaust pressure exceeds the intake pressure. In this way, the opening / closing signal q for closing the opening / closing valve 43 is output and the opening / closing valve 43 is closed, so that fresh air is surely prevented from being blown into the exhaust passage 3. Therefore, as described above, it is possible to prevent the exhaust gas purification performance of the three-way catalyst 21 from being deteriorated.

なお、本発明は、上記実施形態に限定されるものではない。   The present invention is not limited to the above embodiment.

還流検知手段としては、エンジン回転数と負荷とにもとづいて演算される要求EGR率又は要求EGR量が、所定のEGR率又はEGR量以上となることを検知することで、EGR装置25による排気ガスの還流を検知するものであってもよい。   As the recirculation detection means, the exhaust gas from the EGR device 25 is detected by detecting that the required EGR rate or the required EGR amount calculated based on the engine speed and the load is equal to or greater than a predetermined EGR rate or EGR amount. It is also possible to detect the reflux of water.

その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明の活用例として、ターボチャージャを備え、例えば2気筒あるいは3気筒のように吸気脈動が大きなガソリン及びディーゼルエンジンが挙げられる。   Examples of utilization of the present invention include gasoline and diesel engines that are equipped with a turbocharger and have a large intake pulsation such as two or three cylinders.

2…吸気通路
3…排気通路
4…ターボチャージャ
25…排気ガス再循環装置
33…電子制御装置
40…管部
41…容器
42…位相変更手段
43…開閉弁
DESCRIPTION OF SYMBOLS 2 ... Intake passage 3 ... Exhaust passage 4 ... Turbocharger 25 ... Exhaust gas recirculation device 33 ... Electronic control unit 40 ... Pipe part 41 ... Container 42 ... Phase change means 43 ... Open / close valve

Claims (1)

吸入空気を過給するための過給機及び吸気通路におけるコンプレッサの下流に接続する排気ガス再循環管路を有し排気ガスの一部を吸気通路に還流する排気ガス再循環装置備える内燃機関の排気ガス再循環システムであって、
吸気通路におけるコンプレッサの下流に接続する管部及び管部に連通し所定容量の気体を貯留し得る容器からなり、排気ガス再循環装置により排気ガスの一部を吸気通路に還流している状態でコンプレッサ下流の吸気圧が排気圧より高くなる可能性がある運転領域において、吸気脈動と異なる位相の脈動を出力し吸気脈動に干渉することによりコンプレッサ下流の吸気圧を排気圧よりも低下させる位相変更手段と、
位相変更手段と吸気通路との連通状態を制御する開閉弁と、
排気ガス再循環装置による排気ガスの還流を検知する還流検知手段と、
排気ガス再循環装置により排気ガスの一部を吸気通路に還流している状態でコンプレッサ下流の吸気圧が排気圧より高くなる可能性がある運転領域において、開閉弁を開いて位相変更手段を作動させる弁制御手段と
を備えてなる内燃機関の排気ガス再循環システム。
Internal combustion engine having an exhaust gas recirculation device for recirculating intake air in the intake passage part of the exhaust gas has an exhaust gas recirculation line which connects the downstream of the compressor in the turbocharger and the intake passage for supercharging Exhaust gas recirculation system of
It becomes a gas of a predetermined volume communicating with the pipe portion and the tube portion connected to the downstream of the definitive intake passage compressor from a container capable of storing a state that recirculating part of exhaust gas into the intake passage by an exhaust gas recirculation system In the operating region where the intake air pressure downstream of the compressor may be higher than the exhaust pressure, a phase that outputs a pulsation with a phase different from the intake pulsation and interferes with the intake pulsation, thereby reducing the intake pressure downstream of the compressor below the exhaust pressure. Change means,
An on-off valve for controlling the communication state between the phase changing means and the intake passage;
Recirculation detection means for detecting recirculation of exhaust gas by the exhaust gas recirculation device;
In the operating region where the intake pressure downstream of the compressor may be higher than the exhaust pressure while part of the exhaust gas is recirculated to the intake passage by the exhaust gas recirculation device, the on- off valve is opened to operate the phase change means An exhaust gas recirculation system for an internal combustion engine, comprising:
JP2011030804A 2011-02-16 2011-02-16 Exhaust gas recirculation system for internal combustion engines Active JP5730056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011030804A JP5730056B2 (en) 2011-02-16 2011-02-16 Exhaust gas recirculation system for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011030804A JP5730056B2 (en) 2011-02-16 2011-02-16 Exhaust gas recirculation system for internal combustion engines

Publications (2)

Publication Number Publication Date
JP2012167639A JP2012167639A (en) 2012-09-06
JP5730056B2 true JP5730056B2 (en) 2015-06-03

Family

ID=46972010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011030804A Active JP5730056B2 (en) 2011-02-16 2011-02-16 Exhaust gas recirculation system for internal combustion engines

Country Status (1)

Country Link
JP (1) JP5730056B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209880A1 (en) * 2021-03-31 2022-10-06 本田技研工業株式会社 Air suction device for internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694850B2 (en) * 1987-12-28 1994-11-24 三菱重工業株式会社 Exhaust turbocharged engine exhaust gas recirculation system
JPH04347356A (en) * 1991-05-23 1992-12-02 Fuji Heavy Ind Ltd Exhaust gas recirculation control method of engine for fluid-flow vehicle
JP3783319B2 (en) * 1997-03-21 2006-06-07 いすゞ自動車株式会社 EGR device for diesel engine
JP3366558B2 (en) * 1997-07-28 2003-01-14 日野自動車株式会社 Exhaust gas recirculation system for internal combustion engine
SE520505C2 (en) * 2001-11-30 2003-07-15 Scania Cv Ab Device for recirculating exhaust gases in an internal combustion engine
JP2003343376A (en) * 2002-05-22 2003-12-03 Nissan Diesel Motor Co Ltd Intake device for multi-cylinder internal combustion engine
JP4858077B2 (en) * 2006-10-23 2012-01-18 トヨタ自動車株式会社 EGR control system for internal combustion engine
JP5088306B2 (en) * 2008-11-28 2012-12-05 トヨタ自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2012167639A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5545654B2 (en) Turbocharged internal combustion engine
WO2007066833A1 (en) Exhaust gas purification system for internal combustion engine
JP5649343B2 (en) Intake throttle control method for internal combustion engine
JP2014034959A (en) Exhaust gas recirculation device of engine with supercharger
JP2010024878A (en) Control device for internal combustion engine
JP2008075589A (en) Egr gas scavenging device for internal combustion engine
JP5332674B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2012067609A (en) Internal combustion engine with turbocharger
JP6414412B2 (en) Exhaust system for internal combustion engine
JP5679185B2 (en) Control device for internal combustion engine
JP5730056B2 (en) Exhaust gas recirculation system for internal combustion engines
JP2014227844A (en) Controller of internal combustion engine
JP5688959B2 (en) Control device for internal combustion engine
JP5679776B2 (en) Exhaust gas recirculation control method for internal combustion engine
JP2012167638A (en) Exhaust gas recirculation control method for internal combustion engine
JP6308264B2 (en) Engine evaporative fuel processing device
JP5574859B2 (en) Method for detecting intake air amount of internal combustion engine
JP2009250057A (en) Control device of internal combustion engine
JP2014005764A (en) Egr control device of internal combustion engine
JP5769402B2 (en) Control device for internal combustion engine
JPWO2012066684A1 (en) Control device for internal combustion engine
JP2010168954A (en) Control device for internal combustion engine
JP5930288B2 (en) Internal combustion engine
JP2007255371A (en) Injection control method of reducing agent for exhaust gas
JP2015140707A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150407

R150 Certificate of patent or registration of utility model

Ref document number: 5730056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250