JP5728956B2 - Oxy-combustion boiler system - Google Patents

Oxy-combustion boiler system Download PDF

Info

Publication number
JP5728956B2
JP5728956B2 JP2011005872A JP2011005872A JP5728956B2 JP 5728956 B2 JP5728956 B2 JP 5728956B2 JP 2011005872 A JP2011005872 A JP 2011005872A JP 2011005872 A JP2011005872 A JP 2011005872A JP 5728956 B2 JP5728956 B2 JP 5728956B2
Authority
JP
Japan
Prior art keywords
combustion
exhaust gas
air
line
oxyfuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011005872A
Other languages
Japanese (ja)
Other versions
JP2012145305A (en
Inventor
信弥 中山
信弥 中山
輝俊 内田
輝俊 内田
良輔 辻前
良輔 辻前
邦雄 田部井
邦雄 田部井
洋平 堆
洋平 堆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011005872A priority Critical patent/JP5728956B2/en
Publication of JP2012145305A publication Critical patent/JP2012145305A/en
Application granted granted Critical
Publication of JP5728956B2 publication Critical patent/JP5728956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E20/344

Description

本発明は、酸素燃焼ボイラシステムに関するものである。   The present invention relates to an oxyfuel boiler system.

近年、地球温暖化が地球規模の環境問題として大きく取り上げられ、該地球温暖化は大気中の二酸化炭素(CO2)の濃度の増加が主要原因の一つであることが明らかにされており、火力発電所等におけるボイラ設備は、これらの物質の固定排出源として注目されているが、ボイラ用の燃料としては、石油、天然ガス、石炭が主に使用されている。 In recent years, global warming has been widely taken up as a global environmental problem, and it has been clarified that the increase in the concentration of carbon dioxide (CO 2 ) in the atmosphere is one of the main causes of global warming. Boiler facilities in thermal power plants and the like are attracting attention as a fixed emission source of these substances, but oil, natural gas, and coal are mainly used as boiler fuel.

特に、石炭は天然ガス及び石油と比較して炭素含有量が多く、その他、水素、窒素、硫黄等の成分、無機質である灰を含んでいるため、石炭を空気燃焼させると、燃焼排ガスの組成は殆どが窒素(約70%)となり、その他、二酸化炭素、硫黄酸化物(SOx)、窒素酸化物(NOx)、及び灰分や未燃焼の石炭粒子からなる塵と酸素(約4%)を含んだものとなる。   In particular, coal has a higher carbon content than natural gas and petroleum, and other components such as hydrogen, nitrogen, and sulfur, and inorganic ash. Is mostly nitrogen (about 70%), and also contains carbon dioxide, sulfur oxide (SOx), nitrogen oxide (NOx), and dust and oxygen (about 4%) consisting of ash and unburned coal particles. It will be.

このため、前記ボイラ設備の場合、燃焼排ガスは脱硝、脱硫、脱塵等の排煙処理を実施し、NOx、SOx、微粒子が環境排出基準値以下になるようにして煙突から大気中に排出している。   For this reason, in the case of the boiler equipment, the flue gas is subjected to flue gas treatment such as denitrification, desulfurization, and dust removal, and NOx, SOx, and fine particles are discharged from the chimney into the atmosphere so that they are below the environmental emission standard value. ing.

前記燃焼排ガスに生じるNOxには、空気中の窒素が酸素で酸化されて生成するサーマルNOxと、燃料中の窒素が酸化されて生成するフューエルNOxとがあるが、従来、サーマルNOxの低減には火炎温度を低減する燃焼法が採られ、又、フューエルNOxの低減には、燃焼器内にNOxを還元する燃料過剰の領域を形成する燃焼法が採られてきた。   The NOx generated in the combustion exhaust gas includes thermal NOx produced by oxidizing nitrogen in the air with oxygen and fuel NOx produced by oxidizing nitrogen in the fuel. Conventionally, for reducing thermal NOx, A combustion method for reducing the flame temperature has been adopted, and a fuel method for reducing fuel NOx has been adopted in which a fuel-excess region for reducing NOx is formed in the combustor.

一方、前記燃焼排ガス中の二酸化炭素を回収する方法としては、従来よりアミン等の吸収液中に吸収させる手法や、固体吸着剤に吸着させる吸着法、或いは膜分離法等が検討されているが、いずれも変換効率が低く、実用化には至っていない。   On the other hand, as a method of recovering carbon dioxide in the combustion exhaust gas, a method of absorbing in an absorbing solution such as amine, an adsorption method of adsorbing on a solid adsorbent, or a membrane separation method has been studied. Both have low conversion efficiency and have not yet been put into practical use.

そこで、前記燃焼排ガス中の二酸化炭素の分離とサーマルNOxの抑制の問題を同時に達成する有効な手法としては、空気に代えて酸素で燃料を燃焼させる手法が提案されており、石炭等の燃料を酸素で燃焼させると、サーマルNOxの発生は無くなると共に、燃焼排ガスは、そのほとんどが二酸化炭素となり、その他、フューエルNOx、SOxを含んだガスとなるため、燃焼排ガスを冷却することにより、前記二酸化炭素を液化して分離することが比較的容易になる。   Therefore, as an effective method for simultaneously achieving the problem of separation of carbon dioxide in the combustion exhaust gas and suppression of thermal NOx, a method of burning fuel with oxygen instead of air has been proposed. Combustion with oxygen eliminates the generation of thermal NOx, and most of the combustion exhaust gas becomes carbon dioxide. In addition, since the gas contains fuel NOx and SOx, the carbon dioxide is cooled by cooling the combustion exhaust gas. It is relatively easy to liquefy and separate.

しかしながら、前記石炭等の燃料を酸素で燃焼させた場合には火炎温度が高くなり、ボイラ本体を構成する材料の耐熱性や寿命向上を図る必要があるといった技術的課題が生じており、この問題を解決する一つの対策としては、ボイラ本体から排出されて排煙処理された燃焼排ガスの一部を分岐し、該分岐した燃焼排ガスをボイラ本体に供給する空気或いは酸素等の燃焼用気体に混合させるようにした、いわゆる排ガス再循環が知られている。   However, when the fuel such as coal is burned with oxygen, the flame temperature becomes high, and there is a technical problem that it is necessary to improve the heat resistance and life of the material constituting the boiler body. As a measure to solve this problem, a part of the flue gas discharged from the boiler body and smoke-treated is branched, and the branched flue gas is mixed with air or oxygen or other combustion gas supplied to the boiler body. So-called exhaust gas recirculation is known.

図7は従来の酸素燃焼ボイラシステムの一例を示すものであって、1はボイラ本体、2はボイラ本体1に空気或いは酸素等の燃焼用気体を供給する燃焼用気体供給ライン、3は燃焼用気体供給ライン2の上流端に設けられた空気吸込口、4は燃焼用気体供給ライン2に設けられた押込通風機、5はボイラ本体1から排出される燃焼排ガスが流通する排ガスライン、6は排ガスライン5に設けられ且つ燃焼排ガスの脱硝、脱硫、脱塵を行う排煙処理装置、7は排ガスライン5に設けられた誘引通風機、8は誘引通風機7の吸込側における排ガスライン5と押込通風機4の吸込側における燃焼用気体供給ライン2とをつなぐ排ガス再循環ラインであり、該排ガス再循環ライン8の合流接続点より上流側における燃焼用気体供給ライン2に第一切替ダンパD1を設けると共に、前記排ガス再循環ライン8に第二切替ダンパD2を設けてある。   FIG. 7 shows an example of a conventional oxyfuel boiler system, in which 1 is a boiler body, 2 is a combustion gas supply line for supplying a combustion gas such as air or oxygen to the boiler body 1, and 3 is for combustion. An air suction port provided at the upstream end of the gas supply line 2, 4 is a forced air blower provided in the combustion gas supply line 2, 5 is an exhaust gas line through which combustion exhaust gas discharged from the boiler body 1 flows, and 6 is A flue gas treatment device that is provided in the exhaust gas line 5 and performs denitration, desulfurization, and dust removal of combustion exhaust gas, 7 is an induction fan provided in the exhaust gas line 5, and 8 is an exhaust gas line 5 on the suction side of the induction fan 7 An exhaust gas recirculation line connecting the combustion gas supply line 2 on the suction side of the forced air ventilator 4, and first switching to the combustion gas supply line 2 upstream from the junction of the exhaust gas recirculation line 8 Provided with a damper D1, it is the second switching damper D2 provided in the exhaust gas recirculation line 8.

図7に示される酸素燃焼ボイラシステムにおいては、起動時には、図8に示される如く、第一切替ダンパD1を全開、第二切替ダンパD2を全閉とした状態で、押込通風機4並びに誘引通風機7を駆動し、通常のボイラと同様に、ボイラ本体1に燃焼用気体供給ライン2の上流端の空気吸込口3から空気を導入して燃料の空気燃焼を行い、ボイラ本体1から排出される燃焼排ガスは、排煙処理装置6で脱硝、脱硫、脱塵を行った後、図示していない煙突から大気放出し、起動完了後には、図8に示される如く、t1からt2の間で、第一切替ダンパD1を全開から絞り込んで全閉とすると共に、第二切替ダンパD2を全閉から開度を拡げて全開とし、前記ボイラ本体1に前記燃焼用気体供給ライン2から酸素を導入しつつボイラ本体1から排出される燃焼排ガスの一部を排ガス再循環ライン8を介し燃焼用気体供給ライン2へ再循環させて燃料の酸素燃焼を行い、これにより、燃焼排ガス中の二酸化炭素濃度を高め、ボイラ本体1から排出される燃焼排ガスは、前述と同様、排煙処理装置6で脱硝、脱硫、脱塵を行った後、誘引通風機7の下流側に設けられた図示していないCO2回収設備において二酸化炭素を回収し、該二酸化炭素を回収した燃焼排ガスを前記煙突から大気放出するようになっている。 In the oxyfuel boiler system shown in FIG. 7, at startup, as shown in FIG. 8, with the first switching damper D1 fully opened and the second switching damper D2 fully closed, the forced draft fan 4 and the induced draft The machine 7 is driven, and air is introduced into the boiler body 1 from the air inlet 3 at the upstream end of the combustion gas supply line 2 to burn the fuel in the air, and is discharged from the boiler body 1 in the same manner as a normal boiler. that flue gas after denitration, desulfurization and dedusting in flue gas treating device 6, released into the atmosphere through a stack (not shown), after start-up completion, as shown in FIG. 8, from t 1 to t 2 In the meantime, the first switching damper D1 is squeezed from the fully open position to be fully closed, and the second switching damper D2 is fully opened from the fully closed position to the fully open position. The boiler body 1 is supplied with oxygen from the combustion gas supply line 2. From boiler body 1 while introducing A part of the combustion exhaust gas is recirculated to the combustion gas supply line 2 through the exhaust gas recirculation line 8 to oxidize the fuel, thereby increasing the concentration of carbon dioxide in the combustion exhaust gas. As described above, the exhaust gas discharged from the exhaust gas is subjected to denitration, desulfurization, and dust removal by the smoke treatment device 6 and then carbon dioxide in a CO 2 recovery facility (not shown) provided downstream of the induction fan 7. The combustion exhaust gas from which the carbon dioxide has been recovered is discharged into the atmosphere from the chimney.

尚、前述の如き酸素燃焼ボイラシステムと関連する一般的技術水準を示すものとしては、例えば、特許文献1がある。   For example, Patent Document 1 shows a general technical level related to the oxyfuel boiler system as described above.

特許第4161515号公報Japanese Patent No. 4161515

ところで、図7に示される酸素燃焼ボイラシステムにおいては、空気燃焼から酸素燃焼への移行時に、図8に示される如く、第一切替ダンパD1と第二切替ダンパD2の開度制御を行えば、排ガス再循環ライン8の燃焼用気体供給ライン2に対する合流接続点での圧力が正圧若しくはゼロ近傍圧力になることが避けられ、過渡的な変動時にも再循環させるべき燃焼排ガスが空気吸込口3へ逆流してしまう心配はない。   By the way, in the oxyfuel boiler system shown in FIG. 7, when the opening control of the first switching damper D1 and the second switching damper D2 is performed as shown in FIG. The pressure at the junction of the exhaust gas recirculation line 8 to the combustion gas supply line 2 is prevented from becoming a positive pressure or a pressure close to zero, and the combustion exhaust gas to be recirculated even during a transient fluctuation is supplied to the air inlet 3. There is no worry of going backwards.

しかしながら、図7に示される酸素燃焼ボイラシステムにおいては、前述の如く、誘引通風機7の吸込側における排ガスライン5から排ガス再循環ライン8を分岐させているため、空気燃焼から酸素燃焼に移行した場合、誘引通風機7を流れる燃焼排ガスの流量が空気燃焼時のおよそ20〜30[%]まで大幅に低下し、誘引通風機7のターンダウンが困難となり、インバータ制御やファン特性の見直しを行う必要が生じるという欠点を有していた。   However, in the oxyfuel boiler system shown in FIG. 7, as described above, the exhaust gas recirculation line 8 is branched from the exhaust gas line 5 on the suction side of the induction fan 7, so that the combustion is changed from air combustion to oxyfuel combustion. In this case, the flow rate of the flue gas flowing through the induction fan 7 is greatly reduced to about 20 to 30% during air combustion, and it becomes difficult to turn down the induction fan 7, and inverter control and fan characteristics are reviewed. It had the disadvantage of need.

本発明は、斯かる実情に鑑み、空気燃焼から酸素燃焼への移行時に燃焼排ガスを空気吸込口へ逆流させることなく確実に再循環させることができ、且つ誘引通風機のターンダウンの問題を回避し得る酸素燃焼ボイラシステムを提供しようとするものである。   In view of such circumstances, the present invention can reliably recirculate combustion exhaust gas without backflowing to the air intake port during the transition from air combustion to oxyfuel combustion, and avoids the problem of turndown of the induction fan It is an object of the present invention to provide an oxyfuel boiler system that can be used.

本発明は、起動時には、ボイラ本体に燃焼用気体供給ラインから空気を導入して燃料の空気燃焼を行い、起動完了後には、前記ボイラ本体に前記燃焼用気体供給ラインから酸素を導入しつつボイラ本体から排出される燃焼排ガスの一部を再循環させて燃料の酸素燃焼を行う酸素燃焼ボイラシステムにおいて、
前記燃焼排ガスの一部を誘引通風機の吐出側における排ガスラインから前記燃焼用気体供給ラインへ導く排ガス再循環手段を備え
前記排ガス再循環手段は、
前記誘引通風機の吐出側における排ガスラインから分岐して、押込通風機の吸込側における前記燃焼用気体供給ラインに合流接続される排ガス再循環ラインと、
該排ガス再循環ラインの合流接続点より上流側で且つ空気吸込口より下流側における前記燃焼用気体供給ラインに設けられ、空気燃焼から酸素燃焼への移行時に全開から全閉に開度制御される第一切替ダンパと、
前記排ガス再循環ラインに設けられ、空気燃焼から酸素燃焼への移行時に全閉から設定開度に向け段階的に開度制御される第二切替ダンパと、
前記排ガス再循環ラインの分岐点より下流側における排ガスラインに設けられ、空気燃焼から酸素燃焼への移行時に全開から設定開度に開度制御される第三切替ダンパと
を備え、
前記第一切替ダンパを空気燃焼から酸素燃焼への移行時に全開から全閉に開度制御する間、前記排ガス再循環ラインの合流接続点の圧力を負圧に保持するよう構成したことを特徴とする酸素燃焼ボイラシステムにかかるものである。
The present invention introduces air from a combustion gas supply line to a boiler body at the time of startup to perform air combustion of fuel, and after completion of startup, the boiler is introduced while introducing oxygen from the combustion gas supply line to the boiler body. In an oxyfuel boiler system that recycles part of the flue gas discharged from the main body and oxyfuels the fuel,
Exhaust gas recirculation means for guiding a part of the combustion exhaust gas from the exhaust gas line on the discharge side of the induction fan to the combustion gas supply line ;
The exhaust gas recirculation means includes
An exhaust gas recirculation line branched from the exhaust gas line on the discharge side of the induction fan and joined to the combustion gas supply line on the suction side of the forced air fan;
Provided in the combustion gas supply line upstream from the confluence connection point of the exhaust gas recirculation line and downstream from the air suction port, and the opening degree is controlled from fully open to fully closed when shifting from air combustion to oxyfuel combustion. A first switching damper;
A second switching damper that is provided in the exhaust gas recirculation line, and whose opening degree is controlled stepwise from fully closed to a set opening degree when shifting from air combustion to oxyfuel combustion;
A third switching damper which is provided in the exhaust gas line downstream from the branch point of the exhaust gas recirculation line and whose opening degree is controlled from fully open to a set opening degree when shifting from air combustion to oxyfuel combustion;
With
The first switching damper is configured to hold the pressure at the junction point of the exhaust gas recirculation line at a negative pressure while controlling the opening degree from fully open to fully closed at the time of transition from air combustion to oxyfuel combustion. It relates to an oxyfuel boiler system.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

前述の如く構成すると、空気燃焼から酸素燃焼への移行時に、排ガス再循環手段により、再循環させるべき燃焼排ガスが空気吸込口へ逆流しないようにすることは可能であると共に、排ガス再循環手段により燃焼排ガスの一部は誘引通風機の吐出側における排ガスラインから燃焼用気体供給ラインへ導かれるため、空気燃焼から酸素燃焼に移行した場合、誘引通風機を流れる燃焼排ガスの流量が空気燃焼時と比較して大幅に低下することはなく、空気燃焼時と酸素燃焼時とで誘引通風機には同量の燃焼排ガスが流通することから、該誘引通風機のターンダウンが困難となる心配はなく、インバータ制御やファン特性の見直しを行う必要もない。   When configured as described above, it is possible to prevent the combustion exhaust gas to be recirculated from flowing back to the air intake port by the exhaust gas recirculation means at the time of transition from air combustion to oxyfuel combustion. Part of the combustion exhaust gas is led from the exhaust gas line on the discharge side of the induction fan to the combustion gas supply line, so when shifting from air combustion to oxyfuel combustion, the flow rate of the combustion exhaust gas flowing through the induction fan is different from that during air combustion. There is no significant drop in comparison, and the same amount of combustion exhaust gas flows through the induction fan during air combustion and oxyfuel combustion, so there is no concern that it will be difficult to turn down the induction fan. In addition, it is not necessary to review inverter control and fan characteristics.

又、本発明は、起動時には、ボイラ本体に燃焼用気体供給ラインから空気を導入して燃料の空気燃焼を行い、起動完了後には、前記ボイラ本体に前記燃焼用気体供給ラインから酸素を導入しつつボイラ本体から排出される燃焼排ガスの一部を再循環させて燃料の酸素燃焼を行う酸素燃焼ボイラシステムにおいて、
前記燃焼排ガスの一部を誘引通風機の吐出側における排ガスラインから前記燃焼用気体供給ラインへ導く排ガス再循環手段を備え、
前記排ガス再循環手段は、
前記誘引通風機の吐出側における排ガスラインから分岐して、押込通風機の吐出側における前記燃焼用気体供給ラインに合流接続される排ガス再循環ラインと、
該排ガス再循環ラインの合流接続点より上流側で且つ前記押込通風機の吐出側における前記燃焼用気体供給ラインに設けられ、空気燃焼から酸素燃焼への移行時に全開から全閉に開度制御される第一切替ダンパと、
前記押込通風機の吸込側における燃焼用気体供給ラインに設けられ、空気燃焼から酸素燃焼への移行時に設定開度から全閉に開度制御される第一流量調整ダンパと、
前記排ガス再循環ラインに設けられ、空気燃焼から酸素燃焼への移行時に全閉から設定開度に開度制御される第二切替ダンパと、
前記排ガス再循環ラインの分岐点より下流側における排ガスラインに設けられ、空気燃焼から酸素燃焼への移行時に全開から設定開度に開度制御される第三切替ダンパと
を備え、
前記第一流量調整ダンパを空気燃焼から酸素燃焼への移行時に設定開度から全閉に開度制御完了した後に、前記第一切替ダンパを全開から全閉に開度制御するよう構成したことを特徴とする酸素燃焼ボイラシステムにかかるものである
In addition, the present invention introduces air from the combustion gas supply line to the boiler body at the time of startup to perform air combustion of the fuel, and after completion of startup, introduces oxygen from the combustion gas supply line to the boiler body. In an oxyfuel boiler system that recirculates part of the combustion exhaust gas discharged from the boiler body and performs oxyfuel combustion of the fuel,
Exhaust gas recirculation means for guiding a part of the combustion exhaust gas from the exhaust gas line on the discharge side of the induction fan to the combustion gas supply line;
The exhaust gas recirculation means includes
An exhaust gas recirculation line branched from the exhaust gas line on the discharge side of the induction fan and joined to the combustion gas supply line on the discharge side of the forced air fan;
Provided in the combustion gas supply line upstream from the confluence connection point of the exhaust gas recirculation line and on the discharge side of the forced air blower, the opening degree is controlled from fully open to fully closed at the time of transition from air combustion to oxyfuel combustion. A first switching damper
A first flow rate adjustment damper that is provided in a combustion gas supply line on the suction side of the forced air blower, and that is controlled to be fully closed from a set opening degree at the time of transition from air combustion to oxyfuel combustion;
A second switching damper provided in the exhaust gas recirculation line, the opening of which is controlled from fully closed to a set opening degree when shifting from air combustion to oxyfuel combustion;
A third switching damper which is provided in the exhaust gas line downstream from the branch point of the exhaust gas recirculation line and whose opening degree is controlled from the fully open to the set opening degree when shifting from air combustion to oxyfuel combustion,
The first flow rate control damper after opening control completed fully closed from set opening when moving to oxyfuel combustion from the air combustion, by being configured to opening control to fully closed the first switching damper from the fully opened The characteristic oxyfuel boiler system .

更に又、本発明は、起動時には、ボイラ本体に燃焼用気体供給ラインから空気を導入して燃料の空気燃焼を行い、起動完了後には、前記ボイラ本体に前記燃焼用気体供給ラインから酸素を導入しつつボイラ本体から排出される燃焼排ガスの一部を再循環させて燃料の酸素燃焼を行う酸素燃焼ボイラシステムにおいて、
前記燃焼排ガスの一部を誘引通風機の吐出側における排ガスラインから前記燃焼用気体供給ラインへ導く排ガス再循環手段を備え、
前記排ガス再循環手段は、
前記誘引通風機の吐出側における排ガスラインから分岐して、押込通風機の吐出側における前記燃焼用気体供給ラインに合流接続される排ガス再循環ラインと、
該排ガス再循環ラインの合流接続点より上流側で且つ前記押込通風機の吐出側における前記燃焼用気体供給ラインに設けられ、空気燃焼から酸素燃焼への移行時に全開から全閉に開度制御される第一切替ダンパと、
前記押込通風機の吸込側における燃焼用気体供給ラインに設けられ、空気燃焼から酸素燃焼への移行時に設定開度から全閉に開度制御される第一流量調整ダンパと、
前記排ガス再循環ラインに設けられ、空気燃焼から酸素燃焼への移行時に停止状態から設定流量吐出状態に駆動制御される排ガス再循環ファンと、
該排ガス再循環ファンの吐出側における前記排ガス再循環ラインに設けられ、空気燃焼から酸素燃焼への移行時に全閉から設定開度に開度制御される第二切替ダンパと、
前記排ガス再循環ファンの吸込側における排ガス再循環ラインに設けられ、空気燃焼から酸素燃焼への移行時に全閉から設定開度に開度制御される第二流量調整ダンパ
前記排ガス再循環ラインの分岐点より下流側における排ガスラインに設けられ、空気燃焼から酸素燃焼への移行時に全開から設定開度に開度制御される第三切替ダンパと
を備え、
前記第一流量調整ダンパを空気燃焼から酸素燃焼への移行時に設定開度から全閉に開度制御完了した後に、前記第一切替ダンパを全開から全閉に開度制御するよう構成したことを特徴とする酸素燃焼ボイラシステムにかかるものである
Furthermore, the present invention introduces air from the combustion gas supply line to the boiler body at the time of startup to perform fuel air combustion, and introduces oxygen from the combustion gas supply line to the boiler body after the startup is completed. In an oxyfuel boiler system that performs oxygen combustion of fuel by recirculating part of the combustion exhaust gas discharged from the boiler body,
Exhaust gas recirculation means for guiding a part of the combustion exhaust gas from the exhaust gas line on the discharge side of the induction fan to the combustion gas supply line;
The exhaust gas recirculation means includes
An exhaust gas recirculation line branched from the exhaust gas line on the discharge side of the induction fan and joined to the combustion gas supply line on the discharge side of the forced air fan;
Provided in the combustion gas supply line upstream from the confluence connection point of the exhaust gas recirculation line and on the discharge side of the forced air blower, the opening degree is controlled from fully open to fully closed at the time of transition from air combustion to oxyfuel combustion. A first switching damper
A first flow rate adjustment damper that is provided in a combustion gas supply line on the suction side of the forced air blower, and that is controlled to be fully closed from a set opening degree at the time of transition from air combustion to oxyfuel combustion;
An exhaust gas recirculation fan provided in the exhaust gas recirculation line and driven and controlled from a stopped state to a set flow rate discharge state at the time of transition from air combustion to oxyfuel combustion;
A second switching damper which is provided in the exhaust gas recirculation line on the discharge side of the exhaust gas recirculation fan and whose opening degree is controlled from a fully closed state to a set opening degree at the time of transition from air combustion to oxyfuel combustion;
A second flow rate adjustment damper that is provided in the exhaust gas recirculation line on the suction side of the exhaust gas recirculation fan and is controlled to open from a fully closed position to a set opening degree when shifting from air combustion to oxyfuel combustion. Branch of the exhaust gas recirculation line A third switching damper that is provided in the exhaust gas line downstream from the point and that is controlled to open from a fully open position to a set opening degree when shifting from air combustion to oxyfuel combustion,
The first flow rate control damper after opening control completed fully closed from set opening when moving to oxyfuel combustion from the air combustion, by being configured to opening control to fully closed the first switching damper from the fully opened The characteristic oxyfuel boiler system .

本発明の酸素燃焼ボイラシステムによれば、空気燃焼から酸素燃焼への移行時に燃焼排ガスを空気吸込口へ逆流させることなく確実に再循環させることができ、且つ誘引通風機のターンダウンの問題を回避し得るという優れた効果を奏し得る。   According to the oxyfuel boiler system of the present invention, it is possible to reliably recirculate the combustion exhaust gas without flowing back to the air suction port when shifting from air combustion to oxyfuel combustion, and to solve the problem of turndown of the induction fan. An excellent effect that it can be avoided can be achieved.

本発明の酸素燃焼ボイラシステムの第一実施例を示す全体概要構成図である。1 is an overall schematic configuration diagram showing a first embodiment of an oxyfuel boiler system of the present invention. 本発明の酸素燃焼ボイラシステムの第一実施例における各ダンパ開度並びに合流接続点圧力を示す線図である。It is a diagram which shows each damper opening degree and merging connection point pressure in the 1st Example of the oxyfuel boiler system of this invention. 本発明の酸素燃焼ボイラシステムの第二実施例を示す全体概要構成図である。It is a whole schematic block diagram which shows the 2nd Example of the oxyfuel boiler system of this invention. 本発明の酸素燃焼ボイラシステムの第二実施例における各ダンパ開度を示す線図である。It is a diagram which shows each damper opening degree in the 2nd Example of the oxyfuel boiler system of this invention. 本発明の酸素燃焼ボイラシステムの第三実施例を示す全体概要構成図である。It is a whole schematic block diagram which shows the 3rd Example of the oxyfuel boiler system of this invention. 本発明の酸素燃焼ボイラシステムの第三実施例における各ダンパ開度並びに排ガス再循環ファン流量を示す線図である。It is a diagram which shows each damper opening degree and exhaust gas recirculation fan flow volume in the 3rd Example of the oxyfuel boiler system of this invention. 従来の酸素燃焼ボイラシステムの一例を示す全体概要構成図である。It is a whole schematic block diagram which shows an example of the conventional oxyfuel boiler system. 従来の酸素燃焼ボイラシステムの一例における各ダンパ開度を示す線図である。It is a diagram which shows each damper opening degree in an example of the conventional oxyfuel boiler system.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1及び図2は本発明の酸素燃焼ボイラシステムの第一実施例であって、図中、図7及び図8と同一の符号を付した部分は同一物を表わしており、基本的な構成は図7及び図8に示す従来のものと同様であるが、本第一実施例の特徴とするところは、図1及び図2に示す如く、燃焼排ガスの一部を誘引通風機7の吐出側における排ガスライン5から燃焼用気体供給ライン2へ導く排ガス再循環手段9を備えた点にある。   1 and 2 show a first embodiment of an oxyfuel boiler system according to the present invention. In the figure, the same reference numerals as those in FIGS. Is the same as the conventional one shown in FIGS. 7 and 8, but the feature of the first embodiment is that a part of the combustion exhaust gas is discharged from the induction fan 7 as shown in FIGS. The exhaust gas recirculation means 9 that leads from the exhaust gas line 5 to the combustion gas supply line 2 on the side is provided.

本第一実施例の場合、前記排ガス再循環手段9は、前記誘引通風機7の吐出側における排ガスライン5から排ガス再循環ライン8を分岐させて押込通風機4の吸込側における前記燃焼用気体供給ライン2に合流接続させ、該排ガス再循環ライン8の合流接続点より上流側で且つ空気吸込口3より下流側における前記燃焼用気体供給ライン2に、空気燃焼から酸素燃焼への移行時に図2に示すt1からt2の間で全開から全閉に開度制御される第一切替ダンパD1を設け、前記排ガス再循環ライン8に、空気燃焼から酸素燃焼への移行時に図2に示すt1からt2の間で全閉から設定開度xに向け段階的に開度制御される第二切替ダンパD2を設け、前記排ガス再循環ライン8の分岐点より下流側における排ガスライン5に、空気燃焼から酸素燃焼への移行時に図2に示すt1からt2の間で全開から設定開度yに開度制御される第三切替ダンパD3を設け、前記第一切替ダンパD1を空気燃焼から酸素燃焼への移行時に図2に示すt1からt2の間で全開から全閉に開度制御する間、前記排ガス再循環ライン8の燃焼用気体供給ライン2に対する合流接続点の圧力を負圧に保持するよう構成してある。 In the case of the first embodiment, the exhaust gas recirculation means 9 branches the exhaust gas recirculation line 8 from the exhaust gas line 5 on the discharge side of the induction fan 7 and the combustion gas on the suction side of the forced air fan 4. When the transition from air combustion to oxyfuel combustion is made, the combustion gas supply line 2 is joined and connected to the supply line 2 and is upstream of the joining point of the exhaust gas recirculation line 8 and downstream of the air suction port 3. The first switching damper D1 whose opening degree is controlled from fully open to fully closed between t 1 and t 2 shown in FIG. 2 is provided, and the exhaust gas recirculation line 8 is shown in FIG. 2 when shifting from air combustion to oxyfuel combustion. the second switching damper D2 which is stepwise opening control towards the set opening x from the fully closed provided at between t 1 of t 2, the exhaust gas line 5 on the downstream side of the branching point of the exhaust gas recirculation line 8 Oxyfuel from air combustion A third switching damper D3 is opening control from full open between t 2 from t 1 shown in FIG. 2 when moving the set opening y to provided, of the first switching damper D1 to oxyfuel combustion from the air combustion During the transition, the pressure at the merging connection point with respect to the combustion gas supply line 2 of the exhaust gas recirculation line 8 is maintained at a negative pressure while the opening degree is controlled from fully open to fully closed between t 1 and t 2 shown in FIG. It is configured as follows.

次に、上記第一実施例の作用を説明する。   Next, the operation of the first embodiment will be described.

前述の如く構成すると、空気燃焼から酸素燃焼への移行時には、図2に示すt1からt2の間で、排ガス再循環手段9の第一切替ダンパD1が全開から全閉に開度制御され、第二切替ダンパD2が全閉から設定開度xに向け段階的に開度制御され、第三切替ダンパD3が全開から設定開度yに開度制御され、これにより、ボイラ本体1に燃焼用気体供給ライン2から酸素が導入されつつ該ボイラ本体1から排出される燃焼排ガスの一部が排ガス再循環ライン8を介し燃焼用気体供給ライン2へ再循環されて燃料の酸素燃焼が行われるが、前記第一切替ダンパD1が全開から全閉に開度制御される間、前記排ガス再循環ライン8の燃焼用気体供給ライン2に対する合流接続点の圧力は、図2に示す如く、前記第二切替ダンパD2の全閉から設定開度xに向けての段階的な開度制御によって、ジグザク状に変動するものの負圧に保持される形となり、前記排ガス再循環手段9により、再循環させるべき燃焼排ガスが空気吸込口3へ逆流しないようにすることが可能となる。 When configured as described above, during the transition from the air-fuel combustion to the oxyfuel combustion, at between t 1 shown in FIG. 2 t 2, the first switching damper D1 of the exhaust gas recirculating means 9 is opening control fully closed from the fully opened The opening degree of the second switching damper D2 is gradually controlled from the fully closed position toward the set opening degree x, and the opening degree of the third switching damper D3 is controlled from the fully open position to the set opening degree y. A part of the combustion exhaust gas discharged from the boiler body 1 while oxygen is introduced from the combustion gas supply line 2 is recirculated to the combustion gas supply line 2 via the exhaust gas recirculation line 8 to perform oxygen combustion of the fuel. However, while the opening degree of the first switching damper D1 is controlled from fully open to fully closed, the pressure at the junction point of the exhaust gas recirculation line 8 with respect to the combustion gas supply line 2 is as shown in FIG. Open from the fully closed position of the two-switching damper D2. By the stepwise opening degree control toward the degree x, it becomes a shape that is fluctuated in a zigzag shape but kept at a negative pressure, and the exhaust gas recirculation means 9 causes the combustion exhaust gas to be recirculated to flow back to the air inlet 3 It becomes possible not to do.

しかも、前記排ガス再循環手段9の排ガス再循環ライン8は、前記誘引通風機7の吐出側における排ガスライン5から分岐させて押込通風機4の吸込側における前記燃焼用気体供給ライン2に合流接続させてあり、燃焼排ガスの一部は誘引通風機7の吐出側における排ガスライン5から燃焼用気体供給ライン2へ導かれるため、空気燃焼から酸素燃焼に移行した場合、誘引通風機7を流れる燃焼排ガスの流量が空気燃焼時と比較して大幅に低下することはなく、空気燃焼時と酸素燃焼時とで誘引通風機7には同量の燃焼排ガスが流通することから、該誘引通風機7のターンダウンが困難となる心配はなく、インバータ制御やファン特性の見直しを行う必要もない。   Moreover, the exhaust gas recirculation line 8 of the exhaust gas recirculation means 9 is branched from the exhaust gas line 5 on the discharge side of the induction fan 7 and joined to the combustion gas supply line 2 on the suction side of the forced air fan 4. Since a part of the combustion exhaust gas is led from the exhaust gas line 5 on the discharge side of the induction fan 7 to the combustion gas supply line 2, the combustion flowing through the induction fan 7 when shifting from air combustion to oxyfuel combustion The flow rate of the exhaust gas is not significantly reduced as compared with air combustion, and the same amount of combustion exhaust gas flows through the induction fan 7 during air combustion and during oxygen combustion. There is no worry that it will be difficult to turn down the inverter, and it is not necessary to review the inverter control and fan characteristics.

こうして、空気燃焼から酸素燃焼への移行時に燃焼排ガスを空気吸込口3へ逆流させることなく確実に再循環させることができ、且つ誘引通風機7のターンダウンの問題を回避し得る。   In this way, it is possible to reliably recirculate the combustion exhaust gas without flowing back to the air suction port 3 during the transition from air combustion to oxyfuel combustion, and avoid the problem of turndown of the induction fan 7.

図3及び図4は本発明の酸素燃焼ボイラシステムの第二実施例であって、図中、図1及び図2と同一の符号を付した部分は同一物を表わしており、基本的な構成は図1及び図2に示す第一実施例と同様であるが、本第二実施例の特徴とするところは、図3及び図4に示す如く、前記誘引通風機7の吐出側における排ガスライン5から分岐させた排ガス再循環ライン8を押込通風機4の吐出側における燃焼用気体供給ライン2に合流接続させ、該排ガス再循環ライン8の合流接続点より上流側で且つ前記押込通風機4の吐出側における前記燃焼用気体供給ライン2に、第一切替ダンパD1を設け、前記押込通風機4の吸込側における燃焼用気体供給ライン2に、空気燃焼から酸素燃焼への移行時に図4に示すt1からt2の間で設定開度x´から全閉に開度制御される第一流量調整ダンパc1を設け、前記排ガス再循環ライン8に、空気燃焼から酸素燃焼への移行時に図4に示すt1からt2の間で全閉から設定開度xに開度制御される第二切替ダンパD2を設け、前記排ガス再循環ライン8の分岐点より下流側における排ガスライン5に、空気燃焼から酸素燃焼への移行時に図4に示すt1からt2の間で全開から設定開度yに開度制御される第三切替ダンパD3を設けることにより、前記排ガス再循環手段9を構成し、前記第一流量調整ダンパc1を空気燃焼から酸素燃焼への移行時に図4に示すt1からt2の間で設定開度x´から全閉に開度制御完了した後に、前記第一切替ダンパD1を全開から全閉に開度制御するよう構成した点にある。 3 and 4 show a second embodiment of the oxyfuel boiler system according to the present invention. In the figure, the same reference numerals as those in FIGS. Is the same as that of the first embodiment shown in FIGS. 1 and 2, but the second embodiment is characterized by an exhaust gas line on the discharge side of the induction fan 7 as shown in FIGS. The exhaust gas recirculation line 8 branched from 5 is joined and connected to the combustion gas supply line 2 on the discharge side of the forced draft fan 4, and upstream of the merged connection point of the exhaust gas recirculation line 8 and the forced ventilator 4. The first switching damper D1 is provided in the combustion gas supply line 2 on the discharge side, and the combustion gas supply line 2 on the suction side of the forced air blower 4 is changed to the combustion gas supply line 2 in FIG. from set opening x'at between t 1 shown in t 2 A first flow rate control damper c1 which is opening control in the closed provided on the exhaust gas recirculation line 8, between the t 1 shown in FIG. 4 at the transition from air combustion to oxyfuel combustion of t 2 open setting from the fully closed A second switching damper D2 whose degree of opening is controlled to a degree x is provided, and the exhaust gas line 5 downstream from the branch point of the exhaust gas recirculation line 8 is connected to the exhaust gas line 5 from t 1 shown in FIG. by providing the third switching damper D3 is opening control to set opening y from the fully open between t 2, constitute the exhaust gas recirculating means 9, oxyfuel said first flow rate control damper c1 from air combustion after opening control completed fully closed from set opening x'between t 2 from t 1 shown in FIG. 4 when moving to, configured to opening control fully closed from the fully open said first switching damper D1 It is in the point.

次に、上記第二実施例の作用を説明する。   Next, the operation of the second embodiment will be described.

前述の如く構成すると、空気燃焼から酸素燃焼への移行時には、図4に示すt1からt2の間で、排ガス再循環手段9の第一切替ダンパD1が全開のまま、第一流量調整ダンパc1が設定開度x´から全閉に開度制御され、第二切替ダンパD2が全閉から設定開度xに開度制御され、第三切替ダンパD3が全開から設定開度yに開度制御され、これにより、ボイラ本体1に燃焼用気体供給ライン2から酸素が導入されつつ該ボイラ本体1から排出される燃焼排ガスの一部が排ガス再循環ライン8を介し燃焼用気体供給ライン2へ再循環されて燃料の酸素燃焼が行われるが、前記誘引通風機7の吐出側における排ガスライン5から分岐させた排ガス再循環ライン8を押込通風機4の吐出側における燃焼用気体供給ライン2に合流接続させているため、前記排ガス再循環手段9により、再循環させるべき燃焼排ガスが空気吸込口3へ逆流しないようにすることが可能となる。 When configured as described above, during the transition from air combustion to oxyfuel combustion, the first flow rate adjustment damper is maintained with the first switching damper D1 of the exhaust gas recirculation means 9 fully opened between t 1 and t 2 shown in FIG. c1 is opened from the set opening x 'to fully closed, the second switching damper D2 is controlled from fully closed to the set opening x, and the third switching damper D3 is opened from the fully opened to the set opening y. Thus, a part of the combustion exhaust gas discharged from the boiler body 1 while oxygen is introduced into the boiler body 1 from the combustion gas supply line 2 is transferred to the combustion gas supply line 2 via the exhaust gas recirculation line 8. Oxygen combustion of the fuel is performed by recirculation, but the exhaust gas recirculation line 8 branched from the exhaust gas line 5 on the discharge side of the induction fan 7 is replaced with a combustion gas supply line 2 on the discharge side of the forced air fan 4. For connecting together , By the exhaust gas recirculating means 9, the combustion exhaust gas to be recirculated it becomes possible to prevent backflow to the air inlet 3.

しかも、前記排ガス再循環手段9の排ガス再循環ライン8は、前記誘引通風機7の吐出側における排ガスライン5から分岐させて押込通風機4の吐出側における燃焼用気体供給ライン2に合流接続させてあり、燃焼排ガスの一部は誘引通風機7の吐出側における排ガスライン5から燃焼用気体供給ライン2へ導かれるため、空気燃焼から酸素燃焼に移行した場合、誘引通風機7を流れる燃焼排ガスの流量が空気燃焼時と比較して大幅に低下することはなく、空気燃焼時と酸素燃焼時とで誘引通風機7には同量の燃焼排ガスが流通することから、該誘引通風機7のターンダウンが困難となる心配はなく、インバータ制御やファン特性の見直しを行う必要もない。   Moreover, the exhaust gas recirculation line 8 of the exhaust gas recirculation means 9 is branched from the exhaust gas line 5 on the discharge side of the induction fan 7 and joined to the combustion gas supply line 2 on the discharge side of the forced air fan 4. Since a part of the combustion exhaust gas is led from the exhaust gas line 5 on the discharge side of the induction fan 7 to the combustion gas supply line 2, the combustion exhaust gas flowing through the induction fan 7 when moving from air combustion to oxyfuel combustion The flow rate is not significantly reduced compared with air combustion, and the same amount of combustion exhaust gas flows through the induction fan 7 during air combustion and during oxyfuel combustion. There is no worry that turning down will be difficult, and there is no need to perform inverter control or review of fan characteristics.

又、前記第一流量調整ダンパc1が設定開度x´から全閉に開度制御完了し、空気流量が絞られた後に、図4のt2の時点より前記第一切替ダンパD1が全開から全閉に開度制御されることから、該第一切替ダンパD1への物理的衝撃を小さくすることが可能となる。 Further, the first flow rate control damper c1 is opening control completed fully closed from set opening x', after the air flow is throttled, the first switching damper D1 from the time of t 2 of FIG. 4 from the fully opened Since the opening degree is controlled to be fully closed, the physical impact on the first switching damper D1 can be reduced.

こうして、図3及び図4に示す第二実施例においても、図1及び図2に示す第一実施例と同様、空気燃焼から酸素燃焼への移行時に燃焼排ガスを空気吸込口3へ逆流させることなく確実に再循環させることができ、且つ誘引通風機7のターンダウンの問題を回避し得る。   Thus, in the second embodiment shown in FIGS. 3 and 4 as well, as in the first embodiment shown in FIGS. 1 and 2, the combustion exhaust gas is caused to flow backward to the air intake port 3 during the transition from air combustion to oxyfuel combustion. Can be reliably recirculated, and the problem of turndown of the induction fan 7 can be avoided.

図5及び図6は本発明の酸素燃焼ボイラシステムの第三実施例であって、図中、図3及び図4と同一の符号を付した部分は同一物を表わしており、基本的な構成は図3及び図4に示す第二実施例と同様であるが、本第三実施例の特徴とするところは、図5及び図6に示す如く、前記排ガス再循環ライン8に、空気燃焼から酸素燃焼への移行時に図6に示すt1からt1´の間で全閉から設定開度xに開度制御される第二切替ダンパD2を設け、該第二切替ダンパD2より上流側における前記排ガス再循環ライン8に、空気燃焼から酸素燃焼への移行時に図6に示すt1´からt2の間で停止状態から設定流量z吐出状態に駆動制御される排ガス再循環ファン10を設け、該排ガス再循環ファン10の吸込側における排ガス再循環ライン8に、空気燃焼から酸素燃焼への移行時に図6に示すt1´からt2の間で全閉から設定開度xに開度制御される第二流量調整ダンパc2を設け、前記第一流量調整ダンパc1を空気燃焼から酸素燃焼への移行時に図6に示すt1´からt2の間で設定開度x´から全閉に開度制御完了した後に、前記第一切替ダンパD1を全開から全閉に開度制御するよう構成した点にある。 FIGS. 5 and 6 show a third embodiment of the oxyfuel boiler system of the present invention. In the figure, the same reference numerals as those in FIGS. 3 and 4 is the same as that of the second embodiment shown in FIGS. 3 and 4, but the feature of the third embodiment is that, as shown in FIGS. A second switching damper D2 whose opening is controlled from fully closed to a set opening x between t 1 and t 1 ′ shown in FIG. 6 at the time of transition to oxyfuel combustion is provided upstream of the second switching damper D2. The exhaust gas recirculation line 8 is provided with an exhaust gas recirculation fan 10 that is driven and controlled from a stop state to a set flow rate z discharge state between t 1 ′ and t 2 shown in FIG. 6 when shifting from air combustion to oxyfuel combustion. In the exhaust gas recirculation line 8 on the suction side of the exhaust gas recirculation fan 10, The second flow rate control damper c2 are opening control from the fully closed to the set opening x between t 2 from t 1 'shown in FIG. 6 when moving to the oxyfuel combustion from the combustion is provided, the first flow rate control damper c1 After the opening control is completed from the set opening x ′ to the fully closed state between t 1 ′ and t 2 shown in FIG. 6 during the transition from air combustion to oxyfuel combustion, the first switching damper D1 is fully opened to fully closed. It is in the point comprised so that opening degree control might be carried out.

本第三実施例の場合、前記排ガス再循環ライン8の分岐点より下流側における排ガスライン5に設けられる第三切替ダンパD3は、空気燃焼から酸素燃焼への移行時に図6に示すt1´からt2の間で全開から設定開度yに開度制御するようにしてある。 In the case of the third embodiment, the third switching damper D3 provided in the exhaust gas line 5 on the downstream side of the branch point of the exhaust gas recirculation line 8 is t 1 ′ shown in FIG. 6 when shifting from air combustion to oxyfuel combustion. To t 2 , the opening degree is controlled from the fully open to the set opening degree y.

尚、前記第二切替ダンパD2は、空気燃焼から酸素燃焼への移行時に図6の仮想線で示す如くt1´から開き始めるようにすることも可能である。 The second switching damper D2 can start to open from t 1 ′ as shown by the phantom line in FIG. 6 when shifting from air combustion to oxyfuel combustion.

次に、上記第三実施例の作用を説明する。   Next, the operation of the third embodiment will be described.

前述の如く構成すると、空気燃焼から酸素燃焼への移行時には、図6に示すt1からt2の間で、排ガス再循環手段9の第一切替ダンパD1が全開のまま、先ず、第二切替ダンパD2が図6に示すt1からt1´の間で全閉から設定開度xに開度制御され、続いて、図6に示すt1´からt2の間で、第一流量調整ダンパc1が設定開度x´から全閉に開度制御され、第二流量調整ダンパc2が全閉から設定開度xに開度制御され、排ガス再循環ファン10が停止状態から設定流量z吐出状態に駆動制御され、第三切替ダンパD3が全開から設定開度yに開度制御され、これにより、ボイラ本体1に燃焼用気体供給ライン2から酸素が導入されつつ該ボイラ本体1から排出される燃焼排ガスの一部が排ガス再循環ライン8を介し排ガス再循環ファン10の駆動により燃焼用気体供給ライン2へ再循環されて燃料の酸素燃焼が行われるが、前記誘引通風機7の吐出側における排ガスライン5から分岐させた排ガス再循環ライン8を押込通風機4の吐出側における燃焼用気体供給ライン2に合流接続させているため、前記排ガス再循環手段9により、再循環させるべき燃焼排ガスが空気吸込口3へ逆流しないようにすることが可能となる。 With the configuration as described above, at the time of transition from air combustion to oxyfuel combustion, the first switching damper D1 of the exhaust gas recirculation means 9 is fully opened between t 1 and t 2 shown in FIG. The opening of the damper D2 is controlled from fully closed to the set opening x between t 1 and t 1 ′ shown in FIG. 6, and then the first flow rate adjustment between t 1 ′ and t 2 shown in FIG. 6. The damper c1 is fully controlled from the set opening x ′ to the fully closed position, the second flow rate adjusting damper c2 is controlled from fully closed to the set opening x, and the exhaust gas recirculation fan 10 is discharged from the stopped state to the set flow rate z. The third switching damper D3 is controlled to the set opening degree y from the fully open state, so that oxygen is introduced into the boiler body 1 from the combustion gas supply line 2 and discharged from the boiler body 1. A part of the combustion exhaust gas is discharged through the exhaust gas recirculation line 8. 10 is recirculated to the combustion gas supply line 2 by the drive of the fuel 10, and the oxyfuel combustion of the fuel is carried out. Therefore, the exhaust gas recirculation means 9 can prevent the combustion exhaust gas to be recirculated from flowing back to the air suction port 3 because the exhaust gas recirculation means 9 is connected to the combustion gas supply line 2 on the discharge side.

しかも、前記排ガス再循環手段9の排ガス再循環ライン8は、図3及び図4に示す第二実施例と同様、前記誘引通風機7の吐出側における排ガスライン5から分岐させて押込通風機4の吐出側における燃焼用気体供給ライン2に合流接続させてあり、燃焼排ガスの一部は誘引通風機7の吐出側における排ガスライン5から燃焼用気体供給ライン2へ導かれるため、空気燃焼から酸素燃焼に移行した場合、誘引通風機7を流れる燃焼排ガスの流量が空気燃焼時と比較して大幅に低下することはなく、空気燃焼時と酸素燃焼時とで誘引通風機7には同量の燃焼排ガスが流通することから、該誘引通風機7のターンダウンが困難となる心配はなく、インバータ制御やファン特性の見直しを行う必要もない。   Moreover, the exhaust gas recirculation line 8 of the exhaust gas recirculation means 9 is branched from the exhaust gas line 5 on the discharge side of the induction fan 7 in the same manner as in the second embodiment shown in FIGS. Since a part of the combustion exhaust gas is led from the exhaust gas line 5 on the discharge side of the induction fan 7 to the combustion gas supply line 2, the combustion exhaust gas is oxygenated In the case of shifting to combustion, the flow rate of the flue gas flowing through the induction fan 7 is not significantly reduced as compared with air combustion, and the induction fan 7 has the same amount during air combustion and oxyfuel combustion. Since combustion exhaust gas circulates, there is no concern that it will be difficult to turn down the induction fan 7, and it is not necessary to perform inverter control or review of fan characteristics.

又、前記第一流量調整ダンパc1が設定開度x´から全閉に開度制御完了し、空気流量が絞られた後に、図6のt2の時点より前記第一切替ダンパD1が全開から全閉に開度制御されることから、該第一切替ダンパD1への物理的衝撃を小さくすることが可能となる。 Further, the first flow rate control damper c1 is opening control completed fully closed from set opening x', after the air flow is throttled, the first switching damper D1 from the time of t 2 in FIG. 6 from the fully opened Since the opening degree is controlled to be fully closed, the physical impact on the first switching damper D1 can be reduced.

こうして、図5及び図6に示す第三実施例においても、図3及び図4に示す第二実施例と同様、空気燃焼から酸素燃焼への移行時に燃焼排ガスを空気吸込口3へ逆流させることなく確実に再循環させることができ、且つ誘引通風機7のターンダウンの問題を回避し得る。   Thus, in the third embodiment shown in FIGS. 5 and 6 as well, as in the second embodiment shown in FIGS. 3 and 4, the combustion exhaust gas is caused to flow backward to the air intake port 3 during the transition from air combustion to oxyfuel combustion. Can be reliably recirculated, and the problem of turndown of the induction fan 7 can be avoided.

尚、本発明の酸素燃焼ボイラシステムは、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the oxyfuel boiler system of the present invention is not limited to the above-described embodiments, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

1 ボイラ本体
2 燃焼用気体供給ライン
3 空気吸込口
4 押込通風機
5 排ガスライン
7 誘引通風機
8 排ガス再循環ライン
9 排ガス再循環手段
10 排ガス再循環ファン
D1 第一切替ダンパ
D2 第二切替ダンパ
D3 第三切替ダンパ
c1 第一流量調整ダンパ
c2 第二流量調整ダンパ
x 設定開度
x´ 設定開度
y 設定開度
z 設定流量
DESCRIPTION OF SYMBOLS 1 Boiler body 2 Combustion gas supply line 3 Air inlet 4 Push-in ventilator 5 Exhaust gas line 7 Induction fan 8 Exhaust gas recirculation line 9 Exhaust gas recirculation means 10 Exhaust gas recirculation fan D1 First switching damper D2 Second switching damper D3 3rd switching damper c1 1st flow adjustment damper c2 2nd flow adjustment damper x setting opening x 'setting opening y setting opening z setting flow

Claims (3)

起動時には、ボイラ本体に燃焼用気体供給ラインから空気を導入して燃料の空気燃焼を行い、起動完了後には、前記ボイラ本体に前記燃焼用気体供給ラインから酸素を導入しつつボイラ本体から排出される燃焼排ガスの一部を再循環させて燃料の酸素燃焼を行う酸素燃焼ボイラシステムにおいて、
前記燃焼排ガスの一部を誘引通風機の吐出側における排ガスラインから前記燃焼用気体供給ラインへ導く排ガス再循環手段を備え
前記排ガス再循環手段は、
前記誘引通風機の吐出側における排ガスラインから分岐して、押込通風機の吸込側における前記燃焼用気体供給ラインに合流接続される排ガス再循環ラインと、
該排ガス再循環ラインの合流接続点より上流側で且つ空気吸込口より下流側における前記燃焼用気体供給ラインに設けられ、空気燃焼から酸素燃焼への移行時に全開から全閉に開度制御される第一切替ダンパと、
前記排ガス再循環ラインに設けられ、空気燃焼から酸素燃焼への移行時に全閉から設定開度に向け段階的に開度制御される第二切替ダンパと、
前記排ガス再循環ラインの分岐点より下流側における排ガスラインに設けられ、空気燃焼から酸素燃焼への移行時に全開から設定開度に開度制御される第三切替ダンパと
を備え、
前記第一切替ダンパを空気燃焼から酸素燃焼への移行時に全開から全閉に開度制御する間、前記排ガス再循環ラインの合流接続点の圧力を負圧に保持するよう構成したことを特徴とする酸素燃焼ボイラシステム。
At startup, air is introduced into the boiler body from the combustion gas supply line to perform air combustion of the fuel, and after startup is complete, oxygen is introduced into the boiler body from the combustion gas supply line and discharged from the boiler body. In an oxyfuel boiler system that recycles part of the combustion exhaust gas that oxyfuels the fuel,
Exhaust gas recirculation means for guiding a part of the combustion exhaust gas from the exhaust gas line on the discharge side of the induction fan to the combustion gas supply line ;
The exhaust gas recirculation means includes
An exhaust gas recirculation line branched from the exhaust gas line on the discharge side of the induction fan and joined to the combustion gas supply line on the suction side of the forced air fan;
Provided in the combustion gas supply line upstream from the confluence connection point of the exhaust gas recirculation line and downstream from the air suction port, and the opening degree is controlled from fully open to fully closed when shifting from air combustion to oxyfuel combustion. A first switching damper;
A second switching damper that is provided in the exhaust gas recirculation line, and whose opening degree is controlled stepwise from fully closed to a set opening degree when shifting from air combustion to oxyfuel combustion;
A third switching damper which is provided in the exhaust gas line downstream from the branch point of the exhaust gas recirculation line and whose opening degree is controlled from fully open to a set opening degree when shifting from air combustion to oxyfuel combustion;
With
The first switching damper is configured to hold the pressure at the junction point of the exhaust gas recirculation line at a negative pressure while controlling the opening degree from fully open to fully closed at the time of transition from air combustion to oxyfuel combustion. Oxy-combustion boiler system.
起動時には、ボイラ本体に燃焼用気体供給ラインから空気を導入して燃料の空気燃焼を行い、起動完了後には、前記ボイラ本体に前記燃焼用気体供給ラインから酸素を導入しつつボイラ本体から排出される燃焼排ガスの一部を再循環させて燃料の酸素燃焼を行う酸素燃焼ボイラシステムにおいて、
前記燃焼排ガスの一部を誘引通風機の吐出側における排ガスラインから前記燃焼用気体供給ラインへ導く排ガス再循環手段を備え、
前記排ガス再循環手段は、
前記誘引通風機の吐出側における排ガスラインから分岐して、押込通風機の吐出側における前記燃焼用気体供給ラインに合流接続される排ガス再循環ラインと、
該排ガス再循環ラインの合流接続点より上流側で且つ前記押込通風機の吐出側における前記燃焼用気体供給ラインに設けられ、空気燃焼から酸素燃焼への移行時に全開から全閉に開度制御される第一切替ダンパと、
前記押込通風機の吸込側における燃焼用気体供給ラインに設けられ、空気燃焼から酸素燃焼への移行時に設定開度から全閉に開度制御される第一流量調整ダンパと、
前記排ガス再循環ラインに設けられ、空気燃焼から酸素燃焼への移行時に全閉から設定開度に開度制御される第二切替ダンパと、
前記排ガス再循環ラインの分岐点より下流側における排ガスラインに設けられ、空気燃焼から酸素燃焼への移行時に全開から設定開度に開度制御される第三切替ダンパと
を備え、
前記第一流量調整ダンパを空気燃焼から酸素燃焼への移行時に設定開度から全閉に開度制御完了した後に、前記第一切替ダンパを全開から全閉に開度制御するよう構成したことを特徴とする酸素燃焼ボイラシステム。
At startup, air is introduced into the boiler body from the combustion gas supply line to perform air combustion of the fuel, and after startup is complete, oxygen is introduced into the boiler body from the combustion gas supply line and discharged from the boiler body. In an oxyfuel boiler system that recycles part of the combustion exhaust gas that oxyfuels the fuel,
Exhaust gas recirculation means for guiding a part of the combustion exhaust gas from the exhaust gas line on the discharge side of the induction fan to the combustion gas supply line;
The exhaust gas recirculation means includes
An exhaust gas recirculation line branched from the exhaust gas line on the discharge side of the induction fan and joined to the combustion gas supply line on the discharge side of the forced air fan;
Provided in the combustion gas supply line upstream from the confluence connection point of the exhaust gas recirculation line and on the discharge side of the forced air blower, the opening degree is controlled from fully open to fully closed at the time of transition from air combustion to oxyfuel combustion. A first switching damper
A first flow rate adjustment damper that is provided in a combustion gas supply line on the suction side of the forced air blower, and that is controlled to be fully closed from a set opening degree at the time of transition from air combustion to oxyfuel combustion;
A second switching damper provided in the exhaust gas recirculation line, the opening of which is controlled from fully closed to a set opening degree when shifting from air combustion to oxyfuel combustion;
A third switching damper which is provided in the exhaust gas line downstream from the branch point of the exhaust gas recirculation line and whose opening degree is controlled from the fully open to the set opening degree when shifting from air combustion to oxyfuel combustion,
The first flow rate control damper after opening control completed fully closed from set opening when moving to oxyfuel combustion from the air combustion, by being configured to opening control to fully closed the first switching damper from the fully opened A featured oxyfuel boiler system.
起動時には、ボイラ本体に燃焼用気体供給ラインから空気を導入して燃料の空気燃焼を行い、起動完了後には、前記ボイラ本体に前記燃焼用気体供給ラインから酸素を導入しつつボイラ本体から排出される燃焼排ガスの一部を再循環させて燃料の酸素燃焼を行う酸素燃焼ボイラシステムにおいて、
前記燃焼排ガスの一部を誘引通風機の吐出側における排ガスラインから前記燃焼用気体供給ラインへ導く排ガス再循環手段を備え、
前記排ガス再循環手段は、
前記誘引通風機の吐出側における排ガスラインから分岐して、押込通風機の吐出側における前記燃焼用気体供給ラインに合流接続される排ガス再循環ラインと、
該排ガス再循環ラインの合流接続点より上流側で且つ前記押込通風機の吐出側における前記燃焼用気体供給ラインに設けられ、空気燃焼から酸素燃焼への移行時に全開から全閉に開度制御される第一切替ダンパと、
前記押込通風機の吸込側における燃焼用気体供給ラインに設けられ、空気燃焼から酸素燃焼への移行時に設定開度から全閉に開度制御される第一流量調整ダンパと、
前記排ガス再循環ラインに設けられ、空気燃焼から酸素燃焼への移行時に停止状態から設定流量吐出状態に駆動制御される排ガス再循環ファンと、
該排ガス再循環ファンの吐出側における前記排ガス再循環ラインに設けられ、空気燃焼から酸素燃焼への移行時に全閉から設定開度に開度制御される第二切替ダンパと、
前記排ガス再循環ファンの吸込側における排ガス再循環ラインに設けられ、空気燃焼から酸素燃焼への移行時に全閉から設定開度に開度制御される第二流量調整ダンパ
前記排ガス再循環ラインの分岐点より下流側における排ガスラインに設けられ、空気燃焼から酸素燃焼への移行時に全開から設定開度に開度制御される第三切替ダンパと
を備え、
前記第一流量調整ダンパを空気燃焼から酸素燃焼への移行時に設定開度から全閉に開度制御完了した後に、前記第一切替ダンパを全開から全閉に開度制御するよう構成したことを特徴とする酸素燃焼ボイラシステム。
At startup, air is introduced into the boiler body from the combustion gas supply line to perform air combustion of the fuel, and after startup is complete, oxygen is introduced into the boiler body from the combustion gas supply line and discharged from the boiler body. In an oxyfuel boiler system that recycles part of the combustion exhaust gas that oxyfuels the fuel,
Exhaust gas recirculation means for guiding a part of the combustion exhaust gas from the exhaust gas line on the discharge side of the induction fan to the combustion gas supply line;
The exhaust gas recirculation means includes
An exhaust gas recirculation line branched from the exhaust gas line on the discharge side of the induction fan and joined to the combustion gas supply line on the discharge side of the forced air fan;
Provided in the combustion gas supply line upstream from the confluence connection point of the exhaust gas recirculation line and on the discharge side of the forced air blower, the opening degree is controlled from fully open to fully closed at the time of transition from air combustion to oxyfuel combustion. A first switching damper
A first flow rate adjustment damper that is provided in a combustion gas supply line on the suction side of the forced air blower, and that is controlled to be fully closed from a set opening degree at the time of transition from air combustion to oxyfuel combustion;
An exhaust gas recirculation fan provided in the exhaust gas recirculation line and driven and controlled from a stopped state to a set flow rate discharge state at the time of transition from air combustion to oxyfuel combustion;
A second switching damper which is provided in the exhaust gas recirculation line on the discharge side of the exhaust gas recirculation fan and whose opening degree is controlled from a fully closed state to a set opening degree at the time of transition from air combustion to oxyfuel combustion;
A second flow rate adjustment damper that is provided in the exhaust gas recirculation line on the suction side of the exhaust gas recirculation fan and is controlled to open from a fully closed position to a set opening degree when shifting from air combustion to oxyfuel combustion. Branch of the exhaust gas recirculation line A third switching damper that is provided in the exhaust gas line downstream from the point and that is controlled to open from a fully open position to a set opening degree when shifting from air combustion to oxyfuel combustion,
The first flow rate control damper after opening control completed fully closed from set opening when moving to oxyfuel combustion from the air combustion, by being configured to opening control to fully closed the first switching damper from the fully opened A featured oxyfuel boiler system.
JP2011005872A 2011-01-14 2011-01-14 Oxy-combustion boiler system Active JP5728956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011005872A JP5728956B2 (en) 2011-01-14 2011-01-14 Oxy-combustion boiler system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011005872A JP5728956B2 (en) 2011-01-14 2011-01-14 Oxy-combustion boiler system

Publications (2)

Publication Number Publication Date
JP2012145305A JP2012145305A (en) 2012-08-02
JP5728956B2 true JP5728956B2 (en) 2015-06-03

Family

ID=46789034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011005872A Active JP5728956B2 (en) 2011-01-14 2011-01-14 Oxy-combustion boiler system

Country Status (1)

Country Link
JP (1) JP5728956B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019026U (en) * 1973-06-15 1975-03-03
JPS5819608A (en) * 1981-07-29 1983-02-04 Hitachi Ltd Self-controller for boiler
JPS5832207U (en) * 1981-08-27 1983-03-02 三菱重工業株式会社 combustion device
JPH0229372Y2 (en) * 1984-09-26 1990-08-07
JP4161515B2 (en) * 2000-05-30 2008-10-08 株式会社Ihi Exhaust gas oxygen concentration control method and apparatus for oxyfuel boiler equipment
JP4731293B2 (en) * 2005-11-28 2011-07-20 電源開発株式会社 Combustion control method and apparatus for oxyfuel boiler

Also Published As

Publication number Publication date
JP2012145305A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP5270661B2 (en) Exhaust gas control method and apparatus for oxyfuel boiler
JP5107419B2 (en) Combustion control device for oxyfuel boiler
JP4644725B2 (en) Oxy-combustion boiler system, pulverized-coal-fired boiler remodeling method, oxy-combustion boiler system control device
JP5476131B2 (en) Method for increasing carbon dioxide content in gas turbine exhaust and system for achieving the same
JP4731293B2 (en) Combustion control method and apparatus for oxyfuel boiler
JP5623421B2 (en) Power plant with CO2 recovery unit
JP5138028B2 (en) Oxygen supply control method and apparatus for oxyfuel boiler
EP2431579B1 (en) Multipurpose thermal power plant system
JP5107418B2 (en) Primary recirculation exhaust gas flow controller for oxyfuel boiler
US20110107736A1 (en) System for recirculating the exhaust of a turbomachine
WO2007061107A1 (en) Disposal method and equipmnt for exhaust gas from combustion system
TW201215820A (en) Stoichiometric combustion of enriched air with exhaust gas recirculation
JP2011127602A (en) System and method for improving emission performance of gas turbine
JP5448858B2 (en) Oxy-combustion power plant and its operation method
JPH0526409A (en) Carbon dioxide recoverying boiler
US7997084B2 (en) Hybrid power system and method of operating the same
JP5487509B2 (en) Boiler combustion system and its operating method
JP5728956B2 (en) Oxy-combustion boiler system
JP2011127597A (en) System and method for reducing sulfur compounds within fuel stream for turbomachine
JP2012137269A (en) Coal fired power generation plant and method of controlling the same
TW201229439A (en) System and method of managing energy utilized in a flue gas processing system
CN108844060B (en) Boiler system and method of operating the same
US20230258124A1 (en) Gas turbine plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R151 Written notification of patent or utility model registration

Ref document number: 5728956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250