TW201229439A - System and method of managing energy utilized in a flue gas processing system - Google Patents

System and method of managing energy utilized in a flue gas processing system Download PDF

Info

Publication number
TW201229439A
TW201229439A TW100142576A TW100142576A TW201229439A TW 201229439 A TW201229439 A TW 201229439A TW 100142576 A TW100142576 A TW 100142576A TW 100142576 A TW100142576 A TW 100142576A TW 201229439 A TW201229439 A TW 201229439A
Authority
TW
Taiwan
Prior art keywords
stream
carbon dioxide
exhaust
feed stream
capture system
Prior art date
Application number
TW100142576A
Other languages
Chinese (zh)
Inventor
Nareshkumar B Handagama
Glen D Jukkola
Frank M Kluger
Rasesh R Kotdawala
Gregory N Liljedahl
Allen M Pfeffer
Wei Zhang
Original Assignee
Alstom Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology Ltd filed Critical Alstom Technology Ltd
Publication of TW201229439A publication Critical patent/TW201229439A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

A method for managing an amount of energy utilized by a carbon dioxide capture system (150) that includes providing a fuel (122) and a feed stream (132) including oxygen to a combustion system (120). The feed stream (132) includes a portion of a flue gas stream (124) generated upon combustion of the fuel (122) in the combustion system (120). The flue gas stream (124) is subjected to a carbon dioxide capture system (150) to remove carbon dioxide therefrom and an amount of at least one of an oxygen stream or the portion of the flue gas stream (124) introduced to the feed stream (132) is adjusted such that the feed stream (132) maintains an oxygen concentration in a range of between 10% to 90% by volume and the carbon dioxide capture system (150) operates at an energy load between about 1.4 GJ/ton of carbon dioxide and about3.0 GJ/ton of carbon dioxide.

Description

201229439 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種管理廢氣流處理系統之能量用量的系 統及方法。更特定言之,本發明係關於一種優化廢氣處理 系統之能量用量的方法,該廢氣處理系統包括燃氧鍋爐燃 燒及二氧化碳捕獲系統。 【先前技術】 燃料,尤其是諸如化石燃料及廢棄物之含碳材料的燃燒 產生廢氣流,其含有雜質,諸如汞(Hg)、硫氧化物(s〇x)及 II氧化物(NOx);及微粒,諸如飛灰,該等物質在釋放廢 氟至環境中之前必須被去除或減少。回應於許多管轄區適 當的規則,已開發許多方法及設備來去除或減少廢氣中之 雜質及微粒。 減少產生蒸汽之鋼爐之微粒、Hg、NOx& SOJ#放的典 型方法為使用包括靜電集塵器(ESP)、織物過濾器袋式集 塵器、催化系統或濕式及乾式洗滌器之廢氣處理設備。此 外,若欲將一氧化碳排放保持在某一水準或低於某一水 準,則廢氣處理系統中可採用二氧化碳捕獲系統(亦稱為 「碳捕獲系統」)。 廢氣處理設備,亦即排放控制裝置及系統,體型較大且 購貝及操作成本較南,此會顯著增加設施投資成本及操作 成本。此外,廢氣流處理設備通常要求在工廠現場有大量 空間。 降低後燃燒廢氣流處理成本之一種方式為在單一操作中 159829.doc 201229439 組合各種污染物減少技術及設備,通常稱為「多污染物控 制」°然而’組合技術及設備並非在每種廢氣流處理系統 中均適用或可行。因此,需要有助於降低廢氣流處理系統 之成本或總能量消耗的其他方法及/或系統。 【發明内容】 根據本文所說明之態樣,提供一種管理二氧化碳捕獲系 統之能量用量的方法,該方法包含:向燃燒系統提供燃料 及包含氧氣之饋料流,該饋料流包括該燃料在該燃燒系統 中燃燒時所產生之廢氣流之一部分;使該廢氣流通過二氧 化碳捕獲系統以去除其中之二氧化碳;且調節引入該饋料 /机中之氧氣流或該廢氣流之該部分中的至少一者之量以 使S亥饋料流維持氧氣濃度在10體積%至90體積。/。範圍内且 s亥二氧化碳捕獲系統在1·4千兆焦/公噸二氧化碳至3 〇千兆 焦/公噸二氧化碳之能量負載下操作,從而管理該二氧化 碳捕獲系統之能量用量。 根據本文所說明之另一態樣,提供一種管理二氧化碳捕 獲系統之能量用量的方法 ,該方法包含:向燃燒系統提供 燃料及包含氧氣之饋料流,該饋料流包括該燃料在該燃燒201229439 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a system and method for managing energy usage of an exhaust gas stream treatment system. More particularly, the present invention relates to a method of optimizing the amount of energy used in an exhaust gas treatment system including an oxygen-fired boiler combustion and carbon dioxide capture system. [Prior Art] The combustion of fuels, especially carbonaceous materials such as fossil fuels and waste, produces an exhaust stream containing impurities such as mercury (Hg), sulfur oxides (s〇x) and II oxides (NOx); And particulates, such as fly ash, which must be removed or reduced before releasing the spent fluorine to the environment. In response to appropriate regulations in many jurisdictions, many methods and equipment have been developed to remove or reduce impurities and particulates in exhaust gases. A typical method for reducing particulates, Hg, NOx &SOJ# in steam-generating steel furnaces is to use exhaust gases including electrostatic precipitators (ESP), fabric filter bag filters, catalytic systems or wet and dry scrubbers. Processing equipment. In addition, carbon dioxide capture systems (also known as "carbon capture systems") can be used in exhaust gas treatment systems to maintain carbon monoxide emissions at or below a certain level. Exhaust gas treatment equipment, that is, emission control devices and systems, are large in size and have a relatively high cost of purchasing and operating, which significantly increases the cost of construction investment and operating costs. In addition, exhaust stream treatment equipment typically requires a large amount of space at the factory site. One way to reduce the cost of post-combustion exhaust gas treatment is to combine various pollutant reduction technologies and equipment in a single operation 159829.doc 201229439, commonly referred to as "multi-pollutant control". However, the combined technology and equipment are not in each exhaust stream. Applicable or feasible in the processing system. Accordingly, there is a need for other methods and/or systems that help reduce the cost or total energy consumption of an exhaust stream treatment system. SUMMARY OF THE INVENTION According to the aspects described herein, a method of managing energy usage of a carbon dioxide capture system is provided, the method comprising: providing a fuel and a feed stream comprising oxygen to a combustion system, the feed stream including the fuel a portion of the exhaust stream produced during combustion in the combustion system; passing the exhaust stream through a carbon dioxide capture system to remove carbon dioxide therein; and adjusting at least one of the oxygen stream introduced into the feed/machine or the portion of the exhaust stream The amount is such that the S-new feed stream maintains an oxygen concentration between 10% and 90% by volume. /. The energy and the energy consumption of the carbon dioxide capture system is managed by the shai carbon dioxide capture system operating at an energy load of 1-4 gigajoules per metric ton of carbon dioxide to 3 〇 gigajoules per metric ton of carbon dioxide. In accordance with another aspect described herein, a method of managing energy usage of a carbon dioxide capture system is provided, the method comprising: providing a fuel to a combustion system and a feed stream comprising oxygen, the feed stream including the fuel in the combustion

負載下操作,從 饋料流之量,以使該廢氣流維持二氧化碳濃 至60體積%範圍内且該二氧化碳捕獲系統在 頃二氧化碳至3.〇千兆焦/公噸二氧化碳之能量 從而官理該二氧化碳捕獲系統之能量用量。 159829.doc 201229439 根據本文所說明之另_態樣,提供—種管理二氧化碳捕 獲系統之能量用量的方法’該方法包含:向燃燒系統提供 燃料及包3氧氣之饋料流,該饋料流包括該燃料在該燃燒 系統中燃燒時所產生之廢氣流之—部分;使該廢氣流通過 -氧化奴捕獲系統以去除其中之二氡化碳;及調節引至該 燃燒系統之該饋料流之量,以使該廢氣流維持二氧化碳濃 度在10體積%至6〇體積%範圍内;及調節引人該饋料流中 之氧氣流或該廢氣流之該部分中的至少一者之量,以使該 鎖料机維持氧氣濃度在i 〇體積。至9〇體積%範圍内且該二 氧化碳捕獲系統在i ·4千北焦/公嘲二氧化碳至3 〇千死焦/公 嘲二氧化碳之能量負載下操作,從而管理該二氧化碳捕獲 系統之能量用量,從而管理該二氧化碳捕獲系統之能量用 量。 利用以下圖式及[實施方式]例示上述特徵及其他特徵。 【實施方式】 現參考圖式,該等圖式為例示性實施例且其中相同元件 具有相同編號。 圖1說明一種廢氣流處理系統10〇,其包括與氧氣轰生單 元130連通之燃燒系統120。燃燒系統12〇可為經組態以燃 燒燃料122從而產生廢氣流124的任何系統。實例包括彳曰不 限於粉煤(PC)燃燒、燃氧鍋爐及循環流化床燃燒器 (CFB)。在圖1中,燃燒系統no為經組態以在提供至燃燒 系統之饋料流132存在下燃燒提供至燃燒系統之燃料122的 燃氧鍋爐。燃料122燃燒時產生廢氣流124,且其在燃炉系 159829.doc 201229439 統120之輸出端產生。 在一個實施例中,如圖1中所示,饋料流132為氧化劑流 134、新鮮空氣流136與已經受污染物去除操作之廢氣流之 一部分124a的組合。在另一實施例中,如圖2中所示,饋 料流132包括氧化劑流134、新鮮空氣流136及廢氣流124之 一部分1 24b。在另一實施例中,如圖3中所示,饋料流包 括氧化劑流134、新鮮空氣流136及廢氣流124之部分124a 及廢氣流124之部分124b。雖然圖1至圖3中未示出,但預 期饋料流可為氧化劑流134、新鮮空氣流136、廢氣流124 之部分124a或廢氣流124之部分124b。在饋料流132中併入 氧化劑流134及新鮮空氣流136可維持氧氣與燃料之比率以 便在燃燒系統120令適當燃燒。 氧化劑流134係由氧氣產生單元130產生,該單元接收空 氣流138。在一實施例中,氧氣產生單元13〇為空氣分離單 元(ASU)。ASU可為例如離子輸送膜(ITM) '氧氣輸送膜 (OTM)或低溫空氣分離系統,例如精餾柱。氧氣產生單元 130不受限於此,因為氧氣產生單元可為能夠產生氧化劑 流134之任何設備。 氧化劑流1 34 —般含有氧氣(〇2),然而,氧化劑流中亦 可存在其他元素及氣體。在一個實施例中,氧化劑流134 為至少90重量%氧氣。在另一實施例中,氧化劑流134為 至少95重量%氧氣。 氧氣產生單元130需要較大的能量負載來處理空氣流ι38 且產生氧化劑流134。然而,在許多應用中,產生氧化劑 159829.doc 201229439 流134所消耗之能量有利於整個廢氣流處理系統l〇〇,因為 與不使用氧氣產生單元13〇之系統相比,可實現廢氣流124 之體積減小β 新鮮空氣流136在與氡化劑流134及廢氣流124a、124b併 合形成饋料流132之前未經受任何處理。因此,新鮮空氣 流136包括多種元素及氣體,包括但不限於,氧氣、二氧 化碳、氮氣、水及其類似物。在一個實施例中,新鮮空氣 流136可經受某些處理以去除其中之微粒(若存在時)。 如圖1中所示,饋料流i32及廢氣流i24可通過空氣預熱 器(APH)126,空氣預熱器126藉由自廢氣流轉移熱而促進 饋料流之溫度升高。 在一個實施例中,廢氣流124包括污染物,諸如但不限 於硫氧化物(SOx)、汞(Hg)、二氧化碳(c〇2)、微粒、氧化 亞氮(Νβ)及較少量之氮氧化物(Ν〇χ)。廢氣流124中所存 在之ΝΟχ之濃度取決於若干因素,包括但不限於,燃料丨22 之氮含量及經由饋料流132提供至燃燒系統12〇之氮氣之濃 度。隨著饋料流132中所存在之氧氣百分比增加,提供至 燃燒系統之饋料流中的氮氣百分比降低,從而降低廢氣流 124中所存在之ΝΟχ之百分比。 燃燒系統120下游為污染物控制系統14〇(亦稱為空氣品 貧控制系統或「AQCS」)。在一個實施例中,如圖j中所 不’污染物控制系統140包括靜電集塵器(ESP)142及廢氣 脫硫(FGD)系統144。預期污染物控制系統i 4〇可包括多於 或少於圖1中所示之裝置。舉例而言,在一個實施例中, 159829.doc 201229439 污染物控制系統140僅包括廢氣脫硫系統144。廢氣脫硫系 統144可為乾式廢氣脫硫(DFGD)系統或濕式廢氣脫硫 (WFGD)系統。雖然圖丨中未示出,但預期污染物控制系統 140中可包括不同及/或其他裝置,包括但不限於,選擇性 催化還原(SCR)系統、袋式集塵器、文托利型(venturi_ type)洗滌器及其類似物。 使燃燒系統120所產生之廢氣流124通過污染物控制系統 140。在一個實施例中’使廢氣流124通過廢氣脫硫系統 144,此有助於自廢氣流去除s〇x。 在通過污染物控制系統140之後,使經處理之廢氣流 124'通過二氧化碳捕獲系統15〇以便自廢氣流中去除二氧化 碳。二氧化碳捕獲系統150可為能夠自廢氣流124'去除二氧 化碳以產生二氧化碳流15 1及二氧化碳減少之廢氣流152的 任何系統。二氧化碳捕獲系統15〇之實例包括但不限於稱 為「先進型胺(advanced amine)」系統之系統、諸如國際 專利申請公開案第W02006/022885號中所揭示之「冷束 氨」系統以及其他溶劑吸收法(例如碳酸鹽/碳酸氫鹽)、分 子篩、膜分離法、氣體處理單元及其類似物。 仍參考圖1,在廢氣流離開燃燒系統12 〇後,可引導經處 理之廢氣流124’之至少一部分124a以形成饋料流132。引至 饋料流132之該廢氣流部分124a係自廢氣流處理系統100内 之位置A處引出。如圖1中所示,位置A係位於廢氣脫硫系 統144下游。在另一實施例中’如圖2中所示’廢氣流124 之部分124b係自廢氣流處理系統1〇〇内位於脫硫系統上游 159829.doc -10· 201229439 之位置B處引出。在又-實施例中,如圖3中所示,廢氣流 12扣之部分12乜係自位置A處之經處理廢氣流124,引出, 且廢氣流之部分124b係自位置B處之廢氣流124引出。 雖然圖1至圖3說明至少兩個不同位置人及B,但系統1〇〇 不爻限於此,因為廢氣流可自系統内之另一點引出,例如 ESP I42與廢氣脫硫系統144之間。位置入及B可視燃燒系 統120中所燃燒之燃料122而定。例如,若燃料122具有低 濃度SOx,則廢氣流124可在經過廢氣脫硫系統144之前再 循環至燃燒系統》 引導廢氣流部分124a、124b以形成饋料流132係藉由任 何有此功能之機構來達成,包括但不限於管道、導管、閥 門及其類似物’如此項技術中已知。 在廢氣流部分124a、124b與新鮮空氣流136、氧化劑流 13 4或兩者組合以形成饋料流丨3 2之後,接著將饋料流提供 至燃燒系統120。 調節饋料流132中所存在之廢氣流部分124a、12仆之量 以使饋料流維持氧氣濃度在約1〇體積%至約9〇體積%範圍 内。在另一實施例中,調節饋料流132中所存在之廢氣流 部分124a ' 124b之量以使饋料流維持氧氣濃度在約4〇體積 °/〇至約60體積%範圍内。 維持饋料流132中之氧氣濃度在約1〇體積%至約9〇體積0/〇 範圍内允許二氧化碳捕獲系統15 0在低於約3 · 0千兆焦/公4頁 (GJ/公噸)二氧化碳之能量負載下操作。在一個實例中,能 里負載為1.4千兆焦/公嘲二氧化碳(gj/公噸二氧化碳)至3 〇 159829.doc 201229439 千兆…/ A頓—氧化碳,而在另—實例中,能量負載為1 ·4 千北焦/公°頓二氧化碳至2·5千兆焦/公嘲二氧化碳。 在另f知例中’維持饋料流中之氧氣濃度在約40體積 %至約60體積%範圍内分敌一备 固内允命一氧化碳捕獲系統15 0在低於約 3.0千死焦/公嘲二氣化隹 旦 乳化石及之此里負載下操作。在一個實例 中,能量負載為約1 4+ ;ik隹/八匕 ^干此焦/公嘲二氧化碳至約3.〇千兆焦/ 公σ頓一-氧化碳,而方玄 杳# .Operating under load, the amount of feed stream is maintained such that the exhaust gas stream maintains a concentration of carbon dioxide in the range of 60% by volume and the carbon dioxide capture system is in the amount of carbon dioxide to 3. 〇 Gigajoules per metric ton of carbon dioxide to thereby govern the carbon dioxide Capture the energy usage of the system. 159829.doc 201229439 A method of managing energy usage of a carbon dioxide capture system is provided in accordance with another aspect described herein. The method includes: providing a fuel to a combustion system and a feed stream comprising 3 oxygen, the feed stream comprising a portion of the exhaust stream produced by the combustion of the fuel in the combustion system; passing the exhaust stream through an oxidation slave capture system to remove carbon dioxide therein; and adjusting the feed stream to the combustion system An amount such that the exhaust gas stream maintains a carbon dioxide concentration in the range of 10% by volume to 6% by volume; and adjusts an amount of at least one of the oxygen stream or the portion of the exhaust gas stream that is introduced into the feed stream to The locker is maintained at an oxygen concentration of i 〇 volume. Operating in a range of up to 9% by volume and operating the carbon dioxide capture system at an energy load of i. 4 thousand North Coke/Male Carbon Dioxide to 3 〇 Thousands of Coke/Manual Carbon Dioxide, thereby managing the energy usage of the CO2 capture system, thereby Manage the energy usage of the carbon dioxide capture system. The above features and other features are exemplified by the following drawings and [embodiments]. [Embodiment] Referring now to the drawings, the drawings are exemplary embodiments 1 illustrates an exhaust stream treatment system 10A that includes a combustion system 120 in communication with an oxygen bombing unit 130. The combustion system 12A can be any system configured to combust the fuel 122 to produce an exhaust stream 124. Examples include, but are not limited to, pulverized coal (PC) combustion, an oxygen-fired boiler, and a circulating fluidized bed combustor (CFB). In Figure 1, combustion system no is an oxygen-fired boiler configured to combust a fuel 122 provided to a combustion system in the presence of a feed stream 132 provided to a combustion system. The exhaust stream 124 is produced when the fuel 122 is combusted and is produced at the output of the burner system 159829.doc 201229439. In one embodiment, as shown in Figure 1, feed stream 132 is a combination of oxidant stream 134, fresh air stream 136, and a portion 124a of the exhaust stream that has been subjected to a contaminant removal operation. In another embodiment, as shown in Figure 2, the feed stream 132 includes an oxidant stream 134, a fresh air stream 136, and a portion 1 24b of the exhaust stream 124. In another embodiment, as shown in FIG. 3, the feed stream includes an oxidant stream 134, a fresh air stream 136, and a portion 124a of the exhaust stream 124 and a portion 124b of the exhaust stream 124. Although not shown in Figures 1 through 3, it is contemplated that the feed stream can be an oxidant stream 134, a fresh air stream 136, a portion 124a of the exhaust stream 124, or a portion 124b of the exhaust stream 124. Incorporating the oxidant stream 134 and the fresh air stream 136 in the feed stream 132 maintains the oxygen to fuel ratio for proper combustion in the combustion system 120. The oxidant stream 134 is produced by an oxygen generating unit 130 that receives the air stream 138. In one embodiment, the oxygen generating unit 13 is an air separation unit (ASU). The ASU can be, for example, an ion transport membrane (ITM) 'oxygen transport membrane (OTM) or a cryogenic air separation system, such as a rectification column. The oxygen generating unit 130 is not limited thereto because the oxygen generating unit can be any device capable of generating the oxidant stream 134. The oxidant stream 1 34 generally contains oxygen (〇2), however, other elements and gases may also be present in the oxidant stream. In one embodiment, the oxidant stream 134 is at least 90% by weight oxygen. In another embodiment, the oxidant stream 134 is at least 95% by weight oxygen. Oxygen generating unit 130 requires a large energy load to process air stream 138 and produce oxidant stream 134. However, in many applications, the energy produced by the oxidant 159829.doc 201229439 stream 134 is beneficial to the entire exhaust stream treatment system because the exhaust stream 124 can be achieved as compared to systems that do not use the oxygen generating unit 13A. The volume reduction β fresh air stream 136 is not subjected to any treatment prior to combining with the oxime stream 134 and the exhaust streams 124a, 124b to form the feed stream 132. Thus, fresh air stream 136 includes a variety of elements and gases including, but not limited to, oxygen, carbon dioxide, nitrogen, water, and the like. In one embodiment, the fresh air stream 136 can be subjected to certain treatments to remove particulates therein, if present. As shown in Figure 1, feed stream i32 and exhaust stream i24 may pass through an air preheater (APH) 126 which promotes temperature rise of the feed stream by transferring heat from the exhaust stream. In one embodiment, the exhaust stream 124 includes contaminants such as, but not limited to, sulfur oxides (SOx), mercury (Hg), carbon dioxide (c〇2), particulates, nitrous oxide (Νβ), and minor amounts of nitrogen. Oxide (Ν〇χ). The concentration of rhodium present in the exhaust stream 124 depends on a number of factors including, but not limited to, the nitrogen content of the fuel helium 22 and the concentration of nitrogen supplied to the combustion system 12 via the feed stream 132. As the percentage of oxygen present in the feed stream 132 increases, the percentage of nitrogen present in the feed stream to the combustion system decreases, thereby reducing the percentage of enthalpy present in the exhaust stream 124. Downstream of the combustion system 120 is a pollutant control system 14 (also known as an air lean control system or "AQCS"). In one embodiment, the contaminant control system 140, as shown in Figure j, includes an electrostatic precipitator (ESP) 142 and an exhaust gas desulfurization (FGD) system 144. The contaminant control system i 4〇 can be expected to include more or less than the device shown in FIG. For example, in one embodiment, 159829.doc 201229439 Contaminant Control System 140 includes only exhaust gas desulfurization system 144. The exhaust gas desulfurization system 144 can be a dry exhaust gas desulfurization (DFGD) system or a wet exhaust gas desulfurization (WFGD) system. Although not shown in the drawings, it is contemplated that different and/or other devices may be included in the contaminant control system 140 including, but not limited to, a selective catalytic reduction (SCR) system, a baghouse, and a Venturi type ( Venturi_type) scrubbers and the like. The exhaust stream 124 produced by the combustion system 120 is passed through a contaminant control system 140. In one embodiment, the exhaust stream 124 is passed through an off-gas desulfurization system 144 which facilitates the removal of s〇x from the exhaust stream. After passing through the contaminant control system 140, the treated exhaust stream 124' is passed through a carbon dioxide capture system 15 to remove carbon dioxide from the exhaust stream. The carbon dioxide capture system 150 can be any system capable of removing carbon dioxide from the exhaust stream 124' to produce a carbon dioxide stream 15 1 and a reduced carbon dioxide stream 152. Examples of carbon dioxide capture systems 15 include, but are not limited to, systems known as "advanced amine" systems, such as the "cold beam ammonia" system disclosed in International Patent Application Publication No. WO2006/022885, and other solvents. Absorption methods (e.g., carbonate/bicarbonate), molecular sieves, membrane separation methods, gas treatment units, and the like. Still referring to FIG. 1, after the exhaust stream exits the combustion system 12, at least a portion 124a of the treated exhaust stream 124' can be directed to form a feed stream 132. The exhaust stream portion 124a leading to the feed stream 132 is withdrawn from a location A within the exhaust stream processing system 100. As shown in Figure 1, position A is located downstream of the exhaust gas desulfurization system 144. In another embodiment, ' portion 124b of the exhaust stream 124 as shown in Fig. 2, is taken from position B of the exhaust stream treatment system 1 located upstream of the desulfurization system 159829.doc -10·201229439. In a further embodiment, as shown in Figure 3, the portion 12 of the exhaust stream 12 is taken from the treated exhaust stream 124 at location A, and the portion 124b of the exhaust stream is from the exhaust stream at location B. 124 leads. Although Figures 1 through 3 illustrate at least two different locations of person and B, the system 1 is not limited thereto as the exhaust stream may be drawn from another point within the system, such as between ESP I42 and exhaust gas desulfurization system 144. The position in and B is dependent on the fuel 122 burned in the combustion system 120. For example, if fuel 122 has a low concentration of SOx, then exhaust stream 124 may be recirculated to the combustion system prior to passing through exhaust gas desulfurization system 144 to direct exhaust stream portions 124a, 124b to form feed stream 132 by any such function. Institutions to achieve, including but not limited to pipes, conduits, valves, and the like, are known in the art. After the exhaust stream portions 124a, 124b are combined with the fresh air stream 136, the oxidant stream 13 4, or both to form the feed stream 3 2, the feed stream is then provided to the combustion system 120. The amount of exhaust stream portion 124a, 12 present in the feed stream 132 is adjusted to maintain the feed stream at an oxygen concentration in the range of from about 1% by volume to about 9% by volume. In another embodiment, the amount of exhaust stream portion 124a' 124b present in feed stream 132 is adjusted such that the feed stream maintains an oxygen concentration in the range of from about 4 Torr / Torr to about 60 vol. Maintaining the oxygen concentration in the feed stream 132 in the range of from about 1% by volume to about 9 〇 volume 0/〇 allows the carbon dioxide capture system 150 to be below about 3.8 GJ/4 pages (GJ/metric ton) Operating under the energy load of carbon dioxide. In one example, the energy load is 1.4 gigajoules / mega gram (gj / metric ton of carbon dioxide) to 3 〇 159829.doc 201229439 gigabytes ... / A - carbon oxide, and in another example, the energy load is 1 · 4 thousand North Coke / metric ° carbon dioxide to 2.5 Gigajoules / public ridicule carbon dioxide. In another example, the oxygen concentration in the feed stream is maintained within a range of from about 40% by volume to about 60% by volume, and that the carbon monoxide capture system is at a temperature of less than about 3.0 thousand dead coke/man. Mocking two gasification of the emulsified stone and the operation under load. In one example, the energy load is about 1 4+; ik隹/eight 匕 ^ dry this coke / public ridicule carbon dioxide to about 3. 〇 gigajoule / sigma ton - carbon monoxide, and Fang Xuan 杳 # .

在另一貫例中,能量負載為1.4千兆I 公噸二氧化碳至2.5千兆焦/公噸二氧化碳。 在另實施例中,維持饋料流中之氧氣濃度在約40體; %至約6〇體積%範圍内允許二氧化碳捕獲系統15〇在約2 至約2.9千兆焦/公領二氧化碳之能量負載下操作。 如圖1中所不,可藉由位於位置Α處且由控制器21 〇操作 之閥門2GG來調節引至饋㈣132之廢氣流部分12仏之量。 控制器2H)可用關於打開及閉合閥門2〇〇之指令程式化,或 可接收來自系統1〇〇中進行之其他量測的反饋(未圖示)。 如圖2中所不,可藉由位於位置B處且由控制器214操作 之閥門212來調節引至饋料流132之廢氣流部分之量。 控制器214可用關於打開及閉合閥門212之指令程式化,或 可接收來自系統H)〇中進行之其他量測的反饋(未圖示)。 在另-實施例中,如圖3中所示,可藉由耦接至控制器 220之閥門200及212來調節引至饋料流132之廢氣流部分 ⑽、12朴之量。控制器220可用關於打開及閉合閥門2〇〇 及212之指令程式化,或可接收來自系統1〇〇中進行之其他 量測的反饋(未圖示)。 159829.doc -12· 201229439 在另一實施例中,調節提供至燃燒系統12〇之饋料流i32 之里以使廢氣流124與饋料流混合以維持二氧化碳濃度在 1〇體積%至60體積%範圍内。在另一實施例中,調節提供 至燃燒系統uo之饋料流132之量以使廢氣流124與饋料流 混合以維持二氧化碳濃度在12體積%至46體積%範圍内。 在另一實施例令,調節提供至燃燒系統12〇之饋料流132之 1以使廢氣流124與饋料流混合以維持二氧化碳濃度在3〇 體積%至50體積%範圍内。 田廢氣μ中所存在之二氧化碳範圍為〗〇體積〇/〇至體積 〇/〇時’在不裝載氧氣產生單元12〇的情況下二氧化碳捕 獲系統⑽在低於約3.0千兆焦/公嘲二氧化碳之能量負载下 操作’而在裝載氧氣產生單元的情況下,二氧化碳捕獲系 統150在2·3千兆焦7公嘲二氧化碳至6.6千兆焦/公嘴二氧化 碳之能量負載下操作。在一個實例中’在不裝載氧氣產生 單元120的情況下,能量負載為14千兆焦/公噸二氧化碳至 3.0千兆焦/公嘲一氧化碳’而在另一實例中,能量負載為 1.4千兆焦/公噸二氧化碳至25千兆焦/公噸二氧化碳。 若二氧化碳捕獲系統150使用胺,則當廢氣流中所存在 之二氧化碳範圍為1〇體積%至6〇體積%時,可減少胺熱降 解、化學降解及/或熱穩定鹽之形成。 在-個實施例中’當在碳捕獲系統15〇中自廢氣流去除 約9〇%二氧化碳時,在不裝載氧氣產生單元120的情況 下’破捕獲系統之能量負載在約15千死焦/公嘴至3 〇千兆 焦/公噸範圍内;而在裝載氧氣產生單元的情況下,能量 159829.doc 201229439 負裁在約2.3千兆焦/公噸至約3.3千兆焦/公噸範圍内。 如圖1至圖3中所示,可藉由耦接至控制器240之閥門23〇 來調節提供至燃燒系統120之饋料流132之量。控制器24〇 可用關於打開及閉合闊門230之指令程式化,或可接收來 自系統100中進行之其他量測的反饋(未圖示)。 預期可在不調節引至燃燒系統120之饋料流之量的情況 下調郎饋料流132中之廢氣流部分124a、12仆之量。然 而,亦預期可在不調節引至燃燒系統12〇之饋料流之量的、 情況下調節饋料流132中之廢氣流部分124a、⑽之量。 在以下實例中例示上述内容。 實例In another example, the energy load is 1.4 gigatons of metric tons of carbon dioxide to 2.5 gigajoules per metric ton of carbon dioxide. In still other embodiments, maintaining an oxygen concentration in the feed stream in the range of about 40 bodies; % to about 6% by volume allows the carbon dioxide capture system 15 to have an energy load of between about 2 and about 2.9 GJ/cm of carbon dioxide. Under the operation. As shown in Fig. 1, the amount of the exhaust gas stream portion 12A leading to the feed (four) 132 can be adjusted by the valve 2GG located at the position 且 and operated by the controller 21 〇. The controller 2H) can be programmed with instructions for opening and closing the valve 2, or can receive feedback from other measurements made in the system 1 (not shown). As shown in Figure 2, the amount of exhaust stream portion directed to the feed stream 132 can be adjusted by a valve 212 located at position B and operated by controller 214. Controller 214 can be programmed with instructions for opening and closing valve 212, or can receive feedback (not shown) from other measurements made in system H). In another embodiment, as shown in FIG. 3, the amount of exhaust stream portions (10), 12 that are directed to the feed stream 132 can be adjusted by valves 200 and 212 coupled to controller 220. Controller 220 can be programmed with instructions for opening and closing valves 2 and 212, or can receive feedback from other measurements made in system 1 (not shown). 159829.doc -12 201222439 In another embodiment, the adjustment is provided to the feed stream i32 of the combustion system 12〇 to mix the exhaust stream 124 with the feed stream to maintain a carbon dioxide concentration of between 1% and 60% by volume. Within the range of %. In another embodiment, the amount of feed stream 132 provided to the combustion system uo is adjusted to mix the exhaust stream 124 with the feed stream to maintain a carbon dioxide concentration in the range of 12% to 46% by volume. In another embodiment, one of the feed streams 132 provided to the combustion system 12 is adjusted to mix the exhaust stream 124 with the feed stream to maintain a carbon dioxide concentration in the range of from 3 vol% to 50 vol%. The range of carbon dioxide present in the field exhaust gas μ is 〇 volume 〇 / 〇 to volume 〇 / ' 'the carbon dioxide capture system (10) is below about 3.0 GJ / mega cc without loading the oxygen generating unit 12 〇 Operating under an energy load', with the oxygen generating unit being loaded, the carbon dioxide capture system 150 operates at an energy load of 2.3 gigajoules to 6.6 gigajoules per square of carbon dioxide. In one example 'the energy load is 14 gigajoules per metric ton to 3.0 gigajoules per gram of carbon monoxide without loading the oxygen generating unit 120'. In another example, the energy load is 1.4 gigajoules. / metric tons of carbon dioxide to 25 gigajoules / metric ton of carbon dioxide. If the carbon dioxide capture system 150 uses an amine, the formation of amine thermal degradation, chemical degradation, and/or heat stable salts can be reduced when the carbon dioxide present in the exhaust stream ranges from 1% by volume to 6% by volume. In one embodiment, 'when the carbon dioxide capture system 15 is removed from the exhaust stream by about 9% carbon dioxide, the energy load of the burst capture system is about 15 thousand dead coke without loading the oxygen generating unit 120. The male mouth is in the range of 3 〇 GJ/mm; and in the case of the oxygen generating unit, the energy 159829.doc 201229439 is cut in the range of about 2.3 GJ/ton to about 3.3 GJ/metric. As shown in Figures 1-3, the amount of feed stream 132 provided to combustion system 120 can be adjusted by a valve 23A coupled to controller 240. The controller 24 can be programmed with instructions for opening and closing the wide door 230, or can receive feedback (not shown) from other measurements made in the system 100. It is contemplated that the amount of exhaust stream portions 124a, 12 in the feed stream 132 can be adjusted without adjusting the amount of feed stream leading to the combustion system 120. However, it is also contemplated that the amount of exhaust stream portions 124a, (10) in the feed stream 132 can be adjusted without adjusting the amount of feed stream directed to the combustion system 12. The above is illustrated in the following examples. Instance

(c〇2)濃度之間的關係。 之氧化劑流中富集具有不同氧 枓空氣來進行不同廢氣條件模 ^生單元遞送之氧氣濃度與碳 表1包括具有空氣分離單元(Asu)作為氧氣產 統的五(5)個模擬實驗結果(c〇2) The relationship between the concentrations. The oxidant stream is enriched with different oxygen enthalpy air for different exhaust gas conditions. The oxygen concentration and carbon are delivered by the unit. Table 1 includes five (5) simulation results with an air separation unit (Asu) as the oxygen system.

表1說明模擬實驗中 作马氧氣產生單元之系 且在廢氣流通過污染物控制系 統。在模擬實驗中,污染物控制系統包括 在表 1中所示夕久_ 1中之「AQCSj )之後使其 衣丄肀所示之各模擬實驗中,自Asu至 丨抓中之氧氣濃度不同。 驗中氧氣濃度與co2濃度之間的關係。 159829.doc 201229439 表1 :對廢氣之部分氧氣燃燒模擬實驗 模擬實驗 入口 02及AQCS出口 C02體積分數: 1 2 3 4 5 來自ASU之02(95%純度)質量流量分數 0.00 0.14 0.28 0.42 0.55 燃燒空氣〇2體積百分比 21 30 40 50 60 燃燒空氣H20體積百分比 1.05 0.92 0.78 0.64 0.50 燃燒空氣N2體積百分比 77.25 68.05 58.13 48.20 38.28 AQCS出口廢氣C02體積百分比 15.34 21.75 28.39 34.77 40.90 AQCS出口廢氣H20體積百分比 7.17 9.60 12.13 14.55 16.88 AQCS出口廢氣凡體積百分比 74.00 64.01 53.66 43.71 34.16 AQCS出口廢氣02體積百分比 2.56 3.63 4.74 5.80 6.83 如表1中所示,隨著來自ASU之氧氣濃度增加,退出燃 燒系統之廢氣流中所存在之co2濃度增加。如表1中所註 明,在污染物控制系統出口處量測廢氣流中之C02濃度。 表2中說明再循環廢氣流内C02濃度增加之影響。表2包 括在廢氣流通過污染物控制系統之後將廢氣流再循環至燃 燒系統之系統的四(4)個模擬實驗結果。如表2中所示,各 模擬實驗之再循環廢氣流中的C02濃度不同。 表2 :採用廢氣再循環之系統中的負載要求 模擬 實驗 再循環廢氣中之 C02濃度 ASU負載(千兆焦 /公噸) 碳捕獲系統負載 (千兆焦/公噸) 總負載(千兆焦/ 公噸)(ASU及碳 捕獲系統) 1 12 0.0 3.3 3.3 2 24 0.3 2.8 3.1 3 35 0.6 2.0 2.6 4 46 0.8 1.5 2.3 如表2中所示,隨著再循環廢氣流中所存在之C02濃度增 加,碳捕獲系統之負載(千兆焦/公噸)降低。碳捕獲系統負 159829.doc 15- 201229439 載降低又使ASU及碳捕獲系統所使用之總負載降低。 除非另外規定,否則本文所揭示之所有範圍均包括其端 點及其中之所有中間點且可加以組合。術語「第一 (’ st) j 第_ (second)」及其類似術語在本文中不表示任 何次序、數量或重要性,而是用於區別一個元件與另一個 几件。術語「一(a/an)」在本文中不表示數量限制,而是 表示存在至少一個所提及之項目。除非另外規定,否則以 「約」修飾之所有數字均包括準確數值。 雖然已參考各種例示性實施例描述本發明,但熟習此項 技術者應瞭解,可在不背離本發明範疇的情況下作出各種 改變且可用等效物替代其要素。此外,可在不背離本發明 之本質範嘴的ft況下對本發明教示作出許多㈣以適應特 定情形或材料。因&,本發明意欲不受經揭示為執行本發 明之最佳預期模式的特定實施例限制,而是本發明意欲將 包括處於隨附申請專利範圍之範疇内的所有實施例。 【圖式簡單說明】 圖1說明根據本文所揭示之一個實施例之廢氣流處理系 統。 ® 2㈣根據本文所揭示之—個實施例之廢氣流處理系 統0 圖3說明根據本文所揭示之一個實施例之廢氣流處理系 【主要元件符號說明】 100 廢氣流處理系統 159829.doc -16- 201229439Table 1 illustrates the system of the horse oxygen generating unit in the simulation experiment and the exhaust gas flow through the pollutant control system. In the simulation experiment, the contaminant control system included in each of the simulation experiments shown in Fig. 1 after "AQCSj" in Table 1 and the clothes were shown, the oxygen concentrations from Asu to the scratch were different. The relationship between oxygen concentration and co2 concentration in the test. 159829.doc 201229439 Table 1: Partial oxygen combustion simulation of exhaust gas simulation experiment inlet 02 and AQCS outlet C02 volume fraction: 1 2 3 4 5 02 from ASU (95% Purity) mass flow fraction 0.00 0.14 0.28 0.42 0.55 combustion air 〇 2 volume percent 21 30 40 50 60 combustion air H20 volume percentage 1.05 0.92 0.78 0.64 0.50 combustion air N2 volume percentage 77.25 68.05 58.13 48.20 38.28 AQCS outlet exhaust gas C02 volume percentage 15.34 21.75 28.39 34.77 40.90 AQCS outlet exhaust H20 volume percentage 7.17 9.60 12.13 14.55 16.88 AQCS outlet exhaust gas volume percentage 74.00 64.01 53.66 43.71 34.16 AQCS outlet exhaust gas 02 volume percent 2.56 3.63 4.74 5.80 6.83 As shown in Table 1, as the oxygen concentration from the ASU increases , the concentration of co2 present in the exhaust stream exiting the combustion system increases, as shown in Table 1. The CO2 concentration in the exhaust gas stream is measured at the outlet of the pollutant control system. The effect of the increase in CO 2 concentration in the recirculated exhaust gas stream is illustrated in Table 2. Table 2 includes the recirculation of the exhaust gas stream after the exhaust gas stream passes through the pollutant control system. Four (4) simulation results of the system to the combustion system. As shown in Table 2, the concentration of CO 2 in the recirculated exhaust gas stream of each simulation experiment was different. Table 2: Simulation of load requirements in a system using exhaust gas recirculation CO2 concentration in experimental recirculated exhaust gas ASU load (gigajoules per metric ton) Carbon capture system load (gigajoules per metric ton) Total load (gigajoules per metric ton) (ASU and carbon capture system) 1 12 0.0 3.3 3.3 2 24 0.3 2.8 3.1 3 35 0.6 2.0 2.6 4 46 0.8 1.5 2.3 As shown in Table 2, as the concentration of CO 2 present in the recirculated exhaust gas stream increases, the load on the carbon capture system (gigajoules per metric ton) decreases. The capture system is negative 159829.doc 15- 201229439 The load reduction also reduces the total load used by the ASU and the carbon capture system. Unless otherwise stated, all ranges disclosed herein include their endpoints and all of them. Point and may be combined. The term "first (' st) j _ (second)" and its like terms does not denote any order, quantity or importance, and is used to distinguish one element from another. The term "a/an" does not denote a quantity limitation herein, but rather indicates that there is at least one item mentioned. Unless otherwise stated, all numbers modified with "about" include the exact values. While the invention has been described with respect to the various embodiments of the embodiments of the present invention, it is understood that various modifications may be made without departing from the scope of the invention. In addition, many (s) of the teachings of the present invention can be made to adapt to a particular situation or material without departing from the scope of the invention. The present invention is not intended to be limited to the specific embodiments disclosed, which are intended to be the preferred embodiment of the present invention, but the invention is intended to cover all embodiments within the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 illustrates an exhaust stream processing system in accordance with one embodiment disclosed herein. ® 2 (d) Exhaust gas stream treatment system according to one embodiment disclosed herein. FIG. 3 illustrates an exhaust gas stream treatment system according to one embodiment disclosed herein. [Main component symbol description] 100 Exhaust gas stream treatment system 159829.doc -16- 201229439

120 122 124 124' 124a 124b 126 130 132 134 136 138 140 142 144 150 152 200 210 212 214 220 230 240 S、SI 燃燒系統 燃料 廢氣流 經處理之廢氣流 已經受污染物去除操作之廢氣流之一部分 廢氣流之一部分 空氣預熱器(ΑΡΗ) 氧氣產生單元 饋料流 氧化劑流 新鮮空氣流 空氣流 污染物控制系統 靜電集塵器(ESP) 廢氣脫硫系統 二氧化碳捕獲系統 二氧化碳減少之廢氣流 閥門 控制器 閥門 控制器 控制器 閥門 控制器 控制信號 159829.doc • 17-120 122 124 124' 124a 124b 126 130 132 134 136 138 140 142 144 150 152 200 210 212 214 220 230 240 S, SI Combustion system Fuel exhaust gas The treated exhaust gas stream has been partially depleted in the exhaust stream of the contaminant removal operation. Part of the air preheater (ΑΡΗ) Oxygen generation unit Feed stream Oxidizer flow Fresh air flow Air flow Contaminant control system Electrostatic precipitator (ESP) Exhaust gas desulfurization system Carbon dioxide capture system Carbon dioxide reduction Waste gas flow valve controller valve Controller Controller Valve Controller Control Signal 159829.doc • 17-

Claims (1)

201229439 七、申請專利範園: 1. 一種管理二氧化碳捕獲系統之能 、此里用量的方法,該方法 包含: 向燃燒系統提供燃料及包含氧氣之饋料流,該饋料流 包括該燃料在該燃燒系統中燃燒時所產生之廢氣流之一 部分; 使該廢氣流通過二氧化碳捕獲系統以去除其中之二氧 化碳;及 調節引入該饋料流中之氧氣流或該廢氣流之該部分中 的至少-者之董,以使該饋料流維持氧氣濃度在1〇體積 。/❶至90體積%範_,且該二氧化碳捕獲系統係在14千 兆焦/公噸二氧化碳至3·〇千兆焦/公噸二氧化碳之能量負 載下操作,從而管理該二氧化碳捕獲系統之能量用量。 2.如請求項1之方法,其中該饋料流維持氧濃度在扣體積% 至60體積%範圍内。 3·如請求項1之方法,其中該二氧化碳捕獲系統係在I·*千 兆焦/公噸二氧化碳至2·5千兆焦/公噸二氧化碳之能量負 載下操作。 4·如請求項1之方法,其進一步包含: 使該廢氣流通過位於該燃燒系統下游且位於該二氧化 碳捕獲系統上游之脫硫系統,從而自該廢 化物。 氣流去除碲氣 5·如請求項4之方法,其進一少包含: 自選自由該脫硫系統上游之位置、該脫硫系統下游之 I59829.doc 201229439 位置及其組合組成之群的位置引導該廢氣流之該部分, 以形成該饋料流。 · 6. 如請求項1之方法,其中該饋料流進一步包含新鮮空氣 及氧化劑流。 7. 如請求項6之方法,其進一步包含: 在氧氣產生單元中產生該氧化劑流。 8. —種管理二氧化碳捕獲系統之能量用量的方法該方法 包含: 向燃燒系統提供燃料及包含氧氣之饋料流,該饋料流 包括該燃料在該燃燒系統中燃燒時所產生之廢氣流之一 部分; 使該廢氣流通過二氧化碳捕獲系統以去除其中之二氧 化碳;及 調卽引至該燃燒系統之該饋料流之量,以使該廢氣流 維持—氧化碳濃度在1〇體積%至6〇體積%範圍内且該二 氧化碳捕獲系統係在丨4千兆焦/公噸二氧化碳至3 〇千兆 '”、/ a頓一氧化碳之能量負載下操作,從而管理該二氧化 碳捕獲系統之能量用量。 9’如《月求項8之方法,其中該廢氣流維持二氧化碳濃度在 12體積〇/°至46體積%範圍内。 ,項8之方法,其中該廢氣流維持二氧化碳濃度在 3〇體積%至5〇體積0/。範圍内。 月求項8之方法,其中該二氧化碳捕獲系統係在1.4千 “、' A頓一氡化碳至2.5千兆焦/公噸二氧化碳之能量負 159829.doc 201229439 載下操作。 12. 如請求項8之方法,其進一步包含: 使該廢氣流通過位於該燃燒系統下游且位於該二氧化 碳捕獲系統上游之脫硫系統,從而自該廢氣流去除硫氧 化物。 13. 如請求項12之方法,其進一步包含: 自選自由該脫硫系統上游之位置、該脫硫系統下游之 位置及其組合組成之群的位置引導該廢氣流之該部分, 以形成該饋料流。 14. 如請求項8之方法,其中該饋料流進一步包含氧化劑流 及新鮮空氣流。 15. 如請求項14之方法,其進一步包含: 在氧氣產生單元中產生該氧化劑流。 -種管理二氧化碳捕獲系統之能量用量的方法,該方法 包含: 向燃燒系統提供燃料及包含氧氣之饋料流,該饋料流 包括該燃料在該燃燒系統中燃燒時所產生之廢氣流之一 部分; 使該廢氣流通過二氧化碳捕獲系統以去除其中之二氧 化碳; 調節引至該燃燒系統之該餹料 也 ^饋枓流之量,以使該廢氣流 持二氧化碳遭度在1〇體積%至6〇體積%範圍内;及 調節引入該饋料流中之氧氣流或該廢氣流之該部分中 的至少-者之量,以使該饋料流維持氧氣濃度在】。體積 159829.doc 201229439 %至90體積%範圍内,且該二氧化碳捕獲系統係在h4千 兆焦/公噸二氧化碳至3.0千兆焦/公噸二氧化碳之能量負 載下操作,從而管理該二氧化碳捕獲系統之能量用量, 從而管理該二氧化碳捕獲系統之能量用量。 17.如請求項16之方法’其中該廢氣流維持二氧化碳濃度在 40體積%至60體積%範圍内且該饋料流維持氧氣濃度在 12體積%至46體積%範圍内。 18_如請求項16之方法,其中該二氧化碳捕獲系統係在丨斗千 兆焦/公噸二氧化碳至2.5千兆焦/公噸二氧化碳之能量負 載下操作。 1 9.如請求項丨6之方法,其進一步包含: 使该廢氣流通過位於該燃燒系統下游且位於該二氧化 碳捕獲系統上游之脫硫系統,從而自該廢氣流去除硫氧 化物。 2〇·如請求項19之方法,其進一步包含: 自選自由該脫硫系統上游之位置、該脫硫系統下游之 位置及其組合組成之群的位置引導該廢氣流之該部分, 以形成該饋料流。 2 1 ·如請灰 。t, 之方法’其中該饋料流進一步包含氧化劑流 及新鮮空氣流。 22.如請求項。之方法,其進一步包含: 在氧氣產生單元中產生該氧化劑流。 159829.doc201229439 VII. Application for Patent Park: 1. A method of managing the energy of a carbon dioxide capture system, the method comprising: providing fuel to a combustion system and a feed stream comprising oxygen, the feed stream comprising the fuel a portion of the exhaust stream produced during combustion in the combustion system; passing the exhaust stream through a carbon dioxide capture system to remove carbon dioxide therein; and regulating at least one of the oxygen stream introduced into the feed stream or the portion of the exhaust stream Dong, so that the feed stream maintains an oxygen concentration of 1 〇 volume. / ❶ to 90 vol%, and the carbon dioxide capture system operates at an energy load of 14 terajoules per metric ton of carbon dioxide to 3 〇 gigajoules per metric ton of carbon dioxide to manage the energy usage of the carbon dioxide capture system. 2. The method of claim 1, wherein the feed stream maintains an oxygen concentration in the range of from 5% by volume to 60% by volume. 3. The method of claim 1, wherein the carbon dioxide capture system operates at an energy load of from 1 G to 10 GJ to 2 GJ/GT of carbon dioxide. 4. The method of claim 1, further comprising: passing the exhaust stream through a desulfurization system located downstream of the combustion system and upstream of the carbon dioxide capture system, thereby from the waste. Airflow to remove helium 5. The method of claim 4, which further comprises: directing the exhaust gas from a location selected from the group consisting of the location upstream of the desulfurization system, the I59829.doc 201229439 location downstream of the desulfurization system, and combinations thereof This portion of the flow is formed to form the feed stream. 6. The method of claim 1, wherein the feed stream further comprises fresh air and an oxidant stream. 7. The method of claim 6, further comprising: generating the oxidant stream in an oxygen generating unit. 8. A method of managing energy usage of a carbon dioxide capture system, the method comprising: providing a fuel and a feed stream comprising oxygen to a combustion system, the feed stream comprising an exhaust stream produced when the fuel is combusted in the combustion system Part of: passing the exhaust gas stream through a carbon dioxide capture system to remove carbon dioxide therein; and adjusting the amount of the feed stream directed to the combustion system to maintain the exhaust gas stream - the carbon oxide concentration is between 1% and 6% by volume Within the volume % range and the carbon dioxide capture system operates at an energy load of 千4 GJ/mm to 3 〇G, and manages the energy consumption of the CO2 capture system. The method of claim 8, wherein the exhaust gas stream maintains a carbon dioxide concentration in the range of 12 Torr/° to 46 vol%. The method of Item 8, wherein the exhaust gas stream maintains a carbon dioxide concentration of from 3 vol% to 5 〇. In the range of 0. In the method of the monthly claim 8, wherein the carbon dioxide capture system is at 1.4 thousand ", 'Aton-carbonized to 2.5 GJ/g Carbon dioxide negative energy 159829.doc 201229439 carrier operating. 12. The method of claim 8, further comprising: passing the exhaust stream through a desulfurization system located downstream of the combustion system and upstream of the carbon dioxide capture system to remove sulfur oxides from the exhaust stream. 13. The method of claim 12, further comprising: directing the portion of the exhaust stream from a location selected from the group consisting of a location upstream of the desulfurization system, a location downstream of the desulfurization system, and combinations thereof to form the feed Stream. 14. The method of claim 8, wherein the feed stream further comprises an oxidant stream and a fresh air stream. 15. The method of claim 14, further comprising: generating the oxidant stream in an oxygen generating unit. A method of managing energy usage of a carbon dioxide capture system, the method comprising: providing a fuel and a feed stream comprising oxygen to a combustion system, the feed stream comprising a portion of the exhaust stream produced when the fuel is combusted in the combustion system Passing the exhaust gas stream through a carbon dioxide capture system to remove carbon dioxide therein; adjusting the feed to the combustion system to also feed the amount of turbulence so that the exhaust gas stream has a carbon dioxide concentration of between 1% and 6% Within the range of volume %; and adjusting the amount of at least one of the oxygen stream introduced into the feed stream or the portion of the exhaust stream to maintain the oxygen concentration of the feed stream. Volume 159829.doc 201229439% to 90% by volume, and the carbon dioxide capture system operates at an energy load of h4 Gigajoules/metric ton of carbon dioxide to 3.0 Gigajoules/metric ton of carbon dioxide to manage the energy usage of the carbon dioxide capture system Thereby managing the energy usage of the carbon dioxide capture system. 17. The method of claim 16 wherein the exhaust stream maintains a carbon dioxide concentration in the range of 40% to 60% by volume and the feed stream maintains the oxygen concentration in the range of 12% to 46% by volume. The method of claim 16, wherein the carbon dioxide capture system operates at an energy load of a bucket of Gigajoules per metric ton of carbon dioxide to 2.5 GHz of metric ton of metric ton of carbon dioxide. The method of claim 6, further comprising: passing the exhaust stream through a desulfurization system located downstream of the combustion system and upstream of the carbon dioxide capture system to remove sulfur oxides from the exhaust stream. 2. The method of claim 19, further comprising: directing the portion of the exhaust stream from a location selected from the group consisting of a location upstream of the desulfurization system, a location downstream of the desulfurization system, and combinations thereof to form the portion Feed stream. 2 1 · Please ask for ash. t, the method ' wherein the feed stream further comprises an oxidant stream and a fresh air stream. 22. As requested. The method further comprising: generating the oxidant stream in an oxygen generating unit. 159829.doc
TW100142576A 2010-11-22 2011-11-21 System and method of managing energy utilized in a flue gas processing system TW201229439A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/951,219 US20120129113A1 (en) 2010-11-22 2010-11-22 System and method of managing energy utilized in a flue gas processing system

Publications (1)

Publication Number Publication Date
TW201229439A true TW201229439A (en) 2012-07-16

Family

ID=44906472

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100142576A TW201229439A (en) 2010-11-22 2011-11-21 System and method of managing energy utilized in a flue gas processing system

Country Status (3)

Country Link
US (1) US20120129113A1 (en)
TW (1) TW201229439A (en)
WO (1) WO2012071125A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103791488A (en) * 2012-10-26 2014-05-14 阿尔斯通技术有限公司 Arrangement of a flue gas treatment system and a combustion device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9518734B2 (en) 2013-01-28 2016-12-13 General Electric Technology Gmbh Fluid distribution and mixing grid for mixing gases

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH587444A5 (en) * 1975-12-15 1977-04-29 Fascione Pietro
US4718361A (en) * 1986-11-21 1988-01-12 The United States Of America As Represented By The Department Of Energy Alkali injection system with controlled CO2 /O2 ratios for combustion of coal
US5195883A (en) * 1992-04-01 1993-03-23 Aqua-Chem, Inc. Flue gas recirculation system with fresh air purge for burners
US5724805A (en) * 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
US6095792A (en) * 1998-08-21 2000-08-01 Texaco Inc. Flue gas recirculation system and method
US6574962B1 (en) * 2001-11-23 2003-06-10 Justin Chin-Chung Hsu KOH flue gas recirculation power plant with waste heat and byproduct recovery
US6702570B2 (en) * 2002-06-28 2004-03-09 Praxair Technology Inc. Firing method for a heat consuming device utilizing oxy-fuel combustion
US6776609B1 (en) * 2003-06-26 2004-08-17 Alzeta Corporation Apparatus and method of operation for burners that use flue gas recirculation (FGR)
DK1781400T3 (en) * 2004-08-06 2013-09-23 Alstom Technology Ltd Combustion gas purification including CO2 removal
US7350471B2 (en) * 2005-03-01 2008-04-01 Kalex Llc Combustion system with recirculation of flue gas
US7690201B2 (en) * 2005-11-07 2010-04-06 Veritask Energy Systems, Inc. Method of efficiency and emissions performance improvement for the simple steam cycle
US7384452B2 (en) * 2005-12-09 2008-06-10 Praxair Technology, Inc. Fluid heating method
DE602007011124D1 (en) * 2006-02-07 2011-01-27 Colt Engineering Corp Carbon dioxide enriched flue gas injection for hydrocarbon recovery
US8088196B2 (en) * 2007-01-23 2012-01-03 Air Products And Chemicals, Inc. Purification of carbon dioxide
US8084010B2 (en) * 2008-04-14 2011-12-27 Plasma Energy Technologies Inc. Coal/coke/heavy residual oil boiler with sulfur and carbon dioxide capture and recovery
JP5178453B2 (en) * 2008-10-27 2013-04-10 株式会社日立製作所 Oxyfuel boiler and control method for oxygen fired boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103791488A (en) * 2012-10-26 2014-05-14 阿尔斯通技术有限公司 Arrangement of a flue gas treatment system and a combustion device

Also Published As

Publication number Publication date
WO2012071125A3 (en) 2013-10-10
US20120129113A1 (en) 2012-05-24
WO2012071125A2 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
AU2003245739B2 (en) Steam-generating combustion system and method for emission control using oxygen enhancement
US7600479B2 (en) Mercury reduction system and method in combustion flue gas using staging
US7514052B2 (en) Method for removal of mercury emissions from coal combustion
JP5863885B2 (en) Boiler system and power plant including the same
ES2602988T3 (en) Desulfurization in a regenerative calcium cycle system
JP5107419B2 (en) Combustion control device for oxyfuel boiler
JP5183372B2 (en) Oxyfuel combustion boiler system and combustion method
JP2015529545A (en) Method for controlling acidic compounds produced from oxyfuel combustion processes
TW201233432A (en) System and method of managing energy utilized in a flue gas processing system
CN109647158B (en) Flue gas desulfurization and denitrification system of circulating fluidized bed boiler and treatment method thereof
CN101703875A (en) Oxidizing method for removing gaseous elemental mercury in boiler fume
TW201229439A (en) System and method of managing energy utilized in a flue gas processing system
Nihalani et al. Emission control technologies for thermal power plants
TW200906472A (en) Method and system for NOx removal
WO2024036884A1 (en) System and method for treating coal-fired flue gas
JP2011127597A (en) System and method for reducing sulfur compounds within fuel stream for turbomachine
US7833500B1 (en) Abatement of mercury in flue gas
CN111001292A (en) Coal chemical looping combustion demercuration device and method
JP2004204109A (en) Coal gasification combined facility
WO2023223591A1 (en) Waste incineration facility
Tan Pollutant formation and emissions from oxy-coal power plants
CN106338061B (en) A method of preparing low oxygen content gas
JP5728956B2 (en) Oxy-combustion boiler system
ES2357831T3 (en) COMBUSTION SYSTEM FOR VAPOR GENERATION AND PROCEDURE FOR EMISSION CONTROL THAT USES OXYGEN ENRICHMENT.
TW200944716A (en) Energy-saving and pollution-controlling combustion technology and its device