JP2004204109A - Coal gasification combined facility - Google Patents

Coal gasification combined facility Download PDF

Info

Publication number
JP2004204109A
JP2004204109A JP2002376284A JP2002376284A JP2004204109A JP 2004204109 A JP2004204109 A JP 2004204109A JP 2002376284 A JP2002376284 A JP 2002376284A JP 2002376284 A JP2002376284 A JP 2002376284A JP 2004204109 A JP2004204109 A JP 2004204109A
Authority
JP
Japan
Prior art keywords
coal
exhaust gas
catalyst layer
gas
denitration catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002376284A
Other languages
Japanese (ja)
Inventor
Takafuru Kobayashi
敬古 小林
Hiromi Ishii
弘実 石井
Takashi Fujii
貴 藤井
Toshiyuki Onishi
利幸 大西
Takashi Kurisaki
隆 栗崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002376284A priority Critical patent/JP2004204109A/en
Publication of JP2004204109A publication Critical patent/JP2004204109A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Abstract

<P>PROBLEM TO BE SOLVED: To provide coal gasification combined facility in which states of nitrogen oxide (NOx) and sulfur oxide (SOx), soot and dust, etc., can nearly be equivalent to those of exhaust gas of a combined facility equipped with a gas turbine for burning a fuel such as natural gas. <P>SOLUTION: The coal gasification combined facility is equipped with a gas turbine 6 in which a gas fuel gasified in a coal gasification furnace 1 is burned, a discharged heat recovery boiler 7 in which a exhaust gas of the gas turbine 6 fed is thermally recovered and a denitration catalyst 25 is provided in a smoke passage and an activated carbon treatment means 32 in which the discharged gas thermally recovered by the exhaust heat-recovering boiler 7 is introduced and a catalyst layer 33 of an activated carbon fiber layer is provided. The coal gasification combined facility enables removal of soot and dust and sulfur oxide (SOx) by the catalyst layer 33 of the exhaust gas passing through the exhaust heat recovering boiler 7 and reduces soot and dust and the sulfur oxide (SOx) of the exhaust gas and improves the environmental performance. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、石炭をガス化した燃料を燃焼させるガスタービンを備えた石炭ガス化コンバインド設備に関する。
【0002】
【従来の技術】
石炭をガス化した燃料を燃焼させるガスタービンを備えた石炭ガス化コンバインド設備が知られている。石炭ガス化コンバインド設備は、ガス化炉で石炭がガス化され、ガス化されたガス化燃料は除塵フィルタで除塵された後に脱硫装置で脱硫されてガスタービンに送られる。ガスタービンの排ガスは排熱回収ボイラで熱回収され、大気に放出されるようになっている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平7−247807号公報
【0004】
【発明が解決しようとする課題】
近年、環境問題が重視される傾向にあり、排ガス中の窒素酸化物(NOx ) や硫黄酸化物(SOx ) を一段と高いレベルで除去する必要が生じてきているのが現状である。
【0005】
本発明は上記状況に鑑みてなされたもので、石炭をガス化した燃料を燃焼させるガスタービンを備えた石炭ガス化コンバインド設備であっても、窒素酸化物(NOx ) や硫黄酸化物(SOx ) 、煤塵等の状態を、天然ガス等の燃料を燃焼させるガスタービンを備えたコンバインド設備の排ガスと略同等にすることができる石炭ガス化コンバインド設備を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するための本発明の石炭ガス化コンバインド設備は、
石炭をガス化する石炭ガス化炉と、
石炭ガス化炉でガス化されたガス燃料が燃焼されるガスタービンと、
ガスタービンの排ガスが送られて熱回収され煙道に脱硝手段を備えた排熱回収ボイラと、
排熱回収ボイラの途中から取り出される排ガスが送られ石炭を粉砕すると共に微粉炭を乾燥させる微粉炭乾燥手段と、
微粉炭乾燥手段で乾燥させた微粉炭を分離して石炭ガス化炉に供給するバグフィルタと、
バグフィルタを通過した排ガスが流通する活性炭素繊維層の触媒を備えた活性炭素処理手段と、
活性炭素処理手段からの排ガスを排熱回収ボイラで熱回収された排ガスに合流される合流手段と
を備えたことを特徴とする。
【0007】
そして、請求項1に記載の石炭ガス化コンバインド設備において、
脱硝手段は、上流側から第1脱硝触媒層と第2脱硝触媒層とを設け、第1脱硝触媒層と第2脱硝触媒層の間にアンモニア分解触媒層を設け、第1脱硝触媒層の入口に排ガス中の窒素酸化物(NOx ) の反応量以上のアンモニアを添加するアンモニア分解型脱硝触媒であることを特徴とする石炭ガス化コンバインド設備。
【0008】
上記目的を達成するための本発明の石炭ガス化コンバインド設備は、
石炭をガス化する石炭ガス化炉と、
石炭ガス化炉でガス化されたガス化燃料が燃焼されるガスタービンと、
ガスタービンの排ガスが送られて熱回収され煙路に脱硝手段を備えた排熱回収ボイラと、
排熱回収ボイラで熱回収された排ガスが導入され活性炭素繊維層の触媒を備えた活性炭素処理手段と
を備えたことを特徴とする。
【0009】
そして、請求項3に記載の石炭ガス化コンバインド設備において、
脱硝手段は、上流側から第1脱硝触媒層と第2脱硝触媒層とを設け、第1脱硝触媒層と第2脱硝触媒層の間にアンモニア分解触媒層を設け、第1脱硝触媒層の入口に排ガス中の窒素酸化物(NOx ) の反応量以上のアンモニアを添加するアンモニア分解型脱硝触媒である
ことを特徴とする。
【0010】
また、請求項3もしくは4に記載の石炭ガス化コンバインド設備において、
排熱回収ボイラの途中から取り出される排ガスが送られ石炭を粉砕すると共に微粉炭を乾燥させる微粉炭手段と、
微粉炭手段で乾燥させた微粉炭を分離して石炭ガス化炉に供給するとともに通過した排ガスを排熱回収ボイラの排ガスに合流させるバグフィルタと
を備えたことを特徴とする。
【0011】
【発明の実施の形態】
図1には本発明の第1実施形態例に係る石炭ガス化コンバインド設備の概略系統、図2には活性炭素処理手段の概略構成を示してある。
【0012】
図1に示すように、粉砕された石炭をガス化する石炭ガス化炉1が備えられ、石炭ガス化炉1には微粉炭乾燥手段としての微粉炭機2で粉砕されてバグフィルタ3で捕集された微粉炭が供給される。
【0013】
石炭ガス化炉1でガス化されたガス燃料(石炭ガス)G1は集塵フィルタ4で集塵された後脱硫装置5で脱硫される。集塵及び脱硫された石炭ガスG1はガスタービン6に送られ、ガスタービン6では石炭ガスG1が図示しない燃焼器で圧縮空気と共に燃焼されて燃焼ガスにより駆動される。
【0014】
ガスタービン6からの排気ガスG2は排熱回収ボイラ7で熱回収され、煙突12から大気に放出される。排熱回収ボイラ7の煙道には脱硝手段としての脱硝触媒11が備えられている。
【0015】
脱硝触媒11は、例えば、上流側から第1脱硝触媒層と第2脱硝触媒層とを設け、第1脱硝触媒層と第2脱硝触媒層の間にアンモニア分解触媒層を設け、第1脱硝触媒層の入口に排ガス中の窒素酸化物(NOx ) の反応量以上のアンモニアを添加するアンモニア分解型脱硝触媒が適用される。アンモニア分解型脱硝触媒を適用することにより、排ガス中の硫黄酸化物(SOx ) と残留アンモニアで生成される酸性硫安を大幅に低減することができる。このため、後行程で希硫酸に石灰スラリーを供給して石膏を析出させる場合、石膏品質を向上させることが可能になる。
【0016】
排熱回収ボイラ7の途中から排ガスG3(例えば300℃)が取り出されて微粉炭機2に送られ、粉砕された石炭が乾燥されてバグフィルタ3に送られる。バグフィルタ3からの排ガスG4は活性炭素繊維層の触媒を備えた活性炭素処理手段8に送られ、活性炭素処理手段8で除塵及び脱硫されて合流手段としてのブロア9により排熱回収ボイラ7の排気ガスに合流される。
【0017】
図2に基づいて活性炭素処理手段8を説明する。
【0018】
活性炭素処理手段8は、内部に活性炭素繊維層で形成される触媒層15を備えた脱硫塔16を有し、触媒層15には硫酸生成用の水が上部の散水ノズル17から供給される。散水ノズル17には水タンク18からの水(工業用水)がポンプ19を介して供給される。バグフィルタ3からの排ガスは冷却水が供給されて飽和状態(例えば50℃)にされて導入口20から脱硫塔16に導入される。水が上部から散布された触媒層15の内部に排ガスを通過させることにより、排ガスからSOx を反応除去する。触媒層15を通過した排ガスは排出口21から排出される。
【0019】
触媒層15の活性炭素繊維層の表面では、例えば、以下の反応により脱硫反応が生じる。即ち、
(1) 触媒槽15の活性炭素繊維層への二酸化硫黄SOの吸着。
(2) 吸着した二酸化硫黄SOと排煙中の酸素O(別途供給することも可)との反応による三酸化硫黄SO3への酸化。
(3) 酸化した三酸化硫黄SOの水HO への溶解による硫酸HSOの生成。
(4) 生成された硫酸HSOの活性炭素繊維層からの離脱。
【0020】
この時の反応式は以下の通りである。
SO+1/2O+HO →HSO
【0021】
反応除去された硫酸HSOはそのまま使用されたり、石灰スラリーが供給されて石膏を析出させる等される。
【0022】
上述した石炭ガス化コンバインド設備は、バグフィルタ3の後流に活性炭素繊維層で形成される触媒層15を備えた活性炭素処理手段8を設置したので、触媒層15による煤塵及び硫黄酸化物(SOx ) の除去が可能になる。このため、バグフィルタ3の排気の煤塵及び硫黄酸化物(SOx ) が低減し、環境性能が向上する。また、バグフィルタ3が破損した場合であっても、煙突12の入口の煤塵及び硫黄酸化物(SOx ) の上昇が少ないので、プラントの運転継続が可能になり、信頼性が向上する。
【0023】
バグフィルタ3の後流に活性炭素処理手段8を設置したことで、排熱回収ボイラ7の入口のガス量に対して微粉炭機2に送られる排ガスG3の割合(例えば10%)の分の煤塵及び硫黄酸化物(SOx ) を低減することが可能になる。
【0024】
バグフィルタ3の出口の煤塵濃度が、例えば、通常10mg/Nm度であるとした場合、バグフィルタ3が破損した際の煤塵濃度は数十から数百mg/Nm度程度に上昇し、煙突12の入口の煤塵濃度(制限値は例えば20mg/Nm)が高くなり、運転継続ができなくなる。活性炭素処理手段8を設置したことにより、例えば、98%程度が除塵されて実質的に煙突12の入口の煤塵濃度は上昇せず、プラントの運転継続が可能になる。
【0025】
また、微粉炭機2で石炭中の水分が蒸発するため、微粉炭機2の出口は低温となり(例えば、80℃)、活性炭素処理手段8に入る排ガスに供給する冷却水の流量を少なくすることができる。
【0026】
図3に基づいて本発明の第2実施形態例を説明する。
【0027】
図3には本発明の第2実施形態例に係る石炭ガス化コンバインド設備の概略系統を示してある。尚、図1に示した部材と同一部材には同一符号を付してある。
【0028】
図3に示すように、粉砕された石炭をガス化する石炭ガス化炉1が備えられ、石炭ガス化炉1には微粉炭手段としての微粉炭機2で粉砕されてバグフィルタ3で捕集された微粉炭が供給される。
【0029】
石炭ガス化炉1でガス化されたガス化燃料(石炭ガス)G1は集塵フィルタ4で集塵された後脱硫装置5で脱硫される。集塵及び脱硫された石炭ガスG1はガスタービン6に送られ、ガスタービン6では石炭ガスG1が図示しない燃焼器で圧縮空気と共に燃焼されて燃焼ガスにより駆動される。
【0030】
ガスタービン6からの排気ガスG2は排熱回収ボイラ7で熱回収され、排熱回収ボイラ7の煙道には脱硝手段としての脱硝触媒25が備えられている。
【0031】
排熱回収ボイラ7で熱回収を行なった排気ガスは、ガスガスヒータ31で熱交換されて活性炭素処理手段32に送られる。活性炭素処理手段32は、基本的に図1に示した活性炭素処理手段8と同じ構成である。
【0032】
微粉炭機2には排熱回収ボイラ7の途中から排気が供給され、バグフィルタ3からの排気はガスガスヒータ31の上流側に合流される。
【0033】
即ち、活性炭素処理手段32は、内部に活性炭素繊維層で形成される触媒層33を備えた脱硫塔34を有し、触媒層33には硫酸生成用の水が上部の散水ノズル35から供給される。散水ノズル35には水タンク36からの水(工業用水)がポンプ37を介して供給される。
【0034】
ガスガスヒータ31で熱交換された排ガスは冷却水が供給されて導入口38から脱硫塔34に導入される。水が上部から散布された触媒層33の内部に排ガスを通過させることにより、排ガスからSOx を反応除去する。触媒層33を通過した排ガスは排出口21から排出され、ガスガスヒータ31で熱交換されて煙突12から大気に放出される。
【0035】
触媒層33の活性炭素繊維層の表面では、前述と同様に脱硫反応が生じる。
即ち、
SO+1/2O+HO →HSO
の反応によりSOx が反応除去され、反応除去された硫酸HSOはそのまま使用されたり、石灰スラリーが供給されて石膏を析出させる等される。
【0036】
上述した石炭ガス化コンバインド設備は、排熱回収ボイラ7の後流に活性炭素繊活性炭素繊維層で形成される触媒層33を備えた活性炭素処理手段32を設置したので、大気に放出される排ガス中の煤塵及び硫黄酸化物(SOx ) を低減することが可能になり、煤塵及び硫黄酸化物(SOx ) のレベルを、例えば、天然ガス燃料を燃焼させた際の状態と略同程度にすることができる。
【0037】
図4乃至図6に基づいて本発明の第3実施形態例を説明する。
【0038】
図4には本発明の第3実施形態例に係る石炭ガス化コンバインド設備の概略系統、図5にはアンモニア分解型脱硝触媒の概略構成、図6にはアンモニア分解型脱硝触媒の特性を示してある。尚、図3に示した部材と同一部材には同一符号を付して重複する説明は省略してある。
【0039】
図4に示すように、第3実施形態例に係る石炭ガス化コンバインド設備は、図3に示した石炭ガス化コンバインド設備に対し、排熱回収ボイラ7の煙道に脱硝手段としてアンモニア分解型脱硝触媒41が備えられている。
【0040】
アンモニア分解型脱硝触媒41は、図5に示すように、上流側から第1脱硝触媒層42と第2脱硝触媒層43とが設けられ、第1脱硝触媒層42と第2脱硝触媒層43の間にアンモニア分解触媒層44が設けられている。そして、第1脱硝触媒層42の入口に排ガス中の窒素酸化物(NOx ) の反応量以上のアンモニア(NH3)が添加されるようになっている。
【0041】
即ち、第1脱硝触媒層42に窒素酸化物(NOx ) の反応等量以上のアンモニア(NH)を添加して第1脱硝触媒層42で90%以上の脱硝を行い、第1脱硝触媒層42から流出する未反応NHをアンモニア分解触媒層44で分解させて下流の第2脱硝触媒層43の入口のNOx ,NH濃度を調整し、第2脱硝触媒層43の出口で窒素酸化物(NOx ) 及びアンモニア(NH)を1ppm 以下のレベルにする。
【0042】
図6に示すように、排ガス中に含まれるNOx に対するNHの比率(モル比)を1よりも高くすると、図中●印のラインで示すように、出口側のNOx の濃度を低くすることができ、図中■印のラインで示すように、出口側のNH3 の濃度を略零にすることができる。従って、第1脱硝触媒層42に窒素酸化物(NOx )の反応等量以上のアンモニア(NH)を添加することで、NOx ,NHが低レベル(1ppm 以下)になることが判る。
【0043】
アンモニア分解型脱硝触媒41によりNOx ,NHが低レベルにされた排ガスは、冷却水が供給されて導入口38から脱硫塔34に導入される。水が上部から散布された触媒層33の内部に排ガスを通過させることにより、排ガスからSOx を反応除去する。触媒層33を通過した排ガスは排出口21から排出され、ガスガスヒータ31で熱交換されて煙突12から大気に放出される。
【0044】
触媒層33の活性炭素繊維層の表面では、前述と同様に脱硫反応が生じる。
即ち、
SO+1/2O+HO →HSO
の反応によりSOx が反応除去され、反応除去された硫酸HSOはそのまま使用されたり、石灰スラリーが供給されて石膏を析出させる等される。
【0045】
上述した石炭ガス化コンバインド設備は、排熱回収ボイラ7にNOx ,NHを低レベルにするアンモニア分解型脱硝触媒41を設け、排熱回収ボイラ7の後流に活性炭素繊活性炭素繊維層で形成される触媒層33を備えた活性炭素処理手段32を設置したので、排ガス中の硫黄酸化物(SOx ) と残留アンモニアで生成される酸性硫安を大幅に低減した状態で、大気に放出される排ガス中の煤塵及び硫黄酸化物(SOx ) を低減することが可能になり、煤塵及び硫黄酸化物(SOx ) のレベルを、例えば、天然ガス燃料を燃焼させた際の状態と略同程度にすることができる。
【0046】
このため、反応除去された希硫酸を後行程で石灰スラリーを供給して石膏を析出させる場合、石膏品質を向上させることが可能になる。
【0047】
【発明の効果】
本発明の石炭ガス化コンバインド設備は、石炭をガス化する石炭ガス化炉と、石炭ガス化炉でガス化されたガス燃料が燃焼されるガスタービンと、ガスタービンの排ガスが送られて熱回収され煙道に脱硝手段を備えた排熱回収ボイラと、排熱回収ボイラの途中から取り出される排ガスが送られ石炭を粉砕すると共に微粉炭を乾燥させる微粉炭乾燥手段と、微粉炭乾燥手段で乾燥させた微粉炭を分離して石炭ガス化炉に供給するバグフィルタと、バグフィルタを通過した排ガスが流通する活性炭素繊維層の触媒を備えた活性炭素処理手段と、活性炭素処理手段からの排ガスを排熱回収ボイラで熱回収された排ガスに合流される合流手段とを備えたので、バグフィルタを通過した排ガスの活性炭素繊維層による煤塵及び硫黄酸化物(SOx ) の除去が可能になる。このため、バグフィルタの排気の煤塵及び硫黄酸化物(SOx ) が低減し、環境性能が向上する。また、バグフィルタが破損した場合であっても、硫黄酸化物(SOx ) の上昇が少ないので、プラントの運転継続が可能になり、信頼性が向上する。
【0048】
また、本発明の石炭ガス化コンバインド設備は、請求項1に記載の石炭ガス化コンバインド設備において、脱硝手段は、上流側から第1脱硝触媒層と第2脱硝触媒層とを設け、第1脱硝触媒層と第2脱硝触媒層の間にアンモニア分解触媒層を設け、第1脱硝触媒層の入口に排ガス中の窒素酸化物(NOx ) の反応量以上のアンモニアを添加するアンモニア分解型脱硝触媒であるので、排ガス中の硫黄酸化物(SOx ) と残留アンモニアで生成される酸性硫安を大幅に低減することが可能になる。
【0049】
本発明の石炭ガス化コンバインド設備は、石炭をガス化する石炭ガス化炉と、石炭ガス化炉でガス化されたガス燃料が燃焼されるガスタービンと、ガスタービンの排ガスが送られて熱回収され煙路に脱硝手段を備えた排熱回収ボイラと、排熱回収ボイラで熱回収された排ガスが導入され活性炭素繊維層の触媒を備えた活性炭素処理手段とを備えたので、
排熱回収ボイラを通過した排ガスの活性炭素繊維層による煤塵及び硫黄酸化物(SOx ) の除去が可能になる。このため、排気の煤塵及び硫黄酸化物(SOx ) が低減し、環境性能が向上する。
【0050】
また、本発明の石炭ガス化コンバインド設備は、請求項3に記載の石炭ガス化コンバインド設備において、脱硝手段は、上流側から第1脱硝触媒層と第2脱硝触媒層とを設け、第1脱硝触媒層と第2脱硝触媒層の間にアンモニア分解触媒層を設け、第1脱硝触媒層の入口に排ガス中の窒素酸化物(NOx ) の反応量以上のアンモニアを添加するアンモニア分解型脱硝触媒であるので、排ガス中の硫黄酸化物(SOx ) と残留アンモニアで生成される酸性硫安を大幅に低減することが可能になる。
【図面の簡単な説明】
【図1】本発明の第1実施形態例に係る石炭ガス化コンバインド設備の概略系統図。
【図2】活性炭素処理手段の概略構成図。
【図3】本発明の第2実施形態例に係る石炭ガス化コンバインド設備の概略系統図。
【図4】本発明の第3実施形態例に係る石炭ガス化コンバインド設備の概略系統図。
【図5】アンモニア分解型脱硝触媒の概略構成図。
【図6】アンモニア分解型脱硝触媒の特性を表すグラフ。
【符号の説明】
1 石炭ガス化炉
2 微粉炭機
3 バグフィルタ
4 集塵フィルタ
5 脱硫装置
6 ガスタービン
7 排熱回収ボイラ
8,32 活性炭素処理手段
11 脱硝触媒
12 煙突
15,33 触媒層
16,34 脱硫塔
17,35 散水ノズル
18,36 水タンク
19,37 ポンプ
20,38 導入口
21 排出口
25 脱硝触媒
31 ガスガスヒータ
41 アンモニア分解型脱硝触媒
42 第1脱硝触媒層
43 第2脱硝触媒層
44 アンモニア分解触媒層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coal gasification combined facility including a gas turbine that burns a fuel obtained by gasifying coal.
[0002]
[Prior art]
BACKGROUND ART A coal gasification combined facility including a gas turbine that burns a fuel obtained by gasifying coal is known. In a coal gasification combined facility, coal is gasified in a gasification furnace, and the gasified gasified fuel is dust-removed by a dust filter and then desulfurized by a desulfurization device and sent to a gas turbine. Exhaust gas from a gas turbine is recovered by a waste heat recovery boiler and released to the atmosphere (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-7-247807
[Problems to be solved by the invention]
In recent years, environmental issues have tended to be emphasized, and at present, it has become necessary to remove nitrogen oxides (NOx) and sulfur oxides (SOx) in exhaust gas at higher levels.
[0005]
The present invention has been made in view of the above circumstances, and even in a coal gasification combined facility equipped with a gas turbine that burns fuel obtained by gasifying coal, it is also possible to use nitrogen oxides (NOx) and sulfur oxides (SOx). It is an object of the present invention to provide a coal gasification combined facility capable of making the state of dust and the like substantially the same as the exhaust gas of a combined facility provided with a gas turbine for burning fuel such as natural gas.
[0006]
[Means for Solving the Problems]
The coal gasification combined facility of the present invention for achieving the above object,
A coal gasifier for gasifying coal,
A gas turbine in which gas fuel gasified in the coal gasifier is burned,
An exhaust heat recovery boiler, which receives the exhaust gas of the gas turbine and recovers heat, and has a denitration means in the flue;
Exhaust gas taken out of the exhaust heat recovery boiler is sent, pulverized coal drying means for pulverizing coal and drying pulverized coal while sending it.
A bag filter for separating the pulverized coal dried by the pulverized coal drying means and supplying it to the coal gasifier,
Activated carbon processing means provided with an activated carbon fiber layer catalyst through which exhaust gas passing through the bag filter flows,
Combining means for combining the exhaust gas from the activated carbon processing means with the exhaust gas heat recovered by the waste heat recovery boiler.
[0007]
And in the coal gasification combined facility of claim 1,
The denitration means includes a first denitration catalyst layer and a second denitration catalyst layer provided from the upstream side, an ammonia decomposition catalyst layer provided between the first and second denitration catalyst layers, and an inlet of the first denitration catalyst layer. A coal gasification combined facility characterized in that it is an ammonia decomposition type denitration catalyst in which ammonia is added in an amount equal to or greater than the reaction amount of nitrogen oxides (NOx) in exhaust gas.
[0008]
The coal gasification combined facility of the present invention for achieving the above object,
A coal gasifier for gasifying coal,
A gas turbine in which gasified fuel gasified in the coal gasifier is burned,
An exhaust heat recovery boiler, which receives the exhaust gas of the gas turbine and recovers heat, and has a denitration means in the flue;
And an activated carbon treatment means provided with a catalyst for the activated carbon fiber layer into which the exhaust gas heat recovered by the exhaust heat recovery boiler is introduced.
[0009]
And in the coal gasification combined facility of claim 3,
The denitration means includes a first denitration catalyst layer and a second denitration catalyst layer provided from the upstream side, an ammonia decomposition catalyst layer provided between the first and second denitration catalyst layers, and an inlet of the first denitration catalyst layer. It is characterized in that it is an ammonia decomposition type denitration catalyst in which ammonia is added in an amount equal to or more than the reaction amount of nitrogen oxides (NOx) in the exhaust gas.
[0010]
Further, in the coal gasification combined facility according to claim 3 or 4,
Exhaust gas taken out from the middle of the heat recovery boiler is sent to pulverize coal and dry pulverized coal while pulverized coal means,
The pulverized coal dried by the pulverized coal means is separated and supplied to a coal gasification furnace, and a bag filter is provided for merging the passed exhaust gas with the exhaust gas of the exhaust heat recovery boiler.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a schematic system of a coal gasification combined facility according to a first embodiment of the present invention, and FIG. 2 shows a schematic configuration of activated carbon treatment means.
[0012]
As shown in FIG. 1, a coal gasifier 1 for gasifying pulverized coal is provided. The coal gasifier 1 is pulverized by a pulverized coal machine 2 as pulverized coal drying means and captured by a bag filter 3. The collected pulverized coal is supplied.
[0013]
The gas fuel (coal gas) G1 gasified in the coal gasifier 1 is collected by a dust filter 4 and then desulfurized by a desulfurizer 5. The collected and desulfurized coal gas G1 is sent to the gas turbine 6, where the coal gas G1 is burned with compressed air in a combustor (not shown) and driven by the combustion gas.
[0014]
Exhaust gas G2 from the gas turbine 6 is recovered in the exhaust heat recovery boiler 7, and is discharged from the chimney 12 to the atmosphere. The flue of the exhaust heat recovery boiler 7 is provided with a denitration catalyst 11 as denitration means.
[0015]
The denitration catalyst 11 includes, for example, a first denitration catalyst layer and a second denitration catalyst layer provided from the upstream side, an ammonia decomposition catalyst layer provided between the first denitration catalyst layer and the second denitration catalyst layer, and a first denitration catalyst. An ammonia-decomposition type denitration catalyst is added to the inlet of the bed in which ammonia is added in an amount equal to or more than the reaction amount of nitrogen oxides (NOx) in the exhaust gas. By applying the ammonia decomposition type denitration catalyst, it is possible to significantly reduce the amount of acidic ammonium sulfate generated by sulfur oxide (SOx) and residual ammonia in exhaust gas. For this reason, when gypsum is precipitated by supplying lime slurry to dilute sulfuric acid in a later process, gypsum quality can be improved.
[0016]
Exhaust gas G3 (for example, 300 ° C.) is taken out of the exhaust heat recovery boiler 7 and sent to the pulverized coal machine 2, where the pulverized coal is dried and sent to the bag filter 3. Exhaust gas G4 from the bag filter 3 is sent to an activated carbon treatment means 8 provided with an activated carbon fiber layer catalyst, and is subjected to dust removal and desulfurization by the activated carbon treatment means 8, and is supplied to a waste heat recovery boiler 7 by a blower 9 as a joining means. Combined with exhaust gas.
[0017]
The activated carbon processing means 8 will be described based on FIG.
[0018]
The activated carbon treatment means 8 has a desulfurization tower 16 provided with a catalyst layer 15 formed of an activated carbon fiber layer inside. Water for producing sulfuric acid is supplied to the catalyst layer 15 from a watering nozzle 17 on the upper side. . Water (industrial water) from a water tank 18 is supplied to the watering nozzle 17 via a pump 19. Exhaust gas from the bag filter 3 is supplied with cooling water to be saturated (for example, 50 ° C.), and is introduced into the desulfurization tower 16 from the inlet 20. The SOx is reacted and removed from the exhaust gas by passing the exhaust gas through the inside of the catalyst layer 15 in which water is sprayed from above. The exhaust gas that has passed through the catalyst layer 15 is discharged from the discharge port 21.
[0019]
On the surface of the activated carbon fiber layer of the catalyst layer 15, for example, a desulfurization reaction occurs by the following reaction. That is,
(1) Adsorption of sulfur dioxide SO 2 on the activated carbon fiber layer of the catalyst tank 15.
(2) Oxidation to sulfur trioxide SO 3 by the reaction between the adsorbed sulfur dioxide SO 2 and oxygen O 2 in the flue gas (can be supplied separately).
(3) Formation of sulfuric acid H 2 SO 4 by dissolving oxidized sulfur trioxide SO 3 in water H 2 O.
(4) Desorption of the generated sulfuric acid H 2 SO 4 from the activated carbon fiber layer.
[0020]
The reaction formula at this time is as follows.
SO 2 + 1 / 2O 2 + H 2 O → H 2 SO 4
[0021]
The sulfuric acid H 2 SO 4 removed by the reaction is used as it is, or a lime slurry is supplied to deposit gypsum.
[0022]
In the coal gasification combined facility described above, the activated carbon treatment means 8 provided with the catalyst layer 15 formed of the activated carbon fiber layer is installed downstream of the bag filter 3, so that the dust and sulfur oxides ( SOx) can be removed. For this reason, dust and sulfur oxides (SOx) in the exhaust gas from the bag filter 3 are reduced, and the environmental performance is improved. Further, even when the bag filter 3 is damaged, the rise of dust and sulfur oxides (SOx) at the entrance of the chimney 12 is small, so that the plant can be continuously operated and the reliability is improved.
[0023]
By installing the activated carbon treatment means 8 downstream of the bag filter 3, the ratio of the exhaust gas G3 sent to the pulverized coal machine 2 to the gas amount at the inlet of the exhaust heat recovery boiler 7 (for example, 10%) is provided. It is possible to reduce dust and sulfur oxides (SOx).
[0024]
Assuming that the dust concentration at the outlet of the bag filter 3 is, for example, normally 10 mg / Nm 3 degrees, the dust concentration when the bag filter 3 is damaged increases from several tens to several hundreds mg / Nm 3 degrees, The dust concentration at the inlet of the chimney 12 (the limit value is, for example, 20 mg / Nm 3 ) increases, and the operation cannot be continued. By installing the activated carbon treatment means 8, for example, about 98% of the dust is removed, and the dust concentration at the inlet of the chimney 12 does not substantially increase, and the operation of the plant can be continued.
[0025]
In addition, since the moisture in the coal is evaporated in the pulverized coal machine 2, the outlet of the pulverized coal machine 2 has a low temperature (for example, 80 ° C.), and the flow rate of the cooling water supplied to the exhaust gas entering the activated carbon treatment means 8 is reduced. be able to.
[0026]
A second embodiment of the present invention will be described with reference to FIG.
[0027]
FIG. 3 shows a schematic system of a coal gasification combined facility according to a second embodiment of the present invention. The same members as those shown in FIG. 1 are denoted by the same reference numerals.
[0028]
As shown in FIG. 3, a coal gasifier 1 for gasifying pulverized coal is provided. The coal gasifier 1 is pulverized by a pulverizer 2 as pulverized coal means and collected by a bag filter 3. The supplied pulverized coal is supplied.
[0029]
The gasified fuel (coal gas) G1 gasified in the coal gasifier 1 is collected by a dust filter 4 and then desulfurized by a desulfurizer 5. The collected and desulfurized coal gas G1 is sent to the gas turbine 6, where the coal gas G1 is burned with compressed air in a combustor (not shown) and driven by the combustion gas.
[0030]
Exhaust gas G2 from the gas turbine 6 is recovered by an exhaust heat recovery boiler 7, and the flue of the exhaust heat recovery boiler 7 is provided with a denitration catalyst 25 as denitration means.
[0031]
The exhaust gas having recovered heat in the exhaust heat recovery boiler 7 is subjected to heat exchange in a gas gas heater 31 and sent to an activated carbon processing means 32. The activated carbon processing means 32 has basically the same configuration as the activated carbon processing means 8 shown in FIG.
[0032]
Exhaust gas is supplied to the pulverized coal machine 2 from the middle of the exhaust heat recovery boiler 7, and the exhaust gas from the bag filter 3 is joined to the upstream side of the gas gas heater 31.
[0033]
That is, the activated carbon treatment means 32 has a desulfurization tower 34 provided with a catalyst layer 33 formed of an activated carbon fiber layer inside, and water for sulfuric acid generation is supplied to the catalyst layer 33 from an upper watering nozzle 35. Is done. Water (industrial water) from a water tank 36 is supplied to the watering nozzle 35 via a pump 37.
[0034]
The exhaust gas that has undergone heat exchange in the gas gas heater 31 is supplied with cooling water and introduced into the desulfurization tower 34 from the inlet 38. SOx is reacted and removed from the exhaust gas by passing the exhaust gas through the inside of the catalyst layer 33 in which water is sprayed from above. The exhaust gas that has passed through the catalyst layer 33 is discharged from the outlet 21, exchanges heat with the gas gas heater 31, and is discharged from the chimney 12 to the atmosphere.
[0035]
On the surface of the activated carbon fiber layer of the catalyst layer 33, a desulfurization reaction occurs as described above.
That is,
SO 2 + 1 / 2O 2 + H 2 O → H 2 SO 4
SOx is reacted and removed by the above reaction, and the sulfuric acid H 2 SO 4 removed by the reaction is used as it is, or a lime slurry is supplied to precipitate gypsum.
[0036]
In the above-mentioned coal gasification combined facility, since the activated carbon processing means 32 provided with the catalyst layer 33 formed of the activated carbon fiber activated carbon fiber layer is installed downstream of the exhaust heat recovery boiler 7, it is released to the atmosphere. It is possible to reduce dust and sulfur oxides (SOx) in exhaust gas, so that the levels of dust and sulfur oxides (SOx) are, for example, approximately the same as when natural gas fuel was burned be able to.
[0037]
A third embodiment of the present invention will be described with reference to FIGS.
[0038]
4 shows a schematic system of a coal gasification combined facility according to a third embodiment of the present invention, FIG. 5 shows a schematic configuration of an ammonia decomposition type denitration catalyst, and FIG. 6 shows characteristics of the ammonia decomposition type denitration catalyst. is there. The same members as those shown in FIG. 3 are denoted by the same reference numerals, and overlapping description is omitted.
[0039]
As shown in FIG. 4, the coal gasification combined facility according to the third embodiment is different from the coal gasification combined facility shown in FIG. A catalyst 41 is provided.
[0040]
As shown in FIG. 5, the ammonia decomposition type denitration catalyst 41 is provided with a first denitration catalyst layer 42 and a second denitration catalyst layer 43 from the upstream side, and the first denitration catalyst layer 42 and the second denitration catalyst layer 43 An ammonia decomposition catalyst layer 44 is provided therebetween. Ammonia (NH3) is added to the inlet of the first denitration catalyst layer 42 at a rate higher than the reaction amount of nitrogen oxides (NOx) in the exhaust gas.
[0041]
That is, the first denitration catalyst layer 42 is added with ammonia (NH 3 ) in an amount equal to or more than the reaction amount of nitrogen oxide (NOx), and the first denitration catalyst layer 42 is denitrated by 90% or more. The unreacted NH 3 flowing out of the catalyst layer 42 is decomposed by the ammonia decomposition catalyst layer 44 to adjust the concentration of NOx and NH 3 at the inlet of the downstream second denitration catalyst layer 43. (NOx) and ammonia (NH 3) to levels below 1 ppm.
[0042]
As shown in FIG. 6, when the ratio (molar ratio) of NH 3 to NOx contained in the exhaust gas is higher than 1, the concentration of NOx at the outlet side is reduced as indicated by the line marked with ● in the figure. Thus, the concentration of NH3 on the outlet side can be made substantially zero, as indicated by the line marked with a triangle in the figure. Therefore, by the first denitration catalyst layer 42 is added nitrogen oxide reaction equivalent or more of ammonia (NOx) (NH 3), it can be seen that NOx, is NH 3 becomes low level (1 ppm or less).
[0043]
The ammonia decomposition type denitration catalyst 41 NOx, the NH 3 gas, which is at a low level, the cooling water is introduced into the desulfurization tower 34 from the inlet 38 is supplied. SOx is reacted and removed from the exhaust gas by passing the exhaust gas through the inside of the catalyst layer 33 in which water is sprayed from above. The exhaust gas that has passed through the catalyst layer 33 is discharged from the outlet 21, exchanges heat with the gas gas heater 31, and is discharged from the chimney 12 to the atmosphere.
[0044]
On the surface of the activated carbon fiber layer of the catalyst layer 33, a desulfurization reaction occurs as described above.
That is,
SO 2 + 1 / 2O 2 + H 2 O → H 2 SO 4
SOx is reacted and removed by the above reaction, and the sulfuric acid H 2 SO 4 removed by the reaction is used as it is, or a lime slurry is supplied to precipitate gypsum.
[0045]
Coal gasification combined equipment described above, the exhaust heat recovery boiler 7 NOx, the provided ammonia decomposing type denitration catalyst 41 to the NH 3 in the low level, with activated carbon繊活carbon fiber layer on the downstream of the exhaust heat recovery boiler 7 Since the activated carbon treatment means 32 provided with the formed catalyst layer 33 is installed, the sulfur oxides (SOx) in the exhaust gas and the acidic ammonium produced by the residual ammonia are greatly reduced and released to the atmosphere. It is possible to reduce dust and sulfur oxides (SOx) in exhaust gas, so that the levels of dust and sulfur oxides (SOx) are, for example, approximately the same as when natural gas fuel was burned be able to.
[0046]
For this reason, when the gypsum is deposited by supplying the lime slurry to the dilute sulfuric acid removed by the reaction in a later process, it becomes possible to improve the gypsum quality.
[0047]
【The invention's effect】
The coal gasification combined facility of the present invention includes a coal gasifier for gasifying coal, a gas turbine in which gas fuel gasified in the coal gasifier is burned, and heat recovery by sending exhaust gas from the gas turbine. Exhaust heat recovery boiler provided with denitration means in flue gas, pulverized coal drying means for sending flue gas taken out from the middle of the exhaust heat recovery boiler to pulverize coal and dry pulverized coal, and drying with pulverized coal drying means A bag filter for separating separated pulverized coal and supplying it to a coal gasifier, an activated carbon treatment unit having an activated carbon fiber layer catalyst through which exhaust gas passing through the bag filter flows, and an exhaust gas from the activated carbon treatment unit And a merging means for merging with the exhaust gas heat recovered by the waste heat recovery boiler, so that dust and sulfur oxides (SOx) are removed by the activated carbon fiber layer of the exhaust gas passing through the bag filter. Possible to become. Therefore, dust and sulfur oxides (SOx) in the exhaust air of the bag filter are reduced, and the environmental performance is improved. Further, even when the bag filter is damaged, the rise in sulfur oxide (SOx) is small, so that the plant can be continuously operated, and the reliability is improved.
[0048]
Further, in the coal gasification combined facility of the present invention, in the coal gasification combined facility according to claim 1, the denitration means is provided with a first denitration catalyst layer and a second denitration catalyst layer from the upstream side, and the first denitration catalyst is provided. An ammonia decomposition type denitration catalyst in which an ammonia decomposition catalyst layer is provided between the catalyst layer and the second denitration catalyst layer and ammonia is added to the inlet of the first denitration catalyst layer in an amount not less than the reaction amount of nitrogen oxides (NOx) in the exhaust gas. Therefore, it is possible to significantly reduce the amount of ammonium ammonium sulfate generated by sulfur oxides (SOx) and residual ammonia in the exhaust gas.
[0049]
The coal gasification combined facility of the present invention includes a coal gasifier for gasifying coal, a gas turbine in which gas fuel gasified in the coal gasifier is burned, and heat recovery by sending exhaust gas from the gas turbine. The exhaust heat recovery boiler provided with denitration means in the flue and the activated carbon treatment means provided with the catalyst of the activated carbon fiber layer in which the exhaust gas heat recovered by the waste heat recovery boiler was introduced,
Dust and sulfur oxides (SOx) can be removed by the activated carbon fiber layer of the exhaust gas passing through the exhaust heat recovery boiler. For this reason, dust and sulfur oxides (SOx) of exhaust gas are reduced, and environmental performance is improved.
[0050]
Further, in the coal gasification combined facility of the present invention, in the coal gasification combined facility according to claim 3, the denitration means includes a first denitration catalyst layer and a second denitration catalyst layer from an upstream side, and the first denitration catalyst. An ammonia decomposition type denitration catalyst in which an ammonia decomposition catalyst layer is provided between the catalyst layer and the second denitration catalyst layer and ammonia is added to the inlet of the first denitration catalyst layer in an amount not less than the reaction amount of nitrogen oxides (NOx) in the exhaust gas. Therefore, it is possible to significantly reduce the amount of ammonium ammonium sulfate generated by sulfur oxides (SOx) and residual ammonia in the exhaust gas.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram of a coal gasification combined facility according to a first embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of activated carbon processing means.
FIG. 3 is a schematic system diagram of a coal gasification combined facility according to a second embodiment of the present invention.
FIG. 4 is a schematic system diagram of a coal gasification combined facility according to a third embodiment of the present invention.
FIG. 5 is a schematic configuration diagram of an ammonia decomposition type denitration catalyst.
FIG. 6 is a graph showing characteristics of an ammonia decomposition type denitration catalyst.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Coal gasifier 2 Pulverized coal machine 3 Bag filter 4 Dust collection filter 5 Desulfurizer 6 Gas turbine 7 Exhaust heat recovery boiler 8, 32 Active carbon treatment means 11 Denitration catalyst 12 Chimney 15, 33 Catalyst layer 16, 34 Desulfurization tower 17 , 35 Watering nozzle 18, 36 Water tank 19, 37 Pump 20, 38 Inlet 21 Outlet 25 Denitration catalyst 31 Gas gas heater 41 Ammonia decomposition type denitration catalyst 42 First denitration catalyst layer 43 Second denitration catalyst layer 44 Ammonia decomposition catalyst layer

Claims (5)

石炭をガス化する石炭ガス化炉と、
石炭ガス化炉でガス化されたガス燃料が燃焼されるガスタービンと、
ガスタービンの排ガスが送られて熱回収され煙道に脱硝手段を備えた排熱回収ボイラと、
排熱回収ボイラの途中から取り出される排ガスが送られ石炭を粉砕すると共に微粉炭を乾燥させる微粉炭乾燥手段と、
微粉炭乾燥手段で乾燥させた微粉炭を分離して石炭ガス化炉に供給するバグフィルタと、
バグフィルタを通過した排ガスが流通する活性炭素繊維層の触媒を備えた活性炭素処理手段と、
活性炭素処理手段からの排ガスを排熱回収ボイラで熱回収された排ガスに合流される合流手段と
を備えたことを特徴とする石炭ガス化コンバインド設備。
A coal gasifier for gasifying coal,
A gas turbine in which gas fuel gasified in the coal gasifier is burned,
Exhaust heat recovery boiler with exhaust gas from gas turbine sent and heat recovered and flue gas denitration means installed,
Exhaust gas taken out from the middle of the heat recovery boiler is sent, pulverized coal drying means for pulverizing coal and drying pulverized coal.
A bag filter for separating pulverized coal dried by pulverized coal drying means and supplying the separated coal to a coal gasifier;
Activated carbon processing means provided with an activated carbon fiber layer catalyst through which exhaust gas passing through the bag filter flows,
A coal gasification combined facility comprising: a merging means for merging exhaust gas from the activated carbon processing means with exhaust gas heat recovered by the waste heat recovery boiler.
請求項1に記載の石炭ガス化コンバインド設備において、
脱硝手段は、上流側から第1脱硝触媒層と第2脱硝触媒層とを設け、第1脱硝触媒層と第2脱硝触媒層の間にアンモニア分解触媒層を設け、第1脱硝触媒層の入口に排ガス中の窒素酸化物(NOx ) の反応量以上のアンモニアを添加するアンモニア分解型脱硝触媒であることを特徴とする石炭ガス化コンバインド設備。
The coal gasification combined facility according to claim 1,
The denitration means includes a first denitration catalyst layer and a second denitration catalyst layer provided from an upstream side, an ammonia decomposition catalyst layer provided between the first denitration catalyst layer and the second denitration catalyst layer, and an inlet of the first denitration catalyst layer. A coal gasification combined facility, characterized in that it is an ammonia decomposition type denitration catalyst in which ammonia is added to the exhaust gas in an amount not less than the reaction amount of nitrogen oxides (NOx).
石炭をガス化する石炭ガス化炉と、
石炭ガス化炉でガス化されたガス燃料が燃焼されるガスタービンと、
ガスタービンの排ガスが送られて熱回収され煙路に脱硝手段を備えた排熱回収ボイラと、
排熱回収ボイラで熱回収された排ガスが導入され活性炭素繊維層の触媒を備えた活性炭素処理手段と
を備えたことを特徴とする石炭ガス化コンバインド設備。
A coal gasifier for gasifying coal,
A gas turbine in which gas fuel gasified in the coal gasifier is burned,
An exhaust heat recovery boiler, in which the exhaust gas of the gas turbine is sent to recover heat and has a denitration means in its flue;
A combined coal gasification facility comprising: an activated carbon treatment unit that receives exhaust gas recovered by heat recovery from an exhaust heat recovery boiler and includes an activated carbon fiber layer catalyst.
請求項3に記載の石炭ガス化コンバインド設備において、
脱硝手段は、上流側から第1脱硝触媒層と第2脱硝触媒層とを設け、第1脱硝触媒層と第2脱硝触媒層の間にアンモニア分解触媒層を設け、第1脱硝触媒層の入口に排ガス中の窒素酸化物(NOx ) の反応量以上のアンモニアを添加するアンモニア分解型脱硝触媒である
ことを特徴とする石炭ガス化コンバインド設備。
The coal gasification combined facility according to claim 3,
The denitration means includes a first denitration catalyst layer and a second denitration catalyst layer provided from an upstream side, an ammonia decomposition catalyst layer provided between the first denitration catalyst layer and the second denitration catalyst layer, and an inlet of the first denitration catalyst layer. A coal gasification combined facility, characterized in that it is an ammonia decomposition type denitration catalyst in which ammonia is added to the exhaust gas in an amount not less than the reaction amount of nitrogen oxides (NOx).
請求項3もしくは4に記載の石炭ガス化コンバインド設備において、
排熱回収ボイラの途中から取り出される排ガスが送られ石炭を粉砕すると共に微粉炭を乾燥させる微粉炭手段と、
微粉炭手段で乾燥させた微粉炭を分離して石炭ガス化炉に供給するとともに通過した排ガスを排熱回収ボイラの排ガスに合流させるバグフィルタと
を備えたことを特徴とする石炭ガス化コンバインド設備。
In the coal gasification combined facility according to claim 3 or 4,
Exhaust gas taken out of the exhaust heat recovery boiler is sent to pulverize coal while pulverizing coal and drying pulverized coal,
A coal gasification combined facility comprising: a bag filter for separating pulverized coal dried by pulverized coal means, supplying the separated pulverized coal to a coal gasifier, and merging passed exhaust gas with exhaust gas of an exhaust heat recovery boiler. .
JP2002376284A 2002-12-26 2002-12-26 Coal gasification combined facility Pending JP2004204109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376284A JP2004204109A (en) 2002-12-26 2002-12-26 Coal gasification combined facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002376284A JP2004204109A (en) 2002-12-26 2002-12-26 Coal gasification combined facility

Publications (1)

Publication Number Publication Date
JP2004204109A true JP2004204109A (en) 2004-07-22

Family

ID=32813782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376284A Pending JP2004204109A (en) 2002-12-26 2002-12-26 Coal gasification combined facility

Country Status (1)

Country Link
JP (1) JP2004204109A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009108983A1 (en) * 2008-03-06 2009-09-11 Scheuch Gmbh System for cleaning the flue gases of a furnace
EP2132425A2 (en) 2007-04-06 2009-12-16 Babcock & Wilcox Power Generation Group, Inc. Method and apparatus for preparing pulverized coal used to produce synthesis gas
WO2010082359A1 (en) * 2009-01-14 2010-07-22 トヨタ自動車株式会社 Engine
WO2015064193A1 (en) * 2013-10-29 2015-05-07 株式会社エコ・サポート Gas turbine combined cycle power generation system
US9145849B2 (en) 2009-01-14 2015-09-29 Toyota Jidosha Kabushiki Kaisha Engine fueled by ammonia with selective reduction catalyst
US9688934B2 (en) 2007-11-23 2017-06-27 Bixby Energy Systems, Inc. Process for and processor of natural gas and activated carbon together with blower

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2132425A2 (en) 2007-04-06 2009-12-16 Babcock & Wilcox Power Generation Group, Inc. Method and apparatus for preparing pulverized coal used to produce synthesis gas
CN101688475A (en) * 2007-04-06 2010-03-31 巴布科克和威尔科克斯能量产生集团公司 Preparation is used to produce the method and apparatus of the fine coal of synthetic gas
EP2132425A4 (en) * 2007-04-06 2013-01-16 Babcock & Wilcox Power Generat Method and apparatus for preparing pulverized coal used to produce synthesis gas
US10119087B2 (en) 2007-11-23 2018-11-06 Bixby Energy Systems, Inc. Process for and processor of natural gas and activated carbon together with blower
US9688934B2 (en) 2007-11-23 2017-06-27 Bixby Energy Systems, Inc. Process for and processor of natural gas and activated carbon together with blower
WO2009108983A1 (en) * 2008-03-06 2009-09-11 Scheuch Gmbh System for cleaning the flue gases of a furnace
EP2378096A4 (en) * 2009-01-14 2012-06-27 Toyota Motor Co Ltd Engine
JP5062333B2 (en) * 2009-01-14 2012-10-31 トヨタ自動車株式会社 engine
CN102272427A (en) * 2009-01-14 2011-12-07 丰田自动车株式会社 Engine
CN102272427B (en) * 2009-01-14 2013-09-25 丰田自动车株式会社 Engine
US8943826B2 (en) 2009-01-14 2015-02-03 Toyota Jidosha Kabushiki Kaisha Engine
US9145849B2 (en) 2009-01-14 2015-09-29 Toyota Jidosha Kabushiki Kaisha Engine fueled by ammonia with selective reduction catalyst
EP2378096A1 (en) * 2009-01-14 2011-10-19 Toyota Jidosha Kabushiki Kaisha Engine
WO2010082359A1 (en) * 2009-01-14 2010-07-22 トヨタ自動車株式会社 Engine
WO2015064193A1 (en) * 2013-10-29 2015-05-07 株式会社エコ・サポート Gas turbine combined cycle power generation system

Similar Documents

Publication Publication Date Title
JP5863885B2 (en) Boiler system and power plant including the same
KR100734230B1 (en) Method and apparatus for removing mercury species from hot flue gas
US5313781A (en) Gasification-combined power plant
JP2005028210A (en) Exhaust gas treatment system
WO2014103682A1 (en) Exhaust gas processing equipment and gas turbine power generation system using same
CN206240299U (en) A kind of coke oven flue waste gas purification waste heat recovery apparatus
KR20180132194A (en) Integrated condenser capable of recovering latent heat and removing pollutants of exhaust gas and power generation system using pressurized oxygen combustion comprising the same
JP2012213744A (en) Apparatus and method for treating exhaust gas and coal upgrading process facility
EP0933516B1 (en) Gasification power generation process and equipment
JP2004204109A (en) Coal gasification combined facility
CN106178877A (en) A kind of coke oven flue waste gas purification waste heat recovery apparatus and technique
JP5161906B2 (en) Gas treatment method and gasification equipment in gasification equipment
JP4381130B2 (en) Gasification combined power generation system
JP5003887B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JP4508307B2 (en) Gas treatment method and gasification equipment in gasification equipment
JP3947892B2 (en) Sulfur content recovery method and gasification plant to which the sulfur content recovery method is applied
CN208703931U (en) Solid waste incineration flue gas processing system
JP4167799B2 (en) Waste treatment system
JP2000213371A (en) Gas turbine generating method and generating apparatus
JP5299600B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JP4020708B2 (en) Exhaust gas treatment method, exhaust gas treatment equipment and stoker-type incinerator
JP4658350B2 (en) Method and apparatus for reducing sulfur compounds
JP3868078B2 (en) Power generation equipment
JP2000053980A (en) Purification of gas
CN115445414A (en) Boiler flue gas treatment system and process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624