JP5728892B2 - motor - Google Patents

motor Download PDF

Info

Publication number
JP5728892B2
JP5728892B2 JP2010247571A JP2010247571A JP5728892B2 JP 5728892 B2 JP5728892 B2 JP 5728892B2 JP 2010247571 A JP2010247571 A JP 2010247571A JP 2010247571 A JP2010247571 A JP 2010247571A JP 5728892 B2 JP5728892 B2 JP 5728892B2
Authority
JP
Japan
Prior art keywords
speed reducer
rotor shaft
hole
peripheral surface
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010247571A
Other languages
Japanese (ja)
Other versions
JP2012100477A (en
Inventor
洋一 平川
洋一 平川
初田 匡之
匡之 初田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010247571A priority Critical patent/JP5728892B2/en
Priority to CN2011204350896U priority patent/CN202309288U/en
Publication of JP2012100477A publication Critical patent/JP2012100477A/en
Application granted granted Critical
Publication of JP5728892B2 publication Critical patent/JP5728892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

この発明はモータ、特にロータの冷却構造に関する。   The present invention relates to a cooling structure for a motor, particularly a rotor.

モータは、ロータシャフト(11)、ロータコア(24)及びこれらロータシャフト(11)、ロータコア(24)を連結支持する支持部材を有するロータを備えている。そして、支持部材を、ロータコア(24)の内周面に固定される外筒部(27)と、この外筒部(27)をロータシャフト軸方向に2つに仕切る円盤状の支持体(25)とから構成している。このような構成のモータにおいて、特許文献1の技術は、ロータコア(24)に埋め込まれた永久磁石を冷却するため、支持体(25)によって仕切られる一方の側の外筒部内周面(27c)にオイルを供給している。   The motor includes a rotor having a rotor shaft (11), a rotor core (24), and a support member for connecting and supporting the rotor shaft (11) and the rotor core (24). The support member is an outer cylinder part (27) fixed to the inner peripheral surface of the rotor core (24), and a disk-like support body (25) that partitions the outer cylinder part (27) into two in the rotor shaft axial direction. ). In the motor having such a configuration, the technique disclosed in Patent Document 1 cools the permanent magnet embedded in the rotor core (24), and thus the inner peripheral surface (27c) of the outer cylinder portion on one side partitioned by the support (25). Oil is being supplied to

特開2010−28979号公報JP 2010-28979 A

しかしながら、上記特許文献1の技術では、支持体によって仕切られる一方の側の外筒部内周面が冷却されるのみである。つまり、支持体によって仕切られる他方の側の外筒部内周面は冷却されないので、ロータコアに埋め込まれた永久磁石を十分に冷却することができず、冷却性能が低下する。   However, in the technique of the above-mentioned Patent Document 1, only the inner peripheral surface of the outer cylinder portion on one side partitioned by the support is cooled. That is, since the inner peripheral surface of the outer cylinder portion on the other side partitioned by the support is not cooled, the permanent magnet embedded in the rotor core cannot be sufficiently cooled, and the cooling performance is lowered.

そこで本発明は、ロータコアに埋め込まれた永久磁石の冷却性能を向上させ得るモータを提供することを目的とする。   Then, an object of this invention is to provide the motor which can improve the cooling performance of the permanent magnet embedded in the rotor core.

モータは、ロータシャフトと、ロータシャフトの外周側に離れて位置し永久磁石が装着される円筒状のロータコアと、これらロータシャフト及びロータコアを連結支持する支持部材とを有するロータを備えている。そして、支持部材は、ロータコアの内周面に固定される外筒部と、この外筒部をロータシャフト軸方向に2つに仕切る円盤状の支持体とからなっている。本発明のモータは、支持体によって仕切られる一方の側のロータシャフトの外周に配置された減速機と、減速機内のロータシャフト内に形成されているオイル流路からオイルを吐出して、減速機の支持体側端面を冷却した後に減速機側の外筒部内周面にオイルを供給するオイル供給手段、支持体の外筒部への取り付け面に支持体を貫通する貫通孔とを有している。さらに、外筒部内周面の内径を外筒部のロータシャフト軸方向の両端からロータシャフト軸方向内側に向かうほど小さくし、かつ外筒部内周面の内径が最小となる部分のロータシャフト軸方向位置が支持体と減速機の支持体側端面との間にくるようにしたものである。 The motor includes a rotor having a rotor shaft, a cylindrical rotor core that is located on the outer peripheral side of the rotor shaft and on which a permanent magnet is mounted, and a support member that connects and supports the rotor shaft and the rotor core. The support member includes an outer cylinder portion fixed to the inner peripheral surface of the rotor core and a disk-shaped support body that partitions the outer cylinder portion into two in the rotor shaft axial direction. The motor of the present invention discharges oil from a reduction gear disposed on the outer periphery of a rotor shaft on one side partitioned by a support, and an oil passage formed in the rotor shaft in the reduction gear. It has an oil supply means for supplying oil to the outer cylinder inner peripheral surface of the support side end surface speed reducer side after cooling and a through hole penetrating the support member to the mounting surface of the outer tubular portion of the support Yes. Furthermore, the inner diameter of the inner peripheral surface of the outer cylinder portion is decreased from both ends of the outer cylinder portion in the rotor shaft axial direction toward the inner side in the rotor shaft axial direction, and the portion of the inner cylinder surface of the outer cylindrical portion that has the smallest inner diameter in the rotor shaft axial direction The position is between the support and the support-side end surface of the speed reducer .

本発明によれば、支持体によって仕切られているためにオイルが供給されない側の外筒部内周面にも、貫通孔を介しオイルを供給して冷却することが可能となるため、ロータコアに埋め込まれた永久磁石の冷却性能を向上させることができる。   According to the present invention, the oil can be supplied to the inner peripheral surface of the outer cylinder portion on the side where the oil is not supplied because it is partitioned by the support so as to be cooled through the through hole. The cooling performance of the permanent magnet can be improved.

比較例1のモータの概略断面図である。 3 is a schematic cross-sectional view of a motor of Comparative Example 1. FIG. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 比較例2のモータの概略断面図である。6 is a schematic cross-sectional view of a motor of Comparative Example 2. FIG. 図3のA−A線断面図である。FIG. 4 is a sectional view taken along line AA in FIG. 3. 比較例3のモータの概略断面図である。 10 is a schematic cross-sectional view of a motor of Comparative Example 3. FIG. 図5の一部拡大図である。FIG. 6 is a partially enlarged view of FIG. 5. 本発明の実施形態のモータの概略断面図である。It is a schematic sectional drawing of the motor of 1st Embodiment of this invention . 図7のA−A線断面図である。It is the sectional view on the AA line of FIG. 実施形態のモータの概略断面図である。It is a schematic sectional drawing of the motor of 2nd Embodiment. 図9に丸で囲った部分の拡大図である。FIG. 10 is an enlarged view of a portion circled in FIG. 9. 図10のA矢視図及びB矢視図である。It is A arrow directional view and B arrow directional view of FIG. 実施形態のモータの概略断面図である。It is a schematic sectional drawing of the motor of 3rd Embodiment. 図12の一部拡大図である。FIG. 13 is a partially enlarged view of FIG. 12. 実施形態の貫通孔に沿っての展開図である。It is an expanded view along the through-hole of 3rd Embodiment. 実施形態のモータの概略断面図である。It is a schematic sectional drawing of the motor of 4th Embodiment. 図12の一部拡大図である。FIG. 13 is a partially enlarged view of FIG. 12. 実施形態の貫通孔に沿っての展開図である。It is an expanded view along the through-hole of 4th Embodiment. 実施形態のモータの概略断面図である。It is a schematic sectional drawing of the motor of 5th Embodiment. 図12の一部拡大図である。FIG. 13 is a partially enlarged view of FIG. 12. 実施形態の貫通孔に沿っての展開図である。It is an expanded view along the through-hole of 5th Embodiment. 実施形態のモータの概略断面図である。It is a schematic sectional drawing of the motor of 6th Embodiment. 図21のA−A線断面図である。It is AA sectional view taken on the line of FIG. 実施形態のモータの概略断面図である。It is a schematic sectional drawing of the motor of 7th Embodiment. 図23のA−A線断面図である。It is AA sectional view taken on the line of FIG. スパイダ支持体のスパイダ外筒部への取り付け面の説明図である。It is explanatory drawing of the attachment surface to the spider outer cylinder part of a spider support body.

以下、この発明の実施形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

比較例1
図1は本発明の一実施形態に対する比較例1のモータ1の概略断面図、図2は図1のA−A線断面図である。ただし、図2にはスパイダ21のみを示している。
( Comparative Example 1 )
FIG. 1 is a schematic cross-sectional view of a motor 1 of Comparative Example 1 for one embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG. However, only the spider 21 is shown in FIG.

図1においてモータケース2は、左右のリング状端板2a、2bと、各端板2a、2bの外周部に固定される円筒状の筐体2cとを備えている。左右のリング状端板2a、2bの内周面に設けられている2つのベアリング3、4によって、左右方向に走るロータシャフト12及び減速機軸6が回転可能に支持されている。また、ロータシャフト12と減速機軸6とは同軸上に配置され、両者は減速機5を介して連結されている。   In FIG. 1, the motor case 2 includes left and right ring-shaped end plates 2a and 2b, and a cylindrical housing 2c fixed to the outer peripheral portion of each end plate 2a and 2b. The rotor shaft 12 and the speed reducer shaft 6 running in the left-right direction are rotatably supported by two bearings 3, 4 provided on the inner peripheral surfaces of the left and right ring-shaped end plates 2a, 2b. Further, the rotor shaft 12 and the speed reducer shaft 6 are arranged coaxially, and both are connected via the speed reducer 5.

上記の減速機5は、ロータシャフト12の駆動力を調整(増大)して減速機軸6に伝達する遊星歯車装置から構成されている。この遊星歯車装置にはロータシャフト12の外周13に固定されるピニオンギヤ7を含んでいる。   The speed reducer 5 is composed of a planetary gear device that adjusts (increases) the driving force of the rotor shaft 12 and transmits it to the speed reducer shaft 6. This planetary gear device includes a pinion gear 7 fixed to the outer periphery 13 of the rotor shaft 12.

筐体2cの内壁には、珪素鋼板を多数積層して構成した環状のステータコア9が固定されている。ステータコア9にはコイル10が設けられている。ステータコア9及びコイル10によりステータ8を構成している。   An annular stator core 9 formed by laminating a number of silicon steel plates is fixed to the inner wall of the housing 2c. The stator core 9 is provided with a coil 10. A stator 8 is configured by the stator core 9 and the coil 10.

ステータ8の内側には、ロータシャフト12、スパイダ21及びロータコア31からなるロータ11が、ステータ8の内周との間に所定のギャップをおいて配置されている。すなわち、図1において左右方向に延長されるロータシャフト12の外周13には、ロータコア支持部材としてのスパイダ21が嵌合固定され、さらにスパイダ21の外周には、例えば珪素鋼板を多数積層して構成した環状のロータコア31が嵌合固定されている。   Inside the stator 8, the rotor 11 including the rotor shaft 12, the spider 21, and the rotor core 31 is disposed with a predetermined gap from the inner periphery of the stator 8. That is, a spider 21 as a rotor core support member is fitted and fixed to the outer periphery 13 of the rotor shaft 12 that extends in the left-right direction in FIG. 1, and a plurality of silicon steel plates, for example, are laminated on the outer periphery of the spider 21. The annular rotor core 31 is fixedly fitted.

ロータコア31には、ロータシャフト12の径方向外周側に、磁化された部材である永久磁石(図22参照)が埋設されると共に、ロータシャフト12の軸方向(左右方向)の端部に図示しないエンドプレートを備えている。   A permanent magnet (see FIG. 22), which is a magnetized member, is embedded in the rotor core 31 on the outer peripheral side in the radial direction of the rotor shaft 12, and is not shown at the end in the axial direction (left-right direction) of the rotor shaft 12. It has an end plate.

鉄などの磁性材料から構成される上記のスパイダ21は、ロータコア31の内周31aに挿入されて固定される円筒状のスパイダ外筒部22と、このスパイダ外筒部22をロータシャフト12の軸方向に2つに仕切る円盤状のスパイダ支持体23とからなっている。   The spider 21 made of a magnetic material such as iron includes a cylindrical spider outer cylinder portion 22 that is inserted into and fixed to the inner periphery 31 a of the rotor core 31, and the spider outer cylinder portion 22 is connected to the axis of the rotor shaft 12. It consists of a disc-like spider support 23 that is divided into two in the direction.

ロータシャフト12内には、冷却オイルが供給される軸方向のオイル流路14及びこのオイル流路14からロータシャフト12の径方向に向かい、ロータシャフト12の外周13に開口する径方向オイル流路15が形成されている。この径方向オイル流路15の開口端15aには、減速機5を構成するピニオンギヤ7を対向させている。このため、モータケース2の外部に設けられているオイルポンプからのオイルがロータシャフト12内に設けられたオイル流路14、15を通ってピニオンギヤ7に供給され、ピニオンギヤ7を含む減速機5が潤滑されることとなる。つまり、オイルポンプ、オイル流路14、15からオイル供給手段が構成されている。   In the rotor shaft 12, an axial oil passage 14 to which cooling oil is supplied and a radial oil passage that opens from the oil passage 14 in the radial direction of the rotor shaft 12 to the outer periphery 13 of the rotor shaft 12. 15 is formed. The pinion gear 7 constituting the speed reducer 5 is opposed to the opening end 15 a of the radial oil flow path 15. For this reason, the oil from the oil pump provided outside the motor case 2 is supplied to the pinion gear 7 through the oil passages 14 and 15 provided in the rotor shaft 12, and the speed reducer 5 including the pinion gear 7 is provided. It will be lubricated. That is, the oil supply means is constituted by the oil pump and the oil passages 14 and 15.

さて、ロータコア31に埋め込まれた永久磁石は発熱する。この発熱する永久磁石を、減速機5を潤滑した後のオイルで冷却するため、ロータシャフト12が回転しているときに、ピニオンギヤ7を潤滑した後のオイルが遠心力によりスパイダ外筒部22の内周面やスパイダ支持体23の減速機5側の側面23aに噴射(供給)されるようにしている。   Now, the permanent magnet embedded in the rotor core 31 generates heat. In order to cool the heat generating permanent magnet with oil after lubricating the speed reducer 5, the oil after lubricating the pinion gear 7 is rotated by the centrifugal force of the spider outer cylinder portion 22 when the rotor shaft 12 is rotating. It is injected (supplied) to the inner peripheral surface or the side surface 23a of the spider support 23 on the speed reducer 5 side.

しかしながら、スパイダ支持体23のロータシャフト12軸方向の厚さは、スパイダ外筒部22のロータシャフト12軸方向の厚さより薄くされると共に、スパイダ外筒部22のロータシャフト12軸方向のほぼ中央にスパイダ支持体23が配置されている。しかも支持体23の側面の全体に孔は設けられていない。つまり、減速機5からのオイルはスパイダ支持体23により遮られる構成である。このため、減速機5からのオイルが供給されるのは減速機5側のスパイダ外筒部内周面(この減速機5側のスパイダ外筒部内周面を以下「減速機側内周面」という。)22aのみであり、減速機5と反対側のスパイダ外筒部内周面(この減速機5と反対側のスパイダ外筒部内周面を以下「減速機反対側内周面」という。)22bにオイルが供給されることはない。なお、減速機側内周面22aの内径と減速機反対側内周面22bの内径とは同じである。   However, the thickness of the spider support 23 in the axial direction of the rotor shaft 12 is made thinner than the thickness of the spider outer cylindrical portion 22 in the axial direction of the rotor shaft 12, and the spider outer cylindrical portion 22 is substantially at the center in the axial direction of the rotor shaft 12. A spider support 23 is disposed on the surface. In addition, no hole is provided in the entire side surface of the support 23. That is, the oil from the speed reducer 5 is blocked by the spider support 23. For this reason, the oil from the speed reducer 5 is supplied to the inner peripheral surface of the spider outer cylinder portion on the side of the speed reducer 5 (hereinafter, the inner peripheral surface of the spider outer cylinder portion on the side of the speed reducer 5 will be referred to as the “reducer side inner peripheral surface”). .) 22a only, the inner peripheral surface of the spider outer cylinder portion on the opposite side to the speed reducer 5 (hereinafter, the inner peripheral surface of the spider outer cylinder portion on the opposite side to the speed reducer 5 is hereinafter referred to as “the inner peripheral surface opposite to the speed reducer”) 22b. No oil is supplied to the tank. Note that the inner diameter of the reduction gear side inner circumferential surface 22a is the same as the inner diameter of the reduction gear opposite inner circumferential surface 22b.

そこで比較例1では、減速機5からのオイルを減速機反対側内周面22bにも供給するため、スパイダ支持体23のスパイダ外筒部22への取り付け面にスパイダ支持体23を貫通する直管状の貫通孔24を設ける。図2にも示したようにロータシャフト12の周方向には貫通孔24を等間隔で6個設ける。貫通孔24の断面は円状であるが、これに限られるものでない。 Therefore, in Comparative Example 1 , since oil from the speed reducer 5 is also supplied to the inner peripheral surface 22b on the opposite side of the speed reducer, the spider support 23 is attached directly to the spider outer cylinder portion 22 through the spider support 23. A tubular through hole 24 is provided. As shown in FIG. 2, six through holes 24 are provided at equal intervals in the circumferential direction of the rotor shaft 12. The cross section of the through hole 24 is circular, but is not limited thereto.

ここで、スパイダ支持体23のスパイダ外筒部22への取り付け面とは、図25(a)にモデルで示したようにスパイダ支持体23とスパイダ外筒部22との間に、水平方向の境界面(一点鎖線参照)を想定したとき、この境界面がスパイダ支持体23のスパイダ外筒部22への取り付け面である。この場合、水平方向の境界面はスパイダ支持体23の減速機側側面23aと減速機側内周面22aとの交線(曲線)と、スパイダ支持体23の減速機反対側側面23bと減速機反対側内周面22bとの交線(曲線)とを結んでできる曲面のことである。   Here, the attachment surface of the spider support 23 to the spider outer cylinder portion 22 is a horizontal direction between the spider support 23 and the spider outer cylinder portion 22 as shown in the model of FIG. When a boundary surface (refer to the alternate long and short dash line) is assumed, this boundary surface is a mounting surface of the spider support 23 to the spider outer cylinder portion 22. In this case, the horizontal boundary surface is a line of intersection (curve) between the speed reducer side surface 23a of the spider support 23 and the speed reducer side inner peripheral surface 22a, and the speed reducer opposite side surface 23b of the spider support 23 and the speed reducer. It is a curved surface formed by connecting a line of intersection (curve) with the opposite inner peripheral surface 22b.

減速機側内周面22aと減速機反対側内周面22bの両方の内径が同じである場合には、貫通孔24はロータシャフト12の軸方向に形成される。このため、貫通孔24の減速機側開口部24a、減速機反対側開口部24bともロータシャフト12の軸方向(図1で左右方向)に開口している。   When the inner diameters of both the speed reducer side inner peripheral surface 22a and the speed reducer opposite side inner peripheral surface 22b are the same, the through hole 24 is formed in the axial direction of the rotor shaft 12. Therefore, both the speed reducer side opening 24a and the speed reducer opposite side opening 24b of the through hole 24 are opened in the axial direction of the rotor shaft 12 (left and right direction in FIG. 1).

ここで、比較例1の作用効果を説明する。 Here, the effect of the comparative example 1 is demonstrated.

比較例1では、減速機5を潤滑した後に遠心力により吹き飛ばされてスパイダ支持体23の減速機側側面23aや減速機側内周面22aに衝突する。特に、スパイダ支持体23の減速機側側面23aに衝突したオイルは、減速機側側面23aの表面をロータシャフト12の径方向外側に流れ、変速機側内周面22aにぶつかってロータシャフト12の軸方向の流れが生じる。このロータシャフト12の軸方向の流れは、減速機5側に流れる流れと、減速機5と反対側に流れる流れとに分かれる。このうち、減速機5と反対側に流れる流れは貫通孔24を通って減速機反対側内周面22bに到達し、減速機反対側内周面22bの全体に流れてゆく。つまり、貫通孔を介して、スパイダ支持体23の向こうの外筒部内周面である減速機反対側内周面22bにもオイルを供給することが可能となった。 In Comparative Example 1 , the speed reducer 5 is lubricated and then blown off by centrifugal force to collide with the speed reducer side surface 23a and the speed reducer side inner peripheral surface 22a of the spider support 23. In particular, the oil colliding with the speed reducer side surface 23a of the spider support 23 flows on the surface of the speed reducer side surface 23a to the outer side in the radial direction of the rotor shaft 12, hits the transmission side inner peripheral surface 22a, and An axial flow occurs. The axial flow of the rotor shaft 12 is divided into a flow that flows to the speed reducer 5 side and a flow that flows to the side opposite to the speed reducer 5. Among these, the flow flowing on the side opposite to the speed reducer 5 passes through the through-hole 24 and reaches the speed reducer opposite inner peripheral surface 22b and flows to the entire speed reducer opposite side inner peripheral surface 22b. That is, oil can be supplied to the inner peripheral surface 22b on the opposite side of the speed reducer, which is the inner peripheral surface of the outer cylinder portion beyond the spider support 23, through the through hole.

このように、比較例1では、ロータシャフト12と、ロータシャフト12の外周側に離れて位置し永久磁石が装着される円筒状のロータコア31と、これらロータシャフト12及びロータコア31を連結支持するスパイダ21(支持部材)とを有するロータ11を備えるモータ1において、スパイダ21は、ロータコア31の内周面に固定されるスパイダ外筒部22(外筒部)と、このスパイダ外筒部22をロータシャフト12の軸方向に2つに仕切る円盤状のスパイダ支持体23(支持体)とからなり、減速機側内周面22a(スパイダ支持体23によって仕切られる一方の側の外筒部内周面)にオイルを供給するオイル供給手段(14、15)を有し、スパイダ支持体23のスパイダ外筒部22への取り付け面にスパイダ支持体23を貫通する貫通孔24を設けている。これによれば、スパイダ支持体23によって仕切られているためにオイルが供給されることがなかった側である減速機反対側内周面22bにも、オイルを供給することが可能となっている。この減速機反対側内周面22bに供給されるオイルにより、永久磁石の発熱で高温となっている減速機反対側のロータコア31を冷却できる(永久磁石の冷却性能を向上させることができる)。 As described above, in the first comparative example , the rotor shaft 12, the cylindrical rotor core 31 that is located on the outer peripheral side of the rotor shaft 12 and on which the permanent magnet is mounted, and the spider that connects and supports the rotor shaft 12 and the rotor core 31. In the motor 1 including the rotor 11 having 21 (support member), the spider 21 includes a spider outer cylinder portion 22 (outer cylinder portion) fixed to the inner peripheral surface of the rotor core 31 and the spider outer cylinder portion 22 as a rotor. It consists of a disc-shaped spider support 23 (support) that divides into two in the axial direction of the shaft 12, and a speed reducer side inner peripheral surface 22 a (an inner peripheral surface of the outer cylinder portion on one side partitioned by the spider support 23). Oil supply means (14, 15) for supplying oil to the spider support 23, and the spider support 23 penetrates the attachment surface of the spider support 23 to the spider outer cylinder 22. A through hole 24 which is provided. According to this, oil can be supplied also to the inner peripheral surface 22b on the side opposite to the speed reducer, which is the side where the oil is not supplied because it is partitioned by the spider support 23. . With the oil supplied to the inner peripheral surface 22b on the speed reducer opposite side, the rotor core 31 on the side opposite the speed reducer, which is at a high temperature due to the heat generated by the permanent magnet, can be cooled (the cooling performance of the permanent magnet can be improved).

また、比較例1では、ロータシャフト12の回転速度を減速して取り出す減速機5をロータシャフト12と同軸に有しかつ減速機5の少なくとも一部がロータコア12の内周側に有し、オイル供給手段が供給するオイルは、この減速機5を潤滑した後のオイルである。減速機5を潤滑した後に遠心力により吹き飛ばされてスパイダ支持体23に衝突し、このスパイダ支持体23表面をロータシャフト12の径方向外側に流れるオイルがスパイダ支持体23のスパイダ外筒部22への取り付け面にぶつかってロータシャフト12軸方向の流れが生じる。このロータシャフト12軸方向の流れは、減速機5側に流れる流れと、減速機5と反対側に流れる流れとに分かれるが、減速機5と反対側に流れる流れは貫通孔24を通ることにより、スパイダ支持体23の向こうの外筒部内周面22bにもオイルを供給することができる。 Further, in Comparative Example 1 , the speed reducer 5 that decelerates and removes the rotational speed of the rotor shaft 12 is coaxial with the rotor shaft 12, and at least a part of the speed reducer 5 is provided on the inner peripheral side of the rotor core 12. The oil supplied by the supply means is the oil after lubricating the speed reducer 5. After the speed reducer 5 is lubricated, it is blown off by centrifugal force and collides with the spider support 23, and the oil flowing on the surface of the spider support 23 outward in the radial direction of the rotor shaft 12 enters the spider outer cylinder portion 22 of the spider support 23. The rotor shaft 12 flows in the axial direction against the mounting surface of the rotor shaft 12. The flow in the axial direction of the rotor shaft 12 is divided into a flow that flows toward the speed reducer 5 and a flow that flows on the opposite side of the speed reducer 5. The flow that flows on the opposite side of the speed reducer 5 passes through the through hole 24. The oil can also be supplied to the inner peripheral surface 22b of the outer cylinder part beyond the spider support 23.

比較例2
図3は比較例2のモータ1の概略断面図、図4は図3のA−A線断面図で、比較例1の図1、図2と置き換わるものである。比較例1の図1、図2と同一部分には同一番号を付している。ただし、図4にはスパイダ21のみを示している。
( Comparative Example 2 )
3 is a schematic cross-sectional view of the motor 1 of Comparative Example 2 , and FIG. 4 is a cross-sectional view taken along line AA of FIG. 3, which replaces FIGS. 1 and 2 of Comparative Example 1 . The same parts as those in FIGS. 1 and 2 of the comparative example 1 are denoted by the same reference numerals. However, only the spider 21 is shown in FIG.

比較例2は、スパイダ支持体23によって仕切られた減速機側内周面22aと減速機反対側内周面22bのうち、減速機側内周面22aの内径D1よりも減速機反対側内周面22bの内径D2を大きくすると共に、スパイダ支持体23のスパイダ外筒部22への取り付け面にスパイダ支持体23を貫通する直管状の貫通孔25を設けたものである。図4にも示したようにロータシャフト12の周方向には貫通孔25を等間隔で6個設けている。 In Comparative Example 2 , the speed reducer-side inner circumference 22a and the speed reducer-opposite inner peripheral face 22b partitioned by the spider support 23 are smaller than the inner diameter D1 of the speed reducer-side inner peripheral face 22a. The inner diameter D2 of the surface 22b is increased, and a straight tubular through hole 25 penetrating the spider support 23 is provided on the attachment surface of the spider support 23 to the spider outer cylinder portion 22. As shown in FIG. 4, six through holes 25 are provided at equal intervals in the circumferential direction of the rotor shaft 12.

減速機側内周面22aの内径D1より減速機反対側内周面22bの内径D2が大きい場合には、図25(b)にモデルで示したようにスパイダ支持体23とスパイダ外筒部22との間に斜め方向の境界面(一点鎖線参照)を想定でき、この境界面がスパイダ支持体23のスパイダ外筒部22への取り付け面である。この場合、斜め方向の境界面はスパイダ支持体23の減速機側側面23aと減速機側内周面22aとの交線(曲線)と、スパイダ支持体23の減速機反対側側面23bと減速機反対側内周面22bとの交線(曲線)とを結んでできる曲面のことである。   When the inner diameter D2 of the inner peripheral surface 22b on the opposite side of the reduction gear is larger than the inner diameter D1 of the inner peripheral surface 22a of the speed reducer, the spider support 23 and the spider outer cylinder portion 22 are shown as a model in FIG. An oblique boundary surface (see the alternate long and short dash line) can be assumed between the two and the boundary surface, and this boundary surface is an attachment surface of the spider support 23 to the spider outer cylinder portion 22. In this case, the boundary surface in the oblique direction is an intersection (curve) between the speed reducer side surface 23a of the spider support 23 and the speed reducer side inner peripheral surface 22a, and the speed reducer opposite side surface 23b of the spider support 23 and the speed reducer. It is a curved surface formed by connecting a line of intersection (curve) with the opposite inner peripheral surface 22b.

減速機側内周面22aの内径D1より減速機反対側内周面22bの内径D2のほうが大きい場合には、貫通孔25の中心線Cはロータシャフト12の径方向(図3で上下方向)に対し所定の角度α(0°<α<90°)を有している。貫通孔25の減速機側開口部25a、減速機反対側開口部25bともロータシャフト12の軸方向(図3で左右方向)に開口している。   When the inner diameter D2 of the speed reducer-side inner peripheral surface 22b is larger than the inner diameter D1 of the speed reducer-side inner peripheral surface 22a, the center line C of the through hole 25 is the radial direction of the rotor shaft 12 (vertical direction in FIG. 3). With a predetermined angle α (0 ° <α <90 °). Both the speed reducer side opening 25a and the speed reducer opposite side opening 25b of the through hole 25 are opened in the axial direction of the rotor shaft 12 (left and right direction in FIG. 3).

スパイダ支持体23の減速機側側面23aに衝突し、減速機側側面23aの表面をロータシャフト12の径方向外側に流れ、変速機側内周面22aにぶつかったオイルは、ロータシャフト12の軸方向に流れる。ロータシャフト12軸方向の流れは、減速機5側に流れる流れと、減速機5と反対側に流れる流れとに分かれるが、比較例2では貫通孔25が、減速機側開口部25aよりロータシャフト12の径方向外側に向けて傾斜している。これによって、減速機5側に流れるオイルよりも減速機5と反対側に流れるオイルのほうが多くなり、減速機反対側内周面22bに供給される油量が比較例1の場合より増加する。 The oil that collides with the speed reducer side surface 23 a of the spider support 23, flows on the surface of the speed reducer side surface 23 a radially outward of the rotor shaft 12, and hits the transmission side inner peripheral surface 22 a is the axis of the rotor shaft 12. Flow in the direction. The flow in the axial direction of the rotor shaft 12 is divided into a flow that flows toward the speed reducer 5 and a flow that flows toward the opposite side of the speed reducer 5. In Comparative Example 2 , the through hole 25 is formed on the rotor shaft from the speed reducer side opening 25a. 12 are inclined toward the outside in the radial direction. As a result, more oil flows on the side opposite to the speed reducer 5 than oil flows on the side of the speed reducer 5, and the amount of oil supplied to the inner peripheral surface 22b on the side opposite to the speed reducer increases compared to the case of the first comparative example .

このように比較例2によれば、減速機側内周面22a、減速機反対側内周面22b(支持体23で仕切られた2つの外筒部内周面)のうち、減速機側内周面22a(支持体によって仕切られる一方の側の外筒部内周面)の内径D1よりも減速機反対側内周面22b(支持体によって仕切られる一方の側とは反対側である他方の側の外筒部内周面)の内径D2を大きくすると共に、スパイダ支持体23のスパイダ外筒部22への取り付け面にスパイダ支持体23を貫通する貫通孔25を設けるので、減速機反対側内周面22bに供給される油量を比較例1の場合より増加させることができる。 As described above, according to Comparative Example 2 , the speed reducer side inner periphery 22a and the speed reducer opposite side inner peripheral surface 22b (the two outer cylinder part inner peripheral surfaces partitioned by the support 23) are included. The inner peripheral surface 22b (the other side opposite to the one side partitioned by the support) on the other side than the inner diameter D1 of the surface 22a (the inner peripheral surface of the outer cylinder part on one side partitioned by the support) Since the inner surface D2 of the outer cylinder portion (inner peripheral surface) is increased and the through hole 25 penetrating the spider support body 23 is provided on the attachment surface of the spider support body 23 to the spider outer cylinder portion 22, the inner peripheral surface on the opposite side of the speed reducer The amount of oil supplied to 22b can be increased from that in Comparative Example 1 .

比較例3
図5は比較例3のモータ1の概略断面図、図6(a)は図5の丸(破線参照)で囲った部分の拡大図、図6(b)は図6(a)のA−A線断面図である。比較例1の図1、図2と同一部分には同一番号を付している。
( Comparative Example 3 )
5 is a schematic cross-sectional view of the motor 1 of Comparative Example 3 , FIG. 6A is an enlarged view of a portion surrounded by a circle (see the broken line) in FIG. 5, and FIG. 6B is an A- in FIG. It is A sectional view. The same parts as those in FIGS. 1 and 2 of the comparative example 1 are denoted by the same reference numerals.

比較例2は貫通孔25の減速機側開口部25aがロータシャフト12の軸方向(図3で右方)に開口している。これに対して、比較例3は貫通孔26の減速機側開口部26aが図6(a)に示したようにロータシャフト12の径方向内側(図5で上下方向)に向けて開口するようにしたものである。このため、スパイダ支持体23の減速機側側壁23aをロータシャフト12の径方向外側に向けて流れるオイルの先に貫通孔26の減速機側開口部26aが開口することとなる。このように、ロータシャフト12の径方向内側(図5で上下方向)に向けて貫通孔26の減速機側開口部26aが開口していると、減速機側側壁23aをロータシャフト12の径方向外側に向けて流れるオイルのほぼ全てが貫通孔26の減速機側開口部26aに供給されることとなる(図6(a)の矢印参照)。 In Comparative Example 2, the speed reducer side opening 25a of the through hole 25 opens in the axial direction of the rotor shaft 12 (rightward in FIG. 3). In contrast, in Comparative Example 3, the speed reducer side opening 26a of the through hole 26 opens toward the radially inner side (vertical direction in FIG. 5) of the rotor shaft 12 as shown in FIG. It is a thing. For this reason, the speed reducer side opening portion 26 a of the through hole 26 is opened at the tip of the oil flowing through the speed reducer side wall 23 a of the spider support 23 toward the radially outer side of the rotor shaft 12. Thus, when the speed reducer side opening 26a of the through hole 26 is opened toward the radially inner side of the rotor shaft 12 (vertical direction in FIG. 5), the speed reducer side side wall 23a is formed in the radial direction of the rotor shaft 12. Almost all of the oil flowing toward the outside is supplied to the speed reducer side opening 26a of the through hole 26 (see the arrow in FIG. 6A).

減速機側開口部26aが比較例2と相違する以外は、比較例2と同様の構成である。すなわち、スパイダ支持体23によって仕切られた減速機側内周面22aと減速機反対側内周面22bのうち、減速機側内周面22aの内径D1よりも減速機反対側内周面22bの内径D2’を大きくすると共に、スパイダ支持体23のスパイダ外筒部22への取り付け面にスパイダ支持体23を貫通する直管状の貫通孔26を設けている。ロータシャフト12の周方向には貫通孔26を等間隔で6個設けている。 Except that the speed reducer side opening 26a is different from the Comparative Example 2 is a configuration similar to Comparative Example 2. That is, of the speed reducer-side inner peripheral surface 22b and the speed reducer-side inner peripheral surface 22b of the speed reducer-side inner peripheral surface 22b divided by the spider support 23, the speed reducer-side inner peripheral surface 22b is smaller than the inner diameter D1. In addition to increasing the inner diameter D2 ′, a straight tubular through hole 26 penetrating the spider support 23 is provided on the attachment surface of the spider support 23 to the spider outer cylinder 22. Six through holes 26 are provided at equal intervals in the circumferential direction of the rotor shaft 12.

減速機側内周面22aの内径D1より減速機反対側内周面22bの内径D2’のほうが大きいので、貫通孔26の中心線Cはロータシャフト12の径方向(図5で上下方向)に対し所定の角度α(0°<α<90°)を有している。貫通孔26の減速機反対側開口部26bはロータシャフト12の軸方向(図5で左方)に開口している。   Since the inner diameter D2 ′ of the inner peripheral surface 22b opposite to the reduction gear is larger than the inner diameter D1 of the inner peripheral surface 22a of the speed reducer, the center line C of the through hole 26 is in the radial direction of the rotor shaft 12 (vertical direction in FIG. 5). On the other hand, it has a predetermined angle α (0 ° <α <90 °). An opening 26b opposite to the reduction gear of the through hole 26 opens in the axial direction of the rotor shaft 12 (leftward in FIG. 5).

比較例3によれば、スパイダ支持体23で仕切られた減速機側内周面22aと減速機反対側内周面22bのうち、減速機側内周面22aの内径D1よりも減速機反対側内周面22bの内径D2’を大きくすると共に、スパイダ支持体23のスパイダ外筒部22への取り付け面にスパイダ支持体23を貫通する貫通孔26を設け、かつ貫通孔26の減速機側開口部26aがロータシャフト12の径方向内側に向けて開口するようにしたので、比較例2の場合に比べて減速機反対側内周面22bに供給するオイル流量を多くすることができる。 According to the comparative example 3 , the speed reducer side inner surface 22a and the speed reducer opposite side inner peripheral surface 22b partitioned by the spider support 23 are on the side opposite the speed reducer than the inner diameter D1 of the speed reducer side inner peripheral surface 22a. While increasing the inner diameter D2 ′ of the inner peripheral surface 22b, a through hole 26 penetrating the spider support 23 is provided on the attachment surface of the spider support 23 to the spider outer cylinder portion 22, and the speed reducer side opening of the through hole 26 is provided. Since the portion 26a opens toward the radially inner side of the rotor shaft 12, the flow rate of oil supplied to the inner peripheral surface 22b on the speed reducer opposite side can be increased as compared with the case of the second comparative example .

(第実施形態)
図7は本発明の実施形態のモータ1の概略断面図、図8は図7のA−A線断面図で、比較例1の図1、図2と置き換わるものである。比較例1の図1、図2と同一部分には同一番号を付している。ただし、図8にはスパイダ21のみを示している。
(First Embodiment)
Figure 7 is a schematic sectional view of a motor 1 of the first embodiment of the present invention, FIG 8 is a sectional view taken along line A-A of FIG. 7, FIG. 1 of Comparative Example 1, but replacing the 2. The same parts as those in FIGS. 1 and 2 of the comparative example 1 are denoted by the same reference numerals. However, only the spider 21 is shown in FIG.

実施形態は、スパイダ外筒部内周面22の内径をスパイダ外筒部22のロータシャフト12軸方向の両端からロータシャフト12の軸方向内側に向かうほど小さくし、かつスパイダ外筒部内周面22の内径が最小となる部分のロータシャフト12軸方向位置がスパイダ支持体23の減速機5側にくるようにするものである。 In the first embodiment, the inner diameter of the inner peripheral surface 22 of the spider outer cylinder portion is made smaller from both ends of the spider outer cylinder portion 22 in the axial direction of the rotor shaft 12 toward the inner side in the axial direction of the rotor shaft 12, and the inner peripheral surface of the spider outer cylinder portion The position of the rotor shaft 12 in the axial direction of the portion where the inner diameter of 22 is the smallest is arranged on the speed reducer 5 side of the spider support 23.

ここでは、スパイダ外筒部22をロータシャフト12軸方向(図7で左右方向)の2つの部分41、42に分割し減速機側の部分41を「第1スパイダ外筒部」、減速機反対側の部分42を「第2スパイダ外筒部」として扱うとする。このうち、第1スパイダ外筒部41の内周面41aの内径が、ロータシャフト12軸方向の減速機側端41b(図7で右端)より、ロータシャフト12の軸方向の減速機反対側(図7で左方)に向かうほど小さくなるように形成する。一方、第2スパイダ外筒部42の内周面42aの内径が、ロータシャフト12軸方向の減速機反対側端42b(図7で左端)より、ロータシャフト12軸方向の減速機側(図7で右方)に向かうほど小さくなるように形成する。この場合に、スパイダ外筒部内周面22(41a、42a)の内径が最小径Dminとなる部分のロータシャフト12の軸方向位置は、スパイダ支持体23よりも減速機5側にくるようにする。このため、第1スパイダ外筒部41の内周面41aのロータシャフト12軸方向幅より、第2パイダ外筒部42の内周面42aのロータシャフト12軸方向幅のほうが大きくなっている。   Here, the spider outer cylinder part 22 is divided into two parts 41 and 42 in the axial direction of the rotor shaft 12 (left and right in FIG. 7), and the part 41 on the reduction gear side is the “first spider outer cylinder part”, opposite to the reduction gear. The side portion 42 is assumed to be treated as a “second spider outer cylinder”. Among these, the inner diameter of the inner peripheral surface 41a of the first spider outer cylinder portion 41 is smaller than the speed reducer side end 41b (right end in FIG. 7) in the axial direction of the rotor shaft 12 (on the opposite side of the speed reducer in the axial direction of the rotor shaft 12). It is formed so as to become smaller toward the left in FIG. On the other hand, the inner diameter of the inner peripheral surface 42a of the second spider outer cylinder portion 42 is smaller than the speed reducer opposite end 42b (left end in FIG. 7) in the axial direction of the rotor shaft 12 (FIG. 7). And to the right) In this case, the axial position of the rotor shaft 12 where the inner diameter of the inner peripheral surface 22 (41a, 42a) of the spider is the minimum diameter Dmin is positioned closer to the speed reducer 5 than the spider support 23. . For this reason, the rotor shaft 12 axial width of the inner peripheral surface 42a of the second spider outer cylindrical portion 42 is larger than the width of the inner peripheral surface 41a of the first spider outer cylindrical portion 41 in the axial direction of the rotor shaft 12.

このように、第1、第2のスパイダ外筒部41、42を形成したとき、スパイダ支持体23は第2スパイダ外筒部41に接続される。ここで、スパイダ支持体23によって仕切られる減速機5側の第2スパイダ外筒部内周面42aを「減速機側内周面42aa」として、スパイダ支持体23によって仕切られる減速機5反対側の第2スパイダ外筒部内周面42aを「減速機反対側内周面42ab」として区別する。   As described above, when the first and second spider outer cylinder portions 41 and 42 are formed, the spider support 23 is connected to the second spider outer cylinder portion 41. Here, the second spider outer cylinder inner peripheral surface 42a on the speed reducer 5 side partitioned by the spider support 23 is referred to as a “speed reducer inner peripheral surface 42aa”, and the second spider outer peripheral surface 42a on the opposite side of the speed reducer 5 partitioned by the spider support 23 is used. 2 Spider outer cylinder part inner peripheral surface 42a is distinguished as "reduction gear opposite side inner peripheral surface 42ab".

そして、このように形成されたスパイダ外筒部22(41、42)に対しても、スパイダ支持体23のスパイダ外筒部22(41、42)への取り付け面にスパイダ支持体23を貫通する直管状の貫通孔27を設ける。図8にも示したように周方向には貫通孔27を等間隔で6個設ける。   And the spider support body 23 penetrates the attachment surface to the spider outer cylinder part 22 (41, 42) of the spider support body 23 with respect to the spider outer cylinder part 22 (41, 42) formed in this way. A straight tubular through hole 27 is provided. As shown in FIG. 8, six through holes 27 are provided at equal intervals in the circumferential direction.

減速機側内周面42aaの内径より減速機反対側内周面42abの内径のほうが大きいので、貫通孔27の中心線Cはロータシャフト12の径方向(図7で上下方向)に対し所定の角度β(0°<β<90°)を有している。貫通孔27の減速機側開口部27a、減速機反対側開口部27bともロータシャフト12の軸方向(図7で左右方向)に開口している。   Since the inner diameter of the speed reducer-side inner peripheral surface 42ab is larger than the inner diameter of the speed reducer-side inner peripheral surface 42aa, the center line C of the through-hole 27 is predetermined with respect to the radial direction of the rotor shaft 12 (vertical direction in FIG. 7). It has an angle β (0 ° <β <90 °). Both the speed reducer side opening 27a and the speed reducer opposite side opening 27b of the through hole 27 are opened in the axial direction of the rotor shaft 12 (left and right direction in FIG. 7).

減速機側内周面42aaが、減速機反対側に向かうほどロータシャフト12の径方向外側に傾いていると、減速機5を潤滑した後に遠心力により吹き飛ばされて減速機側内周面42aaに衝突したオイルのほぼ全てが、貫通孔27の減速機側開口部27aに供給される。さらに、スパイダ支持体23の減速機側側壁23aに衝突し減速機側側壁23aの表面をロータシャフト12の径方向外側に向けて流れるオイルのほぼすべても、貫通孔27の減速機側開口部27aに供給されることとなる。   If the speed reducer side inner peripheral surface 42aa is inclined outward in the radial direction of the rotor shaft 12 toward the opposite side of the speed reducer, the speed reducer 5 is lubricated and then blown off by centrifugal force to the speed reducer side inner peripheral surface 42aa. Almost all of the collided oil is supplied to the speed reducer side opening 27 a of the through hole 27. Further, almost all of the oil that collides with the speed reducer side wall 23 a of the spider support 23 and flows on the surface of the speed reducer side wall 23 a toward the radially outer side of the rotor shaft 12 is also the speed reducer side opening 27 a of the through hole 27. Will be supplied.

実施形態では、スパイダ外筒部内周面の内径が最小となる部分のロータシャフト12の軸方向位置が減速機5側にくるほど、減速機反対側内周面42abへと供給する油量が多くなる。また、スパイダ外筒部内周面の最小径Dminを大きくするほど、減速機反対側内周面42abへと供給する油量が多くなる。すなわち、スパイダ外筒部内周面の内径が最小となる部分のロータシャフト12の軸方向位置及びスパイダ外筒部内周面の最小径Dminによって、減速機反対側内周面42abへと供給する油量を調節することができる。 In the first embodiment, the amount of oil supplied to the inner peripheral surface 42ab on the opposite side of the speed reducer as the axial position of the rotor shaft 12 at the portion where the inner diameter of the inner peripheral surface of the spider outer cylindrical portion is the smallest is closer to the speed reducer 5 side. Will increase. Further, as the minimum diameter Dmin of the inner peripheral surface of the spider outer cylinder part is increased, the amount of oil supplied to the inner peripheral surface 42ab on the opposite side of the speed reducer is increased. That is, the amount of oil supplied to the inner peripheral surface 42ab on the side opposite to the speed reducer by the axial position of the rotor shaft 12 at the portion where the inner diameter of the inner peripheral surface of the spider outer cylinder portion is the minimum and the minimum diameter Dmin of the inner peripheral surface of the spider outer cylinder portion. Can be adjusted.

実施形態によれば、スパイダ外筒部内周面の内径をスパイダ外筒部22のロータシャフト12軸方向の両端41b、42bからロータシャフト12の軸方向内側に向かうほど小さくし、かつスパイダ外筒部内周面の内径が最小となる部分のロータシャフト12軸方向位置がスパイダ支持体23より減速機5側(支持体よって仕切られる一方の側)にくるようにすると共に、スパイダ支持体23のスパイダ外筒部22(41、42)への取り付け面にスパイダ支持体23を貫通する貫通孔27を設けるので、比較例2の場合に比べ 減速機反対側内周面22bに供給するオイル流量を多くすることができる。 According to the first embodiment, the inner diameter of the inner peripheral surface of the spider outer cylinder portion is reduced from the both ends 41b and 42b of the spider outer cylinder portion 22 in the axial direction of the rotor shaft 12 toward the inner side in the axial direction of the rotor shaft 12, and The axial direction position of the rotor shaft 12 in the portion where the inner diameter of the cylindrical inner peripheral surface is the minimum is positioned closer to the speed reducer 5 (one side partitioned by the support) than the spider support 23 and the spider support 23 Since the through-hole 27 that penetrates the spider support 23 is provided on the attachment surface to the spider outer cylinder portion 22 (41, 42), the flow rate of oil supplied to the inner peripheral surface 22b on the speed reducer opposite side as compared with the case of Comparative Example 2 is reduced. Can do a lot.

(第実施形態)
図9は第実施形態のモータ1の概略断面図、図10は図9の丸(破線参照)で囲った部分の拡大図、図11(a)は図10のA矢視図、図11(b)は図10のB矢視図である。比較例2の図3、図4と同一部分には同一番号を付している。ただし、図11(a)、(b)にはスパイダ21のみを示している。
( Second Embodiment)
9 is a schematic cross-sectional view of the motor 1 according to the second embodiment, FIG. 10 is an enlarged view of a portion surrounded by a circle (see broken line) in FIG. 9, and FIG. 11 (a) is a view taken in the direction of arrow A in FIG. (B) is a B arrow view of FIG. The same parts as those in FIGS. 3 and 4 of the comparative example 2 are denoted by the same reference numerals. However, only the spider 21 is shown in FIGS.

実施形態は、図3、図4に示した比較例2を前提として、貫通孔28の減速機側開口部28aと貫通孔28の減速機反対側開口部28bとの形状を両者で相違させ、減速機反対側開口部28bの出口形状をラッパ状にするものである。すなわち、図10(a)、(b)に示したように、貫通孔28の減速機反対側開口部28bのロータシャフト12周方向幅Wr2を、貫通孔28の減速機側開口部28aのロータシャフト12周方向幅Wr1よりも相対的に大きくしている。かつ貫通孔28の減速機反対側開口部28bのロータシャフト12径方向幅Wd2を、貫通孔28の減速機側開口部28aのロータシャフト12径方向幅Wd1よりも相対的に小さくしている。 2nd Embodiment presupposes the comparative example 2 shown in FIG. 3, FIG. 4, and the shape of the reduction gear side opening part 28a of the through-hole 28 and the reduction gear opposite side opening part 28b of the through hole 28 is different in both. The outlet shape of the opening 28b on the opposite side of the speed reducer is made into a trumpet shape. That is, as shown in FIGS. 10A and 10B, the rotor shaft 12 circumferential width Wr <b> 2 of the opening 28 b on the opposite side of the speed reducer of the through hole 28 is set to the rotor of the speed reducer side opening 28 a of the through hole 28. The shaft 12 is made larger than the circumferential width Wr1. The rotor shaft 12 radial width Wd2 of the through hole 28 on the speed reducer opposite side opening 28b is relatively smaller than the rotor shaft 12 radial width Wd1 of the speed reducer side opening 28a of the through hole 28.

減速機側開口部28a、減速機反対側開口部28bが比較例2と相違する以外は、比較例2と同様の構成である。すなわち、スパイダ支持体23によって仕切られた減速機側内周面22aと減速機反対側内周面22bのうち、減速機側内周面22aの内径D1よりも減速機反対側内周面22bの内径D2を大きくすると共に、スパイダ支持体23のスパイダ外筒部22への取り付け面にスパイダ支持体23を貫通する直管状の貫通孔28を設けている。ロータシャフト12の周方向には貫通孔28を等間隔で6個設けている。 Except that the speed reducer side opening 28a, the speed reducer opposite the opening 28b different from the Comparative Example 2 has the same configuration as Comparative Example 2. That is, of the speed reducer-side inner peripheral surface 22b and the speed reducer-side inner peripheral surface 22b of the speed reducer-side inner peripheral surface 22b divided by the spider support 23, the speed reducer-side inner peripheral surface 22b is smaller than the inner diameter D1. While increasing the inner diameter D2, a straight tubular through hole 28 penetrating the spider support 23 is provided on the attachment surface of the spider support 23 to the spider outer cylinder 22. Six through holes 28 are provided at equal intervals in the circumferential direction of the rotor shaft 12.

減速機側内周面22aの内径D1より減速機反対側内周面22bの内径D2のほうが大きいので、貫通孔28の中心線Cはロータシャフト12の径方向(図9で上下方向)に対し所定の角度α(0°<α<90°)を有している。貫通孔28の減速機側開口部28a、減速機反対側開口部28bともロータシャフト12の軸方向(図9で左右方向)に開口している。   Since the inner diameter D2 of the inner peripheral surface 22b opposite to the speed reducer is larger than the inner diameter D1 of the inner peripheral surface 22a of the speed reducer, the center line C of the through hole 28 is relative to the radial direction of the rotor shaft 12 (vertical direction in FIG. 9). It has a predetermined angle α (0 ° <α <90 °). Both the speed reducer side opening 28a and the speed reducer opposite side opening 28b of the through hole 28 are opened in the axial direction of the rotor shaft 12 (left and right direction in FIG. 9).

このように、第実施形態によれば、減速機側内周面22a、減速機反対側内周面22b(支持体によって仕切られた2つの外筒部内周面)のうち、減速機側内周面22a(一方の側の外筒部内周面)の内径D1よりも減速機反対側内周面22b(一方の側とは反対側である他方の側の外筒部内周面)の内径D2を大きくすると共に、スパイダ支持体23のスパイダ外筒部22への取り付け面にスパイダ支持体23を貫通する貫通孔28を設け、かつ貫通孔28の減速機反対側開口部28b(一方の側とは反対側である他方の側への開口部)を貫通孔28の減速機側開口部28a(一方の側への開口部)よりもロータシャフト12の周方向に長く、ロータシャフト12の径方向に短くしている。減速機反対側開口部28bの出口形状をラッパ状にすることによって、減速機反対側開口部28bから減速機反対側内周面22bに流れ出るオイルが、減速機反対側内周面22bに比較例2の場合よりも大きく広がる。減速機反対側内周面22bの広い範囲とオイルが接することになり、永久磁石の冷却性能を向上することができる。 As described above, according to the second embodiment, the speed reducer side inner peripheral surface 22a and the speed reducer opposite side inner peripheral surface 22b (the two outer cylindrical portion inner peripheral surfaces partitioned by the support body) Inner diameter D2 of the inner peripheral surface 22b (the inner peripheral surface on the other side opposite to the one side) than the inner diameter D1 of the peripheral surface 22a (the outer peripheral surface on one side). And a through hole 28 penetrating the spider support 23 is provided on the attachment surface of the spider support 23 to the spider outer cylinder 22, and an opening 28 b (on one side of the through hole 28 opposite to the speed reducer). (The opening to the other side that is the opposite side) is longer in the circumferential direction of the rotor shaft 12 than the speed reducer side opening 28a (the opening to one side) of the through hole 28, and the radial direction of the rotor shaft 12 To make it shorter. By the outlet shape of the speed reducer opposite the opening 28b in a trumpet-like, oil flows out to the reducer opposite the peripheral surface 22b from the speed reducer opposite the opening 28b is, Comparative Example to the reducer opposite the inner peripheral surface 22b It spreads larger than the case of 2 . The oil comes into contact with the wide range of the inner peripheral surface 22b on the opposite side of the speed reducer, and the cooling performance of the permanent magnet can be improved.

(第実施形態)
図12は第実施形態のモータ1の概略断面図、図13(a)は図12の丸(破線参照)で囲った部分の拡大図、図13(b)は図13(a)のA−A線断面図である。図14は図13(a)、(b)のB−B線に沿って、つまり貫通孔29に沿って展開した展開図である。比較例3の図5、図6と同一部分には同一番号を付している。
( Third embodiment)
12 is a schematic cross-sectional view of the motor 1 of the third embodiment, FIG. 13A is an enlarged view of a portion surrounded by a circle (see the broken line) in FIG. 12, and FIG. 13B is A in FIG. FIG. FIG. 14 is a development view developed along the BB line in FIGS. 13A and 13B, that is, along the through hole 29. The same parts as those in FIGS. 5 and 6 of the comparative example 3 are denoted by the same reference numerals.

実施形態は、比較例3を前提として、貫通孔29の減速機側開口部29aと貫通孔29の減速機反対側開口部29bとをロータシャフト12の周方向(図14で上下方向)にずらした位置に設けたものである。このため、図14に示したように貫通孔29の中心軸Cはロータシャフト12の周方向に対して所定の角度θ(0°<θ<90°)を有している。比較のため、図14には比較例3の貫通孔26を破線で重ねて示している。比較例3では、貫通孔26の中心軸はロータシャフト12の周方向に対して90°の角度を有している。 In the third embodiment, on the premise of Comparative Example 3 , the speed reducer side opening 29a of the through hole 29 and the speed reducer opposite side opening 29b of the through hole 29 are arranged in the circumferential direction of the rotor shaft 12 (vertical direction in FIG. 14). It is provided at a position shifted to. Therefore, as shown in FIG. 14, the central axis C of the through hole 29 has a predetermined angle θ (0 ° <θ <90 °) with respect to the circumferential direction of the rotor shaft 12. For comparison, in FIG. 14, the through hole 26 of Comparative Example 3 is shown by being overlapped with a broken line. In Comparative Example 3 , the central axis of the through hole 26 has an angle of 90 ° with respect to the circumferential direction of the rotor shaft 12.

貫通孔29の開口部29a、29bの位置が比較例3と相違する以外は、比較例3と同様の構成である。すなわち、スパイダ支持体23によって仕切られた減速機側内周面22aと減速機反対側内周面22bのうち、減速機側内周面22aの内径D1よりも減速機反対側内周面22bの内径D2’を大きくすると共に、スパイダ支持体23のスパイダ外筒部22への取り付け面にスパイダ支持体23を貫通する直管状の貫通孔29を設けている。ロータシャフト12の周方向には貫通孔29を等間隔で6個設けている。 Opening 29a of the through hole 29, except that the position of 29b is different from the Comparative Example 3 is a configuration similar to that of Comparative Example 3. That is, of the speed reducer-side inner peripheral surface 22b and the speed reducer-side inner peripheral surface 22b of the speed reducer-side inner peripheral surface 22b divided by the spider support 23, the speed reducer-side inner peripheral surface 22b is smaller than the inner diameter D1. While increasing the inner diameter D2 ′, a straight tubular through hole 29 penetrating the spider support 23 is provided on the attachment surface of the spider support 23 to the spider outer cylinder 22. Six through holes 29 are provided at equal intervals in the circumferential direction of the rotor shaft 12.

減速機側内周面22aの内径D1より減速機反対側内周面22bの内径D2’のほうが大きいので、貫通孔29の中心線Cはロータシャフト12の径方向(図12で上下方向)に対し所定の角度α(0°<α<90°)を有している。貫通孔29の減速機側開口部29aはロータシャフト12の径方向内側(図12で上下方向)に開口し、貫通孔29の減速機反対側開口部29bはロータシャフト12の軸方向(図12で左方)に開口している。   Since the inner diameter D2 ′ of the inner peripheral surface 22b on the opposite side of the speed reducer is larger than the inner diameter D1 of the inner peripheral surface 22a of the speed reducer, the center line C of the through hole 29 is in the radial direction of the rotor shaft 12 (vertical direction in FIG. 12). On the other hand, it has a predetermined angle α (0 ° <α <90 °). The speed reducer side opening 29a of the through hole 29 opens radially inward of the rotor shaft 12 (vertical direction in FIG. 12), and the speed reducer opposite side opening 29b of the through hole 29 is in the axial direction of the rotor shaft 12 (FIG. 12). It opens to the left).

実施形態によれば、スパイダ支持体23によって仕切られた減速機側内周面22aと減速機反対側内周面22bのうち、減速機側内周面22aの内径D1よりも減速機反対側内周面22bの内径D2’を大きくすると共に、スパイダ支持体23のスパイダ外筒部22への取り付け面にスパイダ支持体23を貫通する貫通孔29を設け、かつ貫通孔29の減速機側開口部29aがロータシャフト12の径方向内側に向けて開口するようにし、かつ貫通孔29の減速機反対側開口部29b(貫通孔の一方の側とは反対側である他方の側への開口部)と、減速機反対側開口部29a(貫通孔の一方の側への開口部)とをロータシャフト12の周方向にずらした位置に設けている。これにより、オイルが貫通孔29に入る際のフリクションを低減できるため、貫通孔29にオイルが入りやすくなり、減速機反対側内周面22bに供給されるオイルの量を比較例3の場合より増やすことができる。 According to the third embodiment, of the speed reducer side inner peripheral surface 22a and the speed reducer opposite inner peripheral surface 22b partitioned by the spider support 23, the speed reducer is opposite to the inner diameter D1 of the speed reducer inner peripheral surface 22a. The inner diameter D2 ′ of the side inner peripheral surface 22b is increased, and a through hole 29 penetrating the spider support 23 is provided on the attachment surface of the spider support 23 to the spider outer cylinder portion 22, and the speed reducer side of the through hole 29 is provided. The opening 29a opens toward the radially inner side of the rotor shaft 12, and the opening 29b (opening to the other side opposite to the one side of the through hole) of the through hole 29 is provided. Part) and the speed reducer opposite side opening 29a (opening to one side of the through hole) are provided at positions shifted in the circumferential direction of the rotor shaft 12. Thereby, since friction when oil enters the through hole 29 can be reduced, the oil can easily enter the through hole 29, and the amount of oil supplied to the inner peripheral surface 22 b on the speed reducer opposite side is smaller than that in the case of Comparative Example 3 . Can be increased.

(第実施形態)
図15は第実施形態のモータ1の概略断面図、図16(a)は図15の丸(破線参照)で囲った部分の拡大図、図16(b)は図16(a)のA−A線断面図である。図17は図16(a)、(b)のB−B線に沿って、つまり貫通孔30に沿って展開した展開図である。比較例3の図5、図6と同一部分には同一番号を付している。
( Fourth embodiment)
15 is a schematic cross-sectional view of the motor 1 of the fourth embodiment, FIG. 16A is an enlarged view of a portion surrounded by a circle (see the broken line) in FIG. 15, and FIG. 16B is A in FIG. FIG. FIG. 17 is a development view developed along the line BB in FIGS. 16A and 16B, that is, along the through hole 30. The same parts as those in FIGS. 5 and 6 of the comparative example 3 are denoted by the same reference numerals.

実施形態は、比較例3を前提として、図17に示したように、貫通孔30を一方の側の第1貫通孔45と一方の側とは反対側である他方の側の第2貫通孔46とから構成し、このうち第1貫通孔45の中心線C1がロータシャフト12の周方向に対してなす角度θ1(0°<θ1<90°)を、第2貫通孔46の中心線C2がロータシャフト12の周方向に対してなす角度θ2(0°<θ2<90°)より小さくするものである。 In the fourth embodiment, on the premise of Comparative Example 3 , as shown in FIG. 17, the first through hole 45 on one side of the through hole 30 is the second on the other side opposite to the one side. The angle θ1 (0 ° <θ1 <90 °) formed by the center line C1 of the first through hole 45 with respect to the circumferential direction of the rotor shaft 12 is the center of the second through hole 46. The line C2 is smaller than an angle θ2 (0 ° <θ2 <90 °) formed with respect to the circumferential direction of the rotor shaft 12.

貫通孔30の位置が比較例3と相違する以外は、比較例3と同様の構成である。すなわち、スパイダ支持体23によって仕切られた減速機側内周面22aと減速機反対側内周面22bのうち、減速機側内周面22aの内径D1よりも減速機反対側内周面22bの内径D2’を大きくすると共に、スパイダ支持体23のスパイダ外筒部22への取り付け面にスパイダ支持体23を貫通する直管状の貫通孔30(45、46)を設けている。ロータシャフト12の周方向には貫通孔30(45、46)を等間隔で6個設けている。 The configuration of the through hole 30 is the same as that of the comparative example 3 except that the position of the through hole 30 is different from that of the comparative example 3 . That is, of the speed reducer-side inner peripheral surface 22b and the speed reducer-side inner peripheral surface 22b of the speed reducer-side inner peripheral surface 22b divided by the spider support 23, the speed reducer-side inner peripheral surface 22b is smaller than the inner diameter D1. While increasing the inner diameter D2 ′, a straight tubular through hole 30 (45, 46) penetrating the spider support 23 is provided on the attachment surface of the spider support 23 to the spider outer cylinder portion 22. In the circumferential direction of the rotor shaft 12, six through holes 30 (45, 46) are provided at equal intervals.

減速機側内周面22aの内径D1より減速機反対側内周面22bの内径D2’のほうが大きいので、第1、第2の貫通孔45、46の中心線C1、C2はロータシャフト12の径方向(図15で上下方向)に対し所定の角度α(0°<α<90°)を有している。貫通孔30(第1貫通孔45)の減速機側開口部30aはロータシャフト12の径方向内側(図15で上下方向)に開口し、貫通孔30(第2貫通孔46)の減速機反対側開口部30bはロータシャフト12の軸方向(図15で左方)に開口している。   Since the inner diameter D2 ′ of the inner peripheral surface 22b opposite to the speed reducer is larger than the inner diameter D1 of the inner peripheral surface 22a of the speed reducer, the center lines C1 and C2 of the first and second through holes 45 and 46 are It has a predetermined angle α (0 ° <α <90 °) with respect to the radial direction (vertical direction in FIG. 15). The speed reducer side opening 30a of the through hole 30 (first through hole 45) opens radially inward (vertical direction in FIG. 15) of the rotor shaft 12, and is opposite to the speed reducer of the through hole 30 (second through hole 46). The side opening 30b opens in the axial direction of the rotor shaft 12 (leftward in FIG. 15).

実施形態によれば、スパイダ支持体23によって仕切られた減速機側内周面22aと減速機反対側内周面22bのうち、減速機側内周面22aの内径D1よりも減速機反対側内周面22bの内径D2’を大きくすると共に、スパイダ支持体23のスパイダ外筒部22への取り付け面にスパイダ支持体23を貫通する貫通孔30を設け、かつ貫通孔30の減速機側開口部30aがロータシャフト12の径方向内側に向けて開口するようにし、かつ貫通孔30を一方の側の第1貫通孔45と一方の側とは反対側である他方の側の第2貫通孔46とから構成し、このうち第1貫通孔45の中心線C1がロータシャフト12の周方向に対してなす角度θ1を、第2貫通孔46の中心線C2がロータシャフト12の周方向に対してなす角度θ2より小さくしている。これにより、第1貫通孔45の中心線C1がロータシャフト12の周方向に対してなす角度θ1が、第実施形態において貫通孔29の中心線Cがロータシャフト12の周方向に対してなす角度θより小さくなる。このようにロータシャフト12の周方向に対してなす角度θ1が第実施形態より小さくなると、オイルが第1貫通孔45(貫通孔30)に入りやすくなり、その分だけ減速機反対側内周面22bに供給されるオイルの量を第実施形態の場合より増やすことができる。 According to the fourth embodiment, among the speed reducer side inner peripheral surface 22a and the speed reducer opposite inner peripheral surface 22b partitioned by the spider support 23, the speed reducer is opposite to the inner diameter D1 of the speed reducer inner peripheral surface 22a. The inner diameter D2 ′ of the side inner peripheral surface 22b is increased, and a through hole 30 penetrating the spider support 23 is provided on the attachment surface of the spider support 23 to the spider outer cylinder portion 22, and the speed reducer side of the through hole 30 is provided. The opening 30a opens toward the radially inner side of the rotor shaft 12, and the first through hole 45 on one side and the second through on the other side opposite to the one side. The center line C1 of the first through hole 45 forms an angle θ1 with respect to the circumferential direction of the rotor shaft 12, and the center line C2 of the second through hole 46 extends in the circumferential direction of the rotor shaft 12. Smaller than the angle θ2 And comb. Accordingly, the angle θ1 formed by the center line C1 of the first through hole 45 with respect to the circumferential direction of the rotor shaft 12 is the center line C of the through hole 29 formed with respect to the circumferential direction of the rotor shaft 12 in the third embodiment. It becomes smaller than the angle θ. Thus, when the angle θ1 formed with respect to the circumferential direction of the rotor shaft 12 is smaller than that in the third embodiment, the oil is likely to enter the first through hole 45 (through hole 30), and the inner circumference on the opposite side of the speed reducer accordingly. The amount of oil supplied to the surface 22b can be increased as compared with the third embodiment.

また、第実施形態で貫通孔29の減速機反対側開口部29bと、減速機反対側開口部29aとをロータシャフト12の周方向にずらした位置に設けることは、貫通孔29の長さが、比較例3の貫通孔26より長くなることを意味する(図14参照)。このため、貫通孔を加工する点に関しては、第実施形態の方が比較例3より不利となる。一方、第実施形態によれば、貫通孔を折れ曲がった2つの貫通孔45、46から構成するので、各貫通孔45、46の長さは、第実施形態の貫通孔29より短くなる。これによって、貫通孔が長くなることによる加工の困難さを防止できる。 Further, in the third embodiment, providing the speed reducer opposite side opening 29b and the speed reducer opposite side opening 29a of the through hole 29 at positions shifted in the circumferential direction of the rotor shaft 12 is the length of the through hole 29. Means longer than the through hole 26 of Comparative Example 3 (see FIG. 14). For this reason, regarding the point which processes a through-hole, the direction of 3rd Embodiment becomes disadvantageous rather than the comparative example 3. FIG . On the other hand, according to the fourth embodiment, since the through hole is composed of two bent through holes 45, 46, the length of each through hole 45, 46 is shorter than the through hole 29 of the third embodiment. Thereby, the difficulty of processing due to the long through hole can be prevented.

(第実施形態)
図18は第実施形態のモータ1の概略断面図、図19(a)は図18の丸(破線参照)で囲った部分の拡大図、図19(b)は図19(a)のA−A線断面図である。図20は図19(a)、(b)のB−B線に沿って、つまり貫通孔29に沿って展開した展開図である。第実施形態の図12、13(a)、(b)、図14と同一部分には同一番号を付している。
( Fifth embodiment)
18 is a schematic cross-sectional view of the motor 1 of the fifth embodiment, FIG. 19A is an enlarged view of a portion surrounded by a circle (see the broken line) in FIG. 18, and FIG. 19B is A in FIG. FIG. FIG. 20 is a development view developed along the line BB in FIGS. 19A and 19B, that is, along the through hole 29. Parts identical to those in FIGS. 12, 13 (a), (b) and FIG. 14 of the third embodiment are given the same numbers.

実施形態は、図12、13(a)、(b)、図14に示した第実施形態を前提として、貫通孔29の減速機反対側開口部39aの付近に、図20に示したように貫通孔29の減速機反対側開口部29bから出てくるオイルの流れを乱す障害物48を設けたものである。 The fifth embodiment is shown in FIG. 20 in the vicinity of the speed reducer opposite side opening 39a of the through hole 29 on the premise of the third embodiment shown in FIGS. 12, 13 (a), (b) and FIG. As described above, an obstacle 48 that disturbs the flow of oil coming out of the opening 29b on the opposite side of the reduction gear of the through hole 29 is provided.

障害物48を設けた以外は第実施形態と同様の構成である。すなわち、スパイダ支持体23によって仕切られた減速機側内周面22aと減速機反対側内周面22bのうち、減速機側内周面22aの内径D1よりも減速機反対側内周面22bの内径D2’を大きくすると共に、スパイダ支持体23のスパイダ外筒部22への取り付け面にスパイダ支持体23を貫通する直管状の貫通孔29を設けている。ロータシャフト12の周方向には貫通孔29を等間隔で6個設けている。 The configuration is the same as that of the third embodiment except that the obstacle 48 is provided. That is, of the speed reducer-side inner peripheral surface 22b and the speed reducer-side inner peripheral surface 22b of the speed reducer-side inner peripheral surface 22b divided by the spider support 23, the speed reducer-side inner peripheral surface 22b is smaller than the inner diameter D1. While increasing the inner diameter D2 ′, a straight tubular through hole 29 penetrating the spider support 23 is provided on the attachment surface of the spider support 23 to the spider outer cylinder 22. Six through holes 29 are provided at equal intervals in the circumferential direction of the rotor shaft 12.

減速機側内周面22aの内径D1より減速機反対側内周面22bの内径D2’のほうが大きいので、貫通孔29の中心線Cはロータシャフト12の径方向(図18で上下方向)方向に対し所定の角度α(0°<α<90°)を有している。貫通孔29の減速機側開口部29aはロータシャフト12の径方向内側(図18で上下方向)に開口し、貫通孔29の減速機反対側開口部29bはロータシャフト12の軸方向(図18で左方)に開口している。   Since the inner diameter D2 ′ of the inner peripheral surface 22b opposite to the reduction gear is larger than the inner diameter D1 of the inner peripheral surface 22a of the speed reducer, the center line C of the through hole 29 is the radial direction (vertical direction in FIG. 18) of the rotor shaft 12 With a predetermined angle α (0 ° <α <90 °). The speed reducer side opening 29a of the through hole 29 opens in the radial direction inner side (vertical direction in FIG. 18) of the rotor shaft 12, and the speed reducer opposite side opening 29b of the through hole 29 is the axial direction of the rotor shaft 12 (FIG. 18). It opens to the left).

実施形態によれば、スパイダ支持体23によって仕切られた減速機側内周面22aと減速機反対側内周面22bのうち、減速機側内周面22aの内径D1よりも減速機反対側内周面22bの内径D2’を大きくすると共に、スパイダ支持体23のスパイダ外筒部22への取り付け面にスパイダ支持体23を貫通する貫通孔29を設け、かつ貫通孔29の減速機側開口部29aがロータシャフト12の径方向内側に向けて開口するようにし、かつ貫通孔29の減速機反対側開口部29b(貫通孔の一方の側とは反対側である他方の側への開口部)と、減速機反対側開口部29a(貫通孔の一方の側への開口部)とをロータシャフト12の周方向にずらした位置に設け、かつ貫通孔29の減速機反対側開口部39a(貫通孔の一方の側とは反対側ある他方の側への開口部)の付近にオイルの流れを乱す障害物48を設けている。これにより、減速機反対側開口部29bより出てくるオイルは、障害物48に衝突して2方向に分かれるので、減速機反対側内周面22bとオイルとが接する面積が第実施形態の場合より大きくなる。これによって、永久磁石の冷却性能を第実施形態の場合より向上することができる。 According to the fifth embodiment, among the speed reducer side inner peripheral surface 22a and the speed reducer opposite inner peripheral surface 22b partitioned by the spider support 23, the speed reducer is opposite to the inner diameter D1 of the speed reducer inner peripheral surface 22a. The inner diameter D2 ′ of the side inner peripheral surface 22b is increased, and a through hole 29 penetrating the spider support 23 is provided on the attachment surface of the spider support 23 to the spider outer cylinder portion 22, and the speed reducer side of the through hole 29 is provided. The opening 29a opens toward the radially inner side of the rotor shaft 12, and the opening 29b (opening to the other side opposite to the one side of the through hole) of the through hole 29 is provided. Part) and the speed reducer opposite side opening 29a (opening to one side of the through hole) are provided at positions shifted in the circumferential direction of the rotor shaft 12, and the speed reducer opposite side opening 39a of the through hole 29 is provided. (Opposite to one side of the through hole An obstacle 48 that disturbs the oil flow is provided in the vicinity of the opening to the other side. Thereby, the oil coming out from the opening 29b on the opposite side of the speed reducer collides with the obstacle 48 and is divided into two directions. Therefore, the area where the oil is in contact with the inner peripheral surface 22b on the opposite side of the speed reducer is that of the third embodiment. Larger than the case. Thereby, the cooling performance of the permanent magnet can be improved as compared with the case of the third embodiment.

(第実施形態)
図21は第実施形態のモータ1の概略断面図、図22は図21のA−A線断面図である。比較例1の図1、図2と同一部分には同一番号を付している。
( Sixth embodiment)
FIG. 21 is a schematic cross-sectional view of the motor 1 of the sixth embodiment, and FIG. 22 is a cross-sectional view taken along line AA of FIG. The same parts as those in FIGS. 1 and 2 of the comparative example 1 are denoted by the same reference numerals.

図22に示したように、ロータコア31には、ロータシャフト12の周方向に8個の永久磁石51が等分に埋め込まれて配置されている。この場合に、第実施形態は、永久磁石51の近くで永久磁石51のロータシャフト12径方向内側に、つまり永久磁石51の裏側に断面が半円状の貫通孔52を設けるものである。永久磁石51の個数が8個であるので、貫通孔52の個数も8個とする。 As shown in FIG. 22, eight permanent magnets 51 are equally embedded in the rotor core 31 in the circumferential direction of the rotor shaft 12. In this case, in the sixth embodiment, a through hole 52 having a semicircular cross section is provided near the permanent magnet 51 on the inner side in the radial direction of the rotor shaft 12 of the permanent magnet 51, that is, on the back side of the permanent magnet 51. Since the number of permanent magnets 51 is eight, the number of through holes 52 is also eight.

貫通孔52の断面形状及び個数以外は比較例1と同様の構成である。すなわち、スパイダ支持体23のスパイダ外筒部22への取り付け面にスパイダ支持体23を貫通する貫通孔52を設けている。 Except for the cross-sectional shape and the number of the through holes 52, the configuration is the same as that of the first comparative example . That is, the through-hole 52 which penetrates the spider support body 23 is provided in the attachment surface to the spider outer cylinder part 22 of the spider support body 23. As shown in FIG.

減速機側内周面22aの内径と減速機反対側内周面22bの内径とは等しいので、貫通孔52の減速機側開口部52a、減速機反対側開口部52bともロータシャフト12の軸方向(図21で左右方向)に開口している。   Since the inner diameter of the speed reducer side inner peripheral surface 22a is equal to the inner diameter of the speed reducer opposite inner peripheral surface 22b, both the speed reducer side opening 52a and the speed reducer opposite side opening 52b of the through hole 52 are in the axial direction of the rotor shaft 12. It opens in the left-right direction in FIG.

実施形態によれば、スパイダ支持体23のスパイダ外筒部22への取り付け面にスパイダ支持体23を貫通する貫通孔52を設けると共に、永久磁石51の近くで永久磁石51のロータシャフト12径方向内側に貫通孔52を設けている。永久磁石51は渦電流損失による発熱が大きく、また温度が上がると減磁する可能性があることから、永久磁石21の近くに貫通孔52を設けてオイルを流すことにより、永久磁石51を効果的に冷却することができる。 According to the sixth embodiment, the through hole 52 that penetrates the spider support 23 is provided on the attachment surface of the spider support 23 to the spider outer cylinder portion 22, and the rotor shaft 12 of the permanent magnet 51 near the permanent magnet 51. A through hole 52 is provided on the radially inner side. Since the permanent magnet 51 generates a large amount of heat due to eddy current loss and may demagnetize when the temperature rises, the permanent magnet 51 is made effective by providing a through hole 52 near the permanent magnet 21 and flowing oil. Can be cooled.

(第実施形態)
図23は第実施形態のモータ1の概略断面図、図24は図23のA−A線断面図である。比較例2の図3と同一部分には同一番号を付している。ただし、図24にはオイルガイド55のみを示している。
( Seventh embodiment)
FIG. 23 is a schematic cross-sectional view of the motor 1 of the seventh embodiment, and FIG. 24 is a cross-sectional view taken along line AA of FIG. The same parts as those in FIG. However, only the oil guide 55 is shown in FIG.

実施形態は、比較例2を前提として、さらにピニオンギヤ7を潤滑した後のオイルのほとんどを減速機反対側内周面22bに供給するため、オイルガイド55を設けたものである。すなわち、減速機5の外周を被覆する円筒状のオイルガイド55を右側のリング状端板2bに固定すると共に、オイルガイド55のスパイダ支持体23側開口端55bをスパイダ外筒部22に嵌り込む位置まで延設している。 In the seventh embodiment, on the premise of Comparative Example 2 , an oil guide 55 is provided in order to supply most of the oil after further lubricating the pinion gear 7 to the inner peripheral surface 22b on the speed reducer opposite side. That is, the cylindrical oil guide 55 covering the outer periphery of the speed reducer 5 is fixed to the right ring-shaped end plate 2b, and the spider support 23 side opening end 55b of the oil guide 55 is fitted into the spider outer cylinder portion 22. It extends to the position.

ピニオンギヤ7から遠心力によりオイルガイド55の内周面55aやリング状端板2bに衝突したオイルは、内周面55aやリング状端板2bを伝って重力によりオイルガイド55下部の内周面55aに集まってくる。この集まってくるオイルをスパイダ支持体23に設けている貫通孔25に向けて供給するため、オイルガイド55の下部に、減速機側内周面22aに向かって延び減速機側内周面22aと接触する部位55cを設け、この部位55cに溝55d(図24参照)を形成している。   The oil that has collided with the inner peripheral surface 55a of the oil guide 55 and the ring-shaped end plate 2b by the centrifugal force from the pinion gear 7 is transmitted to the inner peripheral surface 55a and the ring-shaped end plate 2b by gravity and the inner peripheral surface 55a below the oil guide 55 by gravity. Come together. In order to supply the collected oil toward the through hole 25 provided in the spider support 23, the oil guide 55 extends toward the reduction gear side inner peripheral surface 22a at the lower portion of the oil guide 55, and the reduction gear side inner peripheral surface 22a. A contact portion 55c is provided, and a groove 55d (see FIG. 24) is formed in the portion 55c.

実施形態によれば、減速機5の外周を被覆する円筒状のオイルガイド55を設けているので、ピニオンギヤ7から、スパイダ21より離れる側に飛び散ったオイルは、オイルガイド55により集められ、スパイダ支持体23に設けている貫通孔25に向けて流される。これにより減速機反対側内周面22bの冷却に用いるオイル量を最大にできる。 According to the seventh embodiment, since the cylindrical oil guide 55 covering the outer periphery of the speed reducer 5 is provided, the oil scattered from the pinion gear 7 to the side away from the spider 21 is collected by the oil guide 55, It flows toward the through hole 25 provided in the spider support 23. This maximizes the amount of oil used for cooling the speed reducer opposite inner peripheral surface 22b.

1 モータ
2 モータケース
5 減速機
7 ピニオンギヤ
8 ステータ
11 ロータ
12 ロータシャフト
21 スパイダ(支持部材)
22 スパイダ外筒部(外筒部)
23 スパイダ支持体(支持体)
24〜30 貫通孔
52 貫通孔
DESCRIPTION OF SYMBOLS 1 Motor 2 Motor case 5 Reduction gear 7 Pinion gear 8 Stator 11 Rotor 12 Rotor shaft 21 Spider (support member)
22 Spider outer cylinder (outer cylinder)
23 Spider support (support)
24-30 Through hole 52 Through hole

Claims (5)

ロータシャフトと、
ロータシャフトの外周側に離れて位置し永久磁石が装着される円筒状のロータコアと、
これらロータシャフト及びロータコアを連結支持する支持部材と
を有するロータを備えるモータにおいて、
前記支持部材は、
ロータコアの内周面に固定される外筒部と、
この外筒部をロータシャフト軸方向に2つに仕切る円盤状の支持体と
からなり、
前記支持体によって仕切られる一方の側の前記ロータシャフトの外周に配置された減速機と、
減速機内の前記ロータシャフト内に形成されているオイル流路からオイルを吐出して、前記減速機の支持体側端面を冷却した後に前記減速機側の外筒部内周面にオイルを供給するオイル供給手段
前記支持体の前記外筒部への取り付け面に支持体を貫通する貫通孔
を有して、
前記外筒部内周面の内径を前記外筒部のロータシャフト軸方向の両端から前記ロータシャフト軸方向内側に向かうほど小さくし、かつ前記外筒部内周面の内径が最小となる部分の前記ロータシャフト軸方向位置が前記支持体と前記減速機の支持体側端面との間にくるようにしたことを特徴とするモータ。
A rotor shaft;
A cylindrical rotor core that is located on the outer peripheral side of the rotor shaft and on which a permanent magnet is mounted;
In a motor including a rotor having a support member that connects and supports the rotor shaft and the rotor core,
The support member is
An outer cylinder fixed to the inner peripheral surface of the rotor core;
It consists of a disk-shaped support that partitions this outer cylinder part into two in the axial direction of the rotor shaft,
A speed reducer disposed on the outer periphery of the rotor shaft on one side partitioned by the support;
Oil supply that discharges oil from an oil flow path formed in the rotor shaft in the reducer, cools the support side end face of the reducer , and then supplies the oil to the inner peripheral surface of the outer cylinder portion on the reducer side and means,
A through hole penetrating through the support member to the mounting surface to the outer cylindrical portion of the support
Having
The portion of the rotor in which the inner diameter of the inner peripheral surface of the outer cylinder portion is decreased from both ends of the outer cylinder portion in the rotor shaft axial direction toward the inner side in the rotor shaft axial direction, and the inner diameter of the inner peripheral surface of the outer cylinder portion is minimized A motor characterized in that a shaft axial position is located between the support and a support-side end surface of the speed reducer .
前記貫通孔の前記一方の側とは反対側である他方の側への開口部を、前記貫通孔の前記一方の側への開口部よりもロータシャフト周方向に長く、ロータシャフト径方向に短くすることを特徴とする請求項に記載のモータ。 The opening to the other side opposite to the one side of the through hole is longer in the circumferential direction of the rotor shaft than the opening to the one side of the through hole and shorter in the radial direction of the rotor shaft. The motor according to claim 1 . 前記貫通孔の前記一方の側とは反対側である他方の側への開口部と、前記貫通孔の前記一方の側への開口部とをロータシャフトの周方向にずらした位置に設けることを特徴とする請求項に記載のモータ。 An opening to the other side of the through hole opposite to the one side and an opening to the one side of the through hole are provided at positions shifted in the circumferential direction of the rotor shaft. The motor according to claim 1 . 前記貫通孔を前記一方の側の第1貫通孔と前記一方の側とは反対側である他方の側の第2貫通孔とから構成し、このうち第1貫通孔の中心線がロータシャフト周方向に対してなす角度を、第2貫通孔の中心線がロータシャフト周方向に対してなす角度より小さくすることを特徴とする請求項に記載のモータ。 The through hole is composed of the first through hole on the one side and the second through hole on the other side opposite to the one side, and the center line of the first through hole is the circumference of the rotor shaft. 4. The motor according to claim 3 , wherein an angle formed with respect to the direction is smaller than an angle formed by a center line of the second through hole with respect to a circumferential direction of the rotor shaft. 前記貫通孔の前記一方の側とは反対側である他方の側への開口部の付近にオイルの流れを乱す障害物を設けたことを特徴とする請求項に記載のモータ。 The motor according to claim 3 , wherein an obstacle that disturbs the flow of oil is provided in the vicinity of an opening portion to the other side opposite to the one side of the through hole.
JP2010247571A 2010-11-04 2010-11-04 motor Active JP5728892B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010247571A JP5728892B2 (en) 2010-11-04 2010-11-04 motor
CN2011204350896U CN202309288U (en) 2010-11-04 2011-11-04 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010247571A JP5728892B2 (en) 2010-11-04 2010-11-04 motor

Publications (2)

Publication Number Publication Date
JP2012100477A JP2012100477A (en) 2012-05-24
JP5728892B2 true JP5728892B2 (en) 2015-06-03

Family

ID=46378101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010247571A Active JP5728892B2 (en) 2010-11-04 2010-11-04 motor

Country Status (2)

Country Link
JP (1) JP5728892B2 (en)
CN (1) CN202309288U (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160347B (en) * 2014-04-11 2018-03-30 江苏航申航空科技有限公司 A kind of energy-efficient motor
JP5968487B1 (en) 2015-04-03 2016-08-10 三菱電機株式会社 Rotating electric machine
JP6190910B1 (en) * 2016-03-29 2017-08-30 三菱電機株式会社 Rotating electric machine
WO2019124245A1 (en) * 2017-12-18 2019-06-27 日本電産株式会社 Motor unit and in-wheel motor
TWI706624B (en) * 2019-03-20 2020-10-01 東元電機股份有限公司 Motor circulating cooling system and oil cooled motor structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521404A (en) * 1975-06-24 1977-01-07 Toshiba Corp Rotary electric machine
JPH06105492A (en) * 1992-09-25 1994-04-15 Toshiba Corp Induction main motor
JP2001025209A (en) * 1999-07-05 2001-01-26 Nissan Motor Co Ltd Rotor of motor
DE202004019745U1 (en) * 2004-12-22 2005-02-24 Strahmann, Lüder, Dipl.-Kfm. Vortexing device for improving fluids
JP4550631B2 (en) * 2005-03-11 2010-09-22 本田技研工業株式会社 Wheel drive device for vehicle
JP5367276B2 (en) * 2008-02-20 2013-12-11 本田技研工業株式会社 Lubrication cooling structure of electric motor
JP5167868B2 (en) * 2008-03-03 2013-03-21 日産自動車株式会社 Electric motor
JP2009296772A (en) * 2008-06-04 2009-12-17 Toyota Motor Corp Cooling device for coil end of rotary electric machine

Also Published As

Publication number Publication date
CN202309288U (en) 2012-07-04
JP2012100477A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5505275B2 (en) Stator cooling device
JP5728892B2 (en) motor
JP6108541B2 (en) Electric motor
JP5113306B2 (en) Rotating electrical machine case
JP2012184748A (en) Ventilation fan
JP2012105487A (en) Cooling device for electric motor
JP2013132151A (en) Rotary electric machine and rotary electric machine cooling system
EP3058643B1 (en) Electric motor
JP2019161740A (en) Cooling device
TW201713872A (en) Liquid damper system
JP2011217438A (en) Cooling system for rotating electric machine
CN102983673A (en) Rotary electric machine
JP6089502B2 (en) Rotating machine
WO2008004286A1 (en) Rotating electric machine and shaft for rotating electric machine
US11309757B2 (en) Rotor of rotating electrical machine
JP2018109429A (en) Air hydrostatic bearing device
JP2020114135A (en) Rotary electric machine rotor and rotary electric machine
JP2012147620A (en) Fly wheel for water cooling motor and fly wheel system for water cooling motor
JP6391160B2 (en) Magnetic bearing and rotating machine
JP2021013286A (en) Rotary electric machine
JP6733403B2 (en) Rotating electric machine
JP5852379B2 (en) Spindle device
JP5522442B2 (en) Rotor for rotating electrical machines
JP2020124096A (en) Lubricating structure for rotary machine
JP2014236648A (en) Dynamo-electric machine and rotor of dynamo-electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R151 Written notification of patent or utility model registration

Ref document number: 5728892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151