JP5726505B2 - Resin foam, cylindrical body, molded body - Google Patents

Resin foam, cylindrical body, molded body Download PDF

Info

Publication number
JP5726505B2
JP5726505B2 JP2010282592A JP2010282592A JP5726505B2 JP 5726505 B2 JP5726505 B2 JP 5726505B2 JP 2010282592 A JP2010282592 A JP 2010282592A JP 2010282592 A JP2010282592 A JP 2010282592A JP 5726505 B2 JP5726505 B2 JP 5726505B2
Authority
JP
Japan
Prior art keywords
resin foam
mass
parts
resin
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010282592A
Other languages
Japanese (ja)
Other versions
JP2012131848A (en
Inventor
貴史 山川
貴史 山川
西村 圭介
圭介 西村
太陽 本多
太陽 本多
柴田 博司
博司 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010282592A priority Critical patent/JP5726505B2/en
Publication of JP2012131848A publication Critical patent/JP2012131848A/en
Application granted granted Critical
Publication of JP5726505B2 publication Critical patent/JP5726505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は銅管に被覆・断熱するのに最適な樹脂発泡体に関するものである。   The present invention relates to a resin foam that is optimal for covering and insulating a copper pipe.

樹脂発泡体は冷暖房機器の配管用断熱材、水道管凍結防止用断熱材の分野で広く使用されている素材である。   Resin foam is a material widely used in the field of heat insulation for piping of air conditioning equipment and heat insulation for preventing freezing of water pipes.

しかし、熱分解型化学発泡剤としてアゾジカルボンアミドを用いた熱可塑性樹脂発泡体のシート又は成形品には、残留アンモニア濃度が1500〜3000ppm(質量基準)程度含まれていることが分かっている。   However, it has been found that a thermoplastic resin foam sheet or molded article using azodicarbonamide as a pyrolytic chemical foaming agent contains a residual ammonia concentration of about 1500 to 3000 ppm (mass basis).

一方、配管に銅管を使用した場合、使用環境や使用期間にもよるが、5〜20年で銅管外面から樹脂発泡体由来の残留アンモニアによる腐食が発生する場合があり、漏水や結露に発展し甚大な被害を及ぼすと言う問題点があった。   On the other hand, when copper pipes are used for piping, depending on the usage environment and period of use, corrosion may occur due to residual ammonia derived from the resin foam from the outer surface of the copper pipes in 5 to 20 years. There was a problem of developing and causing great damage.

樹脂発泡体に焼ミョウバンを添加して、アンモニア臭気のない発泡成形用熱可塑性樹脂組成物を得る方法(特許文献1参照)、又はフォギングテストにおいて結晶の発生を抑える方法が開示されている(特許文献2参照)。   A method of obtaining a thermoplastic resin composition for foam molding without ammonia odor by adding burned alum to a resin foam (see Patent Document 1), or a method of suppressing the generation of crystals in a fogging test is disclosed (Patent) Reference 2).

特開平06−345888号公報Japanese Patent Laid-Open No. 06-345888 特開2008−156620号公報JP 2008-156620 A

アンモニア臭気のない発泡成形用熱可塑性樹脂組成物を得る方法やフォギングテストにおいて結晶の発生を抑える方法を開示した特許文献1や2に記載の発明は、保温性能に優れ、容易に成形可能な樹脂発泡体を安定して得ることが困難であった。   The inventions described in Patent Documents 1 and 2 which disclose a method for obtaining a thermoplastic resin composition for foam molding without ammonia odor and a method for suppressing the generation of crystals in a fogging test are excellent in heat retaining performance and can be easily molded. It was difficult to obtain a foam stably.

本発明はかかる課題を解決するために、次の手段を採用するものである。即ち、樹脂発泡体にアンモニア吸着剤として少なくとも焼ミョウバンを含み、保温性能に優れ容易に成型可能で、かつ銅腐食を起こさないことを特徴とする樹脂発泡体である。   The present invention employs the following means in order to solve such problems. That is, the resin foam is characterized in that it contains at least calcined alum as an ammonia adsorbent in the resin foam, can be easily molded with excellent heat retention performance, and does not cause copper corrosion.

本発明の上記目的は、以下の発明によって基本的に達成された。つまり本発明は以下である。
1) 見掛け密度が20〜40kg/mであり、アンモニア濃度が200ppm〜1000ppm(質量基準)である架橋発泡体である樹脂発泡体。
2) 前記樹脂発泡体からなる成型体。
3) 前記樹脂発泡体からなる円筒体。
The above object of the present invention has been basically achieved by the following invention. That is, the present invention is as follows.
1) A resin foam which is a crosslinked foam having an apparent density of 20 to 40 kg / m 3 and an ammonia concentration of 200 ppm to 1000 ppm (mass basis).
2) A molded body made of the resin foam.
3) A cylindrical body made of the resin foam.

本発明の発泡体を用いることで、断熱性能を保ちながら銅害防止を行うことが出来、配管用断熱材として長期間安定した性能を維持することが可能である。また、漏水や結露対策を講じることなく施工が可能となり、施工回数の減少、漏水結露対策不要といったトータルコストダウンに有効である。   By using the foam of the present invention, it is possible to prevent copper damage while maintaining heat insulation performance, and it is possible to maintain stable performance for a long period of time as a heat insulating material for piping. In addition, construction is possible without taking measures against water leakage and condensation, which is effective in reducing the total cost of reducing the number of constructions and eliminating the need for measures against water condensation.

本発明の樹脂発泡体の示差走査熱量分析装置による融解熱量測定の例。The example of the calorie | heat amount of fusion measurement by the differential scanning calorimetry apparatus of the resin foam of this invention.

本発明の樹脂発泡体は、見掛け密度が20〜40kg/mであり、アンモニア濃度が200ppm〜1000ppm(質量基準)であることを特徴とする。また本発明の樹脂発泡体は、樹脂発泡体中のアンモニア濃度を一定量に減少させるため(アンモニア濃度を200ppm〜1000ppm(質量基準)に制御するため)、発泡体中にアンモニア吸着剤を含有することが好ましい。かかるアンモニア吸着剤は、発泡体の製造の際に使用される熱分解型化学発泡剤より発生するアンモニアの吸着効果があり、発泡体のアンモニア濃度を減少させることが可能となる。 The resin foam of the present invention has an apparent density of 20 to 40 kg / m 3 and an ammonia concentration of 200 ppm to 1000 ppm (mass basis). Further, the resin foam of the present invention contains an ammonia adsorbent in the foam in order to reduce the ammonia concentration in the resin foam to a certain amount (to control the ammonia concentration to 200 ppm to 1000 ppm (mass basis)). It is preferable. Such an ammonia adsorbent has an effect of adsorbing ammonia generated from the pyrolytic chemical foaming agent used in the production of the foam, and can reduce the ammonia concentration of the foam.

本発明における樹脂発泡体は、熱可塑性樹脂を主として含むことが好ましい。ここで主として含むとは、樹脂発泡体の全成分100質量%において、熱可塑性樹脂を50質量%以上100質量%以下含む態様を意味する。   The resin foam in the present invention preferably contains mainly a thermoplastic resin. Here, mainly including means that the thermoplastic resin is contained in an amount of 50% by mass to 100% by mass in 100% by mass of all components of the resin foam.

熱可塑性樹脂とは、加熱により軟化し冷却により固化する特性を有する樹脂である。熱可塑性樹脂としては特に限定されないが、例えばポリオレフィン系樹脂、ポリエチレンテレフタラート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ乳酸、ポリアミド、ポリカーボネート、ポリテトラフルオロエチレン、ポリウレタン、ポリスチレン、ポリエステル、ABS樹脂、アクリル樹脂、ポリアセタール樹脂あるいは前記樹脂の共重合体等が例示される。これらのうち少なくとも1種を用いることが好ましく、複数混合してもよい。   The thermoplastic resin is a resin having a characteristic of being softened by heating and solidified by cooling. The thermoplastic resin is not particularly limited. For example, polyolefin resin, polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, polylactic acid, polyamide, polycarbonate, polytetrafluoroethylene, polyurethane, polystyrene, polyester, ABS resin, acrylic resin And a polyacetal resin or a copolymer of the resin. Among these, it is preferable to use at least one kind, and a plurality of them may be mixed.

本発明の樹脂発泡体は、中でも熱可塑性樹脂としてポリオレフィン系樹脂を用いることが好ましい。本発明で言うポリオレフィン系樹脂としては、低密度、中〜高密度、直鎖状低密度などのポリエチレン樹脂、エチレンと酢酸ビニルあるいはアクリル酸アルキルエステル、プロピレン等との共重合体、ホモまたは共重合ポリプロピレン、塩素化ポリエチレン等の単独あるいは混合物が例示される。該ポリオレフィン系樹脂としては、特にポリプロピレンもしくはポリエチレンが好ましく、更に好ましくはポリエチレンである。これらのポリオレフィン系樹脂は、発泡体に悪影響を与えない範囲で、更に他の樹脂を2種以上混合してもよい。ポリエチレン樹脂としては、例えば低密度、中密度、もしくは高密度ポリエチレン、α−オレフィンを共重合したポリエチレン系共重合またはエチレンを主成分とする酢酸ビニルもしくはアクリル酸エステルとの共重合体を混合してもよい。本発明の樹脂発泡体は、熱可塑性樹脂としてポリオレフィン系樹脂を用いることが好ましいが、ポリオレフィン系樹脂としてはポリエチレン樹脂を用いることが好ましい。   In the resin foam of the present invention, it is preferable to use a polyolefin resin as the thermoplastic resin. Examples of the polyolefin resin used in the present invention include low density, medium to high density, and linear low density polyethylene resins, copolymers of ethylene and vinyl acetate or alkyl acrylate, propylene, and homo or copolymer. Examples thereof include polypropylene, chlorinated polyethylene and the like alone or as a mixture. As the polyolefin resin, polypropylene or polyethylene is particularly preferable, and polyethylene is more preferable. These polyolefin-based resins may be further mixed with two or more other resins as long as they do not adversely affect the foam. As the polyethylene resin, for example, low density, medium density, or high density polyethylene, polyethylene copolymer copolymerized with α-olefin, or a copolymer with vinyl acetate or acrylate ester mainly composed of ethylene is mixed. Also good. The resin foam of the present invention preferably uses a polyolefin resin as the thermoplastic resin, but preferably uses a polyethylene resin as the polyolefin resin.

本発明の樹脂発泡体は、熱可塑性樹脂100質量%において、ポリオレフィン系樹脂を50質量%以上100質量%以下含むことが好ましく、より好ましくはポリオレフィン系樹脂を70質量%以上99.95質量%以下含むことである。樹脂発泡体中の熱可塑性樹脂100質量%において、ポリエチレン樹脂が50質量%より低い場合、樹脂発泡体を円筒体などに成型をして、配管へ挿入する際に抵抗が大きくなり、スムーズに施工出来ない場合がある。   The resin foam of the present invention preferably contains 50% by mass or more and 100% by mass or less of a polyolefin resin in 100% by mass of a thermoplastic resin, more preferably 70% by mass or more and 99.95% by mass or less of a polyolefin resin. Is to include. When 100% by mass of the thermoplastic resin in the resin foam is less than 50% by mass of polyethylene resin, the resin foam is molded into a cylindrical body, etc., and the resistance increases when inserted into the pipe, allowing smooth construction. It may not be possible.

本発明で言う樹脂発泡体とは、樹脂とガスの混合体であり、その製造方法は特に限定されないが、押出機内でガスあるいは気化する溶剤を溶融させ高圧下で押出ながら発泡する押出発泡法、ガスあるいは気化する溶剤を含有した樹脂粒子を予備発泡し更に金型内で発泡融着するビーズ発泡法、高圧容器内で樹脂にガスを溶解し常圧で加熱し発泡するガス含浸法といった溶剤気散法や、樹脂と熱分解型化学発泡剤を溶融混錬し常圧加熱にて発泡する常圧発泡法、押出機内で熱分解型化学発泡剤を加熱分解し高圧下で押出ながら発泡する押出発泡法、プレス金型内で熱分解型化学発泡剤を加熱分解し減圧しながら発泡するプレス発泡法といった発泡剤分解法等が例示される。これらの中で、ガスを用いたビーズ発泡法、ガス含浸法といった溶剤気散法などの発泡方法を総称してガス発泡といい、得られた樹脂発泡体をガス発泡体という。これら製造方法の中で、ガスを使用した発泡等では気泡粗大化による熱伝導率の低下が懸念される。よって本発明では特に発泡剤分解法が好適である。   The resin foam referred to in the present invention is a mixture of resin and gas, and its production method is not particularly limited, but an extrusion foaming method in which a gas or a solvent to be vaporized is melted in an extruder and foamed while being extruded under high pressure, Solvent gas such as a bead foaming method in which resin particles containing a gas or a solvent to be vaporized are pre-foamed and further foamed and fused in a mold, and a gas impregnation method in which a gas is dissolved in a resin in a high-pressure vessel and heated at normal pressure to foam Or the normal pressure foaming method in which a resin and a pyrolytic chemical foaming agent are melted and kneaded and foamed by normal pressure heating, and the thermal decomposable chemical foaming agent is thermally decomposed and extruded under high pressure in an extruder. Examples thereof include a foaming method and a foaming agent decomposition method such as a press foaming method in which a thermally decomposable chemical foaming agent is thermally decomposed in a press mold and foamed while reducing pressure. Among these, foaming methods such as a bead foaming method using a gas and a solvent diffusion method such as a gas impregnation method are collectively referred to as gas foaming, and the obtained resin foam is referred to as a gas foam. Among these production methods, there is a concern about the decrease in thermal conductivity due to bubble coarsening in foaming using gas. Therefore, the foaming agent decomposition method is particularly suitable in the present invention.

本発明の樹脂発泡体は、アンモニア吸着剤を含むことが好ましい。このようなアンモニア吸着剤は、アンモニアの吸着効果がありさえすれば、制限されるものではないが、アンモニアの吸着量に優れたアルカリ金属を含む硫酸塩が好ましく、更にはミョウバンが好ましく、更に好ましくは焼ミョウバンである。また酸化亜鉛のような遷移金属元素の酸化物との混合も有効である。上記アンモニア吸着剤は、本発明の特性を阻害しない限り、2種以上のアンモニア吸着剤を混合してもよい。   The resin foam of the present invention preferably contains an ammonia adsorbent. Such an ammonia adsorbent is not limited as long as it has an ammonia adsorption effect, but is preferably a sulfate containing an alkali metal excellent in the amount of adsorption of ammonia, more preferably alum, and still more preferably. Is a baked alum. Mixing with an oxide of a transition metal element such as zinc oxide is also effective. As long as the said ammonia adsorption agent does not inhibit the characteristic of this invention, you may mix 2 or more types of ammonia adsorption agents.

樹脂発泡体を製造するために用いる樹脂組成物中のアンモニア吸着剤の含有量は、熱可塑性樹脂100質量部に対し0.3〜5質量部が好ましく、更に1〜3質量部の範囲が好ましい。樹脂発泡体を製造するために用いる樹脂組成物中の該アンモニア吸着剤の含有量が、熱可塑性樹脂100質量部に対して0.3質量部未満であれば、得られる樹脂発泡体のアンモニア吸着性能が劣る場合や均一分散が困難となる場合がある。一方、樹脂発泡体を製造するために用いる樹脂組成物中の該アンモニア吸着剤の含有量が、熱可塑性樹脂100質量部に対して5質量部を超えると、得られる発泡体の表面へのブリード量が多くなり、長期のアンモニア吸着性能が低下する場合や加熱溶融加工時の分散不良、混練不良、加工機器の各所ロールへの付着による工程不安定といった不具合が発生する場合がある。   The content of the ammonia adsorbent in the resin composition used for producing the resin foam is preferably 0.3 to 5 parts by mass, more preferably 1 to 3 parts by mass with respect to 100 parts by mass of the thermoplastic resin. . If the content of the ammonia adsorbent in the resin composition used for producing the resin foam is less than 0.3 parts by mass relative to 100 parts by mass of the thermoplastic resin, ammonia adsorption of the resulting resin foam The performance may be inferior or uniform dispersion may be difficult. On the other hand, when the content of the ammonia adsorbent in the resin composition used for producing the resin foam exceeds 5 parts by mass with respect to 100 parts by mass of the thermoplastic resin, bleeding to the surface of the obtained foam is performed. When the amount increases, the long-term ammonia adsorption performance may deteriorate, or there may be problems such as poor dispersion during heat-melt processing, poor kneading, and process instability due to adhesion to various rolls of processing equipment.

発泡剤には、圧縮ガスの放圧や気体など物理的変化により発泡させる物理発泡剤と、熱分解や化学反応によるガスを発生させる化学発泡剤がある。これらの中で、熱分解により窒素ガスや炭酸ガスを発生させる化学発泡剤を、熱分解型化学発泡剤という。また、熱分解型化学発泡剤を用いた発泡方法を、発泡剤分解法という。   As the foaming agent, there are a physical foaming agent that foams by a physical change such as a pressure release of a compressed gas or a gas, and a chemical foaming agent that generates a gas due to thermal decomposition or a chemical reaction. Among these, a chemical foaming agent that generates nitrogen gas or carbon dioxide gas by thermal decomposition is referred to as a thermal decomposition type chemical foaming agent. A foaming method using a thermal decomposition type chemical foaming agent is called a foaming agent decomposition method.

発泡剤分解法に用いる熱分解型化学発泡剤とは、常温において液体または固体の化合物であり、加熱されたときに分解または気化する化合物である。また熱分解型化学発泡剤は、熱可塑性樹脂のシート化や架橋反応を実質的に妨害しないものであることが好ましく、熱分解型化学発泡剤の分解温度は、180〜250℃が好ましい。このような熱分解型化学発泡剤として、アゾジカルボンアミド、アゾジカルボン酸金属塩、ジニトロソペンタメチレンテトラミン、N、N-ジニトロソペンタメチレンテトラミン、4、4-オキシビス、ビステトラゾール・ジアンモニウムなどが例示される。また熱分解型化学発泡剤としては、アゾジカルボンアミドが好ましい。   The thermally decomposable chemical blowing agent used in the blowing agent decomposition method is a compound that is liquid or solid at room temperature and decomposes or vaporizes when heated. The pyrolytic chemical foaming agent is preferably one that does not substantially interfere with the sheeting or crosslinking reaction of the thermoplastic resin, and the decomposition temperature of the pyrolytic chemical foaming agent is preferably 180 to 250 ° C. Examples of such pyrolytic chemical foaming agents include azodicarbonamide, azodicarboxylic acid metal salts, dinitrosopentamethylenetetramine, N, N-dinitrosopentamethylenetetramine, 4,4-oxybis, bistetrazole and diammonium. Illustrated. As the pyrolytic chemical foaming agent, azodicarbonamide is preferable.

発泡剤分解法によって本発明の樹脂発泡体を製造するにおいて、樹脂発泡体を製造するために用いる樹脂組成物は、熱可塑性樹脂100質量部に対して、熱分解型化学発泡剤を2〜25質量部含むことが好ましく、更に15〜20質量部含むことが好ましい。発泡剤分解法によって本発明の樹脂発泡体を製造するにおいて、樹脂発泡体を製造するために用いる樹脂組成物が、熱可塑性樹脂100質量部に対して2質量部未満の熱分解型化学発泡剤しか含有しない場合、得られる本発明の樹脂発泡体の発泡が不十分となり良好な発泡体を得ることが出来なくなることがある。一方、発泡剤分解法によって本発明の樹脂発泡体を製造するにおいて、樹脂発泡体を製造するために用いる樹脂組成物が、熱可塑性樹脂100質量部に対して25質量部を超える熱分解型化学発泡剤を含有する場合、得られる本発明の樹脂発泡体の発泡が不均一になり、良好な発泡体とすることが出来なくなることがある。   In producing the resin foam of the present invention by the foaming agent decomposing method, the resin composition used for producing the resin foam contains 2 to 25 pyrolytic chemical foaming agents with respect to 100 parts by mass of the thermoplastic resin. It is preferable to contain a mass part, and it is further preferable to contain 15-20 mass parts. In producing the resin foam of the present invention by the foaming agent decomposing method, the resin composition used for producing the resin foam is less than 2 parts by mass with respect to 100 parts by mass of the thermoplastic resin. When only containing, the resin foam of this invention obtained may become inadequate foaming and it may become impossible to obtain a favorable foam. On the other hand, in producing the resin foam of the present invention by the foaming agent decomposing method, the resin composition used for producing the resin foam has a thermal decomposition type chemical composition exceeding 25 parts by mass with respect to 100 parts by mass of the thermoplastic resin. When a foaming agent is contained, foaming of the obtained resin foam of the present invention becomes non-uniform, and it may not be possible to obtain a good foam.

なお、熱分解型化学発泡剤の種類や目的とする樹脂発泡体の見掛け密度によって、任意に樹脂発泡体を製造するために用いる樹脂組成物中の熱分解型化学発泡剤の添加量を変えることが出来る。上記熱分解型化学発泡剤は、本発明の特性を阻害しない限り、2種以上の熱分解型発泡剤を混合してもよい。   Depending on the type of pyrolytic chemical foaming agent and the apparent density of the desired resin foam, the amount of pyrolytic chemical foaming agent added to the resin composition used to produce the resin foam can be arbitrarily changed. I can do it. As long as the said thermal decomposition type chemical foaming agent does not inhibit the characteristic of this invention, you may mix 2 or more types of thermal decomposition type foaming agents.

本発明に用いる樹脂発泡体は、示差走査熱量計による融解熱量の全面積を100%とした際の、120℃以下の融解熱量の面積の合計は、60%以上が好ましく、より好ましくは65%以上であり、特に好ましくは90%以上である。また示差走査熱量計による融解熱量の全面積を100%とした際の、120℃以下の融解熱量の面積の合計は、上限は100%である。120℃以下の融解熱量の面積の合計が60%未満である場合、本発明の樹脂発泡体は剛性が強くなり、円筒体への成型が困難となったり、円筒体が涙型になったりと、施工時に結露する可能性が出てくる。ここで示す融解熱量とは、示差走査熱量分析で測定したDSC曲線から得られるものであり、測定方法は実施例に示す通りである。   In the resin foam used in the present invention, the total area of heat of fusion at 120 ° C. or less is preferably 60% or more, more preferably 65%, when the total area of heat of fusion by a differential scanning calorimeter is 100%. Above, particularly preferably 90% or more. In addition, the upper limit of the total area of heat of fusion at 120 ° C. or lower is 100% when the total area of heat of fusion by the differential scanning calorimeter is 100%. When the total area of heat of fusion at 120 ° C. or lower is less than 60%, the resin foam of the present invention has a high rigidity, making it difficult to mold into a cylindrical body, or the cylindrical body into a teardrop shape. There is a possibility of condensation during construction. The heat of fusion shown here is obtained from the DSC curve measured by differential scanning calorimetry, and the measurement method is as shown in the examples.

本発明の樹脂発泡体の見掛け密度は20〜40kg/mの範囲であることが重要である。好ましくは25〜35kg/mの範囲である。見掛け密度が20kg/mより小さい場合、圧縮特性や強伸度等の機械的特性が低下し断熱性能や加工特性に不備が生じる場合があり、一方、見掛け密度が40kg/mを超える場合、断熱性能が著しく低下し、必要とする保温や保冷の温度特性を満たさない場合があり、成形や施工を行うときに効率が悪くなってしまう場合がある。ここで示す見掛け密度とは、JIS K 7222(2001年度版JISハンドブック記載)に準じた測定方法で測定した数値を示す。 It is important that the apparent density of the resin foam of the present invention is in the range of 20 to 40 kg / m 3 . Preferably it is the range of 25-35 kg / m < 3 >. When the apparent density is less than 20 kg / m 3 , the mechanical properties such as compression properties and strength / elongation may decrease and the heat insulation performance and processing characteristics may be deficient. On the other hand, the apparent density exceeds 40 kg / m 3 In addition, the heat insulation performance is remarkably deteriorated, and the required heat insulation and cold insulation temperature characteristics may not be satisfied, and the efficiency may be deteriorated when molding or construction is performed. The apparent density shown here indicates a numerical value measured by a measurement method according to JIS K 7222 (described in the 2001 edition of the JIS handbook).

本発明における樹脂発泡体の見掛け密度を20〜40kg/mの範囲に調整する方法は、特に限定されるものではないが、達成方法として一例を挙げておく。熱可塑性樹脂100質量部に対して、熱分解型化学発泡剤であるアゾジカルボンアミドを2〜25質量部含む樹脂組成物を、200〜250℃の温度で発泡させることで、見掛け密度を20〜40kg/mの範囲に制御された樹脂発泡体を得ることができる。 Although the method of adjusting the apparent density of the resin foam in the present invention to a range of 20 to 40 kg / m 3 is not particularly limited, an example is given as an achievement method. An apparent density of 20 to 20 is obtained by foaming a resin composition containing 2 to 25 parts by mass of azodicarbonamide, which is a pyrolytic chemical foaming agent, at a temperature of 200 to 250 ° C. with respect to 100 parts by mass of the thermoplastic resin. A resin foam controlled in the range of 40 kg / m 3 can be obtained.

本発明の樹脂発泡体の熱伝導率は、0.03〜0.04W/mKの範囲が好ましい。熱伝導率が0.03W/mKより小さい場合、断熱性能は満たされるが、生産性の低下や価格の高騰等といった問題が発生する場合がある。一方、熱伝導率が0.04W/mKを超える場合は、断熱必要厚みの増加が必要となり、成形や施工を行うときに効率が悪くなってしまう場合がある。ここで示す熱伝導率とは、JIS A 1412−2(2001年度版JISハンドブック記載)に準じた測定方法で測定した数値を示す。   The thermal conductivity of the resin foam of the present invention is preferably in the range of 0.03 to 0.04 W / mK. When the thermal conductivity is less than 0.03 W / mK, the heat insulation performance is satisfied, but problems such as a decrease in productivity and a price increase may occur. On the other hand, when the thermal conductivity exceeds 0.04 W / mK, it is necessary to increase the necessary heat insulation thickness, and the efficiency may deteriorate when molding or construction is performed. The thermal conductivity shown here indicates a numerical value measured by a measurement method according to JIS A 1412-2 (described in the 2001 edition of the JIS handbook).

樹脂発泡体の熱伝導率を0.03〜0.04W/mKの範囲に制御するためには、発泡剤分解法で得た樹脂発泡体の見掛け密度を20〜40kg/mの範囲に設定することで可能である。 In order to control the thermal conductivity of the resin foam within the range of 0.03 to 0.04 W / mK, the apparent density of the resin foam obtained by the foaming agent decomposition method is set within the range of 20 to 40 kg / m 3. Is possible.

本発明の樹脂発泡体は架橋構造を有することが好ましい。つまり、本発明の樹脂発泡体は、架橋発泡体であることが好ましい。架橋構造を有さない場合、シート切れが頻繁に発生する場合がある。また、製造方法がガス発泡などのときは耐熱性の低下が懸念されるため、架橋をすることが好ましい。架橋構造を導入して架橋発泡体を得るための方法としては、電離性放射線を照射し架橋させる電子線架橋法、ジクミルパ−オキサイド、ターシャリーブチルパ−ベンゾエ−ト、ジタ−シャリ−ブチルパ−オキサイド等の有機過酸化物を混練し発泡時に該有機過酸化物を分解し架橋させる化学架橋法、シラン基を持つポリオレフィン系樹脂を混合し加熱水分と接触することで架橋させるシラン架橋法などの方法を用いても良く、好ましくは電子線架橋法である。   The resin foam of the present invention preferably has a crosslinked structure. That is, the resin foam of the present invention is preferably a crosslinked foam. When it does not have a crosslinked structure, sheet breakage may occur frequently. Further, when the production method is gas foaming or the like, it is preferable to crosslink because there is a concern about a decrease in heat resistance. Examples of a method for obtaining a crosslinked foam by introducing a crosslinked structure include: electron beam crosslinking method in which ionizing radiation is irradiated for crosslinking, dicumyl peroxide, tertiary butyl perbenzoate, and di-tert-butyl peroxide. Methods such as chemical crosslinking method in which organic peroxides such as kneaded are decomposed and foamed during foaming, and silane crosslinking method in which polyolefin resin having silane group is mixed and heated to contact with moisture May be used, and the electron beam crosslinking method is preferred.

本発明の樹脂発泡体を製造する際に用いる樹脂組成物は、熱可塑性樹脂100質量部に対して、アンモニア吸着剤を0.3〜5質量部及び熱分解型化学発泡剤を2〜25質量部含むことが好ましいが、このような樹脂組成物を混合する方法は特に限定されない。好ましくは、単軸押出機や二軸押出機等の種々の押出機やニーダーやカレンダーロール等の混合機を用い、熱可塑性樹脂が軟化する温度以上で溶融させ混合、混練する方法である。   The resin composition used for producing the resin foam of the present invention is 0.3 to 5 parts by mass of an ammonia adsorbent and 2 to 25 parts by mass of a pyrolytic chemical foaming agent with respect to 100 parts by mass of the thermoplastic resin. However, the method of mixing such a resin composition is not particularly limited. Preferably, it is a method of melting, mixing and kneading using various extruders such as a single screw extruder and a twin screw extruder, or a mixer such as a kneader or a calender roll, at or above a temperature at which the thermoplastic resin is softened.

本発明の樹脂発泡体のアンモニア濃度は200〜1000ppm(質量基準)の範囲に設定する必要がある。アンモニア濃度が質量基準で200ppm未満であれば、アンモニア吸着剤の添加量を増加させなければならず、コストが大きくなり効率的な生産が出来ない問題がある。またガス発泡体の場合、アンモニア濃度が質量基準で200ppm未満であれば、上記理由に加えて気泡粗大化による熱伝導率の低下が懸念される。一方質量基準で1000ppmを越える場合は、配管の主材質である銅において、腐食を高頻度で発生させる場合がある。ここで示すアンモニア濃度とは、2001年版JIS K 0102 42.5の付属書1(規定)に示すイオンクロマトグラフで測定した数値を示す。   The ammonia concentration of the resin foam of the present invention needs to be set in the range of 200 to 1000 ppm (mass basis). If the ammonia concentration is less than 200 ppm on a mass basis, the amount of ammonia adsorbent added must be increased, resulting in a problem that costs are increased and efficient production is not possible. In the case of a gas foam, if the ammonia concentration is less than 200 ppm on a mass basis, in addition to the above reasons, there is a concern about a decrease in thermal conductivity due to bubble coarsening. On the other hand, when it exceeds 1000 ppm on the mass basis, corrosion may occur frequently in copper, which is the main material of piping. The ammonia concentration shown here indicates a numerical value measured by an ion chromatograph shown in Appendix 1 (normative) of 2001 edition JIS K 0102 42.5.

本発明における樹脂発泡体のアンモニア濃度を200〜1000ppm(質量基準)の範囲に調整するためには、熱可塑性樹脂100質量部に対して、アンモニア吸着剤を0.3〜5質量部含ませることで、アンモニア濃度200〜1000ppm(質量基準)の範囲に制御された樹脂発泡体を得る事が出来る。   In order to adjust the ammonia concentration of the resin foam in the present invention to a range of 200 to 1000 ppm (mass basis), 0.3 to 5 parts by mass of an ammonia adsorbent is included with respect to 100 parts by mass of the thermoplastic resin. Thus, it is possible to obtain a resin foam controlled in the ammonia concentration range of 200 to 1000 ppm (mass basis).

本発明の樹脂発泡体の厚みは1〜100mmが好ましく、更には5〜80mmが好ましい。厚みが1mm未満であれば断熱性能が著しく低下し、必要とする保温や保冷の温度特性を満たさない場合があり、一方、厚みが100mmを越えると断熱性能は満たされるが、加工特性や生産性の低下、価格の高騰等といった問題が生じる場合がある。ここで示す厚みとは、JIS K 7222(2001年度版JISハンドブック記載)に準じた測定方法で測定した数値を示す。   The thickness of the resin foam of the present invention is preferably 1 to 100 mm, and more preferably 5 to 80 mm. If the thickness is less than 1 mm, the heat insulation performance is remarkably deteriorated and the required heat insulation and cold insulation temperature characteristics may not be satisfied. On the other hand, if the thickness exceeds 100 mm, the heat insulation performance is satisfied, but the processing characteristics and productivity are low. There are cases where problems such as price declines and price increases occur. The thickness shown here indicates a numerical value measured by a measuring method according to JIS K 7222 (described in the 2001 edition of the JIS handbook).

本発明の樹脂発泡体は、配管内を流れる気体や液体等の流動性を有する物体の保温、保冷、結露防止を効率的に行うため、配管形状に則した被覆を可能とする円筒体とすることが望ましい。かかる発泡体を円筒体とする方法は特に限定されないが、例えば上記方法で製造した該発泡体を円筒の直径に応じた幅に切断し、熱風や赤外線ヒータ等の公知の熱源で該発泡体を加熱しながら円錐形状の口金を通す方法、あるいは樹脂発泡体を円筒の直径に応じた幅に切断し、熱風や赤外線ヒータ等の公知の熱源で該発泡体を加熱しながら円錐形状の口金を通し円筒体とした後、適度な幅に切断した未延伸のフィルム状に成形したポリオレフィン系樹脂層を溶媒系、水系等の液状、ゲル状、固形状の公知の接着剤や公知の粘着テープで接着する方法が例示される。   The resin foam of the present invention is a cylindrical body capable of covering in accordance with the pipe shape in order to efficiently keep warm, cool, and prevent condensation of fluid objects such as gas and liquid flowing in the pipe. It is desirable. The method of making the foam into a cylindrical body is not particularly limited. For example, the foam produced by the above method is cut into a width corresponding to the diameter of the cylinder, and the foam is removed with a known heat source such as hot air or an infrared heater. A method of passing a conical base while heating, or cutting a resin foam into a width corresponding to the diameter of the cylinder, and passing the conical base while heating the foam with a known heat source such as hot air or an infrared heater After forming a cylindrical body, the polyolefin resin layer formed into an unstretched film cut to an appropriate width is bonded with a solvent-based, water-based liquid, gel-like, solid-state known adhesive or a known pressure-sensitive adhesive tape. The method of doing is illustrated.

本発明の樹脂発泡体を被覆する配管の種類には、住宅用冷暖房機器に使用する冷媒配管、給水・給湯などに使用する水道管、貯湯式給湯器の連絡配管がある。配管の材質には、塩化ビニル管、架橋ポリエチレン管、ポリブテン管、塩化ビニルライニング管、銅管、ステンレス鋼管などが例示される。該樹脂発泡体は残留アンモニア濃度が著しく低く、銅管が腐食するのを防止するのに効果的である。   The types of pipes covering the resin foam of the present invention include refrigerant pipes used for residential air conditioning equipment, water pipes used for water supply and hot water supply, and connecting pipes for hot water storage type hot water heaters. Examples of the material of the pipe include a vinyl chloride pipe, a crosslinked polyethylene pipe, a polybutene pipe, a vinyl chloride lining pipe, a copper pipe, and a stainless steel pipe. The resin foam has a remarkably low residual ammonia concentration and is effective in preventing corrosion of the copper tube.

また、配管の湾曲部位、継手部位、バルブ等の流量調節部位等、配管の形状が円筒体と異なる部位は、該部位と同等形状の所定形状に成型し被覆を可能とする成型体とすることが望ましい。かかる発泡体を所定形状の成型体とする方法は特に限定されないが、例えば該発泡体を循環式熱風オーブンや赤外線ヒータ等の公知の熱源で加熱した後、微細孔を有する金属製や木製等の所定型の上に置き、微細孔より空気を抜き取り該発泡体と所定型を密着する方法が例示される。   In addition, pipes that have a different shape from the cylindrical body, such as a curved part of a pipe, a joint part, and a flow rate adjusting part such as a valve, should be molded into a predetermined shape that is equivalent to the part of the pipe. Is desirable. A method for forming the foam into a predetermined shape is not particularly limited. For example, the foam is heated with a known heat source such as a circulating hot air oven or an infrared heater, and then made of metal or wood having fine holes. An example is a method in which the foam is placed on a predetermined mold, air is extracted from the fine holes, and the foam and the predetermined mold are brought into close contact with each other.

以下、本発明を以下の実施例を用いて更により詳細に説明するが、以下の実施例は一例であり特に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are merely examples and are not particularly limited.

本発明における樹脂発泡体の評価法は次の通りである。
「アンモニア濃度測定」
2001年版JIS K 0102 42.5の付属書1(規定)に記載のアンモニア濃度測定方法のイオンクロマトグラフに準じて測定した。
The evaluation method of the resin foam in the present invention is as follows.
"Ammonia concentration measurement"
It was measured according to the ion chromatograph of the ammonia concentration measuring method described in Appendix 1 (normative) of 2001 edition JIS K 0102 42.5.

5mmに細片した試料を1g精秤し、100mlの密閉瓶に採る。これに40mlの蒸留水を加え密閉した後、90℃で24時間放置する。冷却後、抽出液を取り出してイオン分析を行った。   1 g of a sample cut into 5 mm pieces is accurately weighed and placed in a 100 ml sealed bottle. After adding 40 ml of distilled water and sealing it, it is allowed to stand at 90 ° C. for 24 hours. After cooling, the extract was taken out and subjected to ion analysis.

使用した装置は日本ダイオネクス社製のDX−320Jを用い、ガードカラム・分離カラムはそれぞれIonPac CG12A、IonPac CS12Aを用いる。分離カラムに溶離液であるメタンスルホン酸を1ml/minで流し、試料を25μlをイオンクロマトグラフに注入して、イオンクロマトグラムを記録する。
「見掛け密度」
JIS K 7222(2001年度版JISハンドブック記載)に準じた測定方法で測定した。試料を15cm×15cmにカットし、それぞれの長さ、幅、厚みをそれぞれデジタルノギスで測定をして体積を求める。使用したノギスはMitutoyo社製のCD−20を用いた。続いて、各試料をSHIMADZU社製のAUW220Dを用いて質量を求めた。得られた体積と質量とから見掛け密度を算出した。
「DSC」
示差走査熱量分析装置としてセイコーインスツルメンツ製のDSC2920を使用する。−50℃から200℃の間で10℃/分の速度で昇温し、5分間保持した後、200℃から−50℃の間で10℃/分の速度で降温し、更に5分間保持した後−50℃から200℃の間で10℃/分の速度で昇温した際の、2度目の昇温過程で得られたDSC曲線を用いる。
The equipment used was DX-320J manufactured by Nippon Dionex, and IonPac CG12A and IonPac CS12A were used for the guard column and separation column, respectively. Methanesulfonic acid as an eluent is allowed to flow through the separation column at 1 ml / min, 25 μl of the sample is injected into the ion chromatograph, and an ion chromatogram is recorded.
"Apparent density"
It measured by the measuring method according to JISK7222 (2001 version JIS handbook description). A sample is cut into 15 cm × 15 cm, and the length, width, and thickness are measured with a digital caliper, and the volume is obtained. The caliper used was CD-20 manufactured by Mitutoyo. Subsequently, the mass of each sample was determined using AUW220D manufactured by SHIMADZU. The apparent density was calculated from the obtained volume and mass.
"DSC"
A DSC 2920 manufactured by Seiko Instruments is used as a differential scanning calorimeter. The temperature was raised between −50 ° C. and 200 ° C. at a rate of 10 ° C./min and held for 5 minutes, then the temperature was lowered between 200 ° C. and −50 ° C. at a rate of 10 ° C./min and held for another 5 minutes. The DSC curve obtained in the second temperature raising process when the temperature is raised at a rate of 10 ° C./min between −50 ° C. and 200 ° C. is used.

まずDSC曲線において、樹脂発泡体の融解開始温度T1に相当するDSC曲線上の点aと、樹脂発泡体の融解終了温度T2に相当するDSC曲線上の点bとを結ぶ線分(a−b)を引く。次に、120℃に相当する点cからグラフの縦軸と平行な直線を引き、DSC曲線と交わる点をd(DSC曲線と120℃を示す縦軸の交わる点)とする。また、120℃に相当する点cからグラフの縦軸と平行な直線を引き、前記線分(a−b)と交わる点をe(線分(a−b)と120℃を示す縦軸の交わる点)とする。   First, in the DSC curve, a line segment (ab) connecting a point a on the DSC curve corresponding to the melting start temperature T1 of the resin foam and a point b on the DSC curve corresponding to the melting end temperature T2 of the resin foam. )pull. Next, a straight line parallel to the vertical axis of the graph is drawn from the point c corresponding to 120 ° C., and a point where the DSC curve intersects is defined as d (a point where the DSC curve intersects the vertical axis indicating 120 ° C.). Further, a straight line parallel to the vertical axis of the graph is drawn from the point c corresponding to 120 ° C., and a point intersecting with the line segment (a−b) is represented by e (line segment (ab) and the vertical axis indicating 120 ° C. Intersection).

示差走査熱量計による融解熱量の全面積100%とは、DSC曲線に沿ったaからbまでの曲線と、線分(a−b)に囲まれた部分の面積である。一方、120℃以下の融解熱量の面積の合計とは、DSC曲線に沿ったaからdまでの曲線と、線分(d−e)で囲まれた部分の面積とする。なお、上記融解開始温度T1、融解終了温度T2とは、DSC曲線と低温側ベースライン、高温側ベースラインとの交点をいう。
「熱伝導率」
JIS A 1412−2(2001年度版JISハンドブック記載)に記載の熱伝導率の測定法に準じた測定方法で測定した。試料を30cm×30cmにカットし、それぞれの長さ、幅、厚みをそれぞれデジタルノギスで測定をして体積を求める。試料の体積と質量から見掛け密度を算出した。熱流計にはHOLOMERIX社製、RAPID−Kを使用し、試料の上下の温度差、熱流量を測定して、熱伝導率の算出を行った。尚、測定を行った室温は23℃とする。
「外観」
樹脂発泡体の表面状態を目視で確認した。
表面荒れが酷く広範囲に至っている場合は(×)、表面荒れが少なく使用に問題ない場合は(△)、表面に問題が無ければ(○)とする。
「成形性(扁平率)」
樹脂発泡体を幅110mmに切断し、300℃の熱風で該樹脂発泡体を加熱しながら円錐形状の口金を通して、内径18mmの円筒体を得た。
円筒体の短径/長径×100で求められる数値を偏平率とし、85%未満の場合を(×)、85〜90%の場合を(△)、90%より大きい場合を(○)とする。
「施工性」
円筒体に成形した保温材を呼び径15A(外径15.88mm)、肉厚1.02mmの銅管へ施工するとき、保温材を全く通すことが出来ず使用出来ない場合は(×)、僅かな抵抗があるものの押し込むことで使用出来る場合は(△)、抵抗が一切ない場合は(○)とする。
「保温性」
樹脂発泡体を直径80mm、高さ150mmの円筒状の鋼製タンクに隙間なく巻く。タンク内には100℃の湯と熱電対を入れ、中の湯が50℃まで冷める時間を測定した。尚、測定を行った室温は23℃とする。
「銅管腐食」
樹脂発泡体、銅板をそれぞれ5cm×5cmのサイズにカットする。サンプルを銅板に貼りあわせ、乾燥機内で100℃×180日保管する。テスト終了後、表面状態を観察し、銅による腐食が発生した場合、Mitutoyo社製のノギス、CD−20で腐食部分のサイズを測定した。
The total area of 100% of the heat of fusion measured by the differential scanning calorimeter is the area of the part surrounded by the curve from a to b along the DSC curve and the line segment (ab). On the other hand, the total area of heat of fusion at 120 ° C. or lower is defined as the area of the portion surrounded by the curve from a to d along the DSC curve and the line segment (d−e). The melting start temperature T1 and the melting end temperature T2 are the intersections of the DSC curve, the low temperature side baseline, and the high temperature side baseline.
"Thermal conductivity"
It measured by the measuring method according to the measuring method of the heat conductivity as described in JIS A 1412-2 (2001 version JIS handbook description). A sample is cut into 30 cm × 30 cm, and the length, width, and thickness are measured with a digital caliper, and the volume is obtained. The apparent density was calculated from the volume and mass of the sample. A heat flow meter made by HOROMERIX, RAPID-K was used, and the temperature difference between the top and bottom of the sample and the heat flow rate were measured, and the thermal conductivity was calculated. The room temperature at which the measurement was performed is 23 ° C.
"appearance"
The surface state of the resin foam was visually confirmed.
If the surface roughness is severe and wide, (x), if the surface roughness is small and there is no problem in use (△), and if there is no problem on the surface (◯).
"Formability (flatness)"
The resin foam was cut into a width of 110 mm, and a cylindrical body having an inner diameter of 18 mm was obtained through a conical base while heating the resin foam with hot air of 300 ° C.
The numerical value obtained by the minor axis / major axis x 100 of the cylindrical body is defined as the flatness ratio. When the ratio is less than 85%, (x), when 85-90% is (△), and when it is greater than 90%, (◯). .
"Workability"
When a heat insulating material formed into a cylindrical body is applied to a copper tube having a nominal diameter of 15A (outer diameter of 15.88 mm) and a wall thickness of 1.02 mm, the heat insulating material cannot be passed through and cannot be used at all (×). If there is a slight resistance but it can be used by pushing it in, (△).
"Heat retention"
The resin foam is wound around a cylindrical steel tank having a diameter of 80 mm and a height of 150 mm without any gap. A 100 ° C. hot water and a thermocouple were placed in the tank, and the time for the hot water to cool to 50 ° C. was measured. The room temperature at which the measurement was performed is 23 ° C.
"Copper pipe corrosion"
The resin foam and the copper plate are each cut into a size of 5 cm × 5 cm. The sample is bonded to a copper plate and stored in a dryer at 100 ° C. for 180 days. After completion of the test, the surface state was observed, and when corrosion due to copper occurred, the size of the corroded portion was measured with a caliper manufactured by Mitutoyo, CD-20.

[実施例1]
MFRが3.6g/10分、密度が0.922g/cmの高圧法低密度ポリエチレン樹脂(東ソー株式会社製ペトロセン310)100質量%を粉砕機を用い2mm以下に粉砕した後、熱可塑性樹脂を100質量部としたとき、熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)10質量部、安定剤としてIrganox1010を0.2質量部加え、アンモニア吸着剤として焼ミョウバン0.5質量部をスーパーミキサーで混合し、140〜160℃に加熱した90mmφの単軸押出機でTダイを用いて厚さ1.8mmの長尺シート状に成形した後、70kGyの電子線を加速電圧800kVで照射し、架橋せしめた後、200〜250℃でソルト発泡、上部から赤外線ヒーターによる加熱を行って、樹脂発泡体を得た。
[Example 1]
After pulverizing 100% by mass of a high-pressure low-density polyethylene resin (Petrocene 310 manufactured by Tosoh Corporation) having an MFR of 3.6 g / 10 min and a density of 0.922 g / cm 3 to 2 mm or less, a thermoplastic resin Is 10 parts by mass of pyrolytic chemical foaming agent azodicarbonamide (Vinole AC # 1 manufactured by Eiwa Kasei Kogyo Co., Ltd.), 0.2 parts by mass of Irganox 1010 as a stabilizer, and calcined as an ammonia adsorbent. After mixing 0.5 parts by mass of alum with a super mixer and forming it into a long sheet with a thickness of 1.8 mm using a T-die with a 90 mmφ single screw extruder heated to 140 to 160 ° C., an electron of 70 kGy After irradiating the wire with an acceleration voltage of 800 kV and crosslinking, salt foaming is performed at 200 to 250 ° C., and heating with an infrared heater is performed from the top to obtain a resin foam. It was.

上記で得た樹脂発泡体を円筒の直径(18mm)に応じた幅に切断し、300℃の熱風で該樹脂発泡体を加熱しながら円錐形状の口金を通して、円筒体保温材を得た。   The resin foam obtained above was cut into a width corresponding to the diameter of the cylinder (18 mm), and a cylindrical heat insulating material was obtained through a conical base while heating the resin foam with hot air at 300 ° C.

表1に示すとおり、上記方法で得た樹脂発泡体の、密度は34kg/m、アンモニア濃度は750ppm(質量基準)、熱伝導率は0.036W/mKであり、保温性、銅管腐食は問題なし。また円筒体保温材への成形性及び配管への施工性は良好であった。 As shown in Table 1, the resin foam obtained by the above method has a density of 34 kg / m 3 , an ammonia concentration of 750 ppm (mass basis), a thermal conductivity of 0.036 W / mK, heat retention, and copper tube corrosion. There is no problem. Moreover, the moldability to the cylindrical heat insulating material and the workability to the piping were good.

[実施例2]
アンモニア吸着剤として焼ミョウバン4質量部とした他は実施例1と同様にして、樹脂発泡体を得た。
[Example 2]
A resin foam was obtained in the same manner as in Example 1 except that 4 parts by mass of calcined alum was used as the ammonia adsorbent.

表1に示すとおり、上記方法で得た樹脂発泡体の、密度は36kg/m、アンモニア濃度は350ppm(質量基準)、熱伝導率は0.034W/mKであり、保温性、銅管腐食は問題なし。また円筒体保温材への成形性及び配管への施工性は良好であった。 As shown in Table 1, the resin foam obtained by the above method has a density of 36 kg / m 3 , an ammonia concentration of 350 ppm (mass basis), a thermal conductivity of 0.034 W / mK, heat retention, and copper tube corrosion. There is no problem. Moreover, the moldability to the cylindrical heat insulating material and the workability to the piping were good.

[実施例3]
アンモニア吸着剤として焼ミョウバン10質量部とした他は実施例1と同様にして、樹脂発泡体を得た。
[Example 3]
A resin foam was obtained in the same manner as in Example 1 except that 10 parts by mass of calcined alum was used as the ammonia adsorbent.

表1に示すとおり、上記方法で得た樹脂発泡体の、密度は33kg/m、アンモニア濃度は450ppm(質量基準)、熱伝導率は0.035W/mKであり、保温性、銅管腐食は問題なし。吸着剤のブリードアウトによる外観不良が発生したが、使用になんら問題はなかった。 As shown in Table 1, the resin foam obtained by the above method has a density of 33 kg / m 3 , an ammonia concentration of 450 ppm (mass basis), a thermal conductivity of 0.035 W / mK, heat retention, and copper tube corrosion. There is no problem. Appearance defects occurred due to the bleed-out of the adsorbent, but there was no problem in use.

[実施例4]
熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)20質量部、アンモニア吸着剤として焼ミョウバン0.5質量部とした他は実施例1と同様にして、樹脂発泡体を得た。
[Example 4]
Resin foaming in the same manner as in Example 1, except that 20 parts by mass of the pyrolytic chemical foaming agent azodicarbonamide (Vinole AC # 1 manufactured by Eiwa Chemical Industry Co., Ltd.) and 0.5 parts by mass of baked alum as the ammonia adsorbent were used. Got the body.

表1に示すとおり、上記方法で得た樹脂発泡体の、密度は25kg/m、アンモニア濃度は1000ppm(質量基準)、熱伝導率は0.040W/mKであり、保温性、銅管腐食は問題なし。また円筒体保温材への成形性及び配管への施工性は良好であった。 As shown in Table 1, the resin foam obtained by the above method has a density of 25 kg / m 3 , an ammonia concentration of 1000 ppm (mass basis), a thermal conductivity of 0.040 W / mK, heat retention, copper tube corrosion There is no problem. Moreover, the moldability to the cylindrical heat insulating material and the workability to the piping were good.

[実施例5]
熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)20質量部、アンモニア吸着剤として焼ミョウバン4質量部とした他は実施例1と同様にして、樹脂発泡体を得た。
[Example 5]
A resin foam was obtained in the same manner as in Example 1, except that 20 parts by mass of the pyrolytic chemical foaming agent azodicarbonamide (Binhole AC # 1 manufactured by Eiwa Kasei Kogyo Co., Ltd.) and 4 parts by mass of baked alum as the ammonia adsorbent were used. Obtained.

表2に示すとおり、上記方法で得た樹脂発泡体の、密度は23kg/m、アンモニア濃度は700ppm(質量基準)、熱伝導率は0.038W/mKであり、保温性、銅管腐食は問題なし。また円筒体保温材への成形性及び配管への施工性は良好であった。 As shown in Table 2, the resin foam obtained by the above method has a density of 23 kg / m 3 , an ammonia concentration of 700 ppm (mass basis), a thermal conductivity of 0.038 W / mK, heat retention, and copper tube corrosion. There is no problem. Moreover, the moldability to the cylindrical heat insulating material and the workability to the piping were good.

[実施例6]
熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)20質量部、アンモニア吸着剤として焼ミョウバン10質量部とした他は実施例1と同様にして、樹脂発泡体を得た。
[Example 6]
A resin foam was obtained in the same manner as in Example 1 except that 20 parts by mass of the thermal decomposition type chemical foaming agent azodicarbonamide (Binhole AC # 1 manufactured by Eiwa Chemical Industry Co., Ltd.) and 10 parts by mass of baked alum as the ammonia adsorbent were used. Obtained.

表2に示すとおり、上記方法で得た樹脂発泡体の、密度は25kg/m、アンモニア濃度は850ppm(質量基準)、熱伝導率は0.036W/mKであり、保温性、銅管腐食は問題なし。吸着剤のブリードアウトによる外観不良が発生したが、使用になんら問題はなかった。 As shown in Table 2, the resin foam obtained by the above method has a density of 25 kg / m 3 , an ammonia concentration of 850 ppm (mass basis), a thermal conductivity of 0.036 W / mK, heat retention, copper pipe corrosion There is no problem. Appearance defects occurred due to the bleed-out of the adsorbent, but there was no problem in use.

[実施例7]
アンモニア吸着剤として焼ミョウバン0.5質量部と酸化亜鉛0.1質量部を混合した他は実施例1と同様にして、樹脂発泡体を得た。
[Example 7]
A resin foam was obtained in the same manner as in Example 1 except that 0.5 parts by mass of calcined alum and 0.1 parts by mass of zinc oxide were mixed as an ammonia adsorbent.

表2に示すとおり、上記方法で得た樹脂発泡体の、密度は32kg/m、アンモニア濃度は600ppm(質量基準)、熱伝導率は0.036W/mKであり、保温性、銅管腐食は問題なし。また円筒体保温材への成形性及び配管への施工性は良好であった。 As shown in Table 2, the resin foam obtained by the above method has a density of 32 kg / m 3 , an ammonia concentration of 600 ppm (mass basis), a thermal conductivity of 0.036 W / mK, heat retention, and copper tube corrosion. There is no problem. Moreover, the moldability to the cylindrical heat insulating material and the workability to the piping were good.

[実施例8]
アンモニア吸着剤として焼ミョウバン4質量部と酸化亜鉛1質量部を混合した他は実施例1と同様にして、樹脂発泡体を得た。
[Example 8]
A resin foam was obtained in the same manner as in Example 1 except that 4 parts by mass of calcined alum and 1 part by mass of zinc oxide were mixed as an ammonia adsorbent.

表2に示すとおり、上記方法で得た樹脂発泡体の、密度は35kg/m、アンモニア濃度は450ppm(質量基準)、熱伝導率は0.036W/mKであり、保温性、銅管腐食は問題なし。また円筒体保温材への成形性及び配管への施工性は良好であった。 As shown in Table 2, the resin foam obtained by the above method has a density of 35 kg / m 3 , an ammonia concentration of 450 ppm (mass basis), a thermal conductivity of 0.036 W / mK, heat retention, and copper tube corrosion. There is no problem. Moreover, the moldability to the cylindrical heat insulating material and the workability to the piping were good.

[実施例9]
MFRが3.6g/10分、密度が0.922g/cmの高圧法低密度ポリエチレン樹脂(東ソー株式会社製ペトロセン310)50質量%とMFRが2.0g/10分、密度が0.909g/cmの直鎖状低密度ポリエチレン樹脂(株式会社プライムポリマー製ウルトゼックス1020L)50質量%をそれぞれ粉砕機を用い2mm以下に粉砕した後、熱可塑性樹脂を100質量部としたとき、熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)10質量部、安定剤としてIrganox1010を0.2質量部加え、アンモニア吸着剤として焼ミョウバン4質量部をスーパーミキサーで混合し、140〜160℃に加熱した90mmφの単軸押出機でTダイを用いて厚さ1.8mmの長尺シート状に成形した後、70kGyの電子線を加速電圧800kVで照射し、架橋せしめた後、200〜250℃でソルト発泡、上部から赤外線ヒーターによる加熱を行って、樹脂発泡体を得た。
[Example 9]
50% by mass of high-pressure low-density polyethylene resin (Petrocene 310 manufactured by Tosoh Corporation) having an MFR of 3.6 g / 10 min and a density of 0.922 g / cm 3, an MFR of 2.0 g / 10 min, and a density of 0.909 g / Cm 3 linear low density polyethylene resin (Ultzex 1020L manufactured by Prime Polymer Co., Ltd.) 50% by mass, respectively, pulverized to 2 mm or less using a pulverizer, and then thermally decomposed when the thermoplastic resin is 100 parts by mass. 10 parts by weight of a chemical foaming agent azodicarbonamide (Vinole AC # 1 from Eiwa Kasei Kogyo Co., Ltd.), 0.2 parts by weight of Irganox 1010 as a stabilizer, and 4 parts by weight of baked alum as an ammonia adsorbent were mixed with a super mixer. After forming into a long sheet with a thickness of 1.8 mm using a T-die with a 90 mmφ single screw extruder heated to 140 to 160 ° C. After irradiation with an electron beam of 70 kGy at an acceleration voltage of 800 kV and crosslinking, salt foaming was performed at 200 to 250 ° C., and heating with an infrared heater was performed from the top to obtain a resin foam.

上記で得た樹脂発泡体を円筒の直径(18mm)に応じた幅に切断し、300℃の熱風で該樹脂発泡体を加熱しながら円錐形状の口金を通して、円筒体保温材を得た。   The resin foam obtained above was cut into a width corresponding to the diameter of the cylinder (18 mm), and a cylindrical heat insulating material was obtained through a conical base while heating the resin foam with hot air at 300 ° C.

表3に示すとおり、上記方法で得た樹脂発泡体の、密度は35kg/m、アンモニア濃度は200ppm(質量基準)、熱伝導率は0.035W/mKであり、保温性、銅管腐食は問題なし。また円筒体保温材への成形性及び配管への施工性は良好であった。 As shown in Table 3, the resin foam obtained by the above method has a density of 35 kg / m 3 , an ammonia concentration of 200 ppm (mass basis), a thermal conductivity of 0.035 W / mK, heat retention, and copper tube corrosion. There is no problem. Moreover, the moldability to the cylindrical heat insulating material and the workability to the piping were good.

[実施例10]
アンモニア吸着剤として焼ミョウバン4質量部と酸化亜鉛1質量部を混合した他は実施例9と同様にして、樹脂発泡体を得た。
[Example 10]
A resin foam was obtained in the same manner as in Example 9, except that 4 parts by mass of calcined alum and 1 part by mass of zinc oxide were mixed as an ammonia adsorbent.

表3に示すとおり、上記方法で得た樹脂発泡体の、密度は39kg/m、アンモニア濃度は400ppm(質量基準)、熱伝導率は0.033W/mKであり、保温性、銅管腐食は問題なし。また円筒体保温材への成形性及び配管への施工性は良好であった。 As shown in Table 3, the resin foam obtained by the above method has a density of 39 kg / m 3 , an ammonia concentration of 400 ppm (mass basis), a thermal conductivity of 0.033 W / mK, heat retention, and copper tube corrosion. There is no problem. Moreover, the moldability to the cylindrical heat insulating material and the workability to the piping were good.

[実施例11]
アンモニア吸着剤として焼ミョウバン0.5質量部とした他は実施例9と同様にして、樹脂発泡体を得た。
[Example 11]
A resin foam was obtained in the same manner as in Example 9 except that 0.5 parts by mass of calcined alum was used as the ammonia adsorbent.

表3に示すとおり、上記方法で得た樹脂発泡体の、密度は34kg/m、アンモニア濃度は800ppm(質量基準)、熱伝導率は0.033W/mKであり、保温性、銅管腐食は問題なし。また円筒体保温材への成形性及び配管への施工性は良好であった。 As shown in Table 3, the resin foam obtained by the above method has a density of 34 kg / m 3 , an ammonia concentration of 800 ppm (mass basis), a thermal conductivity of 0.033 W / mK, heat retention, and copper tube corrosion. There is no problem. Moreover, the moldability to the cylindrical heat insulating material and the workability to the piping were good.

[実施例12]
アンモニア吸着剤として焼ミョウバン0.5質量部と酸化亜鉛0.1質量部を混合した他は実施例9と同様にして、樹脂発泡体を得た。
[Example 12]
A resin foam was obtained in the same manner as in Example 9 except that 0.5 parts by mass of calcined alum and 0.1 parts by mass of zinc oxide were mixed as an ammonia adsorbent.

表3に示すとおり、上記方法で得た樹脂発泡体の、密度は32kg/m、アンモニア濃度は700ppm(質量基準)、熱伝導率は0.038W/mKであり、保温性、銅管腐食は問題なし。また円筒体保温材への成形性及び配管への施工性は良好であった。 As shown in Table 3, the resin foam obtained by the above method has a density of 32 kg / m 3 , an ammonia concentration of 700 ppm (mass basis), a thermal conductivity of 0.038 W / mK, heat retention, and copper tube corrosion. There is no problem. Moreover, the moldability to the cylindrical heat insulating material and the workability to the piping were good.

[実施例13]
MFRが3.6g/10分、密度が0.922g/cmの高圧法低密度ポリエチレン樹脂(東ソー株式会社製ペトロセン310)50質量%とMFRが2.4g/10分、密度が0.9g/cmのホモポリプロピレン(日本ポリプロ株式会社製ノバテックPPFY6C)50質量%をそれぞれ粉砕機を用い2mm以下に粉砕した後、熱可塑性樹脂を100質量部としたとき、熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)10質量部、架橋助剤としてジビニルベンゼン4質量部、安定剤としてIrganox1010を0.2質量部加え、アンモニア吸着剤として焼ミョウバン0.5質量部をスーパーミキサーで混合し、140〜160℃に加熱した90mmφの単軸押出機でTダイを用いて厚さ1.8mmの長尺シート状に成形した後、70kGyの電子線を加速電圧800kVで照射し、架橋せしめた後、200〜250℃でソルト発泡、上部から赤外線ヒーターによる加熱を行って、樹脂発泡体を得た。
[Example 13]
50% by mass of high-pressure low-density polyethylene resin (Petrocene 310 manufactured by Tosoh Corporation) having an MFR of 3.6 g / 10 min and a density of 0.922 g / cm 3, an MFR of 2.4 g / 10 min, and a density of 0.9 g / Cm 3 homopolypropylene (Novatech PPFY6C, manufactured by Nippon Polypro Co., Ltd.) 50% by mass, respectively, using a pulverizer, pulverized to 2 mm or less, and then 100 parts by mass of the thermoplastic resin, azodicarboxylic pyrolytic chemical foaming agent 10 parts by weight of amide (Binhole AC # 1 manufactured by Eiwa Kasei Kogyo Co., Ltd.), 4 parts by weight of divinylbenzene as a crosslinking aid, 0.2 parts by weight of Irganox 1010 as a stabilizer, and 0.5 parts by weight of baked alum as an ammonia adsorbent Was mixed with a super mixer and heated to 140-160 ° C. with a 90 mmφ single-screw extruder using a T die with a thickness of 1.8 mm. After forming into a long sheet shape, 70 kGy electron beam was irradiated at an acceleration voltage of 800 kV, and after crosslinking, salt foaming was performed at 200 to 250 ° C., and heating with an infrared heater was performed from the top to obtain a resin foam. .

上記で得た樹脂発泡体を円筒の直径(18mm)に応じた幅に切断し、300℃の熱風で該樹脂発泡体を加熱しながら円錐形状の口金を通して、円筒体保温材を得た。   The resin foam obtained above was cut into a width corresponding to the diameter of the cylinder (18 mm), and a cylindrical heat insulating material was obtained through a conical base while heating the resin foam with hot air at 300 ° C.

表4に示すとおり、上記方法で得た樹脂発泡体の、密度は36kg/m、アンモニア濃度は750ppm(質量基準)、熱伝導率は0.034W/mKであり、保温性、銅管腐食は問題なし。また円筒体保温材への成形性及び配管への施工性は良好であった。 As shown in Table 4, the resin foam obtained by the above method has a density of 36 kg / m 3 , an ammonia concentration of 750 ppm (mass basis), a thermal conductivity of 0.034 W / mK, heat retention, copper tube corrosion There is no problem. Moreover, the moldability to the cylindrical heat insulating material and the workability to the piping were good.

[実施例14]
アンモニア吸着剤として焼ミョウバン4質量部とした他は実施例13と同様にして、樹脂発泡体を得た。
[Example 14]
A resin foam was obtained in the same manner as in Example 13 except that 4 parts by mass of calcined alum was used as the ammonia adsorbent.

表4に示すとおり、上記方法で得た樹脂発泡体の、密度は34kg/m、アンモニア濃度は400ppm(質量基準)、熱伝導率は0.036W/mKであり、保温性、銅管腐食は問題なし。また円筒体保温材への成形性及び配管への施工性は良好であった。 As shown in Table 4, the resin foam obtained by the above method has a density of 34 kg / m 3 , an ammonia concentration of 400 ppm (mass basis), a thermal conductivity of 0.036 W / mK, heat retention, and copper tube corrosion. There is no problem. Moreover, the moldability to the cylindrical heat insulating material and the workability to the piping were good.

[実施例15]
熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)20質量部とした他は実施例13と同様にして、樹脂発泡体を得た。
[Example 15]
A resin foam was obtained in the same manner as in Example 13 except that 20 parts by mass of the thermal decomposition type chemical foaming agent azodicarbonamide (Binhole AC # 1 manufactured by Eiwa Chemical Industry Co., Ltd.) was used.

表4に示すとおり、上記方法で得た樹脂発泡体の、密度は22kg/m、アンモニア濃度は900ppm(質量基準)、熱伝導率は0.039W/mKであり、保温性、銅管腐食は問題なし。また円筒体保温材への成形性及び配管への施工性は良好であった。 As shown in Table 4, the resin foam obtained by the above method has a density of 22 kg / m 3 , an ammonia concentration of 900 ppm (mass basis), a thermal conductivity of 0.039 W / mK, heat retention, and copper tube corrosion. There is no problem. Moreover, the moldability to the cylindrical heat insulating material and the workability to the piping were good.

[実施例16]
熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)20質量部、アンモニア吸着剤として焼ミョウバン4質量部及び酸化亜鉛1質量部とした他は実施例13と同様にして、樹脂発泡体を得た。
[Example 16]
Except for using 20 parts by mass of pyrolytic chemical foaming agent azodicarbonamide (Binhoy AC # 1 manufactured by Eiwa Kasei Kogyo Co., Ltd.), 4 parts by mass of calcined alum and 1 part by mass of zinc oxide as an ammonia adsorbent, the same as in Example 13. Thus, a resin foam was obtained.

表4に示すとおり、上記方法で得た樹脂発泡体の、密度は20kg/m、アンモニア濃度は650ppm(質量基準)、熱伝導率は0.039W/mKであり、保温性、銅管腐食は問題なし。また円筒体保温材への成形性及び配管への施工性は良好であった。 As shown in Table 4, the resin foam obtained by the above method has a density of 20 kg / m 3 , an ammonia concentration of 650 ppm (mass basis), a thermal conductivity of 0.039 W / mK, heat retention, and copper tube corrosion. There is no problem. Moreover, the moldability to the cylindrical heat insulating material and the workability to the piping were good.

[実施例17]
アンモニア吸着剤として焼ミョウバン0.5質量部と酸化亜鉛0.1質量部を混合した他は実施例13と同様にして、樹脂発泡体を得た。
[Example 17]
A resin foam was obtained in the same manner as in Example 13 except that 0.5 parts by mass of calcined alum and 0.1 parts by mass of zinc oxide were mixed as an ammonia adsorbent.

表5に示すとおり、上記方法で得た樹脂発泡体の、密度は35kg/m、アンモニア濃度は800ppm(質量基準)、熱伝導率は0.036W/mKであり、保温性、銅管腐食は問題なし。また円筒体保温材への成形性及び配管への施工性は良好であった。 As shown in Table 5, the resin foam obtained by the above method has a density of 35 kg / m 3 , an ammonia concentration of 800 ppm (mass basis), a thermal conductivity of 0.036 W / mK, heat retention, and copper tube corrosion. There is no problem. Moreover, the moldability to the cylindrical heat insulating material and the workability to the piping were good.

[実施例18]
アンモニア吸着剤として焼ミョウバン4質量部と酸化亜鉛1質量部を混合した他は実施例13と同様にして、樹脂発泡体を得た。
[Example 18]
A resin foam was obtained in the same manner as in Example 13 except that 4 parts by mass of calcined alum and 1 part by mass of zinc oxide were mixed as an ammonia adsorbent.

表5に示すとおり、上記方法で得た樹脂発泡体の、密度は38kg/m、アンモニア濃度は250ppm(質量基準)、熱伝導率は0.035W/mKであり、保温性、銅管腐食は問題なし。また円筒体保温材への成形性及び配管への施工性は良好であった。 As shown in Table 5, the resin foam obtained by the above method has a density of 38 kg / m 3 , an ammonia concentration of 250 ppm (mass basis), a thermal conductivity of 0.035 W / mK, heat retention, copper pipe corrosion There is no problem. Moreover, the moldability to the cylindrical heat insulating material and the workability to the piping were good.

[実施例19]
MFRが0.3g/10分、密度が0.9g/cmのエチレンプロピレンブロック共重合体(株式会社プライムポリマー製プライムポリプロE185−G)40質量%とMFRが7.0g/10分、密度が0.9g/cmのエチレンプロピレンランダム共重合体(日本ポリプロ株式会社製ウィンテックWFX4TA)40質量%とMFRが2.0g/10分、密度が0.909g/cmの直鎖状低密度ポリエチレン樹脂(株式会社プライムポリマー製ウルトゼックス1020L)20質量%をそれぞれ粉砕機を用い2mm以下に粉砕した後、熱可塑性樹脂を100質量部としたとき、熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)10質量部、架橋助剤としてジビニルベンゼン4質量部、安定剤としてIrganox1010を0.2質量部加え、アンモニア吸着剤として焼ミョウバン4質量部をスーパーミキサーで混合し、140〜160℃に加熱した90mmφの単軸押出機でTダイを用いて厚さ1.8mmの長尺シート状に成形した後、70kGyの電子線を加速電圧800kVで照射し、架橋せしめた後、200〜250℃でソルト発泡、上部から赤外線ヒーターによる加熱を行って、樹脂発泡体を得た。
[Example 19]
40% by mass of an ethylene propylene block copolymer (Prime Polypro E185-G manufactured by Prime Polymer Co., Ltd.) having an MFR of 0.3 g / 10 min and a density of 0.9 g / cm 3 and an MFR of 7.0 g / 10 min, a density There an ethylene-propylene random copolymer 0.9 g / cm 3 (Japan Polypropylene Corp. WINTEC WFX4TA) 40 wt% and an MFR of 2.0 g / 10 min, linear density 0.909 g / cm 3 low After pulverizing 20% by mass of a density polyethylene resin (Ultzex 1020L manufactured by Prime Polymer Co., Ltd.) to 2 mm or less using a pulverizer, when the thermoplastic resin was 100 parts by mass, the pyrolytic chemical foaming agent azodicarbonamide ( Eiwa Chemical Industry Co., Ltd., VINYHALL AC # 1) 10 parts by mass, divinylbenzene 4 parts by mass as a crosslinking aid, Add 0.2 parts by weight of Irganox 1010 as a settling agent, mix 4 parts by weight of baked alum as an ammonia adsorbent with a super mixer, and use a T die with a 90mmφ single screw extruder heated to 140-160 ° C. After forming into a long sheet of 8 mm, 70 kGy electron beam is irradiated at an acceleration voltage of 800 kV, and after crosslinking, salt foaming is performed at 200 to 250 ° C., and heating with an infrared heater is performed from the top to form a resin foam Got.

上記で得た樹脂発泡体を円筒の直径(18mm)に応じた幅に切断し、300℃の熱風で該樹脂発泡体を加熱しながら円錐形状の口金を通して、円筒体保温材を得た。   The resin foam obtained above was cut into a width corresponding to the diameter of the cylinder (18 mm), and a cylindrical heat insulating material was obtained through a conical base while heating the resin foam with hot air at 300 ° C.

表5に示すとおり、上記方法で得た樹脂発泡体の、密度は33kg/m、アンモニア濃度は800ppm(質量基準)、熱伝導率は0.036W/mKであり、保温性、銅管腐食は問題なし。また円筒体に成型したときに偏平率は87%であり、配管に施工するとき僅かな抵抗があるものの、押し込んで使用することが出来た。 As shown in Table 5, the resin foam obtained by the above method has a density of 33 kg / m 3 , an ammonia concentration of 800 ppm (mass basis), a thermal conductivity of 0.036 W / mK, heat retention, and copper tube corrosion. There is no problem. Further, the flatness was 87% when molded into a cylindrical body, and although it had a slight resistance when applied to piping, it could be used by being pushed in.

[実施例20]
MFRが7.0g/10分、密度が0.9g/cmのエチレンプロピレンランダム共重合体(日本ポリプロ株式会社製ウィンテックWFX4TA)80質量%とMFRが2.0g/10分、密度が0.909g/cmの直鎖状低密度ポリエチレン樹脂(株式会社プライムポリマー製ウルトゼックス1020L)20質量%をそれぞれ粉砕機を用い2mm以下に粉砕した後、熱可塑性樹脂を100質量部としたとき、熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)10質量部、架橋助剤としてジビニルベンゼン4質量部、安定剤としてIrganox1010を0.2質量部加え、アンモニア吸着剤として焼ミョウバン4質量部をスーパーミキサーで混合し、140〜160℃に加熱した90mmφの単軸押出機でTダイを用いて厚さ1.8mmの長尺シート状に成形した後、70kGyの電子線を加速電圧800kVで照射し、架橋せしめた後、200〜250℃でソルト発泡、上部から赤外線ヒーターによる加熱を行って、樹脂発泡体を得た。
[Example 20]
80% by mass of an ethylene propylene random copolymer (Wintech WFX4TA manufactured by Nippon Polypro Co., Ltd.) having an MFR of 7.0 g / 10 min and a density of 0.9 g / cm 3, an MFR of 2.0 g / 10 min, and a density of 0 After pulverizing 20% by mass of a linear low density polyethylene resin of .909 g / cm 3 (Ulzex 1020L manufactured by Prime Polymer Co., Ltd.) to 2 mm or less using a pulverizer, the thermoplastic resin was taken as 100 parts by mass, Add 10 parts by mass of pyrolytic chemical foaming agent azodicarbonamide (Vinole AC # 1 manufactured by Eiwa Chemical Industry Co., Ltd.), 4 parts by mass of divinylbenzene as a crosslinking aid, 0.2 parts by mass of Irganox1010 as a stabilizer, and an ammonia adsorbent 90mmφ single screw extrusion mixed with 4 parts by mass of baked alum with a super mixer and heated to 140-160 ° C After forming into a long sheet with a thickness of 1.8 mm using a T-die, 70 kGy electron beam was irradiated at an acceleration voltage of 800 kV and crosslinked, then salt foamed at 200 to 250 ° C., infrared heater from above Heating was performed to obtain a resin foam.

上記で得た樹脂発泡体を円筒の直径(18mm)に応じた幅に切断し、300℃の熱風で該樹脂発泡体を加熱しながら円錐形状の口金を通して、円筒体保温材を得た。   The resin foam obtained above was cut into a width corresponding to the diameter of the cylinder (18 mm), and a cylindrical heat insulating material was obtained through a conical base while heating the resin foam with hot air at 300 ° C.

表5に示すとおり、上記方法で得た樹脂発泡体の、密度は34kg/m、アンモニア濃度は700ppm(質量基準)、熱伝導率は0.034W/mKであり、保温性、銅管腐食は問題なし。また円筒体に成型したときに偏平率は86%であり、配管に施工するとき僅かな抵抗があるものの、押し込んで使用することが出来た。 As shown in Table 5, the resin foam obtained by the above method has a density of 34 kg / m 3 , an ammonia concentration of 700 ppm (mass basis), a thermal conductivity of 0.034 W / mK, heat retention, and copper tube corrosion. There is no problem. Further, the flatness was 86% when molded into a cylindrical body, and although it had a slight resistance when applied to piping, it could be used by being pushed in.

[実施例21]
MFRが0.82g/10分、密度が0.95g/cmの低圧法高密度ポリエチレン(株式会社プライムポリマー製ハイゼックス5000S)100質量%を粉砕機を用い2mm以下に粉砕した後、熱可塑性樹脂を100質量部としたとき、熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)10質量部、架橋助剤としてジビニルベンゼン4質量部、安定剤としてIrganox1010を0.2質量部加え、アンモニア吸着剤として焼ミョウバン4質量部をスーパーミキサーで混合し、140〜160℃に加熱した90mmφの単軸押出機でTダイを用いて厚さ1.8mmの長尺シート状に成形した後、70kGyの電子線を加速電圧800kVで照射し、架橋せしめた後、200〜250℃でソルト発泡、上部から赤外線ヒーターによる加熱を行って、樹脂発泡体を得た。
[Example 21]
After pulverizing 100% by mass of low-pressure high-density polyethylene (Hi-Zex 5000S manufactured by Prime Polymer Co., Ltd.) having an MFR of 0.82 g / 10 min and a density of 0.95 g / cm 3 to 2 mm or less using a pulverizer, a thermoplastic resin Is 10 parts by mass of pyrolytic chemical foaming agent azodicarbonamide (Vinole AC # 1 manufactured by Eiwa Kasei Kogyo Co., Ltd.), 4 parts by mass of divinylbenzene as a crosslinking aid, and Irganox 1010 as a stabilizer. Add 2 parts by mass, mix 4 parts by mass of baked alum as an ammonia adsorbent with a super mixer, and heat it to 140-160 ° C. After being molded into a 70 kGy electron beam at an accelerating voltage of 800 kV and crosslinked, salt foaming is performed at 200 to 250 ° C. By heating with an infrared heater, to obtain a resin foam.

上記で得た樹脂発泡体を円筒の直径(18mm)に応じた幅に切断し、300℃の熱風で該樹脂発泡体を加熱しながら円錐形状の口金を通して、円筒体保温材を得た。   The resin foam obtained above was cut into a width corresponding to the diameter of the cylinder (18 mm), and a cylindrical heat insulating material was obtained through a conical base while heating the resin foam with hot air at 300 ° C.

表5に示すとおり、上記方法で得た樹脂発泡体の、密度は34kg/m、アンモニア濃度は800ppm(質量基準)、熱伝導率は0.034W/mKであり、保温性、銅管腐食は問題なし。また円筒体に成型したときに偏平率は88%であり、配管に施工するとき僅かな抵抗があるものの、押し込んで使用することが出来た。 As shown in Table 5, the resin foam obtained by the above method has a density of 34 kg / m 3 , an ammonia concentration of 800 ppm (mass basis), a thermal conductivity of 0.034 W / mK, heat retention, and copper tube corrosion. There is no problem. Further, the flatness was 88% when molded into a cylindrical body, and although it had a slight resistance when applied to piping, it could be used by being pushed in.

Figure 0005726505
Figure 0005726505

Figure 0005726505
Figure 0005726505

Figure 0005726505
Figure 0005726505

Figure 0005726505
Figure 0005726505

Figure 0005726505
Figure 0005726505

表中の「DSC」とは、示差走査熱量計による融解熱量の全面積を100%とした際の、120℃以下の融解熱量の面積の合計を示す。   “DSC” in the table indicates the total area of heat of fusion at 120 ° C. or lower when the total area of heat of fusion by a differential scanning calorimeter is 100%.

[比較例1]
熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)1質量部、アンモニア吸着剤として焼ミョウバン4質量部とした他は実施例1と同様にして、樹脂発泡体を得た。
[Comparative Example 1]
A resin foam was obtained in the same manner as in Example 1 except that 1 part by mass of the pyrolytic chemical foaming agent azodicarbonamide (Binhole AC # 1 manufactured by Eiwa Chemical Industry Co., Ltd.) and 4 parts by mass of calcined alum as the ammonia adsorbent were used. Obtained.

表6に示すとおり、上記方法で得た樹脂発泡体の、密度は84kg/m、アンモニア濃度は600ppm(質量基準)、熱伝導率は0.042W/mKであり、保温性が劣る。銅管腐食は問題なし。また円筒体保温材への成形は剛性が強くて難しく、配管にも施工し難い結果だった。 As shown in Table 6, the resin foam obtained by the above method has a density of 84 kg / m 3 , an ammonia concentration of 600 ppm (mass basis), a thermal conductivity of 0.042 W / mK, and is inferior in heat retention. There is no problem with copper pipe corrosion. In addition, it was difficult to form a cylindrical heat insulating material because of its high rigidity, making it difficult to construct pipes.

[比較例2]
熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)30質量部、アンモニア吸着剤として焼ミョウバン4質量部とした他は実施例1と同様にして、樹脂発泡体を得た。
[Comparative Example 2]
A resin foam was obtained in the same manner as in Example 1 except that 30 parts by mass of pyrolytic chemical foaming agent azodicarbonamide (Binhole AC # 1 manufactured by Eiwa Kasei Kogyo Co., Ltd.) and 4 parts by mass of baked alum as an ammonia adsorbent were used. Obtained.

表6に示すとおり、上記方法で得た樹脂発泡体の、密度は18kg/m、アンモニア濃度は3000ppm(質量基準)、熱伝導率は0.045W/mKであり、保温性が劣る。また、銅板には腐食が発生した。押出時に熱分解型化学発泡剤が分解して気泡径が均一にならず外観不良が発生し、シート切れが発生して安定しない状態だった。 As shown in Table 6, the resin foam obtained by the above method has a density of 18 kg / m 3 , an ammonia concentration of 3000 ppm (mass basis), a thermal conductivity of 0.045 W / mK, and poor heat retention. In addition, corrosion occurred on the copper plate. During the extrusion, the pyrolytic chemical foaming agent was decomposed, the bubble diameter was not uniform, the appearance was poor, the sheet was cut, and it was unstable.

[比較例3]
アンモニア吸着剤を用いない他は実施例1と同様にして、樹脂発泡体を得た。
[Comparative Example 3]
A resin foam was obtained in the same manner as in Example 1 except that no ammonia adsorbent was used.

表6に示すとおり、上記方法で得た樹脂発泡体の、密度は34kg/m、アンモニア濃度は2300ppm(質量基準)、熱伝導率は0.033W/mKであり、保温性が劣る。また、銅板には腐食が発生した。 As shown in Table 6, the resin foam obtained by the above method has a density of 34 kg / m 3 , an ammonia concentration of 2300 ppm (mass basis), a thermal conductivity of 0.033 W / mK, and is poor in heat retention. In addition, corrosion occurred on the copper plate.

[比較例4]
熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)20質量部、アンモニア吸着剤を用いない他は実施例1と同様にして、樹脂発泡体を得た。
[Comparative Example 4]
A resin foam was obtained in the same manner as in Example 1 except that 20 parts by mass of thermal decomposition type chemical foaming agent azodicarbonamide (Binhole AC # 1 manufactured by Eiwa Chemical Industries Ltd.) and no ammonia adsorbent were used.

表6に示すとおり、上記方法で得た樹脂発泡体の、密度は24kg/m、アンモニア濃度は2850ppm(質量基準)、熱伝導率は0.039W/mKであり、保温性が劣る。また、銅板には腐食が発生した。 As shown in Table 6, the resin foam obtained by the above method has a density of 24 kg / m 3 , an ammonia concentration of 2850 ppm (mass basis), a thermal conductivity of 0.039 W / mK, and is inferior in heat retention. In addition, corrosion occurred on the copper plate.

[比較例5]
MFRが3.6g/10分、密度が0.922g/cmの高圧法低密度ポリエチレン樹脂(東ソー株式会社製ペトロセン310)100質量%を粉砕機を用い2mm以下に粉砕した後、熱可塑性樹脂を100質量部としたとき、熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)10質量部、安定剤としてIrganox1010を0.2質量部加え、アンモニア吸着剤として焼ミョウバン4質量部をスーパーミキサーで混合し、140〜160℃に加熱した90mmφの単軸押出機でTダイを用いて厚さ1.8mmの長尺シート状に成形した後、200〜250℃でソルト発泡、上部から赤外線ヒーターによる加熱を行って、樹脂発泡体を得た。
[Comparative Example 5]
After pulverizing 100% by mass of a high-pressure low-density polyethylene resin (Petrocene 310 manufactured by Tosoh Corporation) having an MFR of 3.6 g / 10 min and a density of 0.922 g / cm 3 to 2 mm or less, a thermoplastic resin Is 10 parts by mass of pyrolytic chemical foaming agent azodicarbonamide (Vinole AC # 1 manufactured by Eiwa Kasei Kogyo Co., Ltd.), 0.2 parts by mass of Irganox 1010 as a stabilizer, and calcined as an ammonia adsorbent. After mixing 4 parts by mass of alum with a super mixer and forming it into a long sheet with a thickness of 1.8 mm using a T-die with a 90 mmφ single screw extruder heated to 140 to 160 ° C., the temperature is 200 to 250 ° C. Salt foaming and heating with an infrared heater from above were performed to obtain a resin foam.

表7に示すとおり、上記方法では樹脂発泡体が頻繁に切れてしまい、生産出来ない状態であった。よって、樹脂発泡体は未評価とする。   As shown in Table 7, in the above method, the resin foam frequently cut and could not be produced. Therefore, the resin foam is not evaluated.

[比較例6]
熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)20質量部とした他は比較例5と同様にして、樹脂発泡体を得た。
[Comparative Example 6]
A resin foam was obtained in the same manner as in Comparative Example 5, except that 20 parts by mass of the thermal decomposition type chemical foaming agent azodicarbonamide (Ebina Kasei Kogyo Co., Ltd., VINYHALL AC # 1) was used.

表7に示すとおり、上記方法では樹脂発泡体が頻繁に切れてしまい、生産出来ない状態であった。よって、樹脂発泡体は未評価とする。   As shown in Table 7, in the above method, the resin foam frequently cut and could not be produced. Therefore, the resin foam is not evaluated.

[比較例7]
アンモニア吸着剤を用いない他は実施例13と同様にして、樹脂発泡体を得た。
[Comparative Example 7]
A resin foam was obtained in the same manner as in Example 13 except that no ammonia adsorbent was used.

表7に示すとおり、上記方法で得た樹脂発泡体の、密度は35kg/m、アンモニア濃度は2500ppm(質量基準)、熱伝導率は0.035W/mKであり、保温性は問題なし。また、銅板には腐食が発生した。 As shown in Table 7, the resin foam obtained by the above method has a density of 35 kg / m 3 , an ammonia concentration of 2500 ppm (mass basis), a thermal conductivity of 0.035 W / mK, and there is no problem with heat retention. In addition, corrosion occurred on the copper plate.

[比較例8]
熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)20質量部、アンモニア吸着剤を用いない他は実施例13と同様にして、樹脂発泡体を得た。
[Comparative Example 8]
A resin foam was obtained in the same manner as in Example 13 except that 20 parts by mass of thermal decomposition type chemical foaming agent azodicarbonamide (Binhole AC # 1 manufactured by Eiwa Chemical Industry Co., Ltd.) and no ammonia adsorbent were used.

表7に示すとおり、上記方法で得た樹脂発泡体の、密度は23kg/m、アンモニア濃度は2700ppm(質量基準)、熱伝導率は0.038W/mKであり、保温性が劣る。また、銅板には腐食が発生した。 As shown in Table 7, the resin foam obtained by the above method has a density of 23 kg / m 3 , an ammonia concentration of 2700 ppm (mass basis), a thermal conductivity of 0.038 W / mK, and is inferior in heat retention. In addition, corrosion occurred on the copper plate.

[比較例9]
熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)1質量部、アンモニア吸着剤として焼ミョウバン4質量部とした他は実施例13と同様にして、樹脂発泡体を得た。
[Comparative Example 9]
A resin foam was obtained in the same manner as in Example 13 except that 1 part by mass of the pyrolytic chemical foaming agent azodicarbonamide (Binhole AC # 1 manufactured by Eiwa Kasei Kogyo Co., Ltd.) and 4 parts by mass of baked alum as the ammonia adsorbent. Obtained.

表8に示すとおり、上記方法で得た樹脂発泡体の、密度は88kg/m、アンモニア濃度は450ppm(質量基準)、熱伝導率は0.045W/mKであり、保温性が劣る。銅管腐食は問題なし。また円筒体保温材への成形は剛性が強くて難しく、配管にも施工し難い結果だった。 As shown in Table 8, the resin foam obtained by the above method has a density of 88 kg / m 3 , an ammonia concentration of 450 ppm (mass basis), a thermal conductivity of 0.045 W / mK, and is inferior in heat retention. There is no problem with copper pipe corrosion. In addition, it was difficult to form a cylindrical heat insulating material because of its high rigidity, making it difficult to construct pipes.

[比較例10]
熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)30質量部、アンモニア吸着剤として焼ミョウバン4質量部とした他は実施例13と同様にして、樹脂発泡体を得た。
[Comparative Example 10]
A resin foam was obtained in the same manner as in Example 13 except that 30 parts by mass of the thermal decomposition type chemical foaming agent azodicarbonamide (Vinole AC # 1 manufactured by Eiwa Chemical Industry Co., Ltd.) and 4 parts by mass of baked alum as the ammonia adsorbent were used. Obtained.

表8に示すとおり、上記方法で得た樹脂発泡体の、密度は16kg/m、アンモニア濃度は3300ppm(質量基準)、熱伝導率は0.050W/mKであり、保温性が劣る。銅板には腐食が発生した。また、押出時に熱分解型化学発泡剤が分解して気泡径が均一にならず外観不良が発生し、シート切れが発生して安定しない状態だった。 As shown in Table 8, the resin foam obtained by the above method has a density of 16 kg / m 3 , an ammonia concentration of 3300 ppm (mass basis), a thermal conductivity of 0.050 W / mK, and poor heat retention. Corrosion occurred on the copper plate. Further, the pyrolytic chemical foaming agent was decomposed during the extrusion, the bubble diameter was not uniform, appearance defect occurred, the sheet was cut and it was unstable.

[比較例11]
MFRが3.6g/10分、密度が0.922g/cmの高圧法低密度ポリエチレン樹脂(東ソー株式会社製ペトロセン310)50質量%とMFRが2.4g/10分、密度が0.9g/cmのホモポリプロピレン(日本ポリプロ株式会社製ノバテックPPFY6C)50質量%をそれぞれ粉砕機を用い2mm以下に粉砕した後、熱可塑性樹脂を100質量部としたとき、熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)10質量部、架橋助剤としてジビニルベンゼン4質量部、安定剤としてIrganox1010を0.2質量部加え、アンモニア吸着剤として焼ミョウバン4質量部をスーパーミキサーで混合し、140〜160℃に加熱した90mmφの単軸押出機でTダイを用いて厚さ1.8mmの長尺シート状に成形した後、200〜250℃でソルト発泡、上部から赤外線ヒーターによる加熱を行って、樹脂発泡体を得た。
[Comparative Example 11]
50% by mass of high-pressure low-density polyethylene resin (Petrocene 310 manufactured by Tosoh Corporation) having an MFR of 3.6 g / 10 min and a density of 0.922 g / cm 3, an MFR of 2.4 g / 10 min, and a density of 0.9 g / Cm 3 homopolypropylene (Novatech PPFY6C, manufactured by Nippon Polypro Co., Ltd.) 50% by mass, respectively, using a pulverizer, pulverized to 2 mm or less, and then 100 parts by mass of the thermoplastic resin, azodicarboxylic pyrolytic chemical foaming agent 10 parts by weight of amide (Einwa Kasei Kogyo Co., Ltd., VINYHALL AC # 1), 4 parts by weight of divinylbenzene as a crosslinking aid, 0.2 parts by weight of Irganox 1010 as a stabilizer, and 4 parts by weight of baked alum as an ammonia adsorbent Long length of 1.8mm using a T-die with a 90mmφ single screw extruder mixed with a mixer and heated to 140-160 ° C After forming into a sheet shape, salt foaming was performed at 200 to 250 ° C., and heating with an infrared heater was performed from above to obtain a resin foam.

表8に示すとおり、上記方法では樹脂発泡体が頻繁に切れてしまい、生産出来ない状態であった。よって、樹脂発泡体は未評価とする。   As shown in Table 8, in the above method, the resin foam was frequently cut and could not be produced. Therefore, the resin foam is not evaluated.

[比較例12]
熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)20質量部とした他は比較例11と同様にして、樹脂発泡体を得た。
[Comparative Example 12]
A resin foam was obtained in the same manner as in Comparative Example 11 except that 20 parts by mass of the thermal decomposition type chemical foaming agent azodicarbonamide (Binhole AC # 1 manufactured by Eiwa Kasei Kogyo Co., Ltd.) was used.

表8に示すとおり、上記方法では樹脂発泡体が頻繁に切れてしまい、生産出来ない状態であった。よって、樹脂発泡体は未評価とする。   As shown in Table 8, in the above method, the resin foam was frequently cut and could not be produced. Therefore, the resin foam is not evaluated.

Figure 0005726505
Figure 0005726505

Figure 0005726505
Figure 0005726505

Figure 0005726505
Figure 0005726505

以上述べたように、実施例に示した本発明による樹脂発泡体は、示差走査熱量計による測定結果が、120℃以下の範囲で融解熱量が全体の60%以上のポリオレフィン系樹脂を含み、熱可塑性樹脂100質量部に対して、焼ミョウバンを含むアンモニア吸着剤を0.3〜5質量部と熱分解型化学発泡剤を2〜25質量部添加することで、得ることが出来る。   As described above, the resin foam according to the present invention shown in the examples includes a polyolefin resin having a heat of fusion of 60% or more in the range of 120 ° C. or less as measured by a differential scanning calorimeter, It can be obtained by adding 0.3 to 5 parts by mass of an ammonia adsorbent containing baked alum and 2 to 25 parts by mass of a pyrolytic chemical foaming agent with respect to 100 parts by mass of the plastic resin.

a 融解開始温度
b 融解終了温度
c 120℃
d DSC曲線と120度を示す縦軸の交わる点
e 線分(a−b)と120度を示す縦軸の交わる点
T 温度
T1 融解開始温度
T2 融解終了温度
Wg 融解熱量
a Melting start temperature b Melting end temperature c 120 ° C
d Point where the DSC curve intersects the vertical axis indicating 120 degrees e Point where the line segment (ab) intersects the vertical axis indicating 120 degrees T temperature T1 melting start temperature T2 melting end temperature Wg heat of fusion

Claims (7)

見掛け密度が20〜40kg/mであり、アンモニア濃度が200ppm〜1000ppm(質量基準)である架橋発泡体である樹脂発泡体。 A resin foam which is a crosslinked foam having an apparent density of 20 to 40 kg / m 3 and an ammonia concentration of 200 ppm to 1000 ppm (mass basis). 熱伝導率が0.03W/mK〜0.04W/mKであることを特徴とする、請求項1記載の樹脂発泡体。   The resin foam according to claim 1, wherein the thermal conductivity is 0.03 W / mK to 0.04 W / mK. アンモニア吸着剤を含むことを特徴とする、請求項1または2に記載の樹脂発泡体。   The resin foam according to claim 1 or 2, wherein the resin foam contains an ammonia adsorbent. 熱可塑性樹脂100質量部に対して、アンモニア吸着剤を0.3〜5質量部及び熱分解型化学発泡剤を2〜25質量部含む樹脂組成物から得られることを特徴とする、請求項1〜3のいずれかに記載の樹脂発泡体。   It is obtained from a resin composition containing 0.3 to 5 parts by mass of an ammonia adsorbent and 2 to 25 parts by mass of a pyrolytic chemical foaming agent with respect to 100 parts by mass of a thermoplastic resin. The resin foam in any one of -3. 示差走査熱量計による融解熱量の全面積を100%とした際に、120℃以下の融解熱量の面積の合計が60%以上であることを特徴とする、請求項1〜4のいずれかに記載の樹脂発泡体。   The total area of the heat of fusion at 120 ° C. or less is 60% or more when the total area of the heat of fusion by the differential scanning calorimeter is 100%. Resin foam. 請求項1〜のいずれかに記載の樹脂発泡体からなる成型体。 The molded object which consists of a resin foam in any one of Claims 1-5 . 請求項1〜のいずれかに記載の樹脂発泡体からなる円筒体。
The cylindrical body which consists of a resin foam in any one of Claims 1-5 .
JP2010282592A 2010-12-20 2010-12-20 Resin foam, cylindrical body, molded body Active JP5726505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010282592A JP5726505B2 (en) 2010-12-20 2010-12-20 Resin foam, cylindrical body, molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010282592A JP5726505B2 (en) 2010-12-20 2010-12-20 Resin foam, cylindrical body, molded body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015071849A Division JP2015145503A (en) 2015-03-31 2015-03-31 Resin foam, cylindrical body and molded body

Publications (2)

Publication Number Publication Date
JP2012131848A JP2012131848A (en) 2012-07-12
JP5726505B2 true JP5726505B2 (en) 2015-06-03

Family

ID=46647831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010282592A Active JP5726505B2 (en) 2010-12-20 2010-12-20 Resin foam, cylindrical body, molded body

Country Status (1)

Country Link
JP (1) JP5726505B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258446A (en) * 1994-03-22 1995-10-09 Sekisui Chem Co Ltd Production of foam
JP2002012690A (en) * 2000-06-27 2002-01-15 Chisso Corp Polyolefin resin composition for expansion molding and molded product thereof

Also Published As

Publication number Publication date
JP2012131848A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
EP2221337B1 (en) Process for producing expanded polyolefin resin bead and expanded polyolefin resin bead
JPH06287342A (en) Polyolefin resin foam
JP2015187232A (en) polyolefin foam sheet
JP4904526B2 (en) Polyolefin-based resin laminate foam having deodorizing function, and cylindrical body or molded body comprising the same
JP3732418B2 (en) Expandable styrene resin particles
JP2015145503A (en) Resin foam, cylindrical body and molded body
JP2002275298A (en) Open-cell foam of polyethylene resin composition
JP2006274038A (en) Uncrosslinked polyethylene-based resin extrusion-foamed body and molded body thereof
JP2004067820A (en) Polypropylenic resin foamed sheet
JP5726505B2 (en) Resin foam, cylindrical body, molded body
JP2011052044A (en) Polyolefin-based resin crosslinking foam
JP7254577B2 (en) Piping material
JP6834142B2 (en) Flame-retardant polyolefin resin cross-linked foam
WO2016147775A1 (en) Polyethylene resin foam particles having antistatic performance, and polyethylene resin in-mold foam-molded article and method for manufacturing same
JP2002146080A (en) Polyolefin-based resin extruded foam and method for producing the same
JP2007100961A (en) Foaming polyethylene coated metallic pipe
JP2002243092A (en) Cylindrical foaming body
JP6230244B2 (en) Method for producing thermoplastic resin molded article
WO2017164339A1 (en) Laminated foamed sheet and molded body using same
JP7316032B2 (en) Thermoplastic resin sheets, laminates and moldings.
KR20170029230A (en) A method for producing kinds of tray and containers using non-crosslinked pp foamed sheet mixed with high melt strength pp resin
KR20170130450A (en) Method for producing polyethylene-based resin extruded foamed sheet, polyethylene-based resin-extruded foamed sheet and diaper for glass plate using the same
JPH08245820A (en) Polyolefin resin foam and production thereof
JP2004276261A (en) Molded product
JP2023003786A (en) Resin composition, foam molded body and multilayer pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131017

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131017

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150401

R150 Certificate of patent or registration of utility model

Ref document number: 5726505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250