JP6230244B2 - Method for producing thermoplastic resin molded article - Google Patents

Method for producing thermoplastic resin molded article Download PDF

Info

Publication number
JP6230244B2
JP6230244B2 JP2013059543A JP2013059543A JP6230244B2 JP 6230244 B2 JP6230244 B2 JP 6230244B2 JP 2013059543 A JP2013059543 A JP 2013059543A JP 2013059543 A JP2013059543 A JP 2013059543A JP 6230244 B2 JP6230244 B2 JP 6230244B2
Authority
JP
Japan
Prior art keywords
bamboo charcoal
thermoplastic resin
molded article
charcoal particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013059543A
Other languages
Japanese (ja)
Other versions
JP2014185204A (en
Inventor
藤井 透
藤井  透
大窪 和也
和也 大窪
佐川 永徳
永徳 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha
Original Assignee
Doshisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha filed Critical Doshisha
Priority to JP2013059543A priority Critical patent/JP6230244B2/en
Publication of JP2014185204A publication Critical patent/JP2014185204A/en
Application granted granted Critical
Publication of JP6230244B2 publication Critical patent/JP6230244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、熱可塑性樹脂成形品の製造方法に関する。   The present invention relates to a method for producing a thermoplastic resin molded article.

ポリプロピレンなどの熱可塑性樹脂(TP)の熱伝導率は金属に比べれば低い。しかし、それでも一層熱伝導率を下げる要求は少なくない。
低温液体を入れる容器・食器では、熱伝導率の高い材料で形成されたものは、外表面に結露が生じやすい。自動車部品でも、真夏の直射日光に去られる部品では人が触れると火傷などの恐れもある。
Thermal conductivity of thermoplastic resin (TP) such as polypropylene is lower than that of metal. However, there are still many requests for lowering the thermal conductivity.
Condensation is likely to occur on the outer surface of containers and tableware that contain cryogenic liquids that are made of a material with high thermal conductivity. Even parts that are left in direct sunlight in midsummer can cause burns when touched by people.

そこで、熱伝導率を下げる方法として、発泡成形品とする方法が挙げられ、また、脱臭機能や浄化機能を付与するために、竹炭を用いた合成樹脂発泡シートがすでに提案されている(特許文献1)。
すなわち、この合成樹脂発泡シートは、竹炭粒子を含む合成樹脂組成物に空気を吹き込んだり、樹脂材料に配合された発泡剤を発泡させたりすることで得られるようになっている。
Therefore, as a method for lowering the thermal conductivity, there is a method of forming a foamed molded product, and a synthetic resin foam sheet using bamboo charcoal has already been proposed in order to provide a deodorizing function and a purification function (Patent Literature). 1).
That is, this synthetic resin foam sheet is obtained by blowing air into a synthetic resin composition containing bamboo charcoal particles or foaming a foaming agent blended in a resin material.

特開2004-224646号公報JP 2004-224646 A

しかし、上記のように、空気を吹き込んだり、樹脂材料に配合された発泡剤を発泡させたりする方法では、その気泡は大きく、寸法のばらつきも大きい。また、均一分散されず、成形物中で気泡が偏ることもしばしばである。すなわち、均一な物性が得られず、機械的特性が要求される用途には問題がある。   However, as described above, in the method of blowing air or foaming the foaming agent blended in the resin material, the bubbles are large and the dimensional variation is large. Also, the bubbles are often unevenly distributed in the molded product without being uniformly dispersed. That is, there is a problem in applications where uniform physical properties cannot be obtained and mechanical properties are required.

本発明は、上記事情に鑑みて、竹炭や木炭などの炭粒子を用いるとともに、軽量で、低熱伝導性を有し、機械的物性に優れた熱可塑性樹脂成形品の製造方法を提供することを目的としている。   In view of the above circumstances, the present invention provides a method for producing a thermoplastic resin molded article that uses charcoal particles such as bamboo charcoal and charcoal, is lightweight, has low thermal conductivity, and has excellent mechanical properties. It is aimed.

上記目的を達成するために、本発明にかかる熱可塑性樹脂成形品の製造方法(以下、「本発明の製造方法」と記す)は、吸湿状態にした炭粒子を含む熱可塑性樹脂組成物を成形時に前記炭粒子に吸着した水分が蒸発する温度まで加熱する熱可塑性樹脂成形品の製造方法であって、前記炭粒子は.平均差し渡し寸法が、10μm以上100μm以下である竹炭粒子であることを特徴としている。
In order to achieve the above object, a method for producing a thermoplastic resin molded article according to the present invention (hereinafter referred to as “the production method of the present invention”) comprises a thermoplastic resin composition containing carbon particles in a hygroscopic state , A method for producing a thermoplastic resin molded article in which the water adsorbed on the charcoal particles during molding is heated to a temperature at which the charcoal particles evaporate . Bamboo charcoal particles having an average passing dimension of 10 μm or more and 100 μm or less are characterized.

本発明の製造方法に用いられる炭粒子としては、特に限定されないが、たとえば、竹炭、木炭などが挙げられ、中でも、中温(700〜900℃)で焼成して得られる竹炭を粉砕して得られる竹炭粒子が好ましい。
すなわち、中温で焼成された竹炭は、硬く、2軸混練押出機による、熱可塑性樹脂との混練あるいはコンパウンドの造粒工程、あるいは、熱可塑性樹脂組成物を射出成形する際にも、竹炭粒子が押しつぶれにくい。
また、中温で焼成された竹炭は、細孔密度、比表面積が大きく、シャープな細孔分布を有する。したがって、均一にかつ安定して水分が吸着され、全体に均一な気泡を備えた成形品を得ることができる。
The charcoal particles used in the production method of the present invention are not particularly limited, and examples thereof include bamboo charcoal and charcoal. Among them, bamboo charcoal obtained by firing at medium temperature (700 to 900 ° C.) is obtained. Bamboo charcoal particles are preferred.
That is, bamboo charcoal baked at a medium temperature is hard, and the bamboo charcoal particles are also used in a kneading with a thermoplastic resin or a compound granulating step by a twin-screw kneading extruder, or in injection molding a thermoplastic resin composition. Hard to crush.
Bamboo charcoal fired at medium temperature has a large pore density and specific surface area, and has a sharp pore distribution. Accordingly, moisture can be adsorbed uniformly and stably, and a molded product having uniform bubbles throughout can be obtained.

上記竹炭粒子を用いる場合、粒子の大きさは、得ようとする成形品の用途やその成形品が求められる物性等に応じて適宜決定されるが、平均差し渡し寸法が10μm以上100μm以下のものを用いることが好ましい。
すなわち、平均差し渡し寸法が10μm未満では、十分な吸湿性が得られないため、得られる成形品内の気泡が不十分で十分な低熱伝導化を図れなくなる恐れがあり、100μmを超えると、成形品の表面状態に悪影響がでる恐れがある。
なお、本発明において、平均差し渡し寸法は、目盛りのついた、1000倍以上の倍率を有する光学式顕微鏡により求められる。
When the bamboo charcoal particles are used, the size of the particles is appropriately determined according to the use of the molded product to be obtained and the physical properties required for the molded product, but the average passing dimension is 10 μm or more and 100 μm or less. It is preferable to use it.
That is, if the average passing dimension is less than 10 μm, sufficient hygroscopicity cannot be obtained, so there is a risk that sufficient bubbles cannot be achieved due to insufficient bubbles in the molded product. There is a risk of adversely affecting the surface condition of the.
In addition, in this invention, an average passing dimension is calculated | required with the optical microscope which has the magnification of 1000 times or more with the scale.

竹炭粒子の配合割合は、得ようとする成形品に応じて適宜決定され、特に限定されないが、熱可塑性樹脂100重量部に対して25重部以上含むようにすることが好ましい。
すなわち、竹炭粒子の配合割合が25重量%を下回ると、竹炭粒子内に蓄えられている水分の総量が少なく、得られる成形品内の気泡が不十分で、十分な低熱伝導化が図れなくなる恐れがある。
The blending ratio of the bamboo charcoal particles is appropriately determined according to the molded product to be obtained, and is not particularly limited, but is preferably 25 parts by weight or more with respect to 100 parts by weight of the thermoplastic resin.
That is, if the blending ratio of the bamboo charcoal particles is less than 25% by weight, the total amount of water stored in the bamboo charcoal particles is small, the bubbles in the obtained molded product are insufficient, and there is a risk that sufficient low thermal conductivity cannot be achieved. There is.

上記竹炭の原料となる竹材としては、特に限定されないが、例えば、孟宗竹、真竹、淡竹、女竹、慈竹などが挙げられ、低コスト化を図るのであれば、日本国内で手に入り易い孟宗竹、真竹が好適である。   The bamboo material used as the raw material of the bamboo charcoal is not particularly limited, and examples include bamboo mulberry bamboo, true bamboo, pale bamboo, female bamboo, citrus and the like. Shintake is preferred.

本発明の製造方法において、熱可塑性樹脂組成物は、炭粒子と、熱可塑性樹脂のペレット(マスターバッチを含む)は、あらかじめ、熱可塑性樹脂と混練し、コンパウンド化しておくことが好ましい。
炭粒子を吸湿状態にする方法としては、特に限定されないが、たとえば、炭粒子自体あるいは上記コンパウンドを所望の湿度雰囲気中に所定時間放置する方法が挙げられる。
上記湿度雰囲気は、得ようとする成形品に応じて適宜決定され、特に限定されないが、
たとえば、竹炭粒子を用いる場合、竹炭粒子100重量部あたり、5重量部以上の水が吸着するような雰囲気とすることが好ましい。
In the production method of the present invention, the thermoplastic resin composition is preferably compounded in advance with carbon particles and thermoplastic resin pellets (including a masterbatch) kneaded with the thermoplastic resin.
The method for bringing the charcoal particles into a hygroscopic state is not particularly limited, and examples thereof include a method of leaving the charcoal particles themselves or the above compound in a desired humidity atmosphere for a predetermined time.
The humidity atmosphere is appropriately determined according to the molded product to be obtained and is not particularly limited.
For example, when bamboo charcoal particles are used, an atmosphere in which 5 parts by weight or more of water is adsorbed per 100 parts by weight of bamboo charcoal particles is preferable.

本発明の製造方法において用いられる熱可塑性樹脂としては、特に限定されないが、ポリプロピレン、ポリエチレン、ポリスチレンなどの耐水性のあるオレフィン系樹脂が挙げられる。   Although it does not specifically limit as a thermoplastic resin used in the manufacturing method of this invention, Water-resistant olefin resin, such as a polypropylene, polyethylene, a polystyrene, is mentioned.

本発明の製造方法は、以上のように、吸湿状態にした炭粒子を含む熱可塑性樹脂組成物を成形時に前記炭粒子に吸着した水分が蒸発する温度まで加熱する熱可塑性樹脂成形品の製造方法であって、前記炭粒子は.平均差し渡し寸法が、10μm以上100μm以下である竹炭粒子であるので、従来の物理発泡剤や化学発泡剤を用いて発泡させた成形品に比べ、引っ張り強度に優れたものとすることができる。
さらに、成形品に導電性を持たせることができる。
また、特に、竹炭粒子は、生育が早く、日本国内で容易に手に入るとともに、山林の他の樹木の生育の妨げとなる竹材を原料としているので、より安価に成形品を製造することができるとともに、他の炭粒子に比べても強度的に優れ、混練時や成形時において粒子自体の潰れがない。
As described above, the production method of the present invention is a production of a thermoplastic resin molded article in which a thermoplastic resin composition containing carbon particles in a hygroscopic state is heated to a temperature at which water adsorbed on the carbon particles evaporates during molding. A method wherein the charcoal particles are. The bamboo charcoal particles having an average passing dimension of 10 μm or more and 100 μm or less can be superior in tensile strength as compared with a molded product foamed using a conventional physical foaming agent or chemical foaming agent.
Furthermore, the molded product can be made conductive.
In particular, bamboo charcoal particles are fast growing and can be easily obtained in Japan, and bamboo materials that hinder the growth of other trees in the forest are used as raw materials. In addition, it is superior in strength compared to other charcoal particles, and the particles themselves are not crushed during kneading or molding.

実施例1で得られた樹脂シートの断面の拡大写真写しである。2 is an enlarged photograph of a cross section of the resin sheet obtained in Example 1.

以下に、本発明を、その実施例を参照しつつ詳しく説明する。   Hereinafter, the present invention will be described in detail with reference to examples thereof.

(竹炭粒子)
孟宗竹を700〜900℃の中温域で焼成して竹炭Xを得た。得られた竹炭Xの断面を拡大したところ、細孔が形成されており、水銀ポロシメータを用いてその細孔面積を測定したところ、竹炭X1gあたり約1000m2であった。
得られた竹炭Xを、粉砕機(セイワ技研社製卓上ボールミルBM-10)を用いて粉砕したのち、分級し、以下の表1に示す4種類の平均差し渡し寸法の異なる竹炭粒子Xa〜Xdを用意した。
(Bamboo charcoal particles)
Bamboo charcoal X was obtained by firing Miso bamboo in the middle temperature range of 700-900 ° C. When the cross section of the obtained bamboo charcoal X was enlarged, pores were formed, and when the pore area was measured using a mercury porosimeter, it was about 1000 m 2 per 1 g of bamboo charcoal X.
The obtained bamboo charcoal X was pulverized using a pulverizer (desk ball mill BM-10 manufactured by Seiwa Giken Co., Ltd.) and classified, and the four types of bamboo charcoal particles Xa to Xd having different average passing dimensions shown in Table 1 below were obtained. Prepared.

(実施例1)
ポリプロピレン(日本ポリケム社製ノバテックBC8)100重量部と、上記竹炭粒子Xa10重量部となるように配合し、二軸混練押出機(神戸製鋼所社製HYPERKTX-32)を用いて溶融混練し、竹炭粒子Xaを含む熱可塑性樹脂組成物であるコンパウンドAを得た。
コンパウンドAを湿度90%、温度23℃の雰囲気中で5時間放置したのち、シリンダ内温度200℃の二軸混練押出機からTダイを介して押出成形し、厚み1.0mmのフィルムAを得た。
(Example 1)
Blended with 100 parts by weight of polypropylene (Novatech BC8 manufactured by Nippon Polychem Co., Ltd.) and 10 parts by weight of the above-mentioned bamboo charcoal particles Xa, melt-kneaded using a twin-screw kneading extruder (HYPERKTX-32 manufactured by Kobe Steel) Compound A which is a thermoplastic resin composition containing particles Xa was obtained.
Compound A was allowed to stand in an atmosphere of 90% humidity and 23 ° C. for 5 hours, and then extruded from a twin-screw kneading extruder having a cylinder internal temperature of 200 ° C. through a T-die to obtain a film A having a thickness of 1.0 mm. It was.

(実施例2)
竹炭粒子Xaに代えて、上記竹炭粒子Xbを用いた以外は、上記実施例1と同様にしてフィルムBを得た。
(Example 2)
A film B was obtained in the same manner as in Example 1 except that the bamboo charcoal particles Xb were used instead of the bamboo charcoal particles Xa.

(実施例3)
竹炭粒子Xaに代えて、上記竹炭粒子Xcを用いた以外は、上記実施例1と同様にしてフィルムCを得た。
Example 3
A film C was obtained in the same manner as in Example 1 except that the bamboo charcoal particles Xc were used instead of the bamboo charcoal particles Xa.

(実施例4)
竹炭粒子Xaに代えて、上記竹炭粒子Xdを用いた以外は、上記実施例1と同様にしてフィルムDを得た。
Example 4
A film D was obtained in the same manner as in Example 1 except that the bamboo charcoal particles Xd were used instead of the bamboo charcoal particles Xa.

(実施例5)
竹炭粒子Xcの配合割合を20重量部とした以外は、実施例1と同様にしてコンパウンドEを得たのち、実施例1と同様にしてフィルムEを得た。
(Example 5)
A compound E was obtained in the same manner as in Example 1 except that the blending ratio of the bamboo charcoal particles Xc was 20 parts by weight, and then a film E was obtained in the same manner as in Example 1.

(実施例6)
竹炭粒子Xcの配合割合を30重量部とした以外は、実施例1と同様にしてコンパウンドFを得たのち、実施例1と同様にしてフィルムFを得た。
Example 6
A compound F was obtained in the same manner as in Example 1 except that the blending ratio of the bamboo charcoal particles Xc was 30 parts by weight, and then a film F was obtained in the same manner as in Example 1.

(実施例7)
竹炭粒子Xaの配合量を1重量部とした以外は、実施例1と同様にしてコンパウンドGを得たのち、実施例1と同様にしてフィルムGを得た。
(Example 7)
A compound G was obtained in the same manner as in Example 1 except that the blending amount of the bamboo charcoal particles Xa was 1 part by weight, and then a film G was obtained in the same manner as in Example 1.

(比較例1)
実施例1で得たコンパウンドAを真空乾燥させたのち、直ちに実施例1と同様にして押出成形してフィルムHを得た。
(Comparative Example 1)
Compound A obtained in Example 1 was vacuum dried and then immediately extruded in the same manner as in Example 1 to obtain a film H.

(比較例2)
実施例1で得たコンパウンドAを真空乾燥させたのち、直ちにこの乾燥コンパウンドAを、コンパンウド100重量部に対して1重量部の化学発泡剤(アゾジカルボンアミド)とともに、押出成形機に投入した以外は、実施例1と同様にしてフィルムIを得た。
(Comparative Example 2)
Compound A obtained in Example 1 was vacuum-dried, and immediately after that, this dry compound A was put into an extruder together with 1 part by weight of a chemical foaming agent (azodicarbonamide) with respect to 100 parts by weight of compound. Obtained a film I in the same manner as in Example 1.

上記実施例1〜7および比較例1,2で得られたフィルムA〜Iについて、引っ張り強度(MPa)、熱伝導率、比重を以下の試験方法で調べ、その結果を表2に示した。
〔引っ張り強度〕
JIS K7162:プラスチック−引張特性の試験方法による。
〔熱伝導率〕
JIS A 1412:熱絶縁材の熱伝導率及び熱抵抗の測定方法による。
〔比重〕
JIS K7112:プラスチック−非発泡プラスチックの密度及び比重の測定方法による。
The films A to I obtained in Examples 1 to 7 and Comparative Examples 1 and 2 were examined for tensile strength (MPa), thermal conductivity, and specific gravity by the following test methods, and the results are shown in Table 2.
[Tensile strength]
JIS K7162: Plastic-According to tensile property test method.
〔Thermal conductivity〕
JIS A 1412: According to the measurement method of thermal conductivity and thermal resistance of thermal insulation.
〔specific gravity〕
JIS K7112: According to the method for measuring the density and specific gravity of non-foamed plastic

上記表2に示すように、PPに竹炭を混入させることにより、その比重、熱伝導率を下げることができることがわかる。比重はPPと竹炭を組み合わせた値より小さくなり、竹炭中に吸着された水分によりPP中に気泡が作られ、これによりPPと竹炭コンパウンド成形品の比重が小さくなったと考えられる。竹炭を加えないPPの熱伝導率は0.12〜0.14程度であるため、気泡による熱伝導率の低下効果は顕著である。竹炭の平均差し渡し寸法が異なっても、PPに混入させる竹炭の含有量が同じ場合、比重は同じである。また、熱伝導率に違いはない。
しかし、成形品の引っ張り強度は竹炭の平均差し渡し寸法の影響を受け、同寸法が小さい方が、大きい竹炭を用いた場合より強度は高い。使用したPPの引っ張り強度は24〜25MPaであり、竹炭の差し渡し寸法が大きい場合、成形品の強度はやや小さくなる可能性もある。一方、平均差し渡し寸法の小さい竹炭を高含有した場合、成形品の引っ張り強度は増す。また、熱伝導率、比重も元のPPに比べ、顕著に低下する。ただし、破断時の伸びは実施例3に比べ、実施例5、6ではそれぞれ30%および50%低下する。
比較例1からわかるように、竹炭中の給水量を減らすと、成形品中で形成される気泡が少なくなり、成形品の熱伝導率、比重いずれも増加し、断熱性能と重さから見た成形品の性能は低下する。化学発泡剤を加えると、竹炭の水分により形成される気泡とあいまって、成形品中の気泡量は増し、比重は下がる。また、熱伝導率も顕著に下がり、断熱性能の面から、両者を組み合わせることは意義がある。しかし、発泡材による気泡は大きく、成形品の引張強度は大きく低下する。
As shown in Table 2 above, it can be seen that the specific gravity and thermal conductivity can be lowered by mixing bamboo charcoal into PP. It is considered that the specific gravity is smaller than the combined value of PP and bamboo charcoal, and bubbles are formed in PP due to moisture adsorbed in bamboo charcoal, thereby reducing the specific gravity of PP and bamboo charcoal compound molded product. Since the thermal conductivity of PP without adding bamboo charcoal is about 0.12 to 0.14, the effect of lowering the thermal conductivity due to bubbles is significant. Even if the average passing dimension of bamboo charcoal is different, the specific gravity is the same when the content of bamboo charcoal mixed into PP is the same. There is no difference in thermal conductivity.
However, the tensile strength of the molded product is affected by the average passing size of bamboo charcoal, and the smaller the size, the higher the strength than when larger bamboo charcoal is used. The tensile strength of the used PP is 24 to 25 MPa, and the strength of the molded product may be slightly reduced when the bamboo charcoal passing dimension is large. On the other hand, when bamboo charcoal with a small average passing dimension is contained in a high amount, the tensile strength of the molded product increases. Also, the thermal conductivity and specific gravity are significantly reduced compared to the original PP. However, the elongation at break is 30% and 50% lower in Examples 5 and 6 than in Example 3, respectively.
As can be seen from Comparative Example 1, when the amount of water supply in bamboo charcoal is reduced, the number of bubbles formed in the molded product is reduced, and the thermal conductivity and specific gravity of the molded product are both increased. The performance of the molded product is reduced. When a chemical foaming agent is added, the amount of bubbles in the molded product increases and the specific gravity decreases, combined with bubbles formed by the moisture of bamboo charcoal. In addition, the thermal conductivity is remarkably lowered, and it is meaningful to combine both from the viewpoint of heat insulation performance. However, the bubbles due to the foam material are large, and the tensile strength of the molded product is greatly reduced.

上記実施例1で得られたフィルムAの断面の10倍に拡大した顕微鏡写真の写しを図1に示した。
図1に示すとおり、得られたフィルムAは、多数の独立気泡(図1中、白く見える部分)が内部に分散して存在していた。また,各気泡は、押し出し方向に長く 短手方向の寸法が0.05〜0.2mmで、長手方向のさが0.4mm程度であった。
また、実施例2〜7および比較例1,2で得られたフィルムB〜Iについても同様にして顕微鏡で調べたところ、フィルムB〜Fについては、ほぼ実施例1のフィルムAと同様の独立気泡が、均一に分散していた。一方、実施例7のフィルムGについては、気泡の数が他のフィルムより少なかった。そのため、熱伝導率が他の実施例のフィルムに比べ悪いと考えられる。他方、比較例1のフィルムHは、気泡がほとんどなく、発泡剤を用いて発泡させた比較例2のフィルムIは、気泡が大きく、気泡の分散状態が不均一であった。しかも、フィルムIは表面の凹凸が大きく、表面平滑性の点で問題があった。
A copy of the micrograph magnified 10 times the cross section of the film A obtained in Example 1 is shown in FIG.
As shown in FIG. 1, the obtained film A had a large number of closed cells (parts that look white in FIG. 1) dispersed inside. In addition, each bubble was long in the extrusion direction, the short side dimension was 0.05 to 0.2 mm, and the long side direction was about 0.4 mm.
Further, when the films B to I obtained in Examples 2 to 7 and Comparative Examples 1 and 2 were similarly examined with a microscope, the films B to F were almost the same independent as the film A of Example 1. Air bubbles were uniformly dispersed. On the other hand, about the film G of Example 7, the number of air bubbles was fewer than other films. Therefore, it is thought that heat conductivity is bad compared with the film of another Example. On the other hand, the film H of Comparative Example 1 had almost no air bubbles, and the film I of Comparative Example 2 foamed using a foaming agent had large air bubbles, and the dispersed state of the air bubbles was not uniform. Moreover, the film I has a large surface irregularity, and has a problem in terms of surface smoothness.

(実施例8)
上記竹炭粒子Xaを湿度95%、温度45℃の雰囲気中で5時間放置して吸湿竹炭粒子Xaとしたのち、この吸湿竹炭粒子Xa25重量部とポリプロピレン100重量部とを混合し、この混合物を、シリンダ内温度200℃の二軸混練押出機(神戸製鋼所社製HYPERKTX-32)により竹炭入りPPコンパウンドI(直径2.5mm、長さ4mm)を得た。また、吐出口をTダイに交換し、厚さ1.0mm、幅10cmのフィルムJも作成した。
(Example 8)
The bamboo charcoal particles Xa were allowed to stand for 5 hours in an atmosphere having a humidity of 95% and a temperature of 45 ° C. to obtain moisture-absorbing bamboo charcoal particles Xa. PP compound I containing bamboo charcoal (diameter 2.5 mm, length 4 mm) was obtained with a twin-screw kneading extruder with a cylinder internal temperature of 200 ° C. (HYPERKTX-32 manufactured by Kobe Steel). Further, the discharge port was replaced with a T-die, and a film J having a thickness of 1.0 mm and a width of 10 cm was also produced.

(実施例9)
実施例8で作製したコンパウンドJを用い、射出成形機により、底辺の直径5cm、開放口の径6cm、高さ10cmのコップを製作した。
Example 9
Using the compound J produced in Example 8, a cup having a bottom diameter of 5 cm, an opening diameter of 6 cm, and a height of 10 cm was produced by an injection molding machine.

(実施例10)
実施例8で作製したフィルムJを用い、それを複数重ねてホットプレス用金型に置き、小型トレイ(長さ15cm、幅10cm、深さ0.5cm、厚さ1.5mm)を成形した。
Example 10
A plurality of the films J produced in Example 8 were stacked and placed in a hot press mold, and a small tray (length 15 cm, width 10 cm, depth 0.5 cm, thickness 1.5 mm) was molded.

なお、気泡の大きさについは、押出速度、射出圧力、保圧等の成形条件によって変更することが可能である。   The size of the bubbles can be changed according to molding conditions such as extrusion speed, injection pressure, and holding pressure.

Claims (5)

吸湿状態にした炭粒子を含む熱可塑性樹脂組成物を成形時に前記炭粒子に吸着した水分が蒸発する温度まで加熱する熱可塑性樹脂成形品の製造方法であって、
前記炭粒子は.平均差し渡し寸法が、10μm以上100μm以下である竹炭粒子であることを特徴とする熱可塑性樹脂成形品の製造方法。
The thermoplastic resin composition containing charcoal particles moisture absorption condition, moisture adsorbed to the carbon particles is a method for producing a thermoplastic resin molded article is heated to a temperature which evaporates during molding,
The charcoal particles are. A method for producing a thermoplastic resin molded article, characterized in that it is bamboo charcoal particles having an average passing dimension of 10 μm or more and 100 μm or less .
炭粒子がコンパウンド化され、このコンパウンド状態で炭粒子が吸湿状態にされる請求項1に記載の熱可塑性樹脂成形品の製造方法。 Bamboo charcoal particles are compounded, method for producing a thermoplastic resin molded article according to claim 1, bamboo charcoal particles in this compound state is hygroscopic state. 竹炭粒子が、700〜900℃の中温域で焼成された竹炭を粉砕して得られる請求項1または請求項2に記載の熱可塑性樹脂成形品の製造方法。 The method for producing a thermoplastic resin molded article according to claim 1 or 2 , wherein the bamboo charcoal particles are obtained by pulverizing bamboo charcoal fired at an intermediate temperature of 700 to 900 ° C. 竹炭粒子を熱可塑性樹脂100重量部に対して5重部以上含む請求項1〜請求項3のいずれかに記載の熱可塑性樹脂成形品の製造方法。 The method for producing a thermoplastic resin molded article according to any one of claims 1 to 3, comprising 5 or more parts of bamboo charcoal particles with respect to 100 parts by weight of the thermoplastic resin. 熱可塑性樹脂が、ポリプロピレンである請求項1〜請求項4のいずれかに記載の熱可塑性樹脂成形品の製造方法。 The method for producing a thermoplastic resin molded article according to any one of claims 1 to 4, wherein the thermoplastic resin is polypropylene .
JP2013059543A 2013-03-22 2013-03-22 Method for producing thermoplastic resin molded article Expired - Fee Related JP6230244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013059543A JP6230244B2 (en) 2013-03-22 2013-03-22 Method for producing thermoplastic resin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013059543A JP6230244B2 (en) 2013-03-22 2013-03-22 Method for producing thermoplastic resin molded article

Publications (2)

Publication Number Publication Date
JP2014185204A JP2014185204A (en) 2014-10-02
JP6230244B2 true JP6230244B2 (en) 2017-11-15

Family

ID=51833076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013059543A Expired - Fee Related JP6230244B2 (en) 2013-03-22 2013-03-22 Method for producing thermoplastic resin molded article

Country Status (1)

Country Link
JP (1) JP6230244B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020136734A1 (en) * 2018-12-26 2021-11-04 株式会社大木工藝 Resin molded products and manufacturing methods for resin molded products

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09235471A (en) * 1996-02-29 1997-09-09 Izumi Funakoshi Synthetic resin composition
JPH11100455A (en) * 1997-07-24 1999-04-13 Yasuo Nakamura Far-infrared radiate foam and far-infrared radiate product by using the same
JPH11187769A (en) * 1997-12-25 1999-07-13 Meisui:Kk Molding for upholstery having air cleaning function and production of the same
JP4571723B2 (en) * 1999-12-28 2010-10-27 日の丸カーボテクノ株式会社 Method for producing charcoal-supported molded body
JP2004018830A (en) * 2002-06-20 2004-01-22 Tomikawa Kk Foamed resin product containing ceramic charcoal powder and method for producing it
EP1559736A4 (en) * 2002-10-10 2005-12-21 M Inc Fa Process for the production of resin compositions
JP2008127442A (en) * 2006-11-20 2008-06-05 Polymer Shoko:Kk Resin
JP2008222755A (en) * 2007-03-09 2008-09-25 Campo Tecnico:Kk Thermoplastic composite material characterized by using charcoal as coloration effect
JP2009096965A (en) * 2007-10-18 2009-05-07 Nobumasa Nakaso Swollen material having gas-permeable film

Also Published As

Publication number Publication date
JP2014185204A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP5582586B2 (en) Polyolefin resin foamed molded body
CN102241830B (en) Preparation method of biodegradable polymer foamed sheet product
US10815354B2 (en) Bead expanded molded article, resin expanded particles, method for producing resin expanded particles, expandable resin particles and method for producing bead expanded molded article
RU2016148475A (en) THERMOFORMED PRODUCT FORMED FROM POROUS POLYMERIC SHEET
AU2012345753B2 (en) Method of foaming polyolefin using acrylated epoxidized fatty acid and foam produced therefrom
JP6356477B2 (en) Foamed particle molding
WO2012086305A1 (en) Polylactic acid resin foam particle and polylactic acid resin foam particle molding
WO2023067954A1 (en) Polyethylene resin foam particles, and method for producing same
JP6030533B2 (en) Low thermal conductive molded body and heat shielding resin laminate
JP6230244B2 (en) Method for producing thermoplastic resin molded article
JP2005290329A (en) Ethylene-based resin foamed sheet, formed product and method for producing the ethylene-based resin foamed sheet
JP4360609B2 (en) Production method of polystyrene resin foam sheet for thermoforming, polystyrene resin foam sheet for thermoforming
JP2013503241A5 (en)
JP2020164686A (en) Foaming sheet and foaming container
JP6390313B2 (en) Foam particles
JP5921486B2 (en) Method for producing starch resin pellets
JP2005036121A (en) Hygroscopic foam and its manufacturing method
JP2015145503A (en) Resin foam, cylindrical body and molded body
JP2007131766A (en) Polypropylene-based resin foamed sheet, polypropylene-based resin laminated foamed sheet and container obtained by thermally molding the same
JP6611032B2 (en) Polylactic acid-based resin expanded particles and molded body of polylactic acid-based resin expanded particles
KR20170029230A (en) A method for producing kinds of tray and containers using non-crosslinked pp foamed sheet mixed with high melt strength pp resin
JP7492893B2 (en) Polylactic acid resin foam sheet and sheet molded product
JP6220670B2 (en) Foam molded body with wood powder
JPWO2009001959A1 (en) Method for producing polyolefin resin non-crosslinked foam
JP5492581B2 (en) Thermoplastic resin foam molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171017

R150 Certificate of patent or registration of utility model

Ref document number: 6230244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees