JP5723517B2 - Optical distance measuring device - Google Patents

Optical distance measuring device Download PDF

Info

Publication number
JP5723517B2
JP5723517B2 JP2009142313A JP2009142313A JP5723517B2 JP 5723517 B2 JP5723517 B2 JP 5723517B2 JP 2009142313 A JP2009142313 A JP 2009142313A JP 2009142313 A JP2009142313 A JP 2009142313A JP 5723517 B2 JP5723517 B2 JP 5723517B2
Authority
JP
Japan
Prior art keywords
light
distance measuring
monitor
bias voltage
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009142313A
Other languages
Japanese (ja)
Other versions
JP2010286448A (en
Inventor
宏明 猪俣
宏明 猪俣
智之 石川
智之 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2009142313A priority Critical patent/JP5723517B2/en
Publication of JP2010286448A publication Critical patent/JP2010286448A/en
Application granted granted Critical
Publication of JP5723517B2 publication Critical patent/JP5723517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、測定対象物から反射した光を、バイアス電圧を印加することにより増倍作用を持つ光検出器で検出する光測距装置に関する。   The present invention relates to an optical distance measuring device that detects light reflected from an object to be measured by a photodetector having a multiplication effect by applying a bias voltage.

従来、光測距装置として、特許文献1に開示されるように、測定対象物に向けてレーザ光を放射し、レーザ光を放射したタイミングと、測定対象物から反射したレーザ光が受光されたタイミングとの時間差を測定することにより、測定対象物までの距離を測定する装置が知られている。前記光測距装置では、測定対象物から反射した微弱な光を高感度で検出する光検出器として、バイアス電圧を印加することにより増倍作用を持つ光検出器(アバランシェフォトダイオードAPD)が用いられている。   Conventionally, as disclosed in Patent Document 1, as an optical distance measuring device, laser light is emitted toward a measurement object, the timing at which the laser light is emitted, and the laser light reflected from the measurement object is received. An apparatus for measuring a distance to a measurement object by measuring a time difference from timing is known. In the optical distance measuring device, a photodetector (avalanche photodiode APD) having a multiplication effect by applying a bias voltage is used as a photodetector for detecting weak light reflected from a measurement object with high sensitivity. It has been.

特開2003−130953号公報Japanese Patent Laid-Open No. 2003-130953

ところで、前記光検出器(アバランシェフォトダイオードAPD)における増倍率は、素子温度によって変化するため、素子温度の変化が発生すると、反射光強度に依存せずに光検出器の出力レベルが変化し、これによって受光判定のタイミングにずれが生じ、測定誤差を生じることがあった。ここで、例えば、素子温度と増倍率を一定にするためのバイアス電圧との相関を予めテーブル化しておき、前記テーブルを参照してそのときの素子温度に対応するバイアス電圧を決定するようにすれば、前記増倍率を安定化させることが可能である。   By the way, since the multiplication factor in the photodetector (avalanche photodiode APD) changes depending on the element temperature, when the change in the element temperature occurs, the output level of the photodetector changes without depending on the reflected light intensity, As a result, the light reception determination timing may be shifted, resulting in a measurement error. Here, for example, a correlation between the element temperature and the bias voltage for making the multiplication factor constant is tabulated in advance, and the bias voltage corresponding to the element temperature at that time is determined with reference to the table. For example, the multiplication factor can be stabilized.

しかし、素子温度と増倍率との相関は光検出器毎に固体差があるため、共通のテーブルに基づいてバイアス電圧を設定させると、増倍率を精度よく安定化させることができず、光検出器毎に前記テーブルを設定する必要が生じる。また、増倍率に相関する素子温度を高精度に検出することは難しく、素子温度の検出誤差によってバイアス電圧が適正値からずれて設定され、増倍率が変化してしまうという問題が生じる。   However, since the correlation between the element temperature and the multiplication factor is different for each photodetector, if the bias voltage is set based on a common table, the multiplication factor cannot be stabilized accurately, and light detection is performed. It is necessary to set the table for each device. In addition, it is difficult to detect the element temperature correlated with the multiplication factor with high accuracy, and the bias voltage is set to be deviated from an appropriate value due to the detection error of the element temperature, and the multiplication factor is changed.

本発明は上記問題点に着目してなされたものであり、素子温度の変化に対して光検出器の増倍率を精度よく安定化させることができ、以って、高い測距精度を安定して維持できる光測距装置を提供することを目的とする。   The present invention has been made paying attention to the above-mentioned problems, and can accurately stabilize the multiplication factor of the photodetector with respect to changes in the element temperature, thereby stabilizing the high ranging accuracy. It is an object of the present invention to provide an optical distance measuring device that can be maintained.

このため、請求項1に係る発明は、バイアス電圧の印加により増倍作用を有し、測定対象物からの反射光を受光する測距用光検出器と、前記測定対象物に向けて光を周期的に放射する測距用光源と、発光モニタ用光検出器とを備え、前記測距用光源が放射する光を前記測定対象物に向け投光する光とモニタ光とに分岐させ、前記モニタ光を分岐させて前記測距用光検出器と前記発光モニタ用光検出器とに受光させ、前記反射光及び前記モニタ光を受光する前記測距用光検出器の出力を、前記発光モニタ用光検出器の前記モニタ光の検出出力に基づき検出した前記測距用光源の放射タイミングに基づいて前記モニタ光の検出出力と前記反射光の検出出力とに分離し、前記測距用光検出器の前記モニタ光の検出出力と前記発光モニタ用光検出器の前記モニタ光の検出出力との比が目標値になるように前記測距用光検出器のバイアス電圧を変更するようにした。 For this reason, the invention according to claim 1 has a multiplication function by applying a bias voltage, and a ranging photodetector that receives reflected light from the measurement object, and light directed toward the measurement object. A light source for distance measurement that radiates periodically, and a light detector for light emission monitoring , and splits light emitted from the light source for distance measurement into light and monitor light that are projected toward the measurement object; The monitor light is branched and received by the distance measuring light detector and the light emission monitor light detector, and the output of the distance measuring light detector that receives the reflected light and the monitor light is output to the light emission monitor. The light detection for distance measurement is separated into the detection output of the monitor light and the detection output of the reflected light based on the emission timing of the distance measurement light source detected based on the detection output of the monitor light of the optical detector for detection. The monitor light detection output of the detector and the light emission monitor photodetector The ratio of the detection output of the serial monitor light is to change the bias voltage of the distance measuring light detector so that the target value.

かかる構成では、発光モニタ用光検出器と測距用光検出器とは、共に測距用光源から放射された光を検出するから、両検出器における出力の違いは、測距用光検出器が増倍作用を持つことによって発生し、検出出力の比は、測距用光検出器における増倍率を示すことになるので、検出出力の比に基づいてバイアス電圧を補正することで、増倍率を安定化させることができる。更に、上記構成では、基準光を放射させるための専用の光源を必要とせずに、適正なバイアス電圧に補正させることができる。 In such a configuration, the light emission monitor light detector and the distance measuring light detector both detect the light emitted from the distance measuring light source, so the difference in output between the two detectors is the distance measuring light detector. The ratio of the detection output indicates the multiplication factor in the photo detector for distance measurement. Therefore, the multiplication factor is corrected by correcting the bias voltage based on the ratio of the detection output. Can be stabilized. Furthermore, in the above configuration, it is possible to correct the bias voltage to an appropriate value without requiring a dedicated light source for emitting the reference light.

請求項の構成において、請求項のように、前記測距用光源から放射される光の強度を一定に調整することができる。この場合、測距用光源から放射される光の強度が変化すると、この光強度の変化による検出出力の変化を、温度変化による増倍率の変化として誤検出することになるので、測距用光源から放射される光の強度を一定に調整し、測距用光検出器の検出出力が、測距用光源から放射される光の強度変化で変化することなく、温度変化による増倍率の変化で変動するようにする。 In the configuration of the first aspect , as in the second aspect , the intensity of light emitted from the distance measuring light source can be adjusted to be constant. In this case, if the intensity of the light emitted from the distance measuring light source changes, the change in the detection output due to the change in the light intensity is erroneously detected as a change in the multiplication factor due to the temperature change. The intensity of the light emitted from the light source is adjusted to be constant, and the detection output of the ranging light detector does not change with the change in the intensity of the light emitted from the ranging light source. Make it fluctuate.

請求項の構成において、請求項のように、前記発光モニタ用光検出器で検出される光の強度が一定になるように前記測距用光源の駆動信号を補正することができる。 In the configuration of claim 2 , as in claim 3 , the driving signal of the distance measuring light source can be corrected so that the intensity of light detected by the light emission monitor photodetector is constant.

かかる光測距装置によると、素子温度の検出結果を用いることなく、そのときの温度条件で所期の増倍率が得られるバイアス電圧に補正することができ、温度変化があっても測距用光検出器における増倍率を安定化でき、高い測距精度を維持させることができる。   According to such an optical distance measuring device, it is possible to correct the bias voltage to obtain a desired multiplication factor under the temperature condition without using the detection result of the element temperature. The multiplication factor in the photodetector can be stabilized and high ranging accuracy can be maintained.

本発明の第1実施形態の光測距装置を示すブロック図The block diagram which shows the optical ranging apparatus of 1st Embodiment of this invention. 同上第1実施形態の測距用光検出器(アバランシェフォトダイオードAPD)においてバイアス電圧を一定にした場合の素子温度と増倍率との相関を示す図The figure which shows the correlation with element temperature and a multiplication factor when a bias voltage is made constant in the photodetector for distance measurement (avalanche photodiode APD) of 1st Embodiment same as the above. 同上第1実施形態の測距用光検出器(アバランシェフォトダイオードAPD)において増倍率を一定にするためのバイアス電圧を素子温度毎に示す図The figure which shows the bias voltage for making a multiplication constant constant for every element temperature in the photodetector for distance measurement (avalanche photodiode APD) of 1st Embodiment same as the above. 同上第1実施形態におけるバイアス電圧の補正処理の流れを示すフローチャートThe flowchart which shows the flow of the correction process of the bias voltage in 1st Embodiment same as the above. 本発明の第2実施形態の光測距装置を示すブロック図The block diagram which shows the optical ranging apparatus of 2nd Embodiment of this invention. 本発明の第3実施形態の光測距装置を示すブロック図The block diagram which shows the optical ranging apparatus of 3rd Embodiment of this invention. 同上第3実施形態におけるバイアス電圧の補正処理の流れを示すフローチャートThe flowchart which shows the flow of the correction process of the bias voltage in 3rd Embodiment same as the above. 同上第3実施形態における検出出力の分離方法の一例としての時分割多重方式を示す図The figure which shows the time division multiplexing system as an example of the separation method of the detection output in 3rd Embodiment same as the above. 同上第3実施形態における検出出力の分離方法の一例としての周波数分割多重方式を示す図The figure which shows the frequency division multiplexing system as an example of the separation method of the detection output in 3rd Embodiment same as the above.

以下、本発明の実施の形態を図面に基づいて説明する。図1は、本発明に係る光測距装置の第1実施形態を示す。図1に示す光測距装置1は、測距用光源(半導体レーザ)2と、測定対象物3から反射したレーザ光を検出する測距用光検出器(受光素子)4とを備え、前記測定対象物3に向けたレーザ光の放射タイミングと前記測距用光検出器4における受光タイミングとの時間差に基づいて、前記測定対象物3までの距離を測定する装置である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of an optical distance measuring device according to the present invention. An optical distance measuring device 1 shown in FIG. 1 includes a distance measuring light source (semiconductor laser) 2 and a distance measuring light detector (light receiving element) 4 for detecting laser light reflected from the measurement object 3. This is an apparatus for measuring the distance to the measurement object 3 based on the time difference between the emission timing of the laser beam toward the measurement object 3 and the light reception timing of the distance measuring photodetector 4.

前記測距用光源2から周期的に放射されるレーザ光は、投光光学系(レンズ・スキャナなどを含む)5を介した後、ビームスプリッタ6で2方向に分岐し、一方(プローブ光)が測定対象物3に向けて投光され、他方(モニタ光)がビームスプリッタ7に入射する。前記ビームスプリッタ7で2方向に分岐されるレーザ光のうちの一方は、発光モニタ光学系8を介して、発光モニタ用光検出器(受光素子)9に受光される。   The laser light periodically emitted from the distance measuring light source 2 passes through a light projection optical system (including a lens / scanner) 5 and then branches in two directions by a beam splitter 6, and one (probe light). Is projected toward the measurement object 3 and the other (monitor light) is incident on the beam splitter 7. One of the laser beams branched in two directions by the beam splitter 7 is received by a light emission monitor optical detector (light receiving element) 9 via a light emission monitor optical system 8.

前記発光モニタ用光検出器9は、光起電力効果を有する光電子デバイスであるフォトダイオードPDを備え、受光したレーザ光強度に応じた電圧を検出出力として発生する。前記発光モニタ用光検出器9でレーザ光を検出したタイミングが、測定対象物3に向けたレーザ光の放射タイミングとして判定され、該判定に基づいて計時スタートパルスが生成される。一方、前記測定対象物3で反射したレーザ光は、受光光学系10を介して測距用光検出器4に受光される。   The light emission monitor photodetector 9 includes a photodiode PD which is a photoelectric device having a photovoltaic effect, and generates a voltage corresponding to the intensity of received laser light as a detection output. The timing at which the laser light is detected by the light emission monitor photodetector 9 is determined as the laser light emission timing toward the measurement object 3, and a time-measurement start pulse is generated based on the determination. On the other hand, the laser beam reflected by the measurement object 3 is received by the distance measuring photodetector 4 through the light receiving optical system 10.

前記測距用光検出器4は、バイアス電圧を印加することにより増倍作用を持つアバランシェフォトダイオードAPDを備え、測定対象物3で反射したレーザ光(プローブ光)の強度に応じた電圧を検出出力として発生する。そして、測距用光検出器(APD)4が測定対象物3で反射したレーザ光を検出すると、この受光タイミングにおいて計時ストップパルスが生成され、前記計時スタートパルスから計時ストップパルスまでの時間が、前記測定対象物3に向けたレーザ光の放射タイミングと前記測距用光検出器(APD)4における反射光の受光タイミングとの時間差として計測され、前記時間とレーザ光の伝播速度とに基づいて測定対象物(被測定物)3までの距離が検出される。   The distance measuring photodetector 4 includes an avalanche photodiode APD having a multiplication effect by applying a bias voltage, and detects a voltage corresponding to the intensity of the laser beam (probe light) reflected by the measuring object 3. Occurs as output. Then, when the ranging light detector (APD) 4 detects the laser light reflected by the measuring object 3, a time stop pulse is generated at this light reception timing, and the time from the time start pulse to the time stop pulse is Measured as a time difference between the emission timing of the laser beam toward the measurement object 3 and the reception timing of the reflected light in the distance measuring photodetector (APD) 4, and based on the time and the propagation speed of the laser beam The distance to the measurement object (object to be measured) 3 is detected.

前記ビームスプリッタ7で分岐されるレーザ光のうち一方は、前述のように、発光モニタ用光検出器9に受光され、他方は、反射ミラー11で反射して前記受光光学系10に入射し、測距用光検出器(APD)4に受光される。即ち、測距用光検出器(APD)4には、ビームスプリッタ6,7及び反射ミラー11によって、測距用光源2から放射された一定強度のレーザ光が一定の飛行時間(飛行距離)で直接的に受光され、また、測定対象物3で反射したレーザ光が受光される。   One of the laser beams branched by the beam splitter 7 is received by the light emission monitor photodetector 9 as described above, and the other is reflected by the reflection mirror 11 and enters the light receiving optical system 10. The light is received by a ranging photodetector (APD) 4. That is, the distance measuring light detector (APD) 4 has a constant intensity of laser light emitted from the distance measuring light source 2 by the beam splitters 6 and 7 and the reflecting mirror 11 at a constant flight time (flight distance). The laser beam directly received and reflected by the measuring object 3 is received.

ここで、前記測定対象物3で反射して測距用光検出器(APD)4に受光されるレーザ光の強度は、測定対象物3までの距離が長くなるほど弱くなり、この微弱な反射光を高感度で検出する必要があるため、前述のように、測距用光検出器4を構成する受光素子として、バイアス電圧を印加することにより増倍作用を持つアバランシェフォトダイオードAPDを用いている。   Here, the intensity of the laser beam reflected by the measuring object 3 and received by the distance measuring photodetector (APD) 4 becomes weaker as the distance to the measuring object 3 becomes longer, and this weak reflected light. Therefore, as described above, the avalanche photodiode APD having a multiplication action by applying a bias voltage is used as the light receiving element constituting the distance measuring photodetector 4 as described above. .

しかし、前記アバランシェフォトダイオードAPDは、一定のバイアス電圧を印加した場合、図2に示すように、そのときの素子温度に応じて増倍率が変化する。図2は、バイアス電圧を一定とした場合のアバランシェフォトダイオードAPDの素子温度と増倍率との相関の一例を示し、素子温度の上昇に応じて増倍率が低下する特性を示している。温度変化によってアバランシェフォトダイオードAPDの増倍率が変化することで、測距用光検出器(APD)4の出力電圧の大きさが変化すると、例えば、出力電圧と閾値との比較に基づいて受光タイミングを検出する場合に、検出される受光タイミングにずれが生じ、測距結果にばらつきが生じてしまう。   However, when a constant bias voltage is applied to the avalanche photodiode APD, as shown in FIG. 2, the multiplication factor changes according to the element temperature at that time. FIG. 2 shows an example of the correlation between the element temperature and the multiplication factor of the avalanche photodiode APD when the bias voltage is constant, and shows the characteristic that the multiplication factor decreases as the element temperature increases. When the gain of the avalanche photodiode APD changes due to the temperature change, and the magnitude of the output voltage of the ranging photodetector (APD) 4 changes, for example, the light reception timing based on the comparison between the output voltage and the threshold value. When detecting the light, the detected light reception timing is deviated, and the distance measurement results vary.

そこで、第1実施形態では、前述のように、測距用光源2から放射されたレーザ光を、ビームスプリッタ6,7及び反射ミラー11によって測距用光検出器(APD)4に直接的に受光させ、このときの測距用光検出器(APD)4の出力と、同じく測距用光源2から放射されたレーザ光を直接的に受光する発光モニタ用光検出器(PD)9の出力とを対比させることで、測距用光検出器(APD)4の増倍率を求め、この増倍率が目標値になるように、前記アバランシェフォトダイオードAPDのバイアス電圧を補正する(バイアス電圧補正手段)。   Therefore, in the first embodiment, as described above, the laser light emitted from the distance measurement light source 2 is directly applied to the distance measurement photodetector (APD) 4 by the beam splitters 6 and 7 and the reflection mirror 11. The output of the distance measuring light detector (APD) 4 at this time and the output of the light emission monitoring light detector (PD) 9 that directly receives the laser light emitted from the distance measuring light source 2 at this time. To obtain the multiplication factor of the ranging photodetector (APD) 4 and correct the bias voltage of the avalanche photodiode APD so that the multiplication factor becomes a target value (bias voltage correction means). ).

即ち、測距用光源2から放射されたレーザ光を、ビームスプリッタ6,7及び反射ミラー11を介して、一定強度の基準光として測距用光検出器(APD)4に受光させるものであり、前記測距用光源2,ビームスプリッタ6,7及び反射ミラー11によって、測距用光検出器(APD)4に対して一定強度の基準光を受光させる基準光モニタ手段が構成される。   That is, the laser light emitted from the distance measuring light source 2 is received by the distance measuring light detector (APD) 4 as reference light having a constant intensity via the beam splitters 6 and 7 and the reflecting mirror 11. The distance measuring light source 2, the beam splitters 6, 7 and the reflection mirror 11 constitute reference light monitoring means for allowing the distance measuring light detector (APD) 4 to receive reference light having a constant intensity.

上記バイアス電圧の補正を行うための構成(バイアス電圧補正手段)として、測距用光検出器(APD)4の出力電圧Vxと、発光モニタ用光検出器(PD)9の出力電圧Voとの比率(増倍率)Mxを演算する比率演算部12、前記比率(増倍率)Mxの目標値Mを記憶する目標値記憶部13、前記比率演算部12で演算された比率(増倍率)Mxと、前記目標値記憶部13に記憶されている目標値Mとを比較し、バイアス電圧の増減要求信号(エラー信号)を出力する比較部14と、該比較部14から出力されるバイアス電圧の増減要求信号に基づいて、前記測距用光検出器(APD)4に印加するバイアス電圧を変更するバイアス回路15と、を備えている。前記目標値Mとしては、測距用光検出器(APD)4におけるSN比が最大になる値を設定することが好ましい。   As a configuration (bias voltage correcting means) for correcting the bias voltage, an output voltage Vx of the distance measuring photodetector (APD) 4 and an output voltage Vo of the light emission monitoring photodetector (PD) 9 are used. A ratio calculator 12 for calculating a ratio (multiplier) Mx, a target value storage unit 13 for storing a target value M of the ratio (multiplier) Mx, and a ratio (multiplier) Mx calculated by the ratio calculator 12 The comparison unit 14 compares the target value M stored in the target value storage unit 13 and outputs a bias voltage increase / decrease request signal (error signal), and the increase / decrease of the bias voltage output from the comparison unit 14 And a bias circuit 15 for changing a bias voltage applied to the distance measuring photodetector (APD) 4 based on a request signal. As the target value M, it is preferable to set a value that maximizes the SN ratio in the ranging photodetector (APD) 4.

尚、前記測距用光検出器(APD)4には、ビームスプリッタ6,7及び反射ミラー11によって導かれる、測距用光源2から放射されたレーザ光(基準光)と、測定対象物3から反射してきたレーザ光(測定光)とが受光されるが、ビームスプリッタ6,7及び反射ミラー11によって直接的に導かれるレーザ光は、測定対象物3から反射してきたレーザ光よりも早いタイミングで測距用光検出器(APD)4に受光され、かつ、放射タイミングから一定時間後に測距用光検出器(APD)4に受光される。   The distance measuring light detector (APD) 4 is guided by the beam splitters 6, 7 and the reflection mirror 11, and the laser light (reference light) emitted from the distance measuring light source 2 and the measurement object 3. The laser light (measurement light) reflected from the laser beam is received, but the laser light directly guided by the beam splitters 6 and 7 and the reflection mirror 11 has a timing earlier than the laser light reflected from the measurement object 3. Then, the light is received by the ranging light detector (APD) 4 and is received by the ranging light detector (APD) 4 after a predetermined time from the radiation timing.

このため、測距用光検出器(APD)4の出力電圧が、ビームスプリッタ6,7及び反射ミラー11によって導かれたレーザ光(基準光)を検出した出力であるのか、測定対象物3から反射してきたレーザ光を検出した出力であるかは、放射タイミングからの時間差に基づいて判別できる。従って、前記比率演算部12では、測距用光検出器(APD)4の出力電圧から、ビームスプリッタ6,7及び反射ミラー11によって導かれたレーザ光(基準光)を検出した出力電圧Vxを抽出し、この出力電圧Vxと発光モニタ用光検出器(PD)9の出力電圧Voとの比率を演算する。前記出力電圧Vxは、一定強度のレーザ光(基準光)を検出した値であるから、アバランシェフォトダイオードAPDの増倍率が一定であれば一定値になる。   For this reason, whether the output voltage of the photo detector for distance measurement (APD) 4 is an output obtained by detecting the laser light (reference light) guided by the beam splitters 6 and 7 and the reflection mirror 11, from the measurement object 3. Whether the reflected laser beam is detected or not can be determined based on the time difference from the radiation timing. Accordingly, the ratio calculation unit 12 uses the output voltage Vx obtained by detecting the laser light (reference light) guided by the beam splitters 6 and 7 and the reflection mirror 11 from the output voltage of the ranging photodetector (APD) 4. Extraction is performed, and the ratio between the output voltage Vx and the output voltage Vo of the light emission monitor photodetector (PD) 9 is calculated. Since the output voltage Vx is a value obtained by detecting laser light (reference light) having a constant intensity, the output voltage Vx is a constant value if the multiplication factor of the avalanche photodiode APD is constant.

アバランシェフォトダイオードAPDの内部増倍作用による高い受光感度によって、発光モニタ用光検出器(PD)9の出力電圧Voに対し、測距用光検出器(APD)4の出力電圧Vxはより高い値となり、両者の比Mx=Vx/Voは、発光モニタ用光検出器(PD)9の受光感度を基準とした場合の測距用光検出器(APD)4の受光感度、換言すれば、測距用光検出器(APD)4の増倍率Mxを示すことになる。そして、前記測距用光検出器(APD)4の増倍率Mxは、素子温度の変化に応じて変化するので、目標値記憶部13に記憶されている目標の増倍率Mと、前記出力電圧比として求めた増倍率Mxとを、前記比較部14で比較させる。   The output voltage Vx of the distance measuring photodetector (APD) 4 is higher than the output voltage Vo of the light emission monitoring photodetector (PD) 9 due to the high light receiving sensitivity due to the internal multiplication effect of the avalanche photodiode APD. The ratio Mx = Vx / Vo of the two is the light receiving sensitivity of the distance measuring photodetector (APD) 4 when the light receiving sensitivity of the light emission monitoring photodetector (PD) 9 is used as a reference, in other words, the measurement. This indicates the multiplication factor Mx of the distance photodetector (APD) 4. Since the multiplication factor Mx of the distance measuring photodetector (APD) 4 changes according to the change in element temperature, the target multiplication factor M stored in the target value storage unit 13 and the output voltage The comparison unit 14 compares the multiplication factor Mx obtained as a ratio.

図2に示したように、例えば、バイアス電圧一定の状態で測距用光検出器(APD)4の素子温度が上昇すると、増倍率Mxは低下し、また、増倍率Mxはバイアス電圧を高くすることで増大する。従って、素子温度の上昇による増倍率Mxの低下を抑制して増倍率Mxを目標値M付近に維持するためには、図3に示すように、素子温度の上昇に対してバイアス電圧を増大変化させればよく、逆に、素子温度の低下による増倍率Mxの増大変化に対しては、バイアス電圧を減少変化させればよい。   As shown in FIG. 2, for example, when the element temperature of the ranging photodetector (APD) 4 rises with a constant bias voltage, the multiplication factor Mx decreases, and the multiplication factor Mx increases the bias voltage. It increases by doing. Therefore, in order to suppress the decrease in the multiplication factor Mx due to the increase in the element temperature and maintain the multiplication factor Mx in the vicinity of the target value M, as shown in FIG. 3, the bias voltage is increased and changed with the increase in the element temperature. Conversely, the bias voltage may be decreased and changed with respect to an increase in the multiplication factor Mx due to a decrease in the element temperature.

そこで、前記比較部14は、そのときの増倍率Mxが目標値Mよりも低いと判断した場合、前記バイアス回路15に対して増倍率の増大要求信号(バイアス電圧の増大要求信号)を出力し、逆に、そのときの増倍率Mxが目標値Mよりも高いと判断した場合、前記バイアス回路15に対して増倍率の減少要求信号(バイアス電圧の減少要求信号)を出力し、更に、そのときの増倍率Mxが目標値Mに略一致していると判断した場合、前記バイアス回路15に対して増倍率の維持要求信号(バイアス電圧の維持要求信号)を出力する。   Therefore, when the comparison unit 14 determines that the multiplication factor Mx at that time is lower than the target value M, the comparison unit 14 outputs a multiplication factor increase request signal (bias voltage increase request signal) to the bias circuit 15. Conversely, when it is determined that the multiplication factor Mx at that time is higher than the target value M, a multiplication factor reduction request signal (bias voltage reduction request signal) is output to the bias circuit 15, and If it is determined that the multiplication factor Mx at this time substantially matches the target value M, a multiplication factor maintenance request signal (bias voltage maintenance request signal) is output to the bias circuit 15.

そして、バイアス回路15では、増倍率の増大要求信号(バイアス電圧の増大要求信号)を受けると、バイアス電圧を一定値だけ増大変化させる処理を行い、増倍率の減少要求信号(バイアス電圧の減少要求信号)を受けた場合には、バイアス電圧を一定値だけ減少変化させる処理を行い、更に、増倍率の維持要求信号(バイアス電圧の維持要求信号)を受けた場合には、バイアス電圧を現状値に維持させる。前記増倍率(バイアス電圧)の増減要求信号に対しては、出力電圧Vxが検出される毎、即ち、測距用光源2からレーザ光が放射される毎に、バイアス電圧の増減を繰り返し、増倍率Mxが目標値Mに略一致するようになった時点で、バイアス電圧の変更を停止し、バイアス電圧を一定に維持させる。   When the bias circuit 15 receives the multiplication factor increase request signal (bias voltage increase request signal), the bias circuit 15 performs a process of increasing and changing the bias voltage by a fixed value, and the multiplication factor reduction request signal (bias voltage decrease request). Signal), the bias voltage is decreased and changed by a certain value. Further, when a multiplication factor maintenance request signal (bias voltage maintenance request signal) is received, the bias voltage is set to the current value. To maintain. In response to an increase / decrease request signal for the multiplication factor (bias voltage), the increase / decrease of the bias voltage is repeated every time the output voltage Vx is detected, that is, each time the laser light is emitted from the distance measuring light source 2. When the magnification Mx substantially coincides with the target value M, the change of the bias voltage is stopped and the bias voltage is kept constant.

尚、増倍率Mxの検出及びバイアス電圧の変更は、測距用光源2からレーザ光が放射される毎に行わせる必要はなく、例えば、複数の放射回数に対して1回の割合で行わせることができ、また、増倍率Mxと目標値Mとの偏差が大きいほど、1回当たりのバイアス電圧の変更幅を大きくしたり、バイアス電圧の更新周期を短くしたりすることができる。また、前記バイアス電圧を増減変化させる一定値は、増倍率を許容ばらつき幅内で変化させるような値として予め設定し、前記許容ばらつき幅内であれば、バイアス電圧の維持要求が発生するように増倍率の判定を行わせ、増倍率が目標値付近でハンチングすることを抑制するとよい。   Note that the detection of the multiplication factor Mx and the change of the bias voltage need not be performed every time the laser light is emitted from the distance measuring light source 2. In addition, the larger the deviation between the multiplication factor Mx and the target value M, the larger the change width of the bias voltage per one time, or the shorter the update period of the bias voltage. The constant value for increasing / decreasing the bias voltage is set in advance as a value that changes the multiplication factor within the allowable variation width, and if it is within the allowable variation width, a request to maintain the bias voltage is generated. It is preferable that the multiplication factor is determined to prevent the multiplication factor from hunting near the target value.

図4は、上記バイアス電圧の補正処理の流れを示すフローチャートである。まず、測距用光源2からレーザ光が放射されると(ステップS101)、該レーザ光がビームスプリッタ6,7によって発光モニタ用光検出器(PD)9に受光され、前記レーザ光の検出出力Voが求められる(ステップS102)。また、前記測距用光源2から放射されたレーザ光は、ビームスプリッタ6,7及び反射ミラー11によって測距用光検出器(APD)4にも受光され、APDの増倍作用によってより高い検出出力Vxが求められる(ステップS103)。   FIG. 4 is a flowchart showing the flow of the bias voltage correction process. First, when laser light is emitted from the distance measuring light source 2 (step S101), the laser light is received by the light emission monitor photodetector (PD) 9 by the beam splitters 6 and 7, and the detection output of the laser light is output. Vo is obtained (step S102). The laser light emitted from the distance measuring light source 2 is also received by the distance measuring light detector (APD) 4 by the beam splitters 6 and 7 and the reflecting mirror 11, and is detected at a higher level by the APD multiplication function. An output Vx is obtained (step S103).

そして、前記検出出力Voと検出出力Vxとの比は、発光モニタ用光検出器(PD)9の受光感度を基準にした測距用光検出器(APD)4の受光感度(増倍率)を示すので、比率(増倍率)Mx=Vx/Voを算出する(ステップS104)。次いで、前記比率(増倍率)Mxと目標値Mとを比較し(ステップS105)、比率(増倍率)Mxが目標値Mよりも小さい場合には、測距用光検出器(APD)4のバイアス電圧を増大補正する(ステップS106)。   The ratio between the detection output Vo and the detection output Vx is the light reception sensitivity (multiplier) of the distance measurement photodetector (APD) 4 based on the light reception sensitivity of the light emission monitor photodetector (PD) 9. Therefore, the ratio (multiplier) Mx = Vx / Vo is calculated (step S104). Next, the ratio (multiplier) Mx and the target value M are compared (step S105). If the ratio (multiplier) Mx is smaller than the target value M, the distance measuring photodetector (APD) 4 The bias voltage is increased and corrected (step S106).

一方、比率(増倍率)Mxが目標値M以上である場合には、比率(増倍率)Mxが目標値Mよりも大きいか否かを判断し(ステップS107)、比率(増倍率)Mxが目標値Mよりも大きい場合には、測距用光検出器(APD)4のバイアス電圧を減少補正する(ステップS108)。また、比率(増倍率)Mxが目標値M以上ではなく、比率(増倍率)Mxが目標値Mに略一致していると判断される場合には、そのときのバイアス電圧を維持させる(ステップS109)。   On the other hand, if the ratio (multiplier) Mx is equal to or greater than the target value M, it is determined whether the ratio (multiplier) Mx is larger than the target value M (step S107), and the ratio (multiplier) Mx is determined. If it is larger than the target value M, the bias voltage of the distance measuring photodetector (APD) 4 is decreased and corrected (step S108). If it is determined that the ratio (multiplier) Mx is not equal to or greater than the target value M and the ratio (multiplier) Mx substantially matches the target value M, the bias voltage at that time is maintained (step). S109).

上記の第1実施形態によると、測距用光検出器(APD)4の素子温度が変化することによる増倍率の変化を、実際の増倍率Mxの検出結果に基づきバイアス電圧を補正することで抑制し、増倍率を目標値付近に安定化させることができるので、高い測距精度を安定して維持できる。また、上記バイアス電圧の補正は、光測距装置1毎(測距用光検出器(APD)4毎)に個別に実施されるので、測距用光検出器(APD)4の特性ばらつきによる増倍率のばらつきも補正されることになる。更に、測距用光検出器(APD)4の素子温度を検出してバイアス電圧を補正する構成ではないので、素子温度とバイアス電圧との相関を予めテーブル化しておく必要はなく、また、素子温度の検出誤差によってバイアス電圧が誤って補正され、目標(所期値)とは異なる増倍率に補正されてしまうことがない。   According to the first embodiment, the change in the multiplication factor due to the change in the element temperature of the ranging photodetector (APD) 4 is corrected by correcting the bias voltage based on the detection result of the actual multiplication factor Mx. It can be suppressed and the multiplication factor can be stabilized in the vicinity of the target value, so that high ranging accuracy can be stably maintained. Further, the correction of the bias voltage is performed individually for each optical distance measuring device 1 (for each distance measuring light detector (APD) 4), and therefore, due to characteristic variations of the distance measuring light detector (APD) 4. Variations in multiplication factor are also corrected. Further, since the bias temperature is not corrected by detecting the element temperature of the distance measuring photodetector (APD) 4, it is not necessary to tabulate the correlation between the element temperature and the bias voltage in advance. The bias voltage is not erroneously corrected by the temperature detection error, and is not corrected to a multiplication factor different from the target (predetermined value).

ところで、測距用光源2から放射されるレーザ光を、測距用光検出器(APD)4に基準光として直接的に受光させ、そのときの出力からバイアス電圧を補正させる場合、測距用光源2から放射されるレーザ光の強度が既知の一定強度であることが要求され、測距用光源2の製品ばらつきなどによって光強度がばらつくと、バイアス電圧の補正精度が低下する。そこで、バイアス電圧の補正精度を維持するために、図5に示す第2実施形態のように、測距用光源2から放射されるレーザ光の強度を一定値に制御する回路を付加するとよい。   By the way, when the laser light emitted from the ranging light source 2 is directly received by the ranging photodetector (APD) 4 as the reference light and the bias voltage is corrected from the output at that time, the ranging light is used. If the intensity of the laser light emitted from the light source 2 is required to be a known constant intensity, and the light intensity varies due to product variations of the distance measuring light source 2, the accuracy of correcting the bias voltage decreases. Therefore, in order to maintain the correction accuracy of the bias voltage, it is preferable to add a circuit for controlling the intensity of the laser light emitted from the distance measuring light source 2 to a constant value as in the second embodiment shown in FIG.

尚、第2実施形態を示す図5において、第1実施形態の図1と同一要素には、同一符号を付して詳細な説明を省略する。図5に示す第2実施形態では、前記発光モニタ用光検出器(PD)9の検出出力に基づいて、測距用光源2の駆動電流を制御する駆動電流制御回路21(光強度調整手段)を備えて構成される。   In FIG. 5 showing the second embodiment, the same elements as those in FIG. 1 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. In the second embodiment shown in FIG. 5, a drive current control circuit 21 (light intensity adjusting means) that controls the drive current of the distance measuring light source 2 based on the detection output of the light emission monitor photodetector (PD) 9. It is configured with.

そして、前記駆動電流制御回路21は、前記発光モニタ用光検出器(PD)9の検出出力が、レーザ光の基準強度に対応する基準出力よりも低く、測距用光源2から放射されるレーザ光の強度が前記基準強度よりも弱い場合には、駆動電流を所定値だけ増大変化させ、逆に、前記発光モニタ用光検出器(PD)9の検出出力が、レーザ光の基準強度に対応する基準出力よりも高く、測距用光源2から放射されるレーザ光の強度が前記基準強度よりも強い場合には、駆動電流を所定値だけ減少変化させ、更に、前記発光モニタ用光検出器(PD)9の検出出力が、レーザ光の基準強度に対応する基準出力に略一致する場合には、そのときの駆動電流を維持させる。   Then, the drive current control circuit 21 is configured so that the detection output of the light emission monitor photodetector (PD) 9 is lower than the reference output corresponding to the reference intensity of the laser light and is emitted from the distance measuring light source 2. When the light intensity is weaker than the reference intensity, the drive current is increased and changed by a predetermined value. Conversely, the detection output of the light emission monitor photodetector (PD) 9 corresponds to the reference intensity of the laser beam. If the intensity of the laser light emitted from the ranging light source 2 is higher than the reference intensity, the drive current is decreased and changed by a predetermined value, and the light emission monitoring photodetector When the detection output of (PD) 9 substantially matches the reference output corresponding to the reference intensity of the laser beam, the drive current at that time is maintained.

上記の第2実施形態によると、測距用光源2から放射されるレーザ光の強度ばらつきが抑制されるから、測距用光検出器(APD)4に一定強度のレーザ光を安定的に受光させることができ、これによって、測距用光検出器(APD)4の実際の増倍率を高精度に求めることができる。従って、検出された実際の増倍率に基づいてバイアス電圧を補正することで、測距用光検出器(APD)4の実際の増倍率Mxを目標値Mに高精度に近づけることができる。   According to the second embodiment, the variation in the intensity of the laser light emitted from the distance measuring light source 2 is suppressed, so that the distance measuring light detector (APD) 4 stably receives the laser light having a constant intensity. Accordingly, the actual multiplication factor of the ranging photodetector (APD) 4 can be obtained with high accuracy. Accordingly, by correcting the bias voltage based on the detected actual multiplication factor, the actual multiplication factor Mx of the distance measuring photodetector (APD) 4 can be brought close to the target value M with high accuracy.

尚、第1,第2実施形態において、測距用光源2から放射されるレーザ光を直接受光したときの測距用光検出器(APD)4の出力電圧Vxが、所期の増倍率に見合う目標出力電圧Vxtになるようにバイアス電圧を補正することで、測距用の光検出器(APD)4の増倍率を前記所期値に補正できる。また、増倍率検出のための第2の光源(増倍モニタ用光源)を、前記測距用光源2とは別に備え、この第2光源から放射されるレーザ光を、基準光として測距用光検出器(APD)4に受光させ、そのときの検出出力に基づいてバイアス電圧を補正することができる。   In the first and second embodiments, the output voltage Vx of the ranging photo detector (APD) 4 when the laser beam emitted from the ranging light source 2 is directly received is set to a desired multiplication factor. By correcting the bias voltage so that the target output voltage Vxt can be matched, the multiplication factor of the distance measuring photodetector (APD) 4 can be corrected to the expected value. Further, a second light source (multiplication monitor light source) for detecting the multiplication factor is provided separately from the distance measuring light source 2, and the laser light emitted from the second light source is used as a reference light for distance measurement. The light can be received by the photodetector (APD) 4 and the bias voltage can be corrected based on the detection output at that time.

図6は、前記第2光源を備えた第3実施形態を示し、第1実施形態の図1と同一要素には、同一符号を付して詳細な説明を省略する。図6において、前記第2光源(増倍モニタ用光源)としてのモニタ用光源(半導体レーザ)31を設け、このモニタ用光源31から放射された一定強度のレーザ光(基準光)を、モニタ用光学系32を介して反射ミラー33に入射させ、前記反射ミラー33での反射光を、前記受光光学系10を介して測距用光検出器(APD)4に受光させる。即ち、前記モニタ用光源31,モニタ用光学系32,反射ミラー33及び受光光学系10によって、測距用光検出器(APD)4に一定強度の基準光を受光させる基準光モニタ手段が構成される。   FIG. 6 shows a third embodiment including the second light source. The same elements as those in FIG. 1 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. In FIG. 6, a monitor light source (semiconductor laser) 31 is provided as the second light source (multiplier monitor light source), and laser light (reference light) having a constant intensity emitted from the monitor light source 31 is used for monitoring. The light is incident on the reflecting mirror 33 via the optical system 32, and the reflected light from the reflecting mirror 33 is received by the distance measuring photodetector (APD) 4 via the light receiving optical system 10. That is, the monitoring light source 31, the monitoring optical system 32, the reflection mirror 33, and the light receiving optical system 10 constitute reference light monitoring means for allowing the ranging light detector (APD) 4 to receive reference light having a constant intensity. The

尚、測距用光源2から放射されるレーザ光は、第1,第2実施形態と同様に、ビームスプリッタ6で分岐され、一方は測定対象物3に向けて放射され、他方は、反射ミラー39で反射した後、発光モニタ光学系8を介して、発光モニタ用光検出器(受光素子)9に受光され、測距用光源2から放射されるレーザ光が直接的に(測定対象物3で反射せずに)測距用光検出器(APD)4に受光されることはない。   The laser light emitted from the distance measuring light source 2 is branched by the beam splitter 6 as in the first and second embodiments, one is emitted toward the measuring object 3, and the other is the reflecting mirror. After being reflected at 39, the laser light received by the light emission monitor optical detector (light receiving element) 9 via the light emission monitor optical system 8 and emitted from the distance measuring light source 2 is directly (measurement object 3 Without being reflected by the distance measuring photodetector (APD) 4.

前記測距用光検出器(APD)4の検出出力Vxは比較部34に出力され、比較部34では、目標値設定部36で設定される目標値Vxtと、実際の検出出力Vxとが比較される。前記目標値Vxtは、モニタ用光源31から放射される一定強度のレーザ光(基準光)を受光した場合に、所期の増倍率で得られる検出出力である。   The detection output Vx of the distance measuring photodetector (APD) 4 is output to the comparison unit 34. The comparison unit 34 compares the target value Vxt set by the target value setting unit 36 with the actual detection output Vx. Is done. The target value Vxt is a detection output obtained at a desired multiplication factor when a laser beam (reference light) having a constant intensity emitted from the monitor light source 31 is received.

そして、実際の検出出力Vxが目標値Vxtよりも低く、測距用光検出器(APD)4での増倍率が所期値(目標値)よりも低いと判断される場合、前記比較部34は、バイアス電圧の増大要求信号(増倍率の増大要求信号)を出力し、逆に、実際の検出出力Vxが目標値Vxtよりも高く、測距用光検出器(APD)4での増倍率が所期値(目標値)よりも高いと判断される場合、前記比較部34は、バイアス電圧の減少要求信号(増倍率の減少要求信号)を出力し、更に、実際の検出出力Vxが目標値Vxtに略一致している場合には、バイアス電圧の維持要求信号(増倍率の維持要求信号)を出力する。   When it is determined that the actual detection output Vx is lower than the target value Vxt and the multiplication factor at the distance measuring photodetector (APD) 4 is lower than the expected value (target value), the comparison unit 34. Outputs a bias voltage increase request signal (multiplier increase request signal), and conversely, the actual detection output Vx is higher than the target value Vxt, and the multiplication factor in the distance measuring photodetector (APD) 4 is increased. Is determined to be higher than the expected value (target value), the comparison unit 34 outputs a bias voltage reduction request signal (multiplication factor reduction request signal), and the actual detection output Vx is further set to the target value. If it substantially matches the value Vxt, a bias voltage maintenance request signal (multiplier maintenance request signal) is output.

前記比較部34からの要求信号が入力されるバイアス回路35では、バイアス電圧の増大要求信号を受けると、バイアス電圧を一定値だけ増大変化させる処理を行い、バイアス電圧の減少要求信号を受けた場合には、バイアス電圧を一定値だけ減少変化させる処理を行い、更に、バイアス電圧の維持要求信号を受けた場合には、バイアス電圧を現状値に維持させる。   When the bias circuit 35 to which the request signal from the comparison unit 34 is input, when the bias voltage increase request signal is received, the bias voltage is increased and changed by a certain value, and the bias voltage decrease request signal is received. In this case, a process for decreasing and changing the bias voltage by a predetermined value is performed, and when the bias voltage maintenance request signal is received, the bias voltage is maintained at the current value.

図7のフローチャートは、モニタ用光源31を備える第3実施形態におけるバイアス電圧の補正処理の流れを示す。まず、モニタ用光源31からレーザ光が放射されると(ステップS201)、該レーザ光が、モニタ用光学系32,反射ミラー33及び受光光学系10を介して、測距用光検出器(APD)4に受光され、モニタ用光源31からのレーザ光の検出出力Vxが求められる(ステップS202)。一方、前記モニタ用光源31からのレーザ光を測距用の光検出器(APD)4が受光したときに、所期の増倍率で得られる検出出力が、目標値Vxtとして設定される(ステップS203)。   The flowchart in FIG. 7 shows the flow of bias voltage correction processing in the third embodiment including the monitor light source 31. First, when laser light is emitted from the monitor light source 31 (step S201), the laser light passes through the monitor optical system 32, the reflection mirror 33, and the light receiving optical system 10, and the distance measuring photodetector (APD). ) 4 and the detection output Vx of the laser beam from the monitor light source 31 is obtained (step S202). On the other hand, when the distance measuring photodetector (APD) 4 receives the laser light from the monitor light source 31, a detection output obtained at a desired multiplication factor is set as the target value Vxt (step S1). S203).

そして、前記モニタ用光源31からのレーザ光の検出出力Vxと、前記目標値Vxtとを比較し(ステップS204)、実際の検出出力Vxが目標値Vxtよりも小さい場合には、測距用光検出器(APD)4のバイアス電圧を増大補正する(ステップS205)。一方、実際の検出出力Vxが目標値Vxt以上である場合には、実際の検出出力Vxが目標値Vxtよりも大きいか否かを判断し(ステップS206)、実際の検出出力Vxが目標値Vxtよりも大きい場合には、測距用光検出器(APD)4のバイアス電圧を減少補正する(ステップS207)。また、実際の検出出力Vxが目標値Vxtに略一致している場合には、そのときのバイアス電圧を維持させる(ステップS208)。   Then, the laser beam detection output Vx from the monitor light source 31 is compared with the target value Vxt (step S204), and if the actual detection output Vx is smaller than the target value Vxt, the ranging light The bias voltage of the detector (APD) 4 is increased and corrected (step S205). On the other hand, when the actual detection output Vx is equal to or greater than the target value Vxt, it is determined whether or not the actual detection output Vx is larger than the target value Vxt (step S206), and the actual detection output Vx is the target value Vxt. If it is larger, the bias voltage of the distance measuring photodetector (APD) 4 is corrected to decrease (step S207). If the actual detection output Vx substantially matches the target value Vxt, the bias voltage at that time is maintained (step S208).

上記バイアス電圧の補正制御により、モニタ用光源(半導体レーザ)31から放射されたレーザ光(基準光)を受光したときの測距用光検出器(APD)4の検出出力Vxが目標値Vxtに近づくようにバイアス電圧が補正され、その結果、測距用光検出器(APD)4での増倍率が所期値(目標値)に補正される。従って、第1,第2実施形態と同様に、測距用光検出器(APD)4の検出出力Vxに基づき、受光タイミングの検出を高精度に行えるようになり、以って、高い測距精度を維持することができる。   With the bias voltage correction control, the detection output Vx of the ranging light detector (APD) 4 when the laser light (reference light) emitted from the monitor light source (semiconductor laser) 31 is received becomes the target value Vxt. The bias voltage is corrected so as to approach, and as a result, the multiplication factor in the distance measuring photodetector (APD) 4 is corrected to an initial value (target value). Therefore, similarly to the first and second embodiments, the light receiving timing can be detected with high accuracy based on the detection output Vx of the distance measuring photodetector (APD) 4, and thus high distance measurement. Accuracy can be maintained.

また、測距用光源2とは別にモニタ用光源31を設けるから、測距用光検出器(APD)4の増倍率の検出に用いる基準光の強度を、測距動作とは無関係に、増倍率の検出に最適な値に設定することができ、更に、測距のためのレーザ光の放射とは個別のタイミングで、測距用光検出器(APD)4に基準光を受光させることができる。但し、上記第3実施形態においては、測距用光源2からのレーザ光を受光した検出出力Vxと、モニタ用光源31からのレーザ光を受光した検出出力Vxとを分離する必要がある。   Further, since the monitor light source 31 is provided separately from the distance measuring light source 2, the intensity of the reference light used to detect the multiplication factor of the distance measuring photodetector (APD) 4 is increased regardless of the distance measuring operation. The value can be set to an optimum value for detecting the magnification, and the reference light can be received by the distance measuring photodetector (APD) 4 at a timing separate from the radiation of the laser light for distance measurement. it can. However, in the third embodiment, it is necessary to separate the detection output Vx that has received the laser light from the ranging light source 2 and the detection output Vx that has received the laser light from the monitoring light source 31.

図8は、前記分離の方法を示し、測距用光源2から放射されたレーザ光が測定対象物3で反射して測距用光検出器(APD)4で受光される期間である測距期間の終期から次の測距期間の始期までの期間を、モニタ用光源31から放射されたレーザ光を測距用光検出器(APD)4に受光させるモニタ期間として設定する。そして、前記モニタ期間においてモニタ用光源31から放射されたレーザ光が測距用光検出器(APD)4に受光されるように、前記モニタ期間に同期させてモニタ用光源31から周期的にレーザ光を放射させる。   FIG. 8 shows the separation method, in which the laser light emitted from the distance measuring light source 2 is reflected by the measuring object 3 and is received by the distance measuring photodetector (APD) 4. The period from the end of the period to the beginning of the next ranging period is set as a monitoring period in which the ranging light detector (APD) 4 receives the laser light emitted from the monitoring light source 31. Then, the laser light emitted from the monitoring light source 31 in the monitoring period is periodically received from the monitoring light source 31 in synchronization with the monitoring period so that the distance measuring photodetector (APD) 4 receives the laser light. Emits light.

これにより、前記モニタ期間における前記測距用光検出器(APD)4の検出出力Vxは、モニタ用光源31から放射されたレーザ光の検出出力であり、前記測距期間における前記測距用光検出器(APD)4の検出出力Vxは、測距用光源2から放射され測定対象物3で反射したレーザ光の検出出力であると区別することができる。即ち、図8に示す検出出力の分離方法は、測定対象物3で反射したレーザ光の検出と、モニタ用光源31から放射されたレーザ光の検出とを時間的に分離して行わせる方法であり、換言すれば、光多重変調方式として時分割多重方式を採用するものである。   Thereby, the detection output Vx of the ranging light detector (APD) 4 in the monitoring period is a detection output of the laser light emitted from the monitoring light source 31, and the ranging light in the ranging period is The detection output Vx of the detector (APD) 4 can be distinguished from the detection output of the laser light emitted from the distance measuring light source 2 and reflected by the measurement object 3. That is, the detection output separation method shown in FIG. 8 is a method in which the detection of the laser light reflected by the measurement object 3 and the detection of the laser light emitted from the monitor light source 31 are performed separately in time. In other words, the time division multiplexing system is adopted as the optical multiplexing modulation system.

従って、前記モニタ期間における検出出力Vxが目標値Vxtに近づくようにバイアス電圧を補正すれば、モニタ用光源31からのレーザ光(基準光)を受光した検出出力Vxを目標値Vxtに近づけることになり、これにより、測距用の光検出器(APD)4の増倍率を、温度変化があっても目標値付近に維持させることができる。   Therefore, if the bias voltage is corrected so that the detection output Vx in the monitoring period approaches the target value Vxt, the detection output Vx that has received the laser light (reference light) from the monitor light source 31 is brought close to the target value Vxt. Thus, the multiplication factor of the photo detector for distance measurement (APD) 4 can be maintained near the target value even if there is a temperature change.

図9は、前記分離方法の別の例を示し、測距用光源2におけるレーザ光の発光パターンと相関のない発光パターンでモニタ用光源31からのレーザ光を変調させ、前記発光パターンの違いによって、測定対象物3からの反射レーザ光の検出出力とモニタ用光源31からレーザ光の検出出力とを分離する方法である。詳細には、図9は、測距用光源2とモニタ用光源31とで相互に異なる変調周波数で周期的に発光させ、各光源の変調周波数が異なることを利用して、光源毎(周波数毎)の検出出力(光強度)を求める、周波数分割多重方式の例を示す。   FIG. 9 shows another example of the separation method, in which the laser light from the monitor light source 31 is modulated with a light emission pattern that has no correlation with the light emission pattern of the laser light in the distance measuring light source 2, and the difference in the light emission pattern. In this method, the detection output of the reflected laser beam from the measurement object 3 and the detection output of the laser beam from the monitor light source 31 are separated. Specifically, FIG. 9 shows that each of the light sources 2 for distance measurement and the light source for monitoring 31 emit light periodically at mutually different modulation frequencies, and the fact that the modulation frequency of each light source is different makes each light source (for each frequency). An example of a frequency division multiplexing method for obtaining a detection output (light intensity) of () is shown.

また、変調(発光パターンの違い)によって、光源毎の検出出力(光強度)を求める方法としては、モニタ用光源31を測距用光源2とは異なる乱数によって変調し、乱数コードが異なることを利用して光源毎の検出出力(光強度)を求める、スペクトラム拡散変調方式などを採用することもできる。   Further, as a method of obtaining the detection output (light intensity) for each light source by modulation (difference in light emission pattern), the monitor light source 31 is modulated by a random number different from that of the distance measuring light source 2 and the random number code is different. A spread spectrum modulation method that obtains the detection output (light intensity) for each light source by using it can also be adopted.

尚、測距用光検出器(APD)4に基準光(測距用光源2から直接的に導いたレーザ光又はモニタ用光源31から放射されたレーザ光)が受光される毎に、基準光に対する検出出力を求め、バイアス電圧の補正処理(現状維持判断を含む)を実行させることができる他、基準光の複数回の受光に対して1回の割合でバイアス電圧の補正処理を実行させてもよく、また、複数回にわたる基準光の受光で得られた複数の検出出力を平均化処理し、該平均化処理後の検出出力に基づいてバイアス電圧の補正を行わせることができる。   The reference light (APD) 4 receives the reference light (the laser light directly guided from the distance measuring light source 2 or the laser light emitted from the monitor light source 31) every time the reference light is received. In addition to obtaining a detection output for the reference light and executing a bias voltage correction process (including a determination of maintaining the current state), the bias voltage correction process is executed at a rate of once for a plurality of times of receiving the reference light. In addition, a plurality of detection outputs obtained by receiving the reference light a plurality of times can be averaged, and the bias voltage can be corrected based on the detection output after the averaging processing.

また、モニタ用光源31を用いる構成においては、測距動作とは無関係にモニタ用の光源31からレーザ光を放射させることができるので、例えば測距用光源2の1走査に対して所定回(>1回)の割合でモニタ用の光源31を発光させたり、所定時間毎にモニタ用光源31を発光させたりして、そのときの測距用光検出器(APD)4の検出出力から、バイアス電圧を補正させることができる。   In the configuration using the monitor light source 31, the laser light can be emitted from the monitor light source 31 regardless of the distance measuring operation. The monitor light source 31 is caused to emit light at a rate of> 1) or the monitor light source 31 is caused to emit light every predetermined time. From the detection output of the distance measuring photodetector (APD) 4 at that time, The bias voltage can be corrected.

1 光測距装置
2 測距用光源
3 測定対象物
4 測距用光検出器(アバランシェフォトダイオードAPD)
5 投光光学系
6,7 ビームスプリッタ
8 発光モニタ光学系
9 発光モニタ用光検出器(フォトダイオードPD)
10 受光光学系
11 反射ミラー
12 比率演算部
13 目標値記憶部
14 比較部
15 バイアス回路(バイアス電圧補正手段)
21 駆動電流制御回路(光強度調整手段)
31 モニタ用光源(増倍モニタ用光源)
DESCRIPTION OF SYMBOLS 1 Optical ranging device 2 Ranging light source 3 Measuring object 4 Ranging photodetector (avalanche photodiode APD)
5 Projection optics 6, 7 Beam splitter 8 Emission monitor optical system 9 Emission monitor photodetector (photodiode PD)
DESCRIPTION OF SYMBOLS 10 Light reception optical system 11 Reflecting mirror 12 Ratio calculating part 13 Target value memory | storage part 14 Comparison part 15 Bias circuit (bias voltage correction means)
21 Drive current control circuit (light intensity adjustment means)
31 Light source for monitor (light source for multiplication monitor)

Claims (3)

バイアス電圧の印加により増倍作用を有し、測定対象物からの反射光を受光する測距用光検出器と、前記測定対象物に向けて光を周期的に放射する測距用光源と、発光モニタ用光検出器とを備え、前記測距用光源が放射する光を前記測定対象物に向け投光する光とモニタ光とに分岐させ、前記モニタ光を分岐させて前記測距用光検出器と前記発光モニタ用光検出器とに受光させ、前記反射光及び前記モニタ光を受光する前記測距用光検出器の出力を、前記発光モニタ用光検出器の前記モニタ光の検出出力に基づき検出した前記測距用光源の放射タイミングに基づいて前記モニタ光の検出出力と前記反射光の検出出力とに分離し、前記測距用光検出器の前記モニタ光の検出出力と前記発光モニタ用光検出器の前記モニタ光の検出出力との比が目標値になるように前記測距用光検出器の前記バイアス電圧を変更する、光測距装置。 A ranging light detector that has a multiplication effect by applying a bias voltage and receives reflected light from the measurement object; a ranging light source that periodically emits light toward the measurement object; A light emission monitor light detector , branching the light emitted from the distance measuring light source into light projected to the measurement object and monitor light, and branching the monitor light to the distance measuring light The detector and the light emission monitor photodetector receive light, and the output of the ranging light detector that receives the reflected light and the monitor light is output as the detection output of the monitor light of the light emission monitor photodetector. The detection output of the monitor light and the detection output of the reflected light are separated based on the radiation timing of the distance measuring light source detected based on the detection light, and the monitor light detection output and the light emission of the ranging light detector The ratio of the monitor light detector to the monitor light detection output is notable. Wherein changing the bias voltage of the distance measuring light detector so that the value, the optical distance measuring device. 前記測距用光源から放射される光の強度を一定に調整する、請求項1記載の光測距装置。 The optical distance measuring device according to claim 1 , wherein the intensity of light emitted from the distance measuring light source is adjusted to be constant . 前記発光モニタ用光検出器で検出される光の強度が一定になるように前記測距用光源の駆動信号を補正する、請求項2記載の光測距装置。 3. The optical distance measuring device according to claim 2 , wherein a driving signal of the distance measuring light source is corrected so that the intensity of light detected by the light emission monitoring light detector is constant .
JP2009142313A 2009-06-15 2009-06-15 Optical distance measuring device Active JP5723517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142313A JP5723517B2 (en) 2009-06-15 2009-06-15 Optical distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142313A JP5723517B2 (en) 2009-06-15 2009-06-15 Optical distance measuring device

Publications (2)

Publication Number Publication Date
JP2010286448A JP2010286448A (en) 2010-12-24
JP5723517B2 true JP5723517B2 (en) 2015-05-27

Family

ID=43542241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142313A Active JP5723517B2 (en) 2009-06-15 2009-06-15 Optical distance measuring device

Country Status (1)

Country Link
JP (1) JP5723517B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174069A (en) * 2013-03-12 2014-09-22 Mitsubishi Electric Corp Laser range finding device
JP6045963B2 (en) * 2013-04-05 2016-12-14 日立マクセル株式会社 Optical distance measuring device
KR101552687B1 (en) * 2013-04-10 2015-09-15 주식회사 우리로 Light receiving apparatus
JP2018040656A (en) * 2016-09-07 2018-03-15 オムロンオートモーティブエレクトロニクス株式会社 Distance measuring device
WO2018047424A1 (en) * 2016-09-08 2018-03-15 シャープ株式会社 Optical sensor and electronic device
JP7303616B2 (en) * 2018-08-30 2023-07-05 株式会社トプコン Light wave distance meter and light wave distance measuring method
DE112019005636T5 (en) * 2018-11-12 2021-07-29 Sony Semiconductor Solutions Corporation OPTICAL MODULE AND DISTANCE MEASURING DEVICE
TW202043800A (en) * 2019-01-30 2020-12-01 日商索尼半導體解決方案公司 Light receiving device and ranging system
JP2021110697A (en) * 2020-01-15 2021-08-02 ソニーセミコンダクタソリューションズ株式会社 Observation device, method for observation, and distance measuring system
JP2021143907A (en) * 2020-03-11 2021-09-24 株式会社デンソー Measurement device
CN113238243B (en) * 2021-07-13 2021-10-26 深圳煜炜光学科技有限公司 Device and method for improving adaptability of different reflecting surfaces of laser radar

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313390A (en) * 1986-07-03 1988-01-20 Omron Tateisi Electronics Co Stabilized light source device
JPS6488281A (en) * 1987-09-30 1989-04-03 Nec Corp Laser radar apparatus
JPH0346588A (en) * 1989-07-13 1991-02-27 Mitsubishi Electric Corp Laser receiver
JPH03189584A (en) * 1989-12-19 1991-08-19 Omron Corp Distance measuring instrument
JPH04279879A (en) * 1991-02-15 1992-10-05 Mitsubishi Electric Corp Photo detection circuit
JPH0854468A (en) * 1994-08-10 1996-02-27 Nikon Corp Photoreceiver
JPH08201519A (en) * 1995-01-20 1996-08-09 Mitsubishi Electric Corp Light reception circuit
JP3654090B2 (en) * 1999-10-26 2005-06-02 松下電工株式会社 Distance measuring method and apparatus
JP4629823B2 (en) * 2000-02-04 2011-02-09 台灣儀器行股▲分▼有限公司 Light wave rangefinder
JP2007279017A (en) * 2006-03-15 2007-10-25 Omron Corp Radar system
JP2008020203A (en) * 2006-07-10 2008-01-31 Omron Corp Radar system

Also Published As

Publication number Publication date
JP2010286448A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
JP5723517B2 (en) Optical distance measuring device
EP2437029B1 (en) Distance measuring instrument
US8275011B2 (en) Optical transmission module, wavelength monitor, and wavelength drift detection method
KR102132519B1 (en) Device and method for controlling detection signal of lidar
US9195918B2 (en) Light scanning device capable of executing automatic light amount control and image forming apparatus equipped with the same
WO2017014097A1 (en) Gas detection device and gas detection method
JP2008102000A (en) Space information detection device using intensity modulation light
JP6519925B2 (en) Tunable laser system
JP2001124855A (en) Method and device for measuring distance
US10317530B2 (en) Laser range finding apparatus
US20160282451A1 (en) Lidar system
US10802221B1 (en) Dynamically optimized tunable filters for optical sensing systems
US20180164416A1 (en) Geodetic instrument with improved dynamic range
JP2013233686A (en) Laser drive apparatus and image forming apparatus
KR102338977B1 (en) Optical temperature sensor, and controlling method thereof
JP5894987B2 (en) Apparatus, method, and computer program for measuring distance
JP2013535676A5 (en)
US20230003851A1 (en) Measurement apparatus
WO2016013242A1 (en) Distance measurement device and distance measurement method
JP2008092218A (en) Photoelectric sensor
US9461443B2 (en) Optical system having reduced pointing-error noise
JP5650635B2 (en) Optical transmission module, wavelength monitor, and wavelength shift detection method
JP2012132815A (en) Light pulse tester having an automatic adjustment function for apd, and method thereof
JP6962748B2 (en) Detection device
US11693116B2 (en) Distance measurement device using two light modulation frequencies and operating method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150223

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150330

R150 Certificate of patent or registration of utility model

Ref document number: 5723517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150