JP5718028B2 - Double pipe - Google Patents

Double pipe Download PDF

Info

Publication number
JP5718028B2
JP5718028B2 JP2010257674A JP2010257674A JP5718028B2 JP 5718028 B2 JP5718028 B2 JP 5718028B2 JP 2010257674 A JP2010257674 A JP 2010257674A JP 2010257674 A JP2010257674 A JP 2010257674A JP 5718028 B2 JP5718028 B2 JP 5718028B2
Authority
JP
Japan
Prior art keywords
meandering
pipe
double pipe
portions
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010257674A
Other languages
Japanese (ja)
Other versions
JP2012107824A (en
Inventor
勇二 西川
勇二 西川
将寛 柴田
将寛 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2010257674A priority Critical patent/JP5718028B2/en
Publication of JP2012107824A publication Critical patent/JP2012107824A/en
Application granted granted Critical
Publication of JP5718028B2 publication Critical patent/JP5718028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

この発明は、例えばヒートポンプ式床暖房、給湯機、空調機等に備えられる熱交換器用の2重管に関し、さらに詳しくは、内管の内部を流動する流体と、その内管と該内管の外側に設けられた外管との間を流動する流体との間で熱交換を行う2重管に関する。   The present invention relates to a double pipe for a heat exchanger provided in, for example, a heat pump type floor heater, a hot water heater, an air conditioner, and the like, and more specifically, a fluid flowing inside the inner pipe, the inner pipe, and the inner pipe The present invention relates to a double pipe that exchanges heat with a fluid that flows between an outer pipe provided outside.

従来、上述の2重管としては、例えば内部に冷媒用流路が形成された内管と、その内管の外側に設けられ、該内管との間に水用流路が形成された外管とで構成される2重管を備えた熱交換器(特許文献1,2参照)が提案されている。   Conventionally, as the above-described double pipe, for example, an inner pipe in which a refrigerant flow path is formed inside and an outer pipe in which a water flow path is formed between the inner pipe and the inner pipe are provided. There has been proposed a heat exchanger (see Patent Documents 1 and 2) including a double pipe composed of a pipe.

詳述すると、特許文献1,2に記載の2重管は、通常、渦巻状に配管されており、内管の端部を例えばヒートポンプ式給湯機等の機器に接続し、冷媒用流路を流動する冷媒と、水用流路を流動する水との間で熱交換する。   In detail, the double pipes described in Patent Documents 1 and 2 are usually arranged in a spiral shape, and the end of the inner pipe is connected to a device such as a heat pump type hot water heater, for example, and the flow path for the refrigerant is provided. Heat exchange is performed between the flowing refrigerant and the water flowing in the water flow path.

しかし、2重管を渦巻状に配管してなる筒状の中央部に空間が形成されるため、無駄なスペースが多く、限られた配管スペース内では熱交換に必要な流路長を十分に確保することが困難であるという問題があった。   However, since a space is formed in the center of the tube formed by spirally piping the double pipe, there is a lot of wasted space, and the flow path length necessary for heat exchange is sufficient in the limited piping space. There was a problem that it was difficult to ensure.

また、所定の熱交換性能が得られる流路長の2重管を、所定の配管スペース内に収まるように屈曲して配管しようすると、例えば折れや割れ等の損傷が起きないような大きな曲率半径で屈曲しなければならない。その結果、熱交換に必要な流路長を確保することができなくなり、熱交換効率が悪くなるという問題があった。   In addition, if a pipe with a flow path length that provides a predetermined heat exchange performance is bent and fitted so as to fit within a predetermined piping space, for example, a large curvature radius that does not cause damage such as bending or cracking. Must be bent at. As a result, there is a problem that the flow path length necessary for heat exchange cannot be secured and heat exchange efficiency is deteriorated.

特開昭60−164183号公報JP 60-164183 A 特開2005−69620号公報JP 2005-69620 A

この発明は、流路長を確保しつつ、所定の配管スペース内に収まるように配管することができる2重管を提供することを目的とする。   An object of the present invention is to provide a double pipe that can be piped so as to fit in a predetermined pipe space while ensuring a flow path length.

この発明は、内部に第1流路が形成された内管と、該内管の外側に設けられ、該内管との間に第2流路が形成された外管とからなる2重管であって、前記2重管を蛇行方向に蛇行して形成した蛇行部を、該蛇行部が互いに重ね合わされる重ね合わせ方向に対し層状に複数配置して構成し、前記蛇行部を、平面視直線状の長さ方向の直線部と、所定の曲率半径に屈曲して折り返す平面視U字状の屈曲部とで構成し、前記複数配置された各蛇行部を、前記蛇行方向を折り返して該各蛇行部の一部が重なり合うようにして蛇行方向の中央で互い違いに配置して、蛇行方向の一方側から順に端列、中央列及び端列の三列構造とするとともに、層状に複数配置した前記各蛇行部のうち前記端列の一方の前記直線部を、前記重ね合わせ方向と直交する平面に対し平行、且つ前記重ね合わせ方向に対し所定間隔に隔てて配管し、層状に複数配置した前記各蛇行部における各層において、他方の前記端列及び前記中央列の前記直線部、並びに前記屈曲部の少なくともひとつを前記重ね合わせ方向と直交する平面に対し傾斜させ、且つ前記重ね合わせ方向に対し所定間隔に隔てて配管したことを特徴とする。 The present invention relates to a double pipe comprising an inner pipe having a first flow path formed therein and an outer pipe provided outside the inner pipe and having a second flow path formed between the inner pipe and the inner pipe. a is, the serpentine portion formed by meandering meandering direction double pipe, constituted by a plurality disposed in layers with respect to superposition direction meandering portion are overlapped with each other, the meandering portion, viewed A straight line portion in the length direction and a U-shaped bent portion in a plan view bent back to a predetermined radius of curvature, and each of the plurality of meandering portions folded in the meandering direction Arranged alternately in the middle of the meandering direction so that a part of each meandering part overlaps, and in order from one side of the meandering direction to have a three-row structure of an end row, a central row and an end row, a plurality of layers are arranged A plane orthogonal to the overlapping direction of one straight line portion of the end row among the meandering portions In each layer in each of the meandering portions arranged in parallel with each other at a predetermined interval with respect to the overlapping direction and arranged in layers, the other end row, the straight portion of the central row, and the bent portion At least one of them is inclined with respect to a plane perpendicular to the superimposing direction, and is piped at a predetermined interval with respect to the superimposing direction .

例えば流路長が4mの2重管を、幅204mm、長さ440mm、高さ61mmに形成された容器に収容する場合、1本の2重管を蛇行してなる蛇行部を複数形成し、該各蛇行部を層状に配管したまま容器に収容する。これにより、2重管の流路長を確保しつつ、所定の配管スペースを有する容器内部に収まるように収容することができる。   For example, when a double pipe having a flow path length of 4 m is accommodated in a container having a width of 204 mm, a length of 440 mm, and a height of 61 mm, a plurality of meandering portions formed by meandering one double pipe are formed, Each meandering portion is accommodated in a container while being piped in layers. Thereby, it can accommodate in the container which has a predetermined piping space, ensuring the flow path length of a double pipe | tube.

この結果、2重管をコンパクトに配管しても、熱交換性能が低下することがなく、第1流路と第2流体とを流れる各流体間で安定して熱交換することができる。また、2重管の配管スペースが小さくて済むので、例えば2重管が収められたボックス型の容器、或いは、2重管が備えられた熱交換器等の設置が容易に行える。   As a result, even if the double pipe is piped in a compact manner, the heat exchange performance is not lowered, and heat can be stably exchanged between the fluids flowing through the first flow path and the second fluid. In addition, since the pipe space of the double pipe is small, for example, a box-type container in which the double pipe is stored or a heat exchanger provided with the double pipe can be easily installed.

また、前記複数配置された各蛇行部を、前記蛇行方向を折り返して該各蛇行部の一部が重なり合うようにして互い違いに配置することにより、各蛇行部の重なり合わない部分に空間が形成される。このため、その空間と対応する各蛇行部の他の部分を互いに近接して配管すれば、各蛇行部の蛇行方向を折り返して互いに重ね合わせて配置するよりも、重ね合わせ方向の配置厚さを薄くすることができる。
この結果、所定の流路長を有する2重管をコンパクトに配管することができる。
Further, each meandering section which is pre-Symbol plurality placement, by staggered as part of the respective meandering section folded the meandering direction overlap, a space is non-overlapping portions of each meander form Is done. For this reason, if the other portions of each meandering portion corresponding to the space are piped close to each other, the arrangement thickness in the overlapping direction can be reduced rather than the meandering direction of each meandering portion being folded back to each other. Can be thinned.
As a result, a double pipe having a predetermined flow path length can be compactly piped.

また、層状に複数配置した前記各蛇行部のうち少なくとも端列の蛇行部を、前記重ね合わせ方向と直交する平面に対し平行に配管することにより、上述した端列の蛇行部を、例えば容器の内壁面、或いは、床面等の重ね合わせ方向と直交する平面に沿って配管することができるので、2重管全体の配管姿勢が安定し、例えば揺動、ガタ付き等が起きるのを防止することができる。 Also, the meandering portion of at least an end column of the respective meander portions of a plurality arranged in a layer form, by a parallel pipe child to the plane perpendicular to the superposed direction, the meandering portion of the above-mentioned end column, e.g. Since piping can be performed along a plane perpendicular to the overlapping direction of the inner wall surface or floor surface of the container, the piping posture of the entire double tube is stable, for example, rocking, rattling, etc. Can be prevented.

なお、端列は、蛇行部を重ね合わせ方向に対し層状に複数配置してなる層状蛇行部の一端側に配置された蛇行部の列と、他端側に配置された蛇行部の列とに対応する。   In addition, the end row includes a row of meandering portions arranged on one end side of the layered meandering portion formed by arranging a plurality of meandering portions in a layered manner in the overlapping direction, and a row of meandering portions arranged on the other end side. Correspond.

また、前記各蛇行部を前記重ね合わせ方向に対し所定間隔に隔てて配管することにより、各蛇行部の間に隙間が形成されるため、各蛇行部間での熱移動が遮断される。この結果、各蛇行部の間で熱伝導が起きるのを防止することができ、熱交換効率の向上が図れる。 The front SL more to pipes spaced at a predetermined interval with respect to the direction of superimposing the respective meander, a gap between the meander is formed, heat transfer between the meander is cut off . As a result, heat conduction can be prevented from occurring between the meandering portions, and the heat exchange efficiency can be improved.

また、この発明の態様として、前記内管の外周面に、該内管の外周面に沿って外面フィンを螺旋方向に連続して形成することができる。   Moreover, as an aspect of the present invention, outer fins can be continuously formed in the spiral direction along the outer peripheral surface of the inner tube on the outer peripheral surface of the inner tube.

また、この発明の態様として、前記外面フィンを、特殊加工したフィンで構成することができる。
上述の外面フィンを、特殊加工したフィンで構成すれば、内管の外表面積を増加させ、フィン表面に凝縮した冷媒をスムーズに離脱させることが出来る。
この結果、通常のフィンよりも、さらに熱交換効率を向上させることができる。
なお、前記流体は、例えば水、冷媒等で構成することができる。
Further, as an aspect of the present invention, the outer surface fin can be constituted by a specially processed fin.
If the above-mentioned outer surface fin is composed of a specially processed fin, the outer surface area of the inner tube can be increased, and the refrigerant condensed on the fin surface can be smoothly separated.
As a result, the heat exchange efficiency can be further improved as compared with the normal fins.
The fluid can be composed of, for example, water or a refrigerant.

この発明によれば、2重管の流路長を確保しつつ、所定の配管スペース内に収まるように配管することができる。この結果、2重管をコンパクトに配管しても、熱交換性能が低下することがなく、第1流路と第2流体とを流れる各流体間で安定して熱交換することができる。   According to this invention, it is possible to perform piping so as to fit within a predetermined piping space while ensuring the flow path length of the double pipe. As a result, even if the double pipe is piped in a compact manner, the heat exchange performance is not lowered, and heat can be stably exchanged between the fluids flowing through the first flow path and the second fluid.

2重管の配管状態を示す斜視図。The perspective view which shows the piping state of a double pipe. 2重管の正面図及び背面図。The front view and back view of a double pipe. 2重管の平面図及び底面図。The top view and bottom view of a double pipe. 2重管の右側面図及び左側面図。The right view and left view of a double pipe. 図1に示す2重管のA−A線矢視拡大断面図。FIG. 2 is an enlarged cross-sectional view of the double pipe shown in FIG. 図5に示す2重管のB−B線矢視断面図。FIG. 6 is a cross-sectional view of the double pipe shown in FIG. フィン高さが異なる内管の模式的構造を示す部分拡大展開斜視図。The partial expansion expansion perspective view which shows the typical structure of the inner pipe from which fin height differs. 2重管を容器に収容状態を示す平面図。The top view which shows the accommodation state of a double pipe in a container.

この発明の一実施形態を以下図面に基づいて詳述する。
図1は2重管1の配管状態を示す斜視図、図2の(a)(b)は2重管1の正面図と背面図、図3の(a)(b)は2重管1の平面図と底面図、図4の(a)(b)は2重管1の右側面図と左側面図である。
An embodiment of the present invention will be described in detail with reference to the drawings.
1 is a perspective view showing the piping state of the double pipe 1, FIGS. 2A and 2B are a front view and a rear view of the double pipe 1, and FIGS. 3A and 3B are double pipes 1. FIG. FIGS. 4A and 4B are a right side view and a left side view of the double pipe 1, respectively.

本実施形態の2重管1は、所定の流路長に形成された1本の銅管であり、管軸中心を中心として同心円に設けられた銅製の内管2と、該内管2の外側に設けられた銅製の外管3とで構成している。   The double pipe 1 of the present embodiment is a single copper pipe formed to have a predetermined flow path length, a copper inner pipe 2 provided concentrically around the pipe axis center, and the inner pipe 2 It is comprised with the copper outer tube | pipe 3 provided in the outer side.

2重管1は、該1本の2重管1を幅方向と対応する蛇行方向Eに蛇行して形成した第1の蛇行部6Aと、第2の蛇行部6Bと、第3の蛇行部6Cと、第4の蛇行部6Dとを、上側から順に互いに重ね合わされる重ね合わせ方向G(或いは上下方向)に対し層状に配置して、層状蛇行部7Aを構成している。   The double pipe 1 includes a first meandering part 6A, a second meandering part 6B, and a third meandering part formed by meandering the single double pipe 1 in a meandering direction E corresponding to the width direction. 6C and the 4th meander part 6D are arrange | positioned in layers with respect to the superimposition direction G (or up-down direction) mutually overlapped in order from the upper side, and the layered meander part 7A is comprised.

内管2の内部には、第1流体である水Wを流動するための第1流路4を形成している。また、内管2と外管3との間には、第2流体である冷媒Rを流動するための第2流路5を形成している(図5参照)。   A first flow path 4 for flowing water W as a first fluid is formed inside the inner pipe 2. Moreover, the 2nd flow path 5 for flowing the refrigerant | coolant R which is a 2nd fluid is formed between the inner tube | pipe 2 and the outer tube | pipe 3 (refer FIG. 5).

内管2の一端には、ヒートポンプ式床暖房の室外機に備えられた循環式の水供給源から供給される水Wを流入するための流入口2aを設けている。また、内管2の他端には、水Wを流出するための流出口2bを設けている。   One end of the inner pipe 2 is provided with an inflow port 2a through which water W supplied from a circulation type water supply source provided in an outdoor unit of the heat pump type floor heating is provided. Further, the other end of the inner pipe 2 is provided with an outlet 2b for flowing out the water W.

外管3の一端には、接続管3cを介して、上述の室外機に備えられた循環式の冷媒供給源から供給される冷媒Rを流入するための流入口3aを設けている。また、外管3の他端には、接続管3cを介して、冷媒Rを流出するための流出口3bを設けている。   One end of the outer pipe 3 is provided with an inlet 3a through which a refrigerant R supplied from a circulating refrigerant supply source provided in the outdoor unit described above is introduced via a connecting pipe 3c. The other end of the outer tube 3 is provided with an outlet 3b for flowing out the refrigerant R through the connecting tube 3c.

内管2の流入口2aと外管3の流出口3bは、2重管1の一端側1aに設けている。また、内管2の流出口2bと外管3の流入口3aは、2重管1の他端側1bに設けている。
内管2の流入口2aと流出口2bは、2重管1の一端側1a及び他端側1bに対し管軸方向D1に向けて設けている。
The inlet 2 a of the inner pipe 2 and the outlet 3 b of the outer pipe 3 are provided on one end side 1 a of the double pipe 1. Further, the outlet 2 b of the inner pipe 2 and the inlet 3 a of the outer pipe 3 are provided on the other end 1 b of the double pipe 1.
The inflow port 2a and the outflow port 2b of the inner tube 2 are provided toward the tube axis direction D1 with respect to the one end side 1a and the other end side 1b of the double tube 1.

外管3の流入口3aは、2重管1の一端側1aに対し管軸方向D1に直交して垂直に設けている。また、外管3の流出口3bは、2重管1の他端側1bに対し管軸方向D1に直交して水平に設けている。
なお、2重管1の一端側1a及び他端側1bは同一方向に向けて上下に設けている(図2の(a)及び図3の(a)参照)。
The inflow port 3a of the outer tube 3 is provided perpendicular to the one end side 1a of the double tube 1 perpendicular to the tube axis direction D1. Further, the outlet 3b of the outer tube 3 is provided horizontally with respect to the other end side 1b of the double tube 1 perpendicular to the tube axis direction D1.
In addition, the one end side 1a and the other end side 1b of the double pipe 1 are provided up and down in the same direction (see (a) of FIG. 2 and (a) of FIG. 3).

次に、蛇行部6A〜6Dの配管構造を、図1〜図4に基づいて詳述する。
蛇行部6Aは、真っ直ぐに延びる平面視直線状の直線部6Aa,6Acと、所定の曲率半径に屈曲した平面視U字状の屈曲部6Ab,6Adとで構成している。
Next, the piping structure of the meandering parts 6A to 6D will be described in detail with reference to FIGS.
The meandering portion 6A includes straight straight portions 6Aa and 6Ac extending straight and planar U-shaped bent portions 6Ab and 6Ad bent to a predetermined radius of curvature.

直線部6Aaの上流側には2重管1の一端側1aを連設し、直線部6Aaの下流側には屈曲部6Abを蛇行方向Eに向けて連設し、屈曲部6Abの下流側には直線部6Acを長さ方向Fに折り返して連設し、直線部6Acの下流側には屈曲部6Adを蛇行方向Eに向けて連設している。すなわち、蛇行部6Aを蛇行方向Eに向けて配管している。   One end side 1a of the double pipe 1 is connected to the upstream side of the straight portion 6Aa, the bent portion 6Ab is connected to the downstream side of the straight portion 6Aa in the meandering direction E, and downstream of the bent portion 6Ab. The straight part 6Ac is folded back in the length direction F and continuously provided, and the bent part 6Ad is continuously provided in the meandering direction E on the downstream side of the straight part 6Ac. That is, the meandering portion 6A is piped in the meandering direction E.

蛇行部6Bは、真っ直ぐに延びる平面視直線状の直線部6Ba,6Bcと、所定の曲率半径に屈曲した平面視U字状の屈曲部6Bb,6Bdとで構成している。
上述した屈曲部6Adの下流側には直線部6Baを長さ方向Fに向けて連設し、直線部6Baの下流側には屈曲部6Bbを蛇行方向Eに折り返して連設し、屈曲部6Bbの下流側には直線部6Bcを長さ方向Fに折り返して連設し、直線部6Bcの下流側には屈曲部6Bdを蛇行方向Eに折り返して連設している。すなわち、蛇行部6Bを蛇行方向Eに向けて配管している。
The meandering part 6B is composed of straight straight line parts 6Ba and 6Bc extending straight and planarly U-shaped bent parts 6Bb and 6Bd bent to a predetermined radius of curvature.
The straight portion 6Ba is continuously provided in the length direction F on the downstream side of the above-described bent portion 6Ad, and the bent portion 6Bb is continuously provided in the meandering direction E on the downstream side of the straight portion 6Ba. The straight portion 6Bc is folded back in the length direction F and provided downstream, and the bent portion 6Bd is folded back in the meandering direction E and provided downstream from the straight portion 6Bc. That is, the meandering portion 6B is piped in the meandering direction E.

また、直線部6Ba,6Bcは上流側から下流側に向けて低くなるように傾斜し、直線部6Bcは長さ方向Fに折り返して上述した直線部6Acに沿って下側に配管している。   Further, the straight portions 6Ba and 6Bc are inclined so as to become lower from the upstream side toward the downstream side, and the straight portion 6Bc is folded back in the length direction F and piped downward along the above-described straight portion 6Ac.

蛇行部6Cは、真っ直ぐに延びる平面視直線状の直線部6Ca,6Ccと、所定の曲率半径に屈曲した平面視U字状の屈曲部6Cb,6Cdとで構成している。
上述の屈曲部6Bdの下流側には直線部6Caを長さ方向Fに向けて連設し、直線部6Caの下流側には屈曲部6Cbを蛇行方向Eに向けて連設し、屈曲部6Cbの下流側には直線部6Ccを長さ方向Fに折り返して連設し、直線部6Ccの下流側には屈曲部6Cdを蛇行方向Eに向けて連設している。すなわち、蛇行部6Cを蛇行方向Eに折り返して蛇行部6Aの下側に配管している。
The meandering portion 6C is composed of straight straight portions 6Ca and 6Cc extending straight and planarly U-shaped bent portions 6Cb and 6Cd bent at a predetermined radius of curvature.
The straight portion 6Ca is continuously provided in the length direction F on the downstream side of the bent portion 6Bd, and the bent portion 6Cb is provided in the meandering direction E on the downstream side of the straight portion 6Ca. The straight portion 6Cc is folded back in the length direction F and connected to the downstream side, and the bent portion 6Cd is connected to the meandering direction E on the downstream side of the straight portion 6Cc. That is, the meandering portion 6C is folded back in the meandering direction E and piped below the meandering portion 6A.

また、直線部6Caは上述した直線部6Aaに沿って下側に配管し、屈曲部6Cbは上述した屈曲部6Abに沿って下側に配管し、直線部6Ccは上述した直線部6Bcに沿って上流側から下流側に向けて低くなるように傾斜している。   The straight portion 6Ca is piped downward along the straight portion 6Aa, the bent portion 6Cb is piped downward along the bent portion 6Ab, and the straight portion 6Cc is along the straight portion 6Bc. It inclines so that it may become low toward the downstream from the upstream.

蛇行部6Dは、真っ直ぐに延びる平面視直線状の直線部6Da,6Dcと、所定の曲率半径に屈曲した平面視U字状の屈曲部6Dbとで構成している。また、蛇行部6Dの直線部6Da,6Dcと屈曲部6Dbを、後述する容器10の内部に形成された重ね合わせ方向Gと直交する平坦な内壁面に対し平行に配管している。   The meandering portion 6D is composed of straight linear portions 6Da and 6Dc that extend straight and have a U-shaped bent portion 6Db that is bent to a predetermined radius of curvature. Further, the straight portions 6Da and 6Dc and the bent portion 6Db of the meandering portion 6D are piped in parallel to a flat inner wall surface perpendicular to the overlapping direction G formed inside the container 10 described later.

上述の屈曲部6Cdの下流側には直線部6Daを長さ方向Fに向けて連設し、直線部6Daの下流側には屈曲部6Dbを蛇行方向Eに折り返して連設し、屈曲部6Dbの下流側には直線部6Dcを長さ方向Fに折り返して連設している。
すなわち、蛇行部6Dを蛇行方向Eに折り返して蛇行部6B,6Cの下側に跨って配管している。なお、直線部6Dcの下流側には2重管1の他端側1bを連設している。
The straight portion 6Da is continuously provided in the length direction F on the downstream side of the above-described bent portion 6Cd, and the bent portion 6Db is folded in the meandering direction E on the downstream side of the straight portion 6Da. A straight line portion 6Dc is folded back in the length direction F and continuously provided on the downstream side.
That is, the meandering portion 6D is folded back in the meandering direction E and piped across the lower side of the meandering portions 6B and 6C. In addition, the other end side 1b of the double pipe 1 is connected to the downstream side of the straight line portion 6Dc.

また、直線部6Daは上述した直線部6Baに沿って下側に配管し、屈曲部6Dbは蛇行方向Eに折り返して上述した屈曲部6Bb,6Cbの下側に配管し、直線部6Dcは上述した直線部6Caに沿って下側に配管している。   Further, the straight portion 6Da is piped downward along the straight portion 6Ba described above, the bent portion 6Db is folded back in the meandering direction E and is piped below the bent portions 6Bb and 6Cb, and the straight portion 6Dc is described above. It is piping down along the straight part 6Ca.

直線部6Aa,6Acと、直線部6Ba,6Bcと、直線部6Ca,6Ccと、直線部6Da,6Dcは、略同一の長さに形成され、長さ方向Fと平行して配管している。   The straight portions 6Aa, 6Ac, the straight portions 6Ba, 6Bc, the straight portions 6Ca, 6Cc, and the straight portions 6Da, 6Dc are formed to have substantially the same length, and are piped in parallel with the length direction F.

屈曲部6Ab,6Adと、屈曲部6Bb,6Bdと、屈曲部6Cb,6Cdは、略同一の曲率半径に屈曲しているが、屈曲部6Dbは、屈曲部6Bb,6Cbに跨る大きさ或いは曲率半径に屈曲している。   The bent portions 6Ab, 6Ad, the bent portions 6Bb, 6Bd, and the bent portions 6Cb, 6Cd are bent to substantially the same radius of curvature, but the bent portion 6Db has a size or a radius of curvature across the bent portions 6Bb, 6Cb. Is bent.

上述の配管構造を有する蛇行部6A〜6Cは、該蛇行部6A〜6Cの一部が蛇行方向Eの中央で重なり合うようにして互い違いに配置している(図4参照)。
つまり、蛇行部6A〜6Dの重なり合わない部分に空間が形成されるので、その空間と対応する蛇行部6A〜6Dの他の部分を互いに近接して配管すれば、蛇行部6A〜6Dを互いに重ね合わせて配置するよりも、重ね合わせ方向Gの配置厚さを薄くすることができる。
この結果、所定の流路長を有する2重管1をコンパクトに配管することができる。
The meandering parts 6A to 6C having the above-described piping structure are alternately arranged such that a part of the meandering parts 6A to 6C overlaps at the center in the meandering direction E (see FIG. 4).
That is, since a space is formed in a portion where the meandering portions 6A to 6D do not overlap, if other portions of the meandering portions 6A to 6D corresponding to the space are piped close to each other, the meandering portions 6A to 6D are connected to each other. The arrangement thickness in the superposition direction G can be made thinner than the arrangement in the superposition.
As a result, the double pipe 1 having a predetermined flow path length can be compactly piped.

また、蛇行部6A〜6Dは、上述の重ね合わせ方向Gに対し所定間隔に隔てて配管している。つまり、蛇行部6A〜6Dの間に隙間が形成されるため、その隙間によって、上下に配管した蛇行部6A〜6D間での熱移動が遮断される。
この結果、蛇行部6A〜6D間で熱伝導が起きるのを防止することができ、熱交換効率の向上が図れる。
Further, the meandering parts 6A to 6D are piped at a predetermined interval with respect to the overlapping direction G described above. That is, since a gap is formed between the meandering parts 6A to 6D, heat transfer between the meandering parts 6A to 6D piped up and down is blocked by the gap.
As a result, heat conduction can be prevented from occurring between the meandering portions 6A to 6D, and the heat exchange efficiency can be improved.

上述の2重管1は、図示しない水供給源から供給される水Wを、内管2の流入口2aから流出口2bに向けて第1流路4に沿って流動させ、図示しない冷媒供給源から供給される冷媒Rを、外管3の流入口3aから流出口3bに向けて第2流路5に沿って流動させる。   The above-described double pipe 1 causes the water W supplied from a water supply source (not shown) to flow along the first flow path 4 from the inlet 2a to the outlet 2b of the inner pipe 2 to supply a refrigerant (not shown). The refrigerant R supplied from the source is caused to flow along the second flow path 5 from the inlet 3a of the outer tube 3 toward the outlet 3b.

これにより、第1流路4を流れる水Wと、第2流路5を流れる冷媒Rとを対向する方向に流動させながら内管2を介して熱交換する。例えば冷媒Rの熱を水Wに伝導して温水を作り出す。   As a result, heat exchange is performed via the inner pipe 2 while flowing the water W flowing through the first flow path 4 and the refrigerant R flowing through the second flow path 5 in opposite directions. For example, the heat of the refrigerant R is conducted to the water W to produce hot water.

次に、内管2に形成したフィン構造を、図5〜図7に基づいて詳述する。
図5は図1に示す2重管1のA−A線矢視拡大断面図、図6は図5に示す2重管1のB−B線矢視断面図、図7はフィン高さが異なる内管2の模式的構造を示す部分拡大展開斜視図である。
Next, the fin structure formed in the inner tube 2 will be described in detail with reference to FIGS.
5 is an enlarged sectional view taken along line AA of the double tube 1 shown in FIG. 1, FIG. 6 is a sectional view taken along line BB of the double tube 1 shown in FIG. 5, and FIG. FIG. 3 is a partially enlarged developed perspective view showing a schematic structure of a different inner tube 2.

内管2の外周面には、外面フィン12を内管2の外周面に沿って螺旋方向D2に連続して形成している。また、外面フィン12の間には、凹状の主溝13を外面フィン12に沿って螺旋方向D2に連続して形成している。   On the outer peripheral surface of the inner tube 2, outer surface fins 12 are continuously formed in the spiral direction D <b> 2 along the outer peripheral surface of the inner tube 2. Further, a concave main groove 13 is continuously formed between the outer fins 12 along the outer fin 12 in the spiral direction D2.

より詳しくは、外面フィン12は、管軸方向D1に対して角度(β)に傾斜している。さらに、フィン数を35、基準となる外面フィン12のフィン高さ(H)を1.00mm、外面フィン12の形状を断面台形状に形成している(図6のa部参照)。 More specifically, the outer fin 12 is inclined at an angle (β 1 ) with respect to the tube axis direction D1. Furthermore, the number of fins is 35, the fin height (H 1 ) of the reference outer surface fin 12 is 1.00 mm, and the shape of the outer surface fin 12 is formed in a trapezoidal cross section (see part a in FIG. 6).

外面フィン12の頂部には、螺旋方向D2と交差して、凹状の副溝14を螺旋方向D3に形成している。また、副溝14は、管軸方向D1に対して角度(β)に傾斜している。 A concave sub-groove 14 is formed in the spiral direction D3 at the top of the outer fin 12 so as to intersect the spiral direction D2. The sub-groove 14 is inclined at an angle (β 2 ) with respect to the tube axis direction D1.

主溝13と対する外面フィン12の両側壁面には、相互に離隔された凹部15を形成している。また、凹部15は、外面フィン12の両側壁面に沿って螺旋方向D2に対し等間隔を隔てて多数配列している。
凹部15の外周側縁部には、外面フィン12の壁面と直交して、主溝13に向けて突出する突出片16を形成している。
Concave portions 15 that are spaced apart from each other are formed on both side walls of the outer fin 12 that face the main groove 13. In addition, a large number of the recesses 15 are arranged along the both side wall surfaces of the outer fin 12 at equal intervals in the spiral direction D2.
A protruding piece 16 that protrudes toward the main groove 13 is formed on the outer peripheral side edge of the recess 15 so as to be orthogonal to the wall surface of the outer fin 12.

内管2の内周面には、内面フィン17を内管2の内周面に沿って螺旋方向D3とは逆向きの螺旋方向D4に連続して形成している。また、内面フィン17のフィン高さ(H2)は、外面フィン12のフィン高さ(H)よりも低く、フィン形状を断面台形状に形成している。
上述の内管2の第1流路4に沿って流動する流体(水W)に対し、2重管1の全長において一定の流体攪拌作用を繰り返し付与することができる。
On the inner peripheral surface of the inner tube 2, inner fins 17 are continuously formed along the inner peripheral surface of the inner tube 2 in a spiral direction D 4 opposite to the spiral direction D 3. Further, the fin height (H 2 ) of the inner fin 17 is lower than the fin height (H 1 ) of the outer fin 12, and the fin shape is formed in a trapezoidal cross section.
A constant fluid stirring action can be repeatedly applied to the fluid (water W) flowing along the first flow path 4 of the inner pipe 2 described above over the entire length of the double pipe 1.

上述のフィン構造によれば、外面フィン12間の主溝13に沿って流動する冷媒Rの一部は、突出片16に衝突し、管半径方向内側へかき上げられるため、三次元的な非定常流、つまり、乱流を生じさせる効果を奏することができる。   According to the above-described fin structure, a part of the refrigerant R flowing along the main groove 13 between the outer fins 12 collides with the projecting piece 16 and is scooped up in the tube radial direction. An effect of generating a steady flow, that is, a turbulent flow can be obtained.

したがって、単に、管外周面にフィンを形成した従来の伝熱管と比較して、管半径方向内側も含めた乱流促進や冷媒Rの薄膜化を図ることができ、優れた熱伝達率を得ることができる。   Therefore, compared to a conventional heat transfer tube in which fins are formed on the outer peripheral surface of the tube, it is possible to promote turbulent flow including the inner side in the tube radial direction and reduce the thickness of the refrigerant R, thereby obtaining an excellent heat transfer coefficient. be able to.

次に、2重管1を所定の配管スペースに収まるように配管する配管方法を説明する。
例えば図8に示すように、流路長が4mの2重管1を、幅204mm、長さ440mm、高さ61mmに形成された容器10に収容する場合、1本の2重管1を、蛇行方向Eに蛇行及び折り返して蛇行部6A〜6Dを形成する。
Next, a piping method for piping the double pipe 1 so as to fit in a predetermined piping space will be described.
For example, as shown in FIG. 8, when the double pipe 1 having a flow path length of 4 m is accommodated in a container 10 formed with a width of 204 mm, a length of 440 mm, and a height of 61 mm, one double pipe 1 is Serpentine portions 6A to 6D are formed by meandering and folding in the meandering direction E.

蛇行部6A〜6Dを、重ね合わせ方向Gに対し上側から順に層状に配置して層状蛇行部7Aを形成した後、層状蛇行部7Aの蛇行部6A〜6Dを層状に配置したまま容器10に収容する。また、2重管1の一端側1a及び他端側1bは、容器10の角隅部外壁面より外側に向けて平行に突出する。   After the meandering parts 6A to 6D are arranged in layers from the upper side in the overlapping direction G to form the layered meandering part 7A, the meandering parts 6A to 6D of the layered meandering part 7A are accommodated in the container 10 while being arranged in layers. To do. Further, the one end side 1 a and the other end side 1 b of the double pipe 1 protrude in parallel toward the outside from the outer corner wall surface of the container 10.

これにより、2重管1の流路長を確保しつつ、所定の配管スペースを有する容器10の内部に収まるように収容することができる。   Thereby, it can accommodate in the container 10 which has a predetermined piping space, ensuring the flow path length of the double pipe 1. FIG.

この結果、2重管1をコンパクトに配管しても、熱交換性能が低下することがなく、第1流路4を流れる水Wと、第2流体5を流れる冷媒Rとの間で安定して熱交換することができる。また、2重管1の配管スペースが小さくて済むので、例えば2重管1が収められたボックス型の容器、或いは、2重管1が備えられた熱交換器等の小型化を図ることができる。   As a result, even if the double pipe 1 is piped in a compact manner, the heat exchange performance is not lowered, and the water W flowing through the first flow path 4 and the refrigerant R flowing through the second fluid 5 are stabilized. Heat exchange. In addition, since the piping space of the double pipe 1 is small, for example, a box-type container in which the double pipe 1 is housed or a heat exchanger provided with the double pipe 1 can be downsized. it can.

また、蛇行部6Dを、容器10の平坦な内壁面に対し略均等に押し付けて収容すれば、蛇行部6Dの略全体が平坦な内壁面に沿って配管されるため、2重管1全体の配管姿勢が安定し、例えば揺動、ガタ付き等が起きるのを防止することができる。   In addition, if the meandering portion 6D is accommodated by pressing substantially evenly against the flat inner wall surface of the container 10, almost the entire serpentine portion 6D is piped along the flat inner wall surface. The piping posture is stable, and it is possible to prevent, for example, rocking and rattling.

この発明の構成と、前記実施形態との対応において、
この発明の流体は、水Wと、冷媒Rとに対応するも、
この発明は、上述の実施形態の構成のみに限定されるものではなく、請求項に示される技術思想に基づいて応用することができ、多くの実施の形態を得ることができる。
In the correspondence between the configuration of the present invention and the embodiment,
The fluid of the present invention corresponds to water W and refrigerant R,
The present invention is not limited to the configuration of the above-described embodiment, but can be applied based on the technical idea shown in the claims, and many embodiments can be obtained.

例えば2重管1を蛇行してなる蛇行部6A〜6Dの間に支持部材を取り付けて、蛇行部6A〜6Dの間を所定間隔が隔てられた状態に支持してもよい。これにより、蛇行部6A〜6Dが互いに接触又は衝突することを防止することができる。   For example, a support member may be attached between the meandering parts 6A to 6D formed by meandering the double pipe 1, and the meandering parts 6A to 6D may be supported at a predetermined interval. Thereby, meandering parts 6A-6D can be prevented from contacting or colliding with each other.

また、蛇行部6A〜6Dを互いに接触させて層状に配管してもよく、蛇行部6A〜6Dを隙間なく配管することができるので、その隙間と対応する厚み分だけ、層状蛇行部7Aの厚みを薄くして薄型化することができる。   Alternatively, the meandering portions 6A to 6D may be brought into contact with each other and may be piped in layers, and the meandering portions 6A to 6D can be piped without a gap, so that the thickness of the layered meandering portion 7A is the same as the gap. Can be made thinner.

E…蛇行方向
F…長さ方向
G…重ね合わせ方向
W…水
R…冷媒
1…2重管
2…内管
3…外管
2a,3a…流入口
2b,3b…流出口
4…第1流路
5…第2流路
6A〜6D…蛇行部
7A…層状蛇行部
12…外面フィン
13…主溝
14…副溝
15…凹部
16…突出片
17…内面フィン
E ... Meander direction F ... Length direction G ... Overlapping direction W ... Water R ... Refrigerant 1 ... Double pipe 2 ... Inner pipe 3 ... Outer pipe 2a, 3a ... Inlet 2b, 3b ... Outlet 4 ... First flow Path 5 ... Second flow path 6A to 6D ... Meandering part 7A ... Layered meandering part 12 ... Outer surface fin 13 ... Main groove 14 ... Sub groove 15 ... Recess 16 ... Projection piece 17 ... Inner surface fin

Claims (3)

内部に第1流路が形成された内管と、該内管の外側に設けられ、該内管との間に第2流路が形成された外管とからなる2重管であって、
前記2重管を蛇行方向に蛇行して形成した蛇行部を、該蛇行部が互いに重ね合わされる重ね合わせ方向に対し層状に複数配置して構成し、
前記蛇行部を、平面視直線状の長さ方向の直線部と、所定の曲率半径に屈曲して折り返す平面視U字状の屈曲部とで構成し、
前記複数配置された各蛇行部を、前記蛇行方向を折り返して該各蛇行部の一部が重なり合うようにして蛇行方向の中央で互い違いに配置して、蛇行方向の一方側から順に端列、中央列及び端列の三列構造とするとともに、
層状に複数配置した前記各蛇行部のうち前記端列の一方の前記直線部を、前記重ね合わせ方向と直交する平面に対し平行、且つ前記重ね合わせ方向に対し所定間隔に隔てて配管し、
層状に複数配置した前記各蛇行部における各層において、他方の前記端列及び前記中央列の前記直線部、並びに前記屈曲部の少なくともひとつを前記重ね合わせ方向と直交する平面に対し傾斜させ、且つ前記重ね合わせ方向に対し所定間隔に隔てて配管した
2重管。
A double pipe comprising an inner pipe having a first flow path formed therein and an outer pipe provided outside the inner pipe and having a second flow path formed between the inner pipe and the inner pipe;
A plurality of meandering portions formed by meandering the double pipes in a meandering direction, arranged in a layered manner in the overlapping direction in which the meandering portions are superimposed on each other;
The meandering portion is composed of a linear portion in the length direction that is linear in a plan view and a bent portion in a U shape that is bent in a predetermined curvature radius and folded back.
The plurality of arranged meandering portions are alternately arranged at the center of the meandering direction so that a part of each meandering portion is overlapped by folding back the meandering direction. With a three-row structure of rows and end rows,
The straight line portion of one of the end rows among the plurality of meandering portions arranged in a layer shape is parallel to the plane orthogonal to the overlapping direction and is piped at a predetermined interval with respect to the overlapping direction,
In each layer in each of the meandering portions arranged in a plurality of layers, at least one of the straight line portion of the other end row and the central row, and the bent portion is inclined with respect to a plane orthogonal to the overlapping direction, and A double pipe that is piped at a predetermined interval in the overlapping direction .
前記内管の外周面に、該内管の外周面に沿って外面フィンを螺旋方向に連続して形成した
請求項1に記載の2重管。
The double pipe according to claim 1, wherein outer surface fins are continuously formed in the spiral direction along the outer peripheral surface of the inner pipe on the outer peripheral surface of the inner pipe.
前記外面フィンを、特殊加工したフィンで構成した
請求項に記載の2重管。
The double pipe according to claim 2 , wherein the outer fin is configured by a specially processed fin.
JP2010257674A 2010-11-18 2010-11-18 Double pipe Active JP5718028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010257674A JP5718028B2 (en) 2010-11-18 2010-11-18 Double pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010257674A JP5718028B2 (en) 2010-11-18 2010-11-18 Double pipe

Publications (2)

Publication Number Publication Date
JP2012107824A JP2012107824A (en) 2012-06-07
JP5718028B2 true JP5718028B2 (en) 2015-05-13

Family

ID=46493632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010257674A Active JP5718028B2 (en) 2010-11-18 2010-11-18 Double pipe

Country Status (1)

Country Link
JP (1) JP5718028B2 (en)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR794469A (en) * 1935-08-30 1936-02-18 Carbondale Machine Corp Cooling device
DE937884C (en) * 1952-09-07 1956-01-19 Max Aurich Heat exchangers for chemical cleaning systems, in particular coolers
DE1927605A1 (en) * 1969-05-30 1970-12-03 Hans Henting Weather cooler for mining, especially face cooler
JPS53160856U (en) * 1977-05-24 1978-12-16
FR2570173B1 (en) * 1984-09-13 1989-03-31 Leblanc Sa E L M HEAT EXCHANGER, ESPECIALLY FOR A CONDENSING BOILER
JPS63259387A (en) * 1987-04-14 1988-10-26 Akutoronikusu Kk Heat exchanging section of double-wall structured heat exchanger
US4834172A (en) * 1988-01-12 1989-05-30 W. Schmidt Gmbh & Co. Kg Heat exchanger
FR2681670B1 (en) * 1991-09-19 1993-12-03 Elm Leblanc MIXED HEATER-HOT WATER EXCHANGER WITH NON-WELDED SANITARY HEATING COIL.
DE19634450A1 (en) * 1996-08-26 1998-03-05 Basf Ag Device for the continuous implementation of chemical reactions
FR2763868B1 (en) * 1997-05-28 1999-08-20 Enunivers METHOD AND DEVICE FOR BREWING A WATER-CONTAINING FLUID
EP0996498B1 (en) * 1997-07-24 2001-05-30 Siemens Axiva GmbH & Co. KG Continuous, chaotic convection mixer, heat exchanger and reactor
US7575043B2 (en) * 2002-04-29 2009-08-18 Kauppila Richard W Cooling arrangement for conveyors and other applications
DE10222974B4 (en) * 2002-05-23 2004-07-08 Enginion Ag Heat exchanger
CN100458344C (en) * 2005-12-13 2009-02-04 金龙精密铜管集团股份有限公司 Copper condensing heat-exchanging pipe for flooded electric refrigerator set
WO2007108240A1 (en) * 2006-03-16 2007-09-27 Matsushita Electric Industrial Co., Ltd. Heat exchanger
TWI404903B (en) * 2007-03-09 2013-08-11 Sulzer Chemtech Ag An apparatus for the heat-exchanging and mixing treatment of fluid media
JP2010261685A (en) * 2009-05-11 2010-11-18 Daikin Ind Ltd Heat exchanger
JP2011017476A (en) * 2009-07-08 2011-01-27 Sumitomo Light Metal Ind Ltd Double tube type heat exchanger

Also Published As

Publication number Publication date
JP2012107824A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
WO2013105487A1 (en) Heat exchanger
JP6479300B2 (en) Hot water mat for floor heating
JP2008231929A (en) Cooling water inlet structure of heat exchanger for egr cooler
US11060761B2 (en) Plate heat exchanger and water heater including same
JP2013528773A (en) Compact plate-fin heat exchanger with integral heat conduction layer
JP2007178053A (en) Heat exchanger
CN104716397B (en) Secondary battery module
JP5356927B2 (en) Plate heat exchanger
JP4633708B2 (en) Plate heat exchanger and method of manufacturing plate heat exchanger
JP5718028B2 (en) Double pipe
JP5234349B2 (en) Heat exchanger and water heater
TWI470181B (en) Heat exchanger
JP2009074772A (en) Heat exchanger
JP6256807B2 (en) Heat exchanger and hot water device provided with the same
JP5071181B2 (en) Heat exchanger
JP2008292059A (en) Heat exchanger and water heater
JP2008121956A (en) Plate type heat exchanger
JP2005201536A (en) Heat exchanger
JP6124060B2 (en) Heat exchanger and combustion device
JP2007278614A (en) Core part structure for oil cooler
JP6408855B2 (en) Heat exchanger
US20110042048A1 (en) Heat exchanger
JP2012149859A (en) Shell and tube heat exchanger with fins installed in each of heat exchanger tubes
JP6173797B2 (en) Heat exchanger and water heater
KR20060031261A (en) Lamination-type heater for an air conditioning system of a car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150318

R151 Written notification of patent or utility model registration

Ref document number: 5718028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250