JP6408855B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP6408855B2
JP6408855B2 JP2014210692A JP2014210692A JP6408855B2 JP 6408855 B2 JP6408855 B2 JP 6408855B2 JP 2014210692 A JP2014210692 A JP 2014210692A JP 2014210692 A JP2014210692 A JP 2014210692A JP 6408855 B2 JP6408855 B2 JP 6408855B2
Authority
JP
Japan
Prior art keywords
heat transfer
gas
coolant
core member
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014210692A
Other languages
Japanese (ja)
Other versions
JP2016080230A (en
Inventor
知典 渡辺
知典 渡辺
潤 冨永
潤 冨永
秀雅 伊藤
秀雅 伊藤
年彦 花待
年彦 花待
健二 関谷
健二 関谷
智資 平野
智資 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2014210692A priority Critical patent/JP6408855B2/en
Publication of JP2016080230A publication Critical patent/JP2016080230A/en
Application granted granted Critical
Publication of JP6408855B2 publication Critical patent/JP6408855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複数の伝熱プレートを積層することによって構成されたコア部材を有する熱交換器に関する。   The present invention relates to a heat exchanger having a core member configured by stacking a plurality of heat transfer plates.

特許文献1あるいは特許文献2にプレート形の熱交換器が開示されている。プレート形の熱交換器のコア部材は、複数の伝熱プレートを厚さ方向に積層し、各伝熱プレート間に、高温ガスが流れるガス流路と、冷却液が流れる冷却液流路とが交互に形成されている。前記コア部材は、ガス流入口とガス流出口とを有するハウジングに収容されている。このように構成された熱交換器では、ハウジングのガス流入口からコア部材に向かって流入した高温ガスがコア部材のガス流路を通るとともに、コア部材の冷却液流路に冷却液が供給されることにより、コア部材において高温ガスと冷却液との熱交換が行われ、高温ガスが冷却される。   Patent Document 1 or Patent Document 2 discloses a plate-type heat exchanger. The core member of the plate-type heat exchanger is formed by laminating a plurality of heat transfer plates in the thickness direction, and between each heat transfer plate, there is a gas flow path through which high-temperature gas flows and a cooling liquid flow path through which cooling liquid flows. It is formed alternately. The core member is accommodated in a housing having a gas inlet and a gas outlet. In the heat exchanger configured as described above, the high-temperature gas that has flowed from the gas inlet of the housing toward the core member passes through the gas flow path of the core member, and the coolant is supplied to the coolant flow path of the core member. As a result, heat exchange between the hot gas and the coolant is performed in the core member, and the hot gas is cooled.

従来のプレート形の熱交換器は、ハウジングの軸線(ガス流入口とガス流出口とを結ぶ線分)と、コア部材の軸線(ハウジングの上方から見て、冷却液流入口と冷却液流出口とを結ぶ線分)とが平行となるようにハウジングの内部にコア部材が配置されている。またコア部材の上部に冷却液流入口が設けられ、かつ、コア部材の上部に冷却液流出口が設けられている。前記冷却液流入口からコア部材の内部に流入した冷却液は多数の冷却液流路に分岐するとともに、各冷却液流路において冷却液がそれぞれ前記冷却液流出口に向かって一方向に流れるように構成されていた。   A conventional plate-shaped heat exchanger includes a housing axis (a line connecting a gas inlet and a gas outlet) and a core member axis (a coolant inlet and a coolant outlet as viewed from above the housing). The core member is arranged inside the housing so that the line segment connecting the A coolant inlet is provided at the top of the core member, and a coolant outlet is provided at the top of the core member. The coolant flowing into the core member from the coolant inlet is branched into a number of coolant channels, and the coolant flows in one direction toward the coolant outlet in each coolant channel. Was configured.

特開2005−83673号公報JP 2005-83673 A 特許第2743800号公報Japanese Patent No. 2743800

高温ガスの冷却に使用されるプレート形の熱交換器では、数百℃を越える高温ガスがガス流入口からハウジングの内部に流入することがある。この高温ガスの流れが不均一になると、伝熱プレートの一部が局部的に高温となり、伝熱プレートの一部に熱応力による過剰な変形が発生し、コア部材が破損することが考えられる。特に、コア部材の構造上、冷却液の流速等を十分均一にすることが難しいプレート形の熱交換器の場合には、比較的高温となりやすいコア部材の一部の温度が短時間のうちに上昇し、局部的に応力の高い箇所が生じる恐れがある。   In a plate-type heat exchanger used for cooling hot gas, hot gas exceeding several hundred degrees Celsius may flow into the housing from the gas inlet. If the flow of the high-temperature gas becomes uneven, a part of the heat transfer plate is locally heated, and excessive deformation due to thermal stress occurs in a part of the heat transfer plate, which may damage the core member. . In particular, in the case of a plate-type heat exchanger where it is difficult to make the coolant flow rate sufficiently uniform due to the structure of the core member, the temperature of a part of the core member, which tends to be relatively high, is reduced in a short time. There is a possibility that a part with high stress may be generated locally.

従って本発明の目的は、高温ガスに触れるコア部材の一部の温度が過剰に上昇することを抑制できる熱交換器を提供することにある。   Therefore, the objective of this invention is providing the heat exchanger which can suppress that the temperature of the one part of the core member which touches high temperature gas rises excessively.

1つの実施形態に係る熱交換器は、ガス流入口とガス流出口とを有し前記ガス流入口と前記ガス流出口との間に高温ガスが流れるハウジングと、前記ハウジングに収容されたコア部材とを具備している。前記コア部材は、下層コアユニットと、この下層コアユニットの上側に配置される上層コアユニットとを含んでいる。前記下層コアユニットは、複数の伝熱プレートを厚さ方向に重ねることにより、各伝熱プレート間に下層ガス流路と下層冷却液流路とが交互に形成される。前記上層コアユニットも複数の伝熱プレートを厚さ方向に重ねることにより、各伝熱プレート間に上層ガス流路と上層冷却液流路とが交互に形成される。前記下層コアユニットの下部に、前記下層冷却液流路に連通する冷却液流入口が形成されている。前記上層コアユニットの上部に、前記上層冷却液流路に連通する冷却液流出口が形成されている。前記複数の伝熱プレートが、それぞれ、前記ガス流入口と前記ガス流出口とを結ぶハウジングの軸線に対し斜め方向に稜線が延びる波形部と、前記コア部材の一端側に形成された円形の貫通孔と、前記コア部材の他端側に形成され、前記貫通孔に応じた径の筒部とを有し、隣り合う前記伝熱プレート同士を互いに表裏を逆にして重ね、一方の伝熱プレートの前記筒部を他方の伝熱プレートの前記貫通孔の内周縁に気液密に接合することにより前記冷却液流入口と対応する位置に第1の管状連通部が形成され、かつ、前記他方の伝熱プレートの前記筒部を前記一方の伝熱プレートの前記貫通孔の内周縁に気液密に接続することにより前記冷却液流出口と対応する位置に第2の管状連通部が形成される。前記ハウジングの上方から見て、前記第1の管状連通部と前記第2の管状連通部とを結ぶコア部材の軸線が前記ハウジングの軸線と交差する向きに前記コア部材を配置することにより、前記ハウジングの側部に前記冷却液流入口と前記冷却液流出口とが配置されている。 A heat exchanger according to an embodiment includes a housing having a gas inlet and a gas outlet, and a high-temperature gas flowing between the gas inlet and the gas outlet, and a core member accommodated in the housing It is equipped with. The core member includes a lower layer core unit and an upper layer core unit disposed on the upper side of the lower layer core unit. In the lower core unit, a plurality of heat transfer plates are stacked in the thickness direction, whereby lower gas flow paths and lower coolant flow paths are alternately formed between the heat transfer plates. The upper core units also by overlapping a plurality of heat transfer plates in the thickness direction, Ru and an upper gas passage and an upper coolant flow path is formed alternately between the heat transfer plates. The bottom of the front Symbol lower core units, that have coolant inlet port communicating is formed in the lower cooling fluid channel. On top of the front SL upper core units, coolant outlet port communicating with the upper cooling fluid channel is formed. The plurality of heat transfer plates each have a corrugated portion having a ridge line extending obliquely with respect to an axis of the housing connecting the gas inlet and the gas outlet, and a circular penetration formed on one end side of the core member One of the heat transfer plates is formed on the other end side of the core member and has a hole having a diameter corresponding to the through hole, and the adjacent heat transfer plates are overlapped with each other upside down. A first tubular communication portion is formed at a position corresponding to the cooling liquid inlet by joining the cylindrical portion to the inner peripheral edge of the through hole of the other heat transfer plate, and the other side. A second tubular communication portion is formed at a position corresponding to the cooling liquid outlet by connecting the cylindrical portion of the heat transfer plate to the inner peripheral edge of the through hole of the one heat transfer plate in a gas-liquid tight manner. The By disposing the core member in a direction in which the axis of the core member connecting the first tubular communication portion and the second tubular communication portion intersects the axis of the housing as viewed from above the housing, The coolant inlet and the coolant outlet are disposed on the side of the housing.

1つの実施形態では、前記複数の伝熱プレートが互いに共通の形状である。前記下層コアユニットと上層コアユニットとの間に、複数の伝熱プレートを厚さ方向に重ねることによって各伝熱プレート間に中層ガス流路と中層冷却液流路とを交互に形成してなる1つ以上の中層コアユニットを具備し、前記ハウジングの上方から見て、前記該コア部材の一端側に前記冷却液流入口が配置され、前記コア部材の他端側に前記冷却液流出口が配置されてもよい。 In one embodiment, the plurality of heat transfer plates have a common shape. By stacking a plurality of heat transfer plates in the thickness direction between the lower layer core unit and the upper layer core unit, an intermediate gas channel and an intermediate coolant channel are alternately formed between the heat transfer plates. One or more middle-layer core units are provided, and when viewed from above the housing, the coolant inlet is disposed on one end of the core member, and the coolant outlet is disposed on the other end of the core member. It may be arranged .

また前記下層コアユニットと前記中層コアユニットとの間、および前記上層コアユニットと前記中層コアユニットとの間などに、それぞれ仕切プレートが配置され、前記仕切プレートが、前記伝熱プレートの前記波形部と共通形状の波形部と、前記伝熱プレートの前記筒部と共通形状の筒部とを有し、かつ、前記伝熱プレートの前記貫通孔と対応する位置に閉鎖手段を有していてもよい。   Further, a partition plate is disposed between the lower layer core unit and the middle layer core unit and between the upper layer core unit and the middle layer core unit, respectively, and the partition plate is the corrugated portion of the heat transfer plate. And a corrugated portion having a common shape, a cylindrical portion having the common shape with the cylindrical portion of the heat transfer plate, and a closing means at a position corresponding to the through hole of the heat transfer plate. Good.

1つの実施形態では、前記伝熱プレートと前記仕切プレートとがそれぞれプレス加工された板金からなり、前記伝熱プレートの前記貫通孔がプレスによって打抜かれた孔からなり、前記仕切プレートの前記閉鎖手段が孔を開けずに残された板金部からなる。他の実施形態では、前記伝熱プレートと前記仕切プレートとがそれぞれプレス加工された板金からなり、前記伝熱プレートの前記貫通孔がプレスによって打抜かれた孔からなり、前記仕切プレートの前記閉鎖手段が、プレス加工によって打抜かれた貫通孔を塞ぐための塞ぎ部材からなる。   In one embodiment, the heat transfer plate and the partition plate are each made of a pressed metal plate, and the through hole of the heat transfer plate is a hole punched by a press, and the closing means for the partition plate Consists of the sheet metal part left without opening a hole. In another embodiment, the heat transfer plate and the partition plate are each made of a pressed metal plate, and the through hole of the heat transfer plate is a hole punched by a press, and the closing means for the partition plate However, it consists of a closing member for closing the through hole punched by press working.

本発明の実施形態によれば、冷却液流入口からコア部材に流入した冷却液が下層コアユニットから上層コアユニットへと、下から上に向かって蛇行しながら流れるような流路構成であるため、冷却液流路を長くとることができるとともに、冷却液をコア部材に供給する際に、コア部材の内部に空気が閉じ込められて空気だまりが生じてしまうことを回避できる。またハウジングの軸線に対してコア部材の軸線が交差する向きでコア部材が配置され、ハウジングの両側部に冷却液流入口と冷却液流出口とが位置するため、高温ガスの流れが冷却液流入口や冷却液流出口によって影響を受けにくくなる。しかもコア部材を下層コアユニットと上層コアユニットとに分け、さらに必要に応じて中層コアユニットを設けたことにより、1つのコアユニットあたりの冷却水流量を増加させることができ、それにより流れの改善と、温度差低減、および冷却能力の向上による熱交換率の向上を図ることができた。これらの理由から、コア部材の一部の温度が過剰に上昇することが抑制され、熱応力によるコア部材の変形や損傷を防止することができる。   According to the embodiment of the present invention, the flow path configuration is such that the coolant flowing into the core member from the coolant inlet flows while meandering from the lower layer core unit to the upper layer core unit from the bottom to the top. In addition to making the coolant flow path longer, it is possible to avoid air trapping due to air trapped inside the core member when supplying the coolant to the core member. In addition, the core member is disposed in a direction in which the axis of the core member intersects the axis of the housing, and the coolant inlet and the coolant outlet are located on both sides of the housing. Less affected by the inlet and coolant outlet. Moreover, the core member is divided into a lower layer core unit and an upper layer core unit, and an intermediate layer core unit is provided as necessary, so that the flow rate of cooling water per core unit can be increased, thereby improving the flow. In addition, the heat exchange rate was improved by reducing the temperature difference and improving the cooling capacity. For these reasons, an excessive increase in the temperature of a part of the core member is suppressed, and deformation and damage of the core member due to thermal stress can be prevented.

第1の実施形態に係る熱交換器の一部を切欠いて内部を示す斜視図。The perspective view which notches a part of heat exchanger which concerns on 1st Embodiment, and shows an inside. 同熱交換器の内部を模式的に示す平面図。The top view which shows typically the inside of the same heat exchanger. 同熱交換器の正面図。The front view of the heat exchanger. 同熱交換器の一部を断面で示す側面図。The side view which shows a part of same heat exchanger in a cross section. 同熱交換器のハウジングとコア部材を模式的に示す縦断面図。The longitudinal cross-sectional view which shows the housing and core member of the same heat exchanger typically. 同熱交換器のコア部材を構成する複数枚の伝熱プレートの斜視図。The perspective view of the several heat exchanger plate which comprises the core member of the same heat exchanger. 同熱交換器のコア部材の一部の断面図。Sectional drawing of a part of core member of the same heat exchanger. 同熱交換器の伝熱プレートの平面図。The top view of the heat exchanger plate of the same heat exchanger. 同熱交換器の伝熱プレートと仕切プレートとを示す平面図。The top view which shows the heat-transfer plate and partition plate of the same heat exchanger. 同熱交換器と従来の熱交換器にそれぞれ高温ガスと冷却液を流した場合の時間と温度との関係を示す図。The figure which shows the relationship between time and temperature at the time of flowing high temperature gas and a cooling fluid through the said heat exchanger and the conventional heat exchanger, respectively. 第2の実施形態に係る熱交換器の伝熱プレートと仕切プレートとを示す平面図。The top view which shows the heat-transfer plate and partition plate of the heat exchanger which concern on 2nd Embodiment. 第3の実施形態に係る熱交換器のハウジングとコア部材を模式的に示す縦断面図。The longitudinal cross-sectional view which shows typically the housing and core member of the heat exchanger which concern on 3rd Embodiment.

以下に本発明の第1の実施形態について、図1から図10を参照して説明する。
図1に熱交換器10が示されている。この熱交換器10は、ハウジング11と、ハウジング11の内部に収容されたコア部材12とを備えている。図1はハウジング11の一部を切欠いて、熱交換器10の内部を示している。
A first embodiment of the present invention will be described below with reference to FIGS.
A heat exchanger 10 is shown in FIG. The heat exchanger 10 includes a housing 11 and a core member 12 accommodated in the housing 11. FIG. 1 shows the inside of the heat exchanger 10 with a part of the housing 11 cut away.

図2は熱交換器10の内部を模式的に示す平面図、図3は熱交換器10の正面図、図4は熱交換器10の一部を断面で示す側面図である。ハウジング11はステンレス鋼などの金属板からなり、コア部材12を収容するコア収容部15と、コア収容部15の一端側に形成されたガス流入口16を有するガス流入筒16aと、コア収容部15の他端側に形成されたガス流出口17を有するガス流出筒17aとを備えている。   2 is a plan view schematically showing the inside of the heat exchanger 10, FIG. 3 is a front view of the heat exchanger 10, and FIG. 4 is a side view showing a part of the heat exchanger 10 in cross section. The housing 11 is made of a metal plate such as stainless steel, and includes a core housing portion 15 that houses the core member 12, a gas inflow cylinder 16 a that has a gas inlet 16 formed on one end side of the core housing portion 15, and a core housing portion. 15 and a gas outflow cylinder 17a having a gas outlet 17 formed on the other end side.

コア収容部15は、左右一対の側板20,21と、底板22と、上板23などからなり、四角い箱形に形成されている。ガス流入口16とガス流出口17との間に、高温ガスが流れるガス流通部25が形成される。この明細書では、ガス流入口16とガス流出口17とを結ぶ線分をハウジング11の軸線X1(図2に示す)と称している。   The core housing portion 15 includes a pair of left and right side plates 20 and 21, a bottom plate 22, an upper plate 23 and the like, and is formed in a square box shape. Between the gas inflow port 16 and the gas outflow port 17, a gas circulation part 25 through which high-temperature gas flows is formed. In this specification, a line segment connecting the gas inlet 16 and the gas outlet 17 is referred to as an axis X1 of the housing 11 (shown in FIG. 2).

ガス流入筒16aは、ガス流入口16からコア収容部15に向って流路断面が円形から四角形に変化するとともに、流路断面積が増加するテーパ形状をなしている。ガス流入口16に高温ガスの供給管27(図1に示す)が接続される。これに対しガス流出筒17aは、コア収容部15からガス流出口17に向って流路断面が四角形から円形に変化するとともに、流路断面積が減少する逆テーパ形状をなしている。ガス流出口17にガスの排出管28(図1に示す)が接続される。   The gas inflow cylinder 16a has a tapered shape in which the flow path cross section changes from a circular shape to a quadrangle from the gas inlet 16 toward the core housing portion 15, and the flow path cross sectional area increases. A hot gas supply pipe 27 (shown in FIG. 1) is connected to the gas inlet 16. On the other hand, the gas outflow cylinder 17a has a reverse taper shape in which the flow path cross section changes from a square shape to a circular shape from the core housing portion 15 toward the gas flow outlet 17, and the flow path cross sectional area decreases. A gas discharge pipe 28 (shown in FIG. 1) is connected to the gas outlet 17.

供給管27からガス流入口16を経てコア収容部15に流入した高温ガスG1は、コア部材12を通り、ガス流出口17から出てゆく途中でコア部材12によって熱交換がなされる。熱交換がなされて温度が低下したガスG2は、ガス流出口17からガスの排出管28に流出する。   The hot gas G <b> 1 that has flowed into the core housing portion 15 from the supply pipe 27 through the gas inlet 16 passes through the core member 12, and heat exchange is performed by the core member 12 on the way out of the gas outlet 17. The gas G <b> 2 whose temperature has been reduced due to heat exchange flows out from the gas outlet 17 to the gas discharge pipe 28.

コア部材12の詳細について、図5から図9を参照して説明する。
図5は、ハウジング11とコア部材12とを模式的に示す縦断面図である。図5に示されるようにコア部材12は、上下方向に積層された複数のコアユニット31,32,33を含んでいる。すなわちコア部材12は、下から順に、下層コアユニット31と、1つ以上の中層コアユニット32と、上層コアユニット33とを備えている。
Details of the core member 12 will be described with reference to FIGS.
FIG. 5 is a longitudinal sectional view schematically showing the housing 11 and the core member 12. As shown in FIG. 5, the core member 12 includes a plurality of core units 31, 32, and 33 stacked in the vertical direction. That is, the core member 12 includes a lower layer core unit 31, one or more middle layer core units 32, and an upper layer core unit 33 in order from the bottom.

これらコアユニット31,32,33は、いずれも、ステンレス鋼などの板金からなる複数の伝熱プレート40を交互に表裏が逆となるように厚さ方向に重ね、ろう付け等の接合手段によって互いに接合することにより構成されている。各伝熱プレート40は互いに共通の形状である。板金の厚さの一例は0.3mm程度であるが、それ以外の厚さであっても勿論かまわない。   Each of these core units 31, 32, and 33 is formed by stacking a plurality of heat transfer plates 40 made of sheet metal such as stainless steel in the thickness direction so that the front and back are alternately reversed, and joining each other by joining means such as brazing. It is comprised by joining. The heat transfer plates 40 have a common shape. An example of the thickness of the sheet metal is about 0.3 mm, but other thicknesses may of course be used.

さらに詳しくは、下層コアユニット31は、隣り合う伝熱プレート40同士を互いに表裏が逆となるように厚さ方向に重ねることにより、隣り合う伝熱プレート間に、交互に下層ガス流路41と下層冷却液流路42とが形成されている。コア部材12の一端側(図5において右側)でかつ下層コアユニット31の最低部に、下層冷却液流路42に連通する冷却液流入口43が設けられている。冷却液流入口43には、例えば冷却水等の冷却液Q1を供給するための冷却液供給管が接続される。   More specifically, in the lower layer core unit 31, the adjacent heat transfer plates 40 are overlapped in the thickness direction so that the front and back sides are opposite to each other, so that the lower layer gas flow paths 41 and the alternating heat transfer plates are alternately arranged. A lower-layer coolant flow path 42 is formed. A coolant inlet 43 that communicates with the lower coolant channel 42 is provided on one end side (right side in FIG. 5) of the core member 12 and at the lowest part of the lower core unit 31. A coolant supply pipe for supplying coolant Q1 such as coolant is connected to the coolant inlet 43, for example.

中層コアユニット32は、下層コアユニット31の上に配置されている。中層コアユニット32は下層コアユニット31と同様に、隣り合う伝熱プレート40同士を互いに表裏が逆となるように厚さ方向に重ねることにより、隣り合う伝熱プレート間に、交互に中層ガス流路51と中層冷却液流路52とが形成されている。   The middle layer core unit 32 is disposed on the lower layer core unit 31. Similar to the lower layer core unit 31, the middle layer core unit 32 is configured so that the adjacent heat transfer plates 40 are stacked in the thickness direction so that the front and back sides are opposite to each other, so that the middle layer gas flow alternately between the adjacent heat transfer plates. A channel 51 and a middle coolant channel 52 are formed.

上層コアユニット33は、中層コアユニット32の上に配置されている。上層コアユニット33は、下層コアユニット31および中層コアユニット32と同様に、隣り合う伝熱プレート40同士を互いに表裏が逆となるように厚さ方向に重ねることにより、隣り合う伝熱プレート間に、交互に上層ガス流路61と上層冷却液流路62とが形成されている。   The upper layer core unit 33 is disposed on the middle layer core unit 32. Similar to the lower layer core unit 31 and the middle layer core unit 32, the upper layer core unit 33 is formed by stacking adjacent heat transfer plates 40 in the thickness direction so that the front and back sides are opposite to each other. The upper gas channel 61 and the upper coolant channel 62 are alternately formed.

コア部材12の他端側(図5において左側)でかつ上層コアユニット33の最上部に、上層冷却液流路62に連通する冷却液流出口63が設けられている。冷却液流出口63には、熱交換後の冷却液Q2を排出するための冷却液排出管が接続される。この明細書では、ハウジング11の上方から見て、冷却液流入口43と冷却液流出口63とを結ぶ線分をコア部材12の軸線Y1(図2に示す)と称している。   A coolant outlet 63 that communicates with the upper coolant flow path 62 is provided on the other end side (left side in FIG. 5) of the core member 12 and on the uppermost portion of the upper core unit 33. The coolant outlet 63 is connected to a coolant discharge pipe for discharging the coolant Q2 after heat exchange. In this specification, a line connecting the coolant inlet 43 and the coolant outlet 63 as viewed from above the housing 11 is referred to as an axis Y1 (shown in FIG. 2) of the core member 12.

図6は伝熱プレート40の斜視図である。図7はコア部材12の一部の断面図である。図8は伝熱プレート40の平面図である。各伝熱プレート40は互いに共通形状である。伝熱プレート40は、それぞれ、コア部材12の軸線Y1に対し斜め方向に稜線が延びる波形部70と、コア部材12の一端側に形成された円形の貫通孔71と、コア部材12の他端側に形成された筒部(バーリング加工孔)72とを有している。筒部72は貫通孔71の内径に応じた外径を有し、隣り合う伝熱プレート40の貫通孔71に挿入可能な大きさとしている。   FIG. 6 is a perspective view of the heat transfer plate 40. FIG. 7 is a cross-sectional view of a part of the core member 12. FIG. 8 is a plan view of the heat transfer plate 40. The heat transfer plates 40 have a common shape. The heat transfer plate 40 includes a corrugated portion 70 having a ridge line extending obliquely with respect to the axis Y <b> 1 of the core member 12, a circular through hole 71 formed on one end side of the core member 12, and the other end of the core member 12. And a cylindrical portion (burring hole) 72 formed on the side. The cylindrical portion 72 has an outer diameter corresponding to the inner diameter of the through hole 71 and is sized to be inserted into the through hole 71 of the adjacent heat transfer plate 40.

波形部70と貫通孔71と筒部72とは、いずれも板金(例えばステンレス鋼の板)をプレスすることによって形成されている。すなわち波形部70は、プレスによる塑性加工によって、複数の山と谷とが交互に形成されている。貫通孔71は、板金の一方の端部をプレスによって打ち抜くことにより形成されている。筒部72は板金の他方の端部をプレスに伴うバーリング加工によって形成されている。   The corrugated portion 70, the through hole 71, and the cylindrical portion 72 are all formed by pressing a sheet metal (for example, a stainless steel plate). That is, in the corrugated portion 70, a plurality of peaks and valleys are alternately formed by plastic working by pressing. The through hole 71 is formed by punching one end of a sheet metal with a press. The cylindrical part 72 is formed by burring processing accompanying the pressing of the other end of the sheet metal.

図6および図7に示されるように、隣り合う伝熱プレート40a,40b同士を互いに表裏を逆にして重ね、一方の伝熱プレート40aの筒部72が、他方の伝熱プレート40bの貫通孔71の内周縁に気液密に接合される。また他方の伝熱プレート40bの筒部72が、一方の伝熱プレート40aの貫通孔71の内周縁に気液密に接合される。接合手段としては、例えば筒部72を貫通孔71に挿入し、筒部72の全周をかしめたのち、ろう付けを行なうといったシール機能を有する接合手段を適用することができる。伝熱プレート40の周縁の一部にスペーサ部材75(図2と図6と図7に示す)が設けられている。冷却液流入口43と冷却液流出口63とは、それぞれフレーム76(図7に一部を示す)に固定されてもよいが、他の実施形態によってはフレーム76を省略し、伝熱プレート40に直接固定してもよい。   As shown in FIGS. 6 and 7, adjacent heat transfer plates 40 a and 40 b are overlapped with each other so that the front and back sides are reversed, and the cylindrical portion 72 of one heat transfer plate 40 a is a through hole of the other heat transfer plate 40 b. It is gas-liquid tightly joined to the inner peripheral edge of 71. Further, the cylindrical portion 72 of the other heat transfer plate 40b is joined to the inner peripheral edge of the through hole 71 of the one heat transfer plate 40a in a gas-liquid tight manner. As the joining means, for example, a joining means having a sealing function of inserting the cylindrical portion 72 into the through hole 71 and caulking the entire circumference of the cylindrical portion 72 and then brazing can be applied. A spacer member 75 (shown in FIGS. 2, 6, and 7) is provided on a part of the periphery of the heat transfer plate 40. The coolant inlet 43 and the coolant outlet 63 may be respectively fixed to a frame 76 (a part of which is shown in FIG. 7). However, in some other embodiments, the frame 76 is omitted and the heat transfer plate 40 is omitted. You may fix it directly.

本実施形態では、一方の伝熱プレート40aの筒部72を他方の伝熱プレート40bの貫通孔71の内周縁に接合することにより、冷却液流入口43と対応する位置(冷却液流入口43の上方)に、上下方向に延びる第1の管状連通部81が形成されている。また他方の伝熱プレート40bの筒部72を一方の伝熱プレート40aの貫通孔71の内周縁に気液密に接続することにより、冷却液流出口63と対応する位置(冷却液流出口63の下方)に、上下方向に延びる第2の管状連通部82が形成されている。   In the present embodiment, the cylindrical portion 72 of one heat transfer plate 40a is joined to the inner peripheral edge of the through hole 71 of the other heat transfer plate 40b, so that the position corresponding to the coolant inlet 43 (the coolant inlet 43 1st tubular communication part 81 extended in the up-down direction is formed. Further, by connecting the cylindrical portion 72 of the other heat transfer plate 40b to the inner peripheral edge of the through hole 71 of the one heat transfer plate 40a in a gas-liquid tight manner, the position corresponding to the coolant outlet 63 (the coolant outlet 63). A second tubular communication portion 82 extending in the vertical direction is formed in the lower part of FIG.

下層コアユニット31と中層コアユニット32との間に、仕切プレート90が配置されている。中層コアユニット32と上層コアユニット33との間にも、仕切プレート90が配置されている。これら仕切プレート90は互いに共通形状であるため、一方の仕切プレート90を代表して以下に説明する。   A partition plate 90 is disposed between the lower layer core unit 31 and the middle layer core unit 32. A partition plate 90 is also disposed between the middle layer core unit 32 and the upper layer core unit 33. Since these partition plates 90 have a common shape, one partition plate 90 will be described below as a representative.

図9は、伝熱プレート40と仕切プレート90を示す平面図である。仕切プレート90は、伝熱プレート40の波形部70と共通形状の波形部91と、伝熱プレート40の筒部72と共通形状の筒部92とを有している。しかもこの仕切プレート90は、伝熱プレート40の貫通孔71と対応する位置に、閉鎖手段の一例として、貫通孔71を開けずに板金のまま残された板金部93を有している。   FIG. 9 is a plan view showing the heat transfer plate 40 and the partition plate 90. The partition plate 90 has a corrugated portion 91 having a common shape with the corrugated portion 70 of the heat transfer plate 40, and a cylindrical portion 72 having a common shape with the tubular portion 72 of the heat transfer plate 40. Moreover, the partition plate 90 has, as an example of a closing means, a sheet metal portion 93 that remains as a sheet metal without opening the through hole 71 at a position corresponding to the through hole 71 of the heat transfer plate 40.

図5に示されるように、下層コアユニット31と中層コアユニット32との間に配置される下側の仕切プレート90の板金部(閉鎖手段)93は、第1の管状連通部81と同様にコア部材12の一端側(図5において右側)に設けられている。下層冷却液流路42と中層冷却液流路52とを連通させる第2の管状連通部82は、コア部材12の他端側(図5において左側)に形成されている。このため冷却液流入口43から第1の管状連通部81を通って下層冷却液流路42に流入する冷却液は、図5に矢印F1で示すように、コア部材12の一端側から他端側に向かって下層冷却液流路42内を流れたのち、第2の管状連通部82から中層冷却液流路52に流入する。   As shown in FIG. 5, the sheet metal portion (closing means) 93 of the lower partition plate 90 disposed between the lower layer core unit 31 and the middle layer core unit 32 is the same as the first tubular communication portion 81. It is provided on one end side (right side in FIG. 5) of the core member 12. The second tubular communication portion 82 that allows the lower-layer coolant channel 42 and the middle-layer coolant channel 52 to communicate with each other is formed on the other end side (left side in FIG. 5) of the core member 12. For this reason, the coolant flowing from the coolant inlet 43 through the first tubular communication portion 81 into the lower coolant channel 42 flows from one end side of the core member 12 to the other end as shown by an arrow F1 in FIG. After flowing in the lower coolant flow path 42 toward the side, it flows into the middle coolant flow path 52 from the second tubular communication portion 82.

図5に示されるように、中層コアユニット32と上層コアユニット33との間に配置される上側の仕切プレート90の板金部(閉鎖手段)93は、コア部材12の他端側(図5において左側)に形成されている。中層冷却液流路52と上層冷却液流路62とを連通させる第1の管状連通部81は、コア部材12の一端側(図5において右側)に形成されている。このため下層冷却液流路42から中層冷却液流路52に流入した冷却液は、矢印F2で示すように、コア部材12の他端側から一端側に向かって流れ、さらに第1の管状連通部81を経て上層冷却液流路62に流入する。   As shown in FIG. 5, the sheet metal portion (closing means) 93 of the upper partition plate 90 disposed between the middle layer core unit 32 and the upper layer core unit 33 is the other end side of the core member 12 (in FIG. It is formed on the left side). A first tubular communication portion 81 that allows the middle-layer coolant channel 52 and the upper-layer coolant channel 62 to communicate with each other is formed on one end side (right side in FIG. 5) of the core member 12. Therefore, the coolant that has flowed from the lower coolant channel 42 into the middle coolant channel 52 flows from the other end side to the one end side of the core member 12 as indicated by an arrow F2, and further the first tubular communication. It flows into the upper coolant flow path 62 through the portion 81.

上層コアユニット33の第2の管状連通部82と冷却液流出口63は、いずれもコア部材12の他端側に設けられている。このため、中層冷却液流路52から上層冷却液流路62に流入した冷却液は、矢印F3で示すように、コア部材12の一端側から他端側に向かって流れ、冷却液流出口63から出てゆく。このように、コア部材12の最下部に位置する冷却液流入口43からコア部材12の内部に流入した冷却液は、コアユニット31,32,33の冷却液流路42,52,62を上方に向かってジグザグと蛇行しながら上昇し、最上部の冷却液流出口63から出てゆく。   The second tubular communication portion 82 and the coolant outlet 63 of the upper core unit 33 are both provided on the other end side of the core member 12. Therefore, the coolant flowing into the upper coolant flow channel 62 from the middle coolant flow channel 52 flows from one end side to the other end side of the core member 12 as indicated by an arrow F3, and the coolant outlet 63 Get out of. As described above, the coolant flowing into the core member 12 from the coolant inlet 43 located at the lowermost part of the core member 12 moves upward in the coolant channels 42, 52, 62 of the core units 31, 32, 33. Ascends in a zigzag manner and exits from the uppermost coolant outlet 63.

これに対し、高温ガス(例えば数百℃の空気)G1は、ハウジング11のガス流入口16からハウジング11内のガス流通部25に流入し、コア部材12のガス流路41,51,61を通ってガス流出口17から出てゆく。この明細書で言う「高温ガス」とは、冷却を必要とする温度のガスという意味であるから、ガスの温度は百℃以下であってもよく、具体的な温度は問わない。ガス流路41,51,61を流れる高温ガスと、冷却液流路42,52,62を流れる冷却液との間で熱交換がなされることにより高温ガスが冷却され、温度の下がったガスG2がガス流出口17から出てゆく。   On the other hand, high temperature gas (for example, air of several hundred degrees C) G1 flows from the gas inlet 16 of the housing 11 into the gas circulation part 25 in the housing 11 and flows through the gas flow paths 41, 51, 61 of the core member 12. Go through the gas outlet 17 through. The term “hot gas” used in this specification means a gas having a temperature that requires cooling, and therefore the gas temperature may be 100 ° C. or less, and the specific temperature is not limited. The high temperature gas is cooled by the heat exchange between the high temperature gas flowing through the gas flow paths 41, 51, 61 and the cooling liquid flowing through the cooling liquid flow paths 42, 52, 62, and the gas G2 is cooled. Goes out from the gas outlet 17.

図2に示されるように、コア部材12は、ハウジング11の軸線X1に対して、コア部材12の軸線Y1が90°交差(直交)する向き(横向きの姿勢)で配置されている。冷却液流入口43と冷却液流出口63とがコア部材12の両端に設けられているため、ハウジング11の軸線X1に対しコア部材12の軸線Y1が直交するように配置されると、ハウジング11の両側部に冷却液流入口43と冷却液流出口63が位置する。   As shown in FIG. 2, the core member 12 is arranged in a direction (lateral orientation) in which the axis Y <b> 1 of the core member 12 intersects (perpendicular) by 90 ° with respect to the axis X <b> 1 of the housing 11. Since the coolant inlet 43 and the coolant outlet 63 are provided at both ends of the core member 12, the housing 11 is arranged so that the axis Y 1 of the core member 12 is orthogonal to the axis X 1 of the housing 11. The coolant inlet port 43 and the coolant outlet port 63 are located on both sides.

本実施形態のコア部材12は、冷却液流入口43と対応する位置(冷却液流入口43の真上)に第1の管状連通部81が形成され、冷却液流出口63と対応する位置(冷却液流出口63の真下)に第2の管状連通部82が形成されている。このため第1の管状連通部81と第2の管状連通部82とは、それぞれ、ガス流通部25の幅方向の両側、すなわち高温ガスの流線中心から離れた位置に分かれて配置される。このため、コア部材12の内部に第1の管状連通部81と第2の管状連通部82とが設けられていても、これら管状連通部81,82によって高温ガスの流れ(整流)が実質的な影響を受けることを回避できる。   In the core member 12 of the present embodiment, a first tubular communication portion 81 is formed at a position corresponding to the coolant inlet 43 (directly above the coolant inlet 43), and a position corresponding to the coolant outlet 63 ( A second tubular communication portion 82 is formed immediately below the coolant outlet 63. For this reason, the first tubular communication part 81 and the second tubular communication part 82 are separately arranged at both sides in the width direction of the gas circulation part 25, that is, at positions away from the center of the flow line of the high-temperature gas. For this reason, even if the first tubular communication portion 81 and the second tubular communication portion 82 are provided inside the core member 12, the flow (rectification) of the hot gas is substantially caused by the tubular communication portions 81 and 82. Can be avoided.

本実施形態の熱交換器10によれば、コア部材12を流れる冷却液が下層コアユニット31から中層コアユニット32を経て上層コアユニット33へと、下から上に向かってジグザグ状に蛇行しながら流れるような流路構成であるため、冷却液流路を長くとることができる。しかもコア部材12の最下部に設けられた冷却液流入口43からコア部材12の内部に冷却液を供給する際、冷却液の水位が次第に上昇することに伴い、冷却液流路42,52,62内の空気が最上部の冷却液流出口63から順次排出されてゆくため、冷却液流路42,52,62内に空気だまりが生じてしまうことを回避できる。よって、空気だまりが原因となって生じるコア部材12の局部的な温度上昇も抑制できる。   According to the heat exchanger 10 of the present embodiment, the coolant flowing through the core member 12 meanders from the lower layer core unit 31 to the upper layer core unit 33 through the middle layer core unit 32 in a zigzag shape from the bottom to the top. Since the flow channel configuration is such that it flows, the coolant flow channel can be made longer. Moreover, when the coolant is supplied from the coolant inlet 43 provided at the lowermost part of the core member 12 to the inside of the core member 12, the coolant channels 42, 52, Since the air in 62 is sequentially discharged from the uppermost coolant outlet 63, it is possible to avoid the accumulation of air in the coolant channels 42, 52, 62. Therefore, the local temperature rise of the core member 12 caused by air accumulation can be suppressed.

しかもハウジング11の軸線X1に対してコア部材12の軸線Y1が直交するようにコア部材12が横向きに配置され、ハウジング11の両側部に冷却液流入口43および第1の管状連通部81と、冷却液流出口63および第2の管状連通部82とが位置するため、高温ガスの流れが管状連通部81,82によって影響を受けることを回避でき、特に管状連通部81,82付近の下流側の温度が過剰に上昇することを防止でき、熱応力によるコア部材の変形や損傷を防止することができるものである。   Moreover, the core member 12 is disposed sideways so that the axis Y1 of the core member 12 is orthogonal to the axis X1 of the housing 11, and the coolant inlet 43 and the first tubular communication portion 81 are provided on both sides of the housing 11, Since the coolant outlet 63 and the second tubular communication portion 82 are located, it is possible to avoid the flow of the high-temperature gas from being influenced by the tubular communication portions 81, 82, and particularly the downstream side in the vicinity of the tubular communication portions 81, 82. It is possible to prevent the temperature from rising excessively and to prevent deformation and damage of the core member due to thermal stress.

本実施形態の熱交換器では、コア部材12を、下層コアユニット31、中層コアユニット32、上層コアユニット33と分けたことにより、1つのコアユニットあたりの冷却水流量を増加させることができ、それにより流れの改善と、温度差低減、および冷却能力の向上による熱交換率の向上を図ることができた。   In the heat exchanger of the present embodiment, by dividing the core member 12 from the lower layer core unit 31, the middle layer core unit 32, and the upper layer core unit 33, the cooling water flow rate per one core unit can be increased. As a result, the flow was improved, the temperature difference was reduced, and the heat exchange rate was improved by improving the cooling capacity.

図10は、本実施形態の熱交換器と従来の熱交換器について、それぞれのコア部材の温度変化を調べた結果である。ここで言う従来の熱交換器は、コア部材の軸線がハウジングの軸線に沿うようにコア部材が高温ガスの流線に沿って配置され、かつ、コア部材が上下に複数のコアユニット層に分かれていないものである。測定条件は、コア部材の冷却液流路に冷却水が流されている状態のもとで、高温空気の流入を開始してから約70秒後に高温空気の流入を止め、送風(室温)に切換えた場合のコア部材の一部(ガス流入側)の温度変化を測定した。   FIG. 10 shows the results of examining the temperature change of each core member for the heat exchanger of the present embodiment and the conventional heat exchanger. In the conventional heat exchanger mentioned here, the core member is arranged along the streamline of the hot gas so that the axis of the core member is along the axis of the housing, and the core member is divided into a plurality of core unit layers vertically. It is not. The measurement conditions are that the cooling water is flowing through the coolant flow path of the core member, and the inflow of the high temperature air is stopped about 70 seconds after the start of the inflow of the high temperature air. The temperature change of a part of the core member (gas inflow side) when switched was measured.

図10において、実線L1が本実施形態の熱交換器のコア部材の温度変化を示し、破線L2が従来の熱交換器のコア部材の温度変化を示している。従来のコア部材は、高温ガスの流入を開始した直後にコア部材のガス流入側の一部の温度が急に上昇し、局部的な高温部を生じている。このため熱応力によってコア部材が変形したり破損したりする恐れがある。これに対し本実施形態の熱交換器では、コア部材に生じる温度上昇を小さくすることができ、コア部材の熱応力を小さくすることができた。   In FIG. 10, the solid line L1 shows the temperature change of the core member of the heat exchanger of this embodiment, and the broken line L2 shows the temperature change of the core member of the conventional heat exchanger. In the conventional core member, immediately after the inflow of the high temperature gas is started, the temperature of a part of the core member on the gas inflow side suddenly rises to generate a local high temperature portion. For this reason, there exists a possibility that a core member may deform | transform or break due to thermal stress. On the other hand, in the heat exchanger of this embodiment, the temperature rise generated in the core member can be reduced, and the thermal stress of the core member can be reduced.

図11は、第2の実施形態を示す仕切プレート90´と伝熱プレート40とを示す平面図である。伝熱プレート40の構成は第1の実施形態の伝熱プレート40(図1〜図9に示す)と共通である。第2の実施形態の仕切プレート90´は、伝熱プレート40と同様にプレス加工された板金からなる。伝熱プレート40にはプレスによって打抜かれた貫通孔71が形成されている。これに対し仕切プレート90´は、貫通孔71を塞ぐための閉鎖手段として、板金とは別部品である塞ぎ部材100を備えている。塞ぎ部材100は、伝熱プレート40と同様にステンレス鋼等の金属板からなり、貫通孔71を気液密に封鎖している。このように構成された第2の実施形態によれば、伝熱プレート40と仕切プレート90´とに共通のプレス成形品を使用することが可能となり、伝熱プレート40と仕切プレート90´との部品共通化を図ることができる。   FIG. 11 is a plan view showing the partition plate 90 ′ and the heat transfer plate 40 according to the second embodiment. The configuration of the heat transfer plate 40 is the same as that of the heat transfer plate 40 of the first embodiment (shown in FIGS. 1 to 9). The partition plate 90 ′ of the second embodiment is made of a sheet metal that is pressed in the same manner as the heat transfer plate 40. The heat transfer plate 40 is formed with a through hole 71 punched out by a press. On the other hand, the partition plate 90 ′ includes a closing member 100 that is a separate component from the sheet metal as a closing means for closing the through hole 71. The closing member 100 is made of a metal plate such as stainless steel like the heat transfer plate 40 and seals the through hole 71 in a gas-liquid tight manner. According to the second embodiment configured as described above, a common press-formed product can be used for the heat transfer plate 40 and the partition plate 90 ', and the heat transfer plate 40 and the partition plate 90' can be used together. Parts can be shared.

図12は、第3の実施形態に係る熱交換器10´のコア部材12´を示している。このコア部材12´は、第1の実施形態で説明した中層コアユニット32を設けずに、下層コアユニット31の上に上層コアユニット33が配置されている。それ以外の構成と作用は第1の実施形態の熱交換器10と共通であるため、互いに共通の箇所に同一の符号を付して説明を省略する。   FIG. 12 shows a core member 12 ′ of the heat exchanger 10 ′ according to the third embodiment. In the core member 12 ′, the upper layer core unit 33 is disposed on the lower layer core unit 31 without providing the middle layer core unit 32 described in the first embodiment. Since the other configuration and operation are the same as those of the heat exchanger 10 of the first embodiment, the same reference numerals are given to common portions, and description thereof is omitted.

なお本発明を実施するに当たって、例えばハウジングやコア部材の形状や構成をはじめとして、伝熱プレートの具体的な形状や、伝熱プレートを重ねる枚数等の具体的な態様を適宜に変形して実施できることは言うまでもない。また中層コアユニットの数が2以上でもよい。さらに中層コアユニットが無く、下層コアユニットと上層コアユニットのみによってコア部材が構成されてもよい。高温ガスは高温空気以外のガスでもよいし、冷却液は水以外の流体であってもよい。   In carrying out the present invention, for example, the shape and configuration of the housing and the core member, the specific shape of the heat transfer plate, the specific number of the heat transfer plates, and the like are appropriately modified. Needless to say, you can. Further, the number of middle-layer core units may be two or more. Furthermore, there is no middle layer core unit, and the core member may be constituted only by the lower layer core unit and the upper layer core unit. The hot gas may be a gas other than hot air, and the coolant may be a fluid other than water.

10,10´…熱交換器、11…ハウジング、12,12´…コア部材、15…コア収容部、16…ガス流入口、17…ガス流出口、25…ガス流通部、31…下層コアユニット、32…中層コアユニット、33…上層コアユニット、40…伝熱プレート、41…下層ガス流路、42…下層冷却液流路、43…冷却液流入口、51…中層ガス流路、52…中層冷却液流路、61…上層ガス流路、62…上層冷却液流路、63…冷却液流出口、G1,G2…ガス、Q1,Q2…冷却液、70…波形部、71…貫通孔、72…筒部、81…第1の管状連通部、82…第2の管状連通部、90,90´…仕切プレート、91…波形部、92…筒部、93…板金部(閉鎖手段)、100…塞ぎ部材(閉鎖手段)、X1…ハウジングの軸線、Y1…コア部材の軸線。   DESCRIPTION OF SYMBOLS 10,10 '... Heat exchanger, 11 ... Housing, 12, 12' ... Core member, 15 ... Core accommodating part, 16 ... Gas inlet, 17 ... Gas outlet, 25 ... Gas distribution part, 31 ... Lower layer core unit 32 ... Middle layer core unit, 33 ... Upper layer core unit, 40 ... Heat transfer plate, 41 ... Lower gas channel, 42 ... Lower layer coolant channel, 43 ... Coolant inlet, 51 ... Middle gas channel, 52 ... Middle coolant flow path, 61 ... upper gas flow path, 62 ... upper coolant flow path, 63 ... cooling liquid outlet, G1, G2 ... gas, Q1, Q2 ... cooling liquid, 70 ... corrugated part, 71 ... through hole , 72 ... cylindrical part, 81 ... first tubular communication part, 82 ... second tubular communication part, 90, 90 '... partition plate, 91 ... corrugated part, 92 ... cylindrical part, 93 ... sheet metal part (closing means) , 100 ... Closing member (closing means), X1 ... Housing axis, Y1 ... Core part Of the axis.

Claims (8)

ガス流入口とガス流出口とを有し、前記ガス流入口と前記ガス流出口との間に高温ガスが流れるハウジングと、
前記ハウジングに収容されたコア部材と、
を具備した熱交換器であって、
前記コア部材が、
複数の伝熱プレートを厚さ方向に重ねた状態において各伝熱プレート間に下層ガス流路と下層冷却液流路とが交互に形成された下層コアユニットと、
前記下層コアユニットの上側に配置され、複数の伝熱プレートを厚さ方向に重ねた状態において各伝熱プレート間に上層ガス流路と上層冷却液流路とが交互に形成された上層コアユニットと、
記下層コアユニットの下部に形成され、前記下層冷却液流路に連通する冷却液流入口と、
記上層コアユニットの上部に形成され、前記上層冷却液流路に連通する冷却液流出口とを含み、
前記複数の伝熱プレートが、それぞれ、
前記ガス流入口と前記ガス流出口とを結ぶハウジングの軸線に対し斜め方向に稜線が延びる波形部と、
前記コア部材の一端側に形成された円形の貫通孔と、
前記コア部材の他端側に形成され、前記貫通孔に応じた径の筒部とを有し、
隣り合う前記伝熱プレート同士を互いに表裏を逆にして重ね、
一方の伝熱プレートの前記筒部を他方の伝熱プレートの前記貫通孔の内周縁に気液密に接合することにより前記冷却液流入口と対応する位置に第1の管状連通部を形成し、かつ、前記他方の伝熱プレートの前記筒部を前記一方の伝熱プレートの前記貫通孔の内周縁に気液密に接続することにより前記冷却液流出口と対応する位置に第2の管状連通部を形成し、かつ、
前記ハウジングの上方から見て、前記第1の管状連通部と前記第2の管状連通部とを結ぶコア部材の軸線が前記ハウジングの軸線と交差する向きに前記コア部材を配置することにより、前記ハウジングの側部に前記冷却液流入口と前記冷却液流出口とを配置したことを特徴とする熱交換器。
A housing having a gas inlet and a gas outlet, wherein hot gas flows between the gas inlet and the gas outlet;
A core member housed in the housing;
A heat exchanger comprising:
The core member is
A lower core unit in which a lower gas channel and a lower coolant channel are alternately formed between the heat transfer plates in a state where a plurality of heat transfer plates are stacked in the thickness direction;
An upper layer core unit that is disposed on the upper side of the lower layer core unit, and in which a plurality of heat transfer plates are stacked in the thickness direction, an upper gas channel and an upper coolant channel are alternately formed between the heat transfer plates. When,
Formed under the prior Symbol lower core unit, a cooling fluid inlet communicating with the lower cooling fluid channel,
Formed on top of prior SL upper core units, and a coolant outlet port communicating with the upper cooling fluid channel,
The plurality of heat transfer plates are respectively
A corrugated portion having a ridge extending in an oblique direction with respect to an axis of a housing connecting the gas inlet and the gas outlet;
A circular through hole formed on one end side of the core member;
Formed on the other end side of the core member, and having a cylindrical portion having a diameter corresponding to the through-hole,
The heat transfer plates adjacent to each other are stacked upside down,
A first tubular communication portion is formed at a position corresponding to the cooling liquid inlet by gas-liquid tightly joining the cylindrical portion of one heat transfer plate to the inner peripheral edge of the through hole of the other heat transfer plate. In addition, a second tubular shape is formed at a position corresponding to the coolant outlet by connecting the cylindrical portion of the other heat transfer plate to the inner peripheral edge of the through hole of the one heat transfer plate in a gas-liquid tight manner. Forming a communication part, and
By disposing the core member in a direction in which the axis of the core member connecting the first tubular communication portion and the second tubular communication portion intersects the axis of the housing as viewed from above the housing, A heat exchanger, wherein the coolant inlet and the coolant outlet are arranged on a side portion of the housing.
前記複数の伝熱プレートが互いに共通の形状であることを特徴とする請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the plurality of heat transfer plates have a common shape . 前記下層コアユニットと前記上層コアユニットとの間に仕切プレートが配置され、
前記仕切プレートは、
前記伝熱プレートの前記波形部と共通形状の波形部と、前記伝熱プレートの前記筒部と共通形状の筒部とを有し、かつ、
前記仕切プレートが、
前記伝熱プレートの前記貫通孔と対応する位置に閉鎖手段を有したことを特徴とする請求項2に記載の熱交換器。
A partition plate is disposed between the lower core unit and the upper core unit,
The partition plate is
A corrugated portion having a common shape with the corrugated portion of the heat transfer plate, a tubular portion having a common shape with the tubular portion of the heat transfer plate, and
The partition plate is
The heat exchanger according to claim 2, further comprising a closing unit at a position corresponding to the through hole of the heat transfer plate.
前記下層コアユニットと前記上層コアユニットとの間に、複数の伝熱プレートを厚さ方向に重ねることによって各伝熱プレート間に中層ガス流路と中層冷却液流路とを交互に形成してなる1つ以上の中層コアユニットを具備し、前記ハウジングの上方から見て、前記該コア部材の一端側に前記冷却液流入口が配置され、前記コア部材の他端側に前記冷却液流出口が配置されたことを特徴とする請求項1に記載の熱交換器。 By stacking a plurality of heat transfer plates in the thickness direction between the lower layer core unit and the upper layer core unit, an intermediate gas channel and an intermediate coolant channel are alternately formed between the heat transfer plates. One or more middle-layer core units , wherein the coolant inlet is disposed on one end side of the core member as viewed from above the housing, and the coolant outlet is disposed on the other end of the core member. The heat exchanger according to claim 1, wherein the heat exchanger is disposed . 前記複数の伝熱プレートが互いに共通の形状であることを特徴とする請求項4に記載の熱交換器。 The heat exchanger according to claim 4, wherein the plurality of heat transfer plates have a common shape . 前記下層コアユニットと前記中層コアユニットとの間、および前記上層コアユニットと前記中層コアユニットとの間に、それぞれ仕切プレートが配置され、
前記仕切プレートは、
前記伝熱プレートの前記波形部と共通形状の波形部と、前記伝熱プレートの前記筒部と共通形状の筒部とを有し、かつ、
前記仕切プレートが、
前記伝熱プレートの前記貫通孔と対応する位置に閉鎖手段を有したことを特徴とする請求項5に記載の熱交換器。
Partition plates are disposed between the lower core unit and the middle core unit and between the upper core unit and the middle core unit, respectively.
The partition plate is
A corrugated portion having a common shape with the corrugated portion of the heat transfer plate, a tubular portion having a common shape with the tubular portion of the heat transfer plate, and
The partition plate is
6. The heat exchanger according to claim 5, further comprising a closing means at a position corresponding to the through hole of the heat transfer plate.
前記伝熱プレートと前記仕切プレートとがそれぞれプレス加工された板金からなり、
前記伝熱プレートの前記貫通孔がプレスによって打抜かれた孔からなり、
前記仕切プレートの前記閉鎖手段が孔を開けずに残された板金部からなることを特徴とする請求項3または6に記載の熱交換器。
The heat transfer plate and the partition plate are each made of a pressed metal plate,
The through hole of the heat transfer plate is a hole punched by a press,
The heat exchanger according to claim 3 or 6, wherein the closing means of the partition plate comprises a sheet metal portion left without opening a hole.
前記伝熱プレートと前記仕切プレートとがそれぞれプレス加工された板金からなり、
前記伝熱プレートの前記貫通孔がプレスによって打抜かれた孔からなり、
前記仕切プレートの前記閉鎖手段が、プレス加工によって打抜かれた貫通孔を塞ぐための塞ぎ部材からなることを特徴とする請求項3または6に記載の熱交換器。
The heat transfer plate and the partition plate are each made of a pressed metal plate,
The through hole of the heat transfer plate is a hole punched by a press,
The heat exchanger according to claim 3 or 6, wherein the closing means of the partition plate includes a closing member for closing a through hole punched by press working.
JP2014210692A 2014-10-15 2014-10-15 Heat exchanger Active JP6408855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014210692A JP6408855B2 (en) 2014-10-15 2014-10-15 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014210692A JP6408855B2 (en) 2014-10-15 2014-10-15 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2016080230A JP2016080230A (en) 2016-05-16
JP6408855B2 true JP6408855B2 (en) 2018-10-17

Family

ID=55958213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014210692A Active JP6408855B2 (en) 2014-10-15 2014-10-15 Heat exchanger

Country Status (1)

Country Link
JP (1) JP6408855B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE544093C2 (en) * 2019-05-21 2021-12-21 Alfa Laval Corp Ab Plate heat exchanger, and a method of manufacturing a plate heat exchanger
JP7119016B2 (en) * 2020-03-11 2022-08-16 株式会社日阪製作所 plate heat exchanger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165474U (en) * 1982-04-27 1983-11-04 東洋ラジエーター株式会社 Multi-plate heat exchanger
JP2001174173A (en) * 1999-12-21 2001-06-29 Denso Corp Exhaust heat exchanger
JP2002122393A (en) * 2000-08-09 2002-04-26 Denso Corp Stacked heat exchanger
JP2006177637A (en) * 2004-12-24 2006-07-06 Nhk Spring Co Ltd Plate assembly for heat exchanger
JP2006207948A (en) * 2005-01-28 2006-08-10 Calsonic Kansei Corp Air-cooled oil cooler
DE102010042068A1 (en) * 2010-10-06 2012-04-12 Behr Gmbh & Co. Kg Heat exchanger
JP6216118B2 (en) * 2013-01-11 2017-10-18 フタバ産業株式会社 Heat exchanger
JP6040068B2 (en) * 2013-03-22 2016-12-07 株式会社ティラド Manufacturing method of stacked heat exchanger

Also Published As

Publication number Publication date
JP2016080230A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6893925B2 (en) Stacked heat sink core
US9714796B2 (en) Plate heat exchanger and method for manufacturing of a plate heat exchanger
KR101900232B1 (en) Plate heat exchanger
JP6408855B2 (en) Heat exchanger
JP2006342997A (en) Heat exchanger
JP6154122B2 (en) Multi-plate stacked heat exchanger
JP5393606B2 (en) Heat exchanger
JP2017106648A (en) Heat exchanger
JP6160385B2 (en) Laminate heat exchanger
US10048014B2 (en) Plate heat exchanger with improved strength in port area
JP5903911B2 (en) Heat exchanger
JP3192720U (en) Plate member and heat exchanger
US9587892B2 (en) Heat exchanger
JP6087640B2 (en) Laminate heat exchanger
JP5747335B2 (en) Heat exchanger for heat engine
WO2017195588A1 (en) Stack type heat exchanger
JP5226342B2 (en) Cold storage / heat storage type heat exchanger
JP2016130625A (en) Heat exchanger and metal thin plate for the same
JP4312640B2 (en) Stacked heat exchanger
US20070158055A1 (en) Heat dissipating device
JP2018093115A (en) Cooler
JP2018076984A (en) Heat exchanger
JP4549228B2 (en) Plate heat exchanger
JP6525248B2 (en) Heat exchanger and plate unit for heat exchanger
JP6292844B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180921

R150 Certificate of patent or registration of utility model

Ref document number: 6408855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250