JP5717236B2 - Particle accelerator - Google Patents

Particle accelerator Download PDF

Info

Publication number
JP5717236B2
JP5717236B2 JP2010110454A JP2010110454A JP5717236B2 JP 5717236 B2 JP5717236 B2 JP 5717236B2 JP 2010110454 A JP2010110454 A JP 2010110454A JP 2010110454 A JP2010110454 A JP 2010110454A JP 5717236 B2 JP5717236 B2 JP 5717236B2
Authority
JP
Japan
Prior art keywords
particle
tube
less
content
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010110454A
Other languages
Japanese (ja)
Other versions
JP2011236484A (en
Inventor
敏夫 坂本
敏夫 坂本
孝和 新冨
孝和 新冨
佐藤 勇
勇 佐藤
隆行 都丸
隆行 都丸
俊和 高富
俊和 高富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Mitsubishi Materials Corp
Inter University Research Institute Corp High Energy Accelerator Research Organization
Original Assignee
Nihon University
Mitsubishi Materials Corp
Inter University Research Institute Corp High Energy Accelerator Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Mitsubishi Materials Corp, Inter University Research Institute Corp High Energy Accelerator Research Organization filed Critical Nihon University
Priority to JP2010110454A priority Critical patent/JP5717236B2/en
Publication of JP2011236484A publication Critical patent/JP2011236484A/en
Application granted granted Critical
Publication of JP5717236B2 publication Critical patent/JP5717236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Description

この発明は、例えば、実験設備や医療設備として利用されている粒子加速器に関するものである。 The present invention, for example, those related to the particle acceleration device which is utilized as a laboratory equipment and medical equipment.

前述の粒子加速器においては、筒状に形成された粒子加速管に高周波高電界を付加し、粒子加速管内を通過する粒子(例えば電子)を加速し、加速した粒子を、例えばSi単結晶等に照射することによって電磁波(例えばX線)を発生させ、この電磁波を利用して、診断・治療を行う構成とされている。
特に、電子ビームを100MeV程度まで加速し、シリコン単結晶またはダイヤモンド単結晶に衝突させることによって得られる空間干渉X線は、単色光でX線の位相が揃っていることから、内臓などの軟組織の内部構造の鮮明な画像を撮像することが可能となり、医療用の診断に有益である。また、空間干渉X線は、集束が可能であることから、照射する物体の内部にエネルギーピークを位置させることが可能となるため、がん治療等に利用することができる。
In the particle accelerator described above, a high-frequency high electric field is applied to a particle accelerator tube formed in a cylinder shape, particles (for example, electrons) passing through the particle accelerator tube are accelerated, and the accelerated particles are converted into, for example, a Si single crystal or the like. Irradiation generates electromagnetic waves (for example, X-rays), and diagnosis and treatment are performed using the electromagnetic waves.
In particular, the spatial interference X-ray obtained by accelerating the electron beam to about 100 MeV and colliding with a silicon single crystal or a diamond single crystal has the same X-ray phase with monochromatic light. A clear image of the internal structure can be taken, which is useful for medical diagnosis. In addition, since spatial interference X-rays can be focused, an energy peak can be positioned inside the object to be irradiated, and thus can be used for cancer treatment or the like.

ここで、上述の粒子加速器においては、粒子加速管には高周波高電界を付加することから、高周波電流が流れることになり、電気抵抗の高い素材で構成されていた場合には、ジュール熱による温度上昇が発生してしまうことになる。   Here, in the above-described particle accelerator, a high-frequency high electric field is applied to the particle accelerator tube, so that a high-frequency current flows. When the particle accelerator is made of a material having high electrical resistance, the temperature due to Joule heat An increase will occur.

従来では、例えば特許文献1、2に示すように、超伝導材料で構成された粒子加速管が提供されていた。しかしながら、超伝導材料で構成された粒子加速管を用いる場合には、例えば2Kといった絶対零度近くに冷却する必要があることから、粒子加速器の設備構成が大きくなってしまうといった問題があった。
また、超伝導材料で構成された粒子加速管を用いた場合には、例えば5GHzといった高周波電力を付加した際には電力損失が発生することになるため、付加する高周波電力を3GHz以下とする必要があった。また、上述のように、例えば空間干渉X線を発生させるために、電子ビームを100MeV程度まで加速させるためには、粒子加速管を長くする必要があり、やはり、粒子加速器の設備構成が大きくなってしまうといった問題があった。
Conventionally, for example, as shown in Patent Documents 1 and 2, a particle accelerating tube made of a superconducting material has been provided. However, when a particle accelerator tube made of a superconducting material is used, there is a problem that the equipment configuration of the particle accelerator becomes large because it is necessary to cool to near zero, for example, 2K.
In addition, when a particle accelerator tube made of a superconducting material is used, power loss occurs when high-frequency power such as 5 GHz is applied. Therefore, the high-frequency power to be added must be 3 GHz or less. was there. Further, as described above, for example, in order to generate a spatial interference X-ray, in order to accelerate the electron beam to about 100 MeV, it is necessary to lengthen the particle accelerating tube, and the equipment configuration of the particle accelerator is also increased. There was a problem such as.

そこで、例えば特許文献3、4に示すように、常伝導材料である銅によって構成された粒子加速管が提供されている。
ここで、低温状態での電気抵抗を評価する指標として、残留抵抗比(RRR)が用いられる。この残留抵抗比(RRR)は、室温(300K)での電気比抵抗をρ300とし、液体ヘリウム温度(4.2K)での電気比抵抗をρ4.2とした場合に、下記式で定義されるものである。
RRR=ρ300/ρ4.2
この残留抵抗比(RRR)が大きいほど、極低温環境下での電気抵抗が低くなることから、粒子加速管として特に適していることになる。
Therefore, for example, as shown in Patent Documents 3 and 4, a particle accelerating tube made of copper, which is a normal conductive material, is provided.
Here, the residual resistance ratio (RRR) is used as an index for evaluating the electrical resistance in a low temperature state. The residual resistance ratio (RRR) is a electrical resistivity [rho 300 at room temperature (300K), the electrical resistivity at liquid helium temperature (4.2 K) in the case of the [rho 4.2, defined by the following formula It is what is done.
RRR = ρ 300 / ρ 4.2
The larger the residual resistance ratio (RRR), the lower the electric resistance in a cryogenic environment, and thus it is particularly suitable as a particle acceleration tube.

特開昭64−007500号公報JP-A 64-007500 特開平03−208300号公報JP 03-208300 A 特開2004−156090号公報JP 2004-156090 A 特開平09―316568号公報JP 09-316568 A

ところで、純度が99.99質量%以上99.999質量%未満の一般的な純銅(4NCu)においては、残留抵抗比(RRR)は1000以下であった。
純銅系材料において残留抵抗比(RRR)が1000以下の場合、例えば20K以下の極低温環境下での電気抵抗が十分に低くなっていないため、粒子加速管に高周波高電界を付加した際に、ジュール熱が発生して粒子加速管の温度が上昇し、極低温状態が維持されなくなってしまう。すると、さらに粒子加速管の電気抵抗が大きくなってジュール熱が発生して、さらに粒子加速管の温度が上昇することになり、安定して粒子を加速することができなくなってしまう。
特に、がん治療用の粒子加速器においては、さらに高い電圧が粒子加速管に付加されるため、残留抵抗比(RRR)が1000以下である4NCuからなる粒子加速管を用いることができなかった。
By the way, in general pure copper (4NCu) having a purity of 99.99 mass% or more and less than 99.999 mass%, the residual resistance ratio (RRR) was 1000 or less.
When the residual resistance ratio (RRR) is 1000 or less in a pure copper-based material, for example, since the electrical resistance in a cryogenic environment of 20K or less is not sufficiently low, when a high frequency high electric field is applied to the particle accelerator tube, Joule heat is generated and the temperature of the particle accelerating tube rises, and the cryogenic state is not maintained. As a result, the electrical resistance of the particle accelerating tube is further increased, Joule heat is generated, and the temperature of the particle accelerating tube is further increased, so that the particles cannot be accelerated stably.
In particular, in a particle accelerator for cancer treatment, since a higher voltage is applied to the particle accelerator tube, a particle accelerator tube made of 4NCu having a residual resistance ratio (RRR) of 1000 or less could not be used.

また、4NCuからなる粒子加速管においては、無負荷利得係数Qが低いために高周波電力損失が大きく、粒子を効率良く加速させることができなかった。
さらに、4NCuによって粒子ビームを減速させる粒子減速管を構成しても、やはり高周波電力の損失が大きいことから、粒子ビームを十分に減速することができず、ビームダンプに粒子ビームを吸収させる際に、中性子等の2次粒子が発生することになる。よって、この2次粒子を遮蔽するための設備が必要となり、粒子加速器の設備構成が大きくなってしまうといった問題があった。
Further, in the particle accelerating tube made of 4NCu, since the no-load gain coefficient Q is low, the high frequency power loss is large and the particles cannot be accelerated efficiently.
Furthermore, even if a particle decelerating tube that decelerates the particle beam with 4NCu is used, the loss of high-frequency power is still large, so the particle beam cannot be sufficiently decelerated, and the beam dump is absorbed by the particle dump. Secondary particles such as neutrons are generated. Therefore, equipment for shielding the secondary particles is required, and there is a problem that the equipment configuration of the particle accelerator becomes large.

また、純度が99.9999質量%以上99.99999質量%未満の高純度銅(6NCu)を用いることが考えられるが、単に不純物を1ppm以下とした6NCuでは、残留抵抗比(RRR)が2500程度であり、十分とはいえなかった。
ここで、純度が99.99999質量%以上99.999999質量%未満の超高純度銅(7NCu)であれば、残留抵抗比(RRR)が5000を超えることから、粒子加速管及び粒子減速管を構成する材料として非常に適している。しかしながら、7NCuは、製造プロセスが複雑であるため、コストが非常に高く一般的に使用することは困難であった。
In addition, it is conceivable to use high-purity copper (6NCu) having a purity of 99.9999% by mass or more and less than 99.99999% by mass, but 6NCu having an impurity content of 1 ppm or less simply has a residual resistance ratio (RRR) of about 2500. That was not enough.
Here, if the purity is 99.99999 mass% or more and less than 99.999999 mass% ultra high purity copper (7NCu), the residual resistance ratio (RRR) exceeds 5000. It is very suitable as a constituent material. However, since 7NCu has a complicated manufacturing process, it is very expensive and difficult to use in general.

この発明は、前述した事情に鑑みてなされたものであって、製造コストが比較的廉価であって入手が容易な高純度銅(6NCu)であっても、残留抵抗比(RRR)が比較的大きく、極低温環境下で高周波高電界を付加しても安定して使用することが可能な粒子加速器用銅材料を用いた粒子加速器を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and the residual resistance ratio (RRR) is relatively low even if the production cost is relatively inexpensive and easily available high purity copper (6NCu). An object of the present invention is to provide a particle accelerator using a copper material for a particle accelerator that is large and can be used stably even when a high frequency high electric field is applied in a cryogenic environment.

この課題を解決するために、本発明者らは鋭意研究を行った結果、高純度銅(6NCu)であっても、特定の元素の含有量を制御することによって、残留抵抗比(RRR)を大きくすること、すなわち、低温環境下での電気抵抗を小さくすることが可能であるとの知見を得た。   In order to solve this problem, the present inventors have conducted intensive research. As a result, even for high-purity copper (6NCu), the residual resistance ratio (RRR) is controlled by controlling the content of a specific element. The inventors have found that it is possible to increase the electrical resistance in a low temperature environment.

本発明は、かかる知見に基いてなされたものであって、本発明に係る粒子加速器は、粒子ビームを加速する粒子加速管と、加速された粒子ビームを用いて電磁波を発生させる電磁波発生器と、この電磁波発生器を通過した粒子ビームを減速する粒子減速管と、この粒子減速管を通過した粒子ビームを吸収するビームダンプと、前記粒子加速管及び前記粒子減速管を冷却する冷却器と、を備えた粒子加速器であって、前記粒子加速管及び前記粒子減速管は、粒子加速器用銅材料で構成された第一円筒部材、第二円筒部材、円板状部材及びブロック部材を拡散接合することで構成されており、前記粒子加速器用銅材料は、ガス成分を除いたCuの純度が99.9999質量%以上99.99999質量%未満とされ、Feの含有量が0.04ppm以下、Pの含有量が0.04ppm以下、Alの含有量が0.05ppm以下、Asの含有量が0.03ppm以下、Snの含有量が0.04ppm以下及びSの含有量が0.06ppm以下、かつ、Fe,P,Al,As,Sn及びSを含む不純物の含有量が0.37ppm以下とされており、残留抵抗比が3000以上とされていることを特徴としている。 The present invention has been made based on such knowledge, and the particle accelerator according to the present invention includes a particle accelerator tube for accelerating a particle beam, an electromagnetic wave generator for generating an electromagnetic wave using the accelerated particle beam, and A particle decelerating tube that decelerates the particle beam that has passed through the electromagnetic wave generator, a beam dump that absorbs the particle beam that has passed through the particle decelerating tube, a cooler that cools the particle accelerating tube and the particle decelerating tube, The particle accelerator tube and the particle decelerating tube are diffusion bonded to a first cylindrical member, a second cylindrical member, a disk-shaped member, and a block member made of a copper material for a particle accelerator. In the particle accelerator copper material, the purity of Cu excluding gas components is 99.9999 mass% or more and less than 99.99999 mass%, and the Fe content is 0.04 pp. m or less, P content is 0.04 ppm or less, Al content is 0.05 ppm or less, As content is 0.03 ppm or less, Sn content is 0.04 ppm or less, and S content is 0.00. It is characterized in that it is 06 ppm or less, the content of impurities including Fe, P, Al, As, Sn and S is 0.37 ppm or less , and the residual resistance ratio is 3000 or more.

このような構成とされた本発明の粒子加速器においては、粒子ビームを加速する粒子加速管と粒子ビームを減速する粒子減速管とが、粒子加速器用銅材料で構成された第一円筒部材、第二円筒部材、円板状部材及びブロック部材を拡散接合することで構成されており、前記粒子加速器用銅材料は、ガス成分を除いたCuの純度が99.9999質量%以上99.99999質量%未満とされ、Feの含有量が0.04ppm以下、Pの含有量が0.04ppm以下、Alの含有量が0.05ppm以下、Asの含有量が0.03ppm以下、Snの含有量が0.04ppm以下及びSの含有量が0.06ppm以下、かつ、Fe,P,Al,As,Sn及びSを含む不純物の含有量が0.37ppm以下とされており、残留抵抗比が3000以上とされていることから、例えば20K以下の極低温環境下において電気抵抗が十分に低くなるため、この粒子加速器用銅材料に対して高周波高電界を付加した場合でも、ジュール熱の発生を抑制することが可能となる。また、無負荷利得係数Qが高く高周波電力損失が抑えられるため、粒子を効率良く加速、減速させることができ、粒子加速器自体を小型化することが可能となる。
また、粒子減速管において、粒子ビームが十分に減速されていることから、粒子減速管を通過した粒子ビームをビームダンプに吸収させた際に、中性子等の2次粒子の発生が抑制されることになり、遮蔽設備を簡素化することができる。さらに、粒子加速管及び粒子減速管を構成する6NCuからなる粒子加速器用銅材料は、内部からのガス放出が抑制されるため、粒子加速管及び粒子減速管の周囲を、比較的容易に真空雰囲気とすることが可能となる。
In the particle accelerator of the present invention configured as described above, the particle accelerating tube for accelerating the particle beam and the particle decelerating tube for decelerating the particle beam include a first cylindrical member made of a copper material for the particle accelerator, The two-cylindrical member, the disk-shaped member, and the block member are formed by diffusion bonding, and the copper material for the particle accelerator has a purity of Cu of 99.9999 mass% or more and 99.999999 mass% excluding gas components. Fe content is 0.04 ppm or less, P content is 0.04 ppm or less, Al content is 0.05 ppm or less, As content is 0.03 ppm or less, and Sn content is 0. 0.04 ppm or less, the content of S is 0.06 ppm or less, the content of impurities including Fe, P, Al, As, Sn, and S is 0.37 ppm or less, and the residual resistance ratio is 3000 As described above, for example, since the electric resistance is sufficiently low under an extremely low temperature environment of 20K or less, even when a high frequency high electric field is applied to the copper material for particle accelerator, generation of Joule heat is suppressed. It becomes possible to do. In addition, since the no-load gain coefficient Q is high and high-frequency power loss is suppressed, particles can be efficiently accelerated and decelerated, and the particle accelerator itself can be downsized.
In addition, since the particle beam is sufficiently decelerated in the particle decelerating tube, the generation of secondary particles such as neutrons is suppressed when the particle beam that has passed through the particle decelerating tube is absorbed by the beam dump. Thus, the shielding facility can be simplified. Furthermore, the particle accelerator copper material made of 6NCu constituting the particle accelerator tube and the particle reducer tube suppresses the release of gas from the inside, so that the surroundings of the particle accelerator tube and the particle reducer tube can be relatively easily vacuumed. It becomes possible.

ここで、前記粒子加速器用銅材料は、Feの含有量が0.01ppm未満、Pの含有量が0.01ppm未満、Alの含有量が0.01ppm未満、Asの含有量が0.01ppm未満、Snの含有量が0.01ppm未満及びSの含有量が0.05ppm未満とされており、残留抵抗比が5000以上とされていることが好ましい。
この場合、Feの含有量を0.01ppm未満、Pの含有量を0.01ppm未満、Alの含有量を0.01ppm未満、Asの含有量を0.01ppm未満、Snの含有量を0.01ppm未満及びSの含有量を0.05ppm未満とそれぞれ規定することによって、残留抵抗比を5000以上とすることが可能となる。すなわち、6NCuであっても、7NCuと同等の残留抵抗比を得ることができるのである。
よって、例えば20K以下の極低温環境下において電気抵抗がさらに低くなるため、この粒子加速器用銅材料に対して高周波高電界を付加した場合でも、ジュール熱の発生を確実に抑制することが可能となる。また、無負荷利得係数Qが高く高周波電力損失が抑えられるため、粒子をさらに効率良く加速、減速させることができ、粒子加速器自体を小型化することが可能となる。さらに、製造が困難な7NCuに比べて、製造コストを大幅に削減することができる。
Here, the copper material for the particle accelerator has an Fe content of less than 0.01 ppm, a P content of less than 0.01 ppm, an Al content of less than 0.01 ppm, and an As content of less than 0.01 ppm. It is preferable that the Sn content is less than 0.01 ppm, the S content is less than 0.05 ppm, and the residual resistance ratio is 5000 or more.
In this case, the Fe content is less than 0.01 ppm, the P content is less than 0.01 ppm, the Al content is less than 0.01 ppm, the As content is less than 0.01 ppm, and the Sn content is 0.00. By defining the content of less than 01 ppm and the content of S as less than 0.05 ppm, the residual resistance ratio can be set to 5000 or more. That is, even with 6NCu, a residual resistance ratio equivalent to 7NCu can be obtained.
Therefore, for example, since the electrical resistance is further reduced in an extremely low temperature environment of 20K or less, even when a high frequency high electric field is added to the copper material for particle accelerator, it is possible to reliably suppress the generation of Joule heat. Become. In addition, since the no-load gain coefficient Q is high and high-frequency power loss is suppressed, particles can be accelerated and decelerated more efficiently, and the particle accelerator itself can be downsized. Furthermore, the manufacturing cost can be greatly reduced as compared with 7NCu, which is difficult to manufacture.

また、拡散接合した第一円筒部材、第二円筒部材、円板状部材及びブロック部材に対して、400℃以上融点未満で1時間以上の熱処理を行ってもよい。
この場合、400℃以上融点未満、望ましくは材料の変形の少ない1000℃以下、で1時間以上の熱処理を行うことから、加工により粒子加速器用銅材料に蓄積された歪みを、熱処理工程によって解放することができ、残留抵抗比(RRR)を大きくすることが可能となる。
Moreover, you may heat-process for 1 hour or more with 400 degreeC or more and less than melting | fusing point with respect to the 1st cylindrical member, 2nd cylindrical member, disk-shaped member, and block member which carried out diffusion bonding .
In this case, since the heat treatment is performed at 400 ° C. or higher and lower than the melting point, desirably 1000 ° C. or less with less deformation of the material for 1 hour or more, the strain accumulated in the copper material for particle accelerator by processing is released by the heat treatment step. And the residual resistance ratio (RRR) can be increased.

ここで、前記粒子加速管と前記粒子減速管とを接続する導波管を備え、前記粒子減速管で回収された高周波電力を前記粒子加速管に供給する構成とされており、この導波管が、前述の粒子加速器用銅材料で構成されていることが好ましい。
この場合、前記粒子加速管と前記粒子減速管とを接続する導波管が、残留抵抗比が3000以上とされた6NCuからなる粒子加速器用銅材料で構成されているので、前記粒子減速管で回収された高周波電力を前記粒子加速管に供給する際の損失を抑制することができ、回収された高周波電力を確実に再利用することができ、エネルギー使用量を大幅に低減することができる。
Here, a waveguide that connects the particle acceleration tube and the particle deceleration tube is provided, and the high-frequency power recovered by the particle deceleration tube is supplied to the particle acceleration tube. However, it is preferable to be comprised with the above-mentioned copper material for particle accelerators.
In this case, the waveguide connecting the particle accelerator tube and the particle decelerating tube is composed of a copper material for particle accelerator made of 6NCu having a residual resistance ratio of 3000 or more. Loss when supplying the recovered high frequency power to the particle accelerating tube can be suppressed, the recovered high frequency power can be reliably reused, and the amount of energy used can be greatly reduced.

また、前記粒子加速管、前記粒子減速管および前記導波管を収納する断熱真空容器を備えることが好ましい。
粒子加速管、粒子減速管および導波管を同一の断熱真空容器に収納し、極低温に冷却することで高周波電力損失を減らし、高周波電力を確実に再利用できる。同時に、断熱真空容器を一体化することで小型化でき、効率的に冷却できる。
Moreover, it is preferable to provide an adiabatic vacuum container that houses the particle acceleration tube, the particle deceleration tube, and the waveguide.
By storing the particle accelerator tube, the particle decelerating tube, and the waveguide in the same adiabatic vacuum vessel and cooling them to an extremely low temperature, the high frequency power loss can be reduced and the high frequency power can be reliably reused. At the same time, by integrating the heat insulating vacuum vessel, it is possible to reduce the size and efficiently cool.

また、前記粒子加速管の長さと前記粒子減速管の長さが同一とされていることが好ましい。
この場合、粒子減速管で回収した高周波電力を、効率的に粒子加速管に供給することができ、エネルギーロスを抑制することができる。
Moreover, it is preferable that the length of the particle acceleration tube is the same as the length of the particle deceleration tube.
In this case, the high frequency power recovered by the particle deceleration tube can be efficiently supplied to the particle acceleration tube, and energy loss can be suppressed.

さらに、前記粒子加速管及び前記粒子減速管は、接続部材を介して前記冷却器に接続されており、この接続部材が、前述の粒子加速器用銅材料で構成されていることが好ましい。
この場合、冷却器と前記粒子加速管及び前記粒子減速管を接続する接続部材は、残留抵抗比が3000以上とされた6NCuからなる粒子加速器用銅材料で構成されていることから、熱伝導性に優れている。よって、前記粒子加速管及び前記粒子減速管を効率的に冷却することが可能となり、冷却器の構成を簡略化することができる。
Furthermore, it is preferable that the particle accelerator tube and the particle deceleration tube are connected to the cooler via a connecting member, and the connecting member is made of the above-described copper material for a particle accelerator.
In this case, since the connection member that connects the cooler to the particle accelerator tube and the particle deceleration tube is made of a copper material for particle accelerator made of 6NCu having a residual resistance ratio of 3000 or more, the thermal conductivity Is excellent. Therefore, the particle accelerating tube and the particle decelerating tube can be efficiently cooled, and the configuration of the cooler can be simplified.

本発明によれば、製造コストが比較的廉価であって入手が容易な高純度銅(6NCu)であっても、残留抵抗比(RRR)が比較的大きく、極低温環境下で高周波高電界を付加しても安定して使用することが可能な粒子加速器を提供することができる。 According to the present invention, even in the case of high-purity copper (6NCu), which is relatively inexpensive and easy to obtain, the residual resistance ratio (RRR) is relatively large, and a high-frequency high electric field can be generated in a cryogenic environment. the added even can be stably provide particle acceleration instrument that can be used.

本発明の実施形態である粒子加速器の概略説明図である。It is a schematic explanatory drawing of the particle accelerator which is embodiment of this invention. 本発明の実施形態である粒子加速器用銅管からなる粒子加速管(粒子減速管)の使用状態を示す説明図である。It is explanatory drawing which shows the use condition of the particle accelerator pipe (particle deceleration tube) which consists of a copper tube for particle accelerators which is embodiment of this invention. 本発明の実施形態である粒子加速器用銅材料からなる粒子加速器用銅管の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the copper tube for particle accelerators which consists of a copper material for particle accelerators which is embodiment of this invention. 図3に示す拡散接合工程において接合される構成部材の説明図である。It is explanatory drawing of the structural member joined in the diffusion joining process shown in FIG.

以下に、本発明の実施形態である粒子加速器用銅材料、粒子加速器用銅管及び粒子加速器用銅管の製造方法、並びに、粒子加速器について説明する。
まず、図1を用いて、本実施形態である粒子加速器10について説明する。
この粒子加速器10は、電子ビーム18を発射する電子銃11と、電子ビーム18を加速する粒子加速管20と、加速された電子ビーム18を用いて空間干渉X線19を発生させるX線発生器12と、このX線発生器12を通過した電子ビーム18を減速する粒子減速管30と、粒子減速管30を通過した電子ビーム18を吸収するビームダンプ13と、粒子加速管20と粒子減速管30とを接続する導波管14と、粒子加速管20及び粒子減速管30に向けて高周波電力を供給する高周波電源15と、導波管14と高周波電源15とを接続する方向性結合器16と、を備えている。
Below, the copper material for particle accelerators which is an embodiment of the present invention, the copper tube for particle accelerators, the manufacturing method of the copper tube for particle accelerators, and the particle accelerator are explained.
First, the particle accelerator 10 which is this embodiment is demonstrated using FIG.
The particle accelerator 10 includes an electron gun 11 that emits an electron beam 18, a particle accelerator tube 20 that accelerates the electron beam 18, and an X-ray generator that generates a spatial interference X-ray 19 using the accelerated electron beam 18. 12, a particle decelerating tube 30 that decelerates the electron beam 18 that has passed through the X-ray generator 12, a beam dump 13 that absorbs the electron beam 18 that has passed through the particle decelerating tube 30, a particle accelerator tube 20, and a particle decelerating tube 30, a high-frequency power source 15 that supplies high-frequency power toward the particle accelerating tube 20 and the particle decelerating tube 30, and a directional coupler 16 that connects the waveguide 14 and the high-frequency power source 15. And.

この粒子加速器10においては、粒子加速管20に対して約5.7GHzの高周波電力が付加されており、電子銃11から発射された電子ビーム18を、粒子加速管20によって、例えば100MeVにまで加速されることになる。加速された電子ビーム18は、X線発生器12へと導入され、シリコンやカーボンの単結晶に衝突させられる。すると、X線発生器12からは、空間干渉X線19が発生することになる。そして、X線発生器12を通過した電子ビーム18は、粒子減速管30によって減速された後、ビームダンプ13に衝突されて吸収される。
ここで、粒子加速管20と粒子減速管30には、高周波電源15から方向性結合器16を通じて高周波が供給される。粒子加速管20によって、電子ビーム18に高周波電力が供給され、粒子減速管30によって、電子ビーム18から高周波電力が回収される。粒子減速管30で回収された高周波電力は、導波管14を通じて粒子加速管20に供給されることになる。
In the particle accelerator 10, high frequency power of about 5.7 GHz is applied to the particle accelerator tube 20, and the electron beam 18 emitted from the electron gun 11 is accelerated to, for example, 100 MeV by the particle accelerator tube 20. Will be. The accelerated electron beam 18 is introduced into the X-ray generator 12 and is collided with a single crystal of silicon or carbon. Then, the spatial interference X-ray 19 is generated from the X-ray generator 12. The electron beam 18 that has passed through the X-ray generator 12 is decelerated by the particle decelerating tube 30 and then collides with the beam dump 13 and is absorbed.
Here, the particle acceleration tube 20 and the particle deceleration tube 30 are supplied with high frequency from the high frequency power supply 15 through the directional coupler 16. High frequency power is supplied to the electron beam 18 by the particle accelerator tube 20, and high frequency power is recovered from the electron beam 18 by the particle decelerating tube 30. The high-frequency power recovered by the particle decelerating tube 30 is supplied to the particle accelerating tube 20 through the waveguide 14.

なお、X線発生器12から発生した空間干渉X線19は、単色光でX線の位相が揃っていることから、内臓などの軟組織の内部構造の鮮明な画像を撮像することが可能であるため、医療診断等に利用できる。また、空間干渉X線19は、集束が可能であることから、物体内部にエネルギーピークを位置させることが可能となるため、がん治療等に利用できる。   The spatial interference X-rays 19 generated from the X-ray generator 12 are monochromatic light and have the same X-ray phase, so that it is possible to capture a clear image of the internal structure of soft tissue such as the internal organs. Therefore, it can be used for medical diagnosis. Further, since the spatial interference X-ray 19 can be focused, it is possible to position an energy peak inside the object, so that it can be used for cancer treatment or the like.

ここで、粒子加速管20及び粒子減速管30は、同一のサイズ(長さ、径)の粒子加速器用銅管で構成されており、この粒子加速器用銅管に付加される高周波電力と入射される電子ビーム18との位相により、電子ビーム18を加速、あるいは、減速させるものである。
粒子加速管20及び粒子減速管30は、図2に示すように、接続部材21、31を介して冷却器25、35に接続されており、例えば20K以下といった極低温環境下で使用される構成とされている。
Here, the particle accelerating tube 20 and the particle decelerating tube 30 are composed of the same size (length, diameter) copper tube for particle accelerator, and incident with the high frequency power added to the particle accelerator copper tube. The electron beam 18 is accelerated or decelerated depending on the phase with the electron beam 18.
As shown in FIG. 2, the particle accelerating tube 20 and the particle decelerating tube 30 are connected to the coolers 25 and 35 via connecting members 21 and 31, and are used in a cryogenic environment such as 20K or less. It is said that.

そして、粒子加速管20及び粒子減速管30は、本実施形態である粒子加速器用銅材料によって構成されている。
この粒子加速管用銅材料は、ガス成分を除いたCuの純度が99.9999質量%以上99.99999質量%未満とされた高純度銅(6NCu)であり、不純物のうち、Feの含有量が0.1ppm未満、Pの含有量が0.1ppm未満、Alの含有量が0.1ppm未満、Asの含有量が0.1ppm未満、Snの含有量が0.1ppm未満及びSの含有量が0.1ppm未満に、規定されたものである。
And the particle accelerator tube 20 and the particle deceleration tube 30 are comprised with the copper material for particle accelerators which is this embodiment.
This particle acceleration tube copper material is high-purity copper (6NCu) in which the purity of Cu excluding gas components is 99.9999 mass% or more and less than 99.99999 mass%, and among the impurities, the content of Fe is Less than 0.1 ppm, P content less than 0.1 ppm, Al content less than 0.1 ppm, As content less than 0.1 ppm, Sn content less than 0.1 ppm, and S content It is specified to be less than 0.1 ppm.

このようにして、ガス成分を除いたCuの純度が99.9999質量%以上99.99999質量%未満とされた高純度銅(6NCu)であっても、特定の元素(Fe,P,Al,As,Sn,S)の含有量を規定することによって、その残留抵抗比(RRR)が3000以上に設定することが可能となる。   Thus, even if it is high purity copper (6NCu) in which the purity of Cu excluding gas components is 99.9999 mass% or more and less than 99.99999 mass%, specific elements (Fe, P, Al, By defining the content of As, Sn, S), the residual resistance ratio (RRR) can be set to 3000 or more.

ここで、本実施形態では、前述の不純物のうち、Feの含有量を0.01ppm未満、Pの含有量を0.01ppm未満、Alの含有量を0.01ppm未満、Asの含有量を0.01ppm未満、Snの含有量を0.01ppm未満及びSの含有量を0.05ppm未満に、規定している。これにより、その残留抵抗比(RRR)は5000以上に設定することが可能となる。   Here, in the present embodiment, among the aforementioned impurities, the Fe content is less than 0.01 ppm, the P content is less than 0.01 ppm, the Al content is less than 0.01 ppm, and the As content is 0. Less than 0.01 ppm, Sn content is less than 0.01 ppm, and S content is less than 0.05 ppm. Thereby, the residual resistance ratio (RRR) can be set to 5000 or more.

なお、図1に示す粒子加速器10において、粒子加速管20と粒子減速管30とを接続する導波管14についても、本実施形態である粒子加速器用銅材料で構成されている。
さらに、冷却器25と粒子加速管20を接続する接続部材21、及び、冷却器35と粒子減速管30を接続する接続部材31についても、本実施形態である粒子加速器用銅材料で構成されている。
また、粒子加速管20、粒子減速管30および導波管14は、同一の断熱真空容器17に収納されている。
In the particle accelerator 10 shown in FIG. 1, the waveguide 14 that connects the particle accelerator tube 20 and the particle decelerating tube 30 is also made of the particle accelerator copper material according to the present embodiment.
Further, the connecting member 21 that connects the cooler 25 and the particle accelerator tube 20 and the connecting member 31 that connects the cooler 35 and the particle decelerating tube 30 are also made of the copper material for particle accelerator according to the present embodiment. Yes.
The particle accelerating tube 20, the particle decelerating tube 30, and the waveguide 14 are accommodated in the same heat insulating vacuum vessel 17.

以下に、粒子加速管20及び粒子減速管30を構成する粒子加速器用銅管の製造方法について、図3のフロー図を参照して説明する。
この粒子加速器用銅管の製造方法は、銅原料からガス成分を除いたCuの純度が99.9999質量%以上99.99999質量%未満とされた高純度銅(6NCu)のインゴットを製造するインゴット製造工程S10と、このインゴットを機械加工によって最終形状品に成形する加工工程S20と、最終形状品に熱処理を行う熱処理工程S30と、を備えている。
Below, the manufacturing method of the copper tube for particle accelerators which comprises the particle acceleration tube 20 and the particle deceleration tube 30 is demonstrated with reference to the flowchart of FIG.
This method for producing a copper tube for a particle accelerator is an ingot for producing an ingot of high-purity copper (6NCu) in which the purity of Cu excluding gas components from a copper raw material is 99.9999% by mass or more and less than 99.99999% by mass. A manufacturing process S10, a processing process S20 for forming the ingot into a final shape product by machining, and a heat treatment process S30 for performing a heat treatment on the final shape product are provided.

(インゴット製造工程S10)
まず、銅原料として、純度が99.99質量%以上99.999質量%未満の純銅(4NCu)のカソードを準備する。この4NCuカソードを、電解液に溶解して電解処理を行う(電解工程S11)。この電解工程S11によって、純度が99.9999質量%以上99.99999質量%未満の高純度銅(6NCu)のカソードを製出する。
次に、この6NCuカソードを溶解して銅溶湯を生成し、脱ガス処理等を行い、脱ガス処理が施された銅溶湯を鋳型に注湯して、所定形状のインゴットを製出する(溶解・鋳造工程S12)。
これら電解工程S11及び溶解・鋳造工程S12によって、不純物のうち、Feの含有量を0.01ppm未満、Pの含有量を0.01ppm未満、Alの含有量を0.01ppm未満、Asの含有量を0.01ppm未満、Snの含有量を0.01ppm未満及びSの含有量を0.05ppm未満に調整する。
(Ingot manufacturing process S10)
First, a pure copper (4NCu) cathode having a purity of 99.99 mass% or more and less than 99.999 mass% is prepared as a copper raw material. This 4NCu cathode is dissolved in an electrolytic solution and subjected to an electrolytic treatment (electrolytic process S11). By this electrolysis step S11, a cathode of high-purity copper (6NCu) having a purity of 99.9999 mass% or more and less than 99.99999 mass% is produced.
Next, this 6NCu cathode is melted to produce a molten copper, degassed, etc., and the degassed copper is poured into a mold to produce an ingot of a predetermined shape (dissolved) -Casting step S12).
Of these impurities, Fe content of less than 0.01 ppm, P content of less than 0.01 ppm, Al content of less than 0.01 ppm, and As content of these electrolytic step S11 and melting / casting step S12 Is less than 0.01 ppm, the Sn content is less than 0.01 ppm, and the S content is less than 0.05 ppm.

(加工工程S20)
得られたインゴットに対して、鍛造、圧延及び押出等の塑性加工を行う(1次加工工程S21)。
その後、機械加工によって構成部材を製作する(2次加工工程S22)。このとき、本実施形態では、図4に示すように、第一円筒状部材41と、第二円筒状部材42と、円板状部材43と、ブロック部材44と、が構成部材として製作されることになる。
そして、これらの構成部材(第一円筒状部材41、第二円筒状部材42、円板状部材43、ブロック部材44)を拡散接合することで、粒子加速管20及び粒子減速管30を構成する粒子加速器用銅管の形状をなす最終形状品を製出する(拡散接合工程S23)。
(Processing step S20)
The obtained ingot is subjected to plastic processing such as forging, rolling and extrusion (primary processing step S21).
Then, a structural member is manufactured by machining (secondary processing step S22). At this time, in this embodiment, as shown in FIG. 4, the first cylindrical member 41, the second cylindrical member 42, the disk-shaped member 43, and the block member 44 are manufactured as constituent members. It will be.
And these particle | grain components (the 1st cylindrical member 41, the 2nd cylindrical member 42, the disk-shaped member 43, the block member 44) comprise the particle | grain acceleration tube 20 and the particle | grain reduction tube 30 by diffusion-bonding. A final shape product having the shape of a copper tube for a particle accelerator is produced (diffusion bonding step S23).

(熱処理工程S30)
そして、製出された最終形状品に対して熱処理を行う。ここで、熱処理条件としては、温度を400℃以上融点未満、望ましくは材料の変形の少ない1000℃以下、時間を1時間以上に設定している。この熱処理工程S30によって、前述の加工工程S20の際に最終形状品に蓄積された歪みを解放する構成とされているのである。
(Heat treatment step S30)
Then, heat treatment is performed on the final shape product produced. Here, as the heat treatment conditions, the temperature is set to 400 ° C. or higher and lower than the melting point, desirably 1000 ° C. or lower and the time is set to 1 hour or longer with little deformation of the material. The heat treatment step S30 is configured to release the distortion accumulated in the final shape product during the processing step S20.

(仕上工程S40)
最後に、必要に応じて、熱処理工程S30によって最終形状品の表面に形成された酸化膜等を除去するために酸洗等を行う。
以上により、本実施形態である粒子加速器用銅材料で構成された粒子加速器用銅管(粒子加速管20及び粒子減速管30)が製出されることになる。
(Finishing process S40)
Finally, if necessary, pickling or the like is performed to remove the oxide film or the like formed on the surface of the final shape product by the heat treatment step S30.
As described above, the particle accelerator copper pipe (the particle accelerator pipe 20 and the particle reducer pipe 30) made of the copper material for particle accelerator according to the present embodiment is produced.

このような構成とされた本実施形態である粒子加速器用銅材料、粒子加速器用銅管(粒子加速管20及び粒子減速管30)によれば、ガス成分を除いたCuの純度が99.9999質量%以上99.99999質量%未満とされ、Feの含有量が0.1ppm未満、Pの含有量が0.1ppm未満、Alの含有量が0.1ppm未満、Asの含有量が0.1ppm未満、Snの含有量が0.1ppm未満及びSの含有量が0.1ppm未満、さらに本実施形態では、Feの含有量が0.01ppm未満、Pの含有量が0.01ppm未満、Alの含有量が0.01ppm未満、Asの含有量が0.01ppm未満、Snの含有量が0.01ppm未満及びSの含有量が0.05ppm未満とされていて、その残留抵抗比が5000以上とされている。   According to the copper material for particle accelerator and the copper tube for particle accelerator (particle acceleration tube 20 and particle deceleration tube 30) which are the present embodiment configured as described above, the purity of Cu excluding gas components is 99.9999. The Fe content is less than 0.1 ppm, the P content is less than 0.1 ppm, the Al content is less than 0.1 ppm, and the As content is 0.1 ppm. Less than, Sn content less than 0.1 ppm and S content less than 0.1 ppm, Furthermore, in this embodiment, Fe content is less than 0.01 ppm, P content is less than 0.01 ppm, Al The content is less than 0.01 ppm, the As content is less than 0.01 ppm, the Sn content is less than 0.01 ppm, and the S content is less than 0.05 ppm, and the residual resistance ratio is 5000 or more. Is There.

したがって、20K以下の極低温環境下において電気抵抗が十分に低くなるため、この粒子加速器用銅材料からなる粒子加速器用銅管(粒子加速管20及び粒子減速管30)に対して高周波高電界を付加した場合でも、ジュール熱の発生を抑制することが可能となる。よって、粒子加速管20及び粒子減速管30の温度上昇が抑制されるため、粒子加速器10を良好に稼動させることが可能となる。
また、従来以上に、粒子加速管20及び粒子減速管30に対して、高い電圧を付加することが可能となり、粒子加速器10の性能をさらに向上させることができる。
さらに、6NCuであるにもかかわらず、通常の7NCuと同等の残留抵抗比(5000以上)を得ることができるので、製造が困難な7NCuを使用する場合に比べて、粒子加速器用銅管(粒子加速管20及び粒子減速管30)の製造コストを大幅に削減することができる。
なお、Fe、P、Al、As、Sn及びSの含有量を抑えた本発明の粒子加速器用銅材料は、例えば、6Nカソードを、Fe、P、Al、As、Sn及びSの含有量が1ppm未満の坩堝を用い、脱酸素および脱硫処理を施した非酸化雰囲気中において溶解、凝固させることで得ることができる。
Accordingly, since the electric resistance is sufficiently low in an extremely low temperature environment of 20K or less, a high frequency high electric field is applied to the particle accelerator copper tube (particle acceleration tube 20 and particle deceleration tube 30) made of the particle accelerator copper material. Even when added, generation of Joule heat can be suppressed. Therefore, since the temperature rise of the particle acceleration tube 20 and the particle deceleration tube 30 is suppressed, it becomes possible to operate the particle accelerator 10 satisfactorily.
In addition, a higher voltage can be applied to the particle accelerator tube 20 and the particle deceleration tube 30 than before, and the performance of the particle accelerator 10 can be further improved.
Furthermore, although it is 6NCu, a residual resistance ratio (5000 or more) equivalent to that of normal 7NCu can be obtained, so that compared with the case where 7NCu, which is difficult to manufacture, is used, the copper tube for particle accelerator (particle Manufacturing costs of the acceleration tube 20 and the particle deceleration tube 30) can be greatly reduced.
In addition, the copper material for particle accelerators of the present invention in which the content of Fe, P, Al, As, Sn, and S is suppressed, for example, the 6N cathode has a content of Fe, P, Al, As, Sn, and S. It can be obtained by using a crucible of less than 1 ppm and dissolving and solidifying in a non-oxidizing atmosphere subjected to deoxidation and desulfurization treatment.

また、無負荷利得係数Qが高く高周波電力損失が抑えられるため、粒子を効率良く加速及び減速させることができ、粒子加速器10自体を小型化することが可能となる。
詳述すると、Cuの純度が99.99質量%以上99.999質量%未満とされた4NCuからなる従来の粒子加速管及び粒子減速管においては、室温で使用した場合に無負荷利得係数Qが約1/10000であった。これに対して、本実施形態である粒子加速管20及び粒子減速管30においては、無負荷利得係数Qが約1/400000であって、高周波損失が1/40に低減されているのである。
In addition, since the no-load gain coefficient Q is high and high-frequency power loss is suppressed, particles can be efficiently accelerated and decelerated, and the particle accelerator 10 itself can be downsized.
More specifically, in a conventional particle accelerator tube and particle decelerating tube made of 4NCu having a purity of Cu of 99.99 mass% or more and less than 99.999 mass%, when used at room temperature, the no-load gain coefficient Q is It was about 1/10000. In contrast, in the particle accelerating tube 20 and the particle decelerating tube 30 according to the present embodiment, the no-load gain coefficient Q is about 1/400000, and the high-frequency loss is reduced to 1/40.

本実施形態に係る粒子加速器10によれば、粒子加速管20と粒子減速管30とが、残留抵抗比が5000以上とされた6NCuで構成されているので、電子ビーム18の加速及び減速を効率的に行うことができ、粒子加速器10自体を小型化することが可能となる。
また、粒子減速管30において、電子ビーム18が十分に減速されていることから、粒子減速管30を通過した電子ビーム18をビームダンプ13に吸収させた際に、中性子等の2次粒子の発生が抑制されることになり、この粒子加速器10を遮蔽する設備を簡略化することが可能となる。具体的には、医療用レントゲン装置と同程度のX線が発生するのみであるため、通常の医療用レントゲン装置と同様に使用することが可能となる。詳述すると、粒子加速管20において100MeV程度まで加速された電子ビーム18を、粒子減速管30において1MeV程度まで減速することが可能となり、中性子等の2次粒子の発生を抑制することが可能となるのである。
さらに、粒子加速管20と粒子減速管30が、6NCuからなる粒子加速器用銅材料で構成されており、内部からのガス放出が抑制されるため、比較的容易に、粒子加速管20及び粒子減速管30の周囲を、比較的容易に真空雰囲気とすることが可能となる。
According to the particle accelerator 10 according to the present embodiment, since the particle accelerator tube 20 and the particle decelerating tube 30 are made of 6NCu having a residual resistance ratio of 5000 or more, acceleration and deceleration of the electron beam 18 are efficient. The particle accelerator 10 itself can be downsized.
Further, since the electron beam 18 is sufficiently decelerated in the particle decelerating tube 30, generation of secondary particles such as neutrons is caused when the electron beam 18 that has passed through the particle decelerating tube 30 is absorbed by the beam dump 13. Therefore, the facility for shielding the particle accelerator 10 can be simplified. Specifically, since only X-rays of the same level as those of a medical X-ray device are generated, it can be used in the same manner as a normal medical X-ray device. More specifically, the electron beam 18 accelerated to about 100 MeV in the particle accelerating tube 20 can be decelerated to about 1 MeV in the particle decelerating tube 30, and generation of secondary particles such as neutrons can be suppressed. It becomes.
Furthermore, since the particle accelerator tube 20 and the particle decelerating tube 30 are made of a copper material for particle accelerator made of 6NCu, and the gas release from the inside is suppressed, the particle accelerator tube 20 and the particle decelerating tube can be relatively easily obtained. A vacuum atmosphere can be made relatively easily around the tube 30.

さらに、本実施形態では、粒子加速管20と粒子減速管30とを接続する導波管14が、本実施形態である粒子加速器用銅材料で構成されているので、粒子減速管30で回収された高周波電力を粒子加速管20に供給する際の損失を抑制することができる。
また、加速管20および減速管30は、同一のサイズ(長さ、径)の粒子加速器用銅管で構成されているので、減速管30で回収した高周波電力を、効率的に加速管20に供給することができ、エネルギーロスを抑制することができる。
また、本実施形態では、粒子加速管20、粒子減速管30および導波管14は、同一の断熱真空容器17に収納されているので、極低温に冷却することで高周波電力損失を減らし、高周波電力を確実に再利用できる。同時に、断熱真空容器17を一体化することで小型化でき、効率的に冷却することができる。
Furthermore, in this embodiment, since the waveguide 14 that connects the particle accelerator tube 20 and the particle deceleration tube 30 is made of the copper material for particle accelerator according to the present embodiment, the particle accelerator tube 30 collects the particles. The loss when supplying the high frequency power to the particle accelerating tube 20 can be suppressed.
Moreover, since the acceleration tube 20 and the deceleration tube 30 are comprised by the copper tube for particle accelerators of the same size (length, diameter), the high frequency electric power collect | recovered with the reduction tube 30 is efficiently made into the acceleration tube 20. It can be supplied and energy loss can be suppressed.
In the present embodiment, since the particle accelerating tube 20, the particle decelerating tube 30, and the waveguide 14 are accommodated in the same heat insulating vacuum vessel 17, the high frequency power loss is reduced by cooling to a very low temperature, and the high frequency Power can be reused reliably. At the same time, it is possible to reduce the size by integrating the heat insulating vacuum vessel 17 and to cool it efficiently.

さらに、粒子加速管20及び粒子減速管30は、接続部材21、31を介して冷却器25、35に接続され、例えば20K以下といった極低温環境下で使用される構成とされており、この接続部材21、31が、熱伝導性に優れた本実施形態である粒子加速器用銅材料で構成されているので、粒子加速管20及び粒子減速管30を効率的に冷却することが可能となり、冷却器25、35の構成を簡略化することができる。   Further, the particle accelerating tube 20 and the particle decelerating tube 30 are connected to the coolers 25 and 35 via the connecting members 21 and 31, and are configured to be used in a cryogenic environment such as 20K or less. Since the members 21 and 31 are made of the copper material for particle accelerator according to the present embodiment having excellent thermal conductivity, the particle accelerator tube 20 and the particle deceleration tube 30 can be efficiently cooled. The configuration of the containers 25 and 35 can be simplified.

本実施形態に係る粒子加速器用銅管(粒子加速管20及び粒子減速管30)の製造方法によれば、加工工程S20によって最終形状品を製出した後に、この最終形状品に対して400℃以上で1時間以上の熱処理を行うことから、加工工程S20によって最終形状品に蓄積された歪みを、確実に解放することができ、粒子加速器用銅管(粒子加速管20及び粒子減速管30)における残留抵抗比(RRR)を大きくすることができる。   According to the method for manufacturing a particle accelerator copper tube (particle acceleration tube 20 and particle deceleration tube 30) according to the present embodiment, after the final shape product is produced in the processing step S20, the final shape product is 400 ° C. Since the heat treatment for 1 hour or more is performed as described above, the strain accumulated in the final shape product by the processing step S20 can be surely released, and the copper tube for particle accelerator (particle acceleration tube 20 and particle deceleration tube 30). The residual resistance ratio (RRR) at can be increased.

また、加工工程S20においては、構成部材(第一円筒状部材41、第二円筒状部材42、円板状部材43、ブロック部材44)を拡散接合することで、粒子加速管20及び粒子減速管30を構成する粒子加速器用銅管の形状をなす最終形状品を製出する拡散接合工程S23を備えているので、粒子加速器用銅管のサイズ、構造を比較的自由に設計することが可能となる。また、本実施形態である粒子加速器用銅材料を用いているので、構成部材(第一円筒状部材41、第二円筒状部材42、円板状部材43、ブロック部材44)同士を拡散接合によって強固に接合できるとともに、不純物の混入を確実に防止することができ、残留抵抗比(RRR)を大きくすることが可能となる。   Further, in the processing step S20, the particle accelerating tube 20 and the particle decelerating tube are formed by diffusion bonding the constituent members (the first cylindrical member 41, the second cylindrical member 42, the disk-like member 43, and the block member 44). 30 is provided with a diffusion bonding step S23 for producing a final shape product of the shape of the copper tube for particle accelerator constituting 30. Therefore, the size and structure of the particle accelerator copper tube can be designed relatively freely. Become. Moreover, since the copper material for particle accelerators which is this embodiment is used, the structural members (the first cylindrical member 41, the second cylindrical member 42, the disk-shaped member 43, and the block member 44) are connected by diffusion bonding. While being able to join firmly, mixing of an impurity can be prevented reliably and it becomes possible to enlarge a residual resistance ratio (RRR).

以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、本実施形態では、加工工程S20の後に、400℃以上で1時間以上保持する熱処理工程S30を備えたものとして説明したが、これに限定されることはなく、熱処理条件が異なっていてもよいし、熱処理を加工工程S20後に行わなくてもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in the present embodiment, the processing step S20 has been described as including the heat treatment step S30 that is held at 400 ° C. or more for 1 hour or more. However, the present invention is not limited to this, and even if the heat treatment conditions are different. The heat treatment may not be performed after the processing step S20.

また、粒子加速器用銅管(粒子加速管20及び粒子減速管30)の形状や使用形態は、図2に示すものに限定されることはなく、粒子加速器に使用される粒子加速器用銅管(粒子加速管20及び粒子減速管30)であればよい。
さらに、4NCuのカソードを電解処理することによって6NCuのカソードを製出する構成として説明したが、これに限定されることはなく、他の方法によって、Feの含有量が0.1ppm未満、Pの含有量が0.1ppm未満、Alの含有量が0.1ppm未満、Asの含有量が0.1ppm未満、Snの含有量が0.1ppm未満及びSの含有量が0.1ppm未満とされ、ガス成分を除いたCuの純度が99.9999質量%以上99.99999質量%未満とされた6NCuからなるインゴットを製出してもよい。
Moreover, the shape and usage of the particle accelerator copper tubes (particle accelerator tube 20 and particle decelerator tube 30) are not limited to those shown in FIG. 2, and the particle accelerator copper tube used for the particle accelerator ( The particle accelerating tube 20 and the particle decelerating tube 30) may be used.
Furthermore, although it demonstrated as a structure which produces the 6NCu cathode by electrolytically treating the 4NCu cathode, it is not limited to this, Fe content is less than 0.1 ppm, P The content is less than 0.1 ppm, the Al content is less than 0.1 ppm, the As content is less than 0.1 ppm, the Sn content is less than 0.1 ppm, and the S content is less than 0.1 ppm, You may produce the ingot which consists of 6NCu in which the purity of Cu except a gas component was 99.9999 mass% or more and less than 99.99999 mass%.

本発明の作用効果を確認すべく行った確認実験の結果について説明する。
<本発明例>
4NCuカソードを原料として、電解処理を行うことによって、純度99.9999質量%以上99.99999質量%未満の超高純度(6NCu)のカソードを製出した。Fe、P、Al、As、Sn及びSの含有量が1ppm未満のカーボン坩堝を用い、脱酸素および脱硫処理を施したAr雰囲気中において、6NCuカソードを溶解し、インゴット(直径100mmのビレット)を製出した。
得られたインゴットを、直径1.0mm、長さ100mmの線に成形した後に、熱処理を施すことによって、表1に示す本発明例1〜10の試料を作製した。
The result of the confirmation experiment conducted to confirm the effect of the present invention will be described.
<Invention Example>
By performing electrolytic treatment using 4NCu cathode as a raw material, an ultra-high purity (6NCu) cathode having a purity of 99.9999 mass% or more and less than 99.99999 mass% was produced. Using a carbon crucible with a content of Fe, P, Al, As, Sn, and S of less than 1 ppm, the 6NCu cathode was dissolved in an Ar atmosphere subjected to deoxidation and desulfurization treatment, and an ingot (a billet having a diameter of 100 mm) was obtained. Produced.
After the obtained ingot was formed into a wire having a diameter of 1.0 mm and a length of 100 mm, heat treatment was performed to prepare samples of Invention Examples 1 to 10 shown in Table 1.

<比較例>
4NCuカソードを原料として、電解処理を行うことによって、純度99.99999質量%以上99.999999質量%未満の超高純度(7NCu)のカソードを製出した。
そして、本発明例と同様の条件で7NCuのカソードを溶解して得られた銅溶湯に、元素を添加することによって、不純物の含有量を調整した各種のインゴット(直径100mmのビレット)を製出した。
得られたインゴットを、直径1.0mm、長さ100mmの線に成形した後に、熱処理を施すことによって、表1に示す比較例1〜12の試料を作製した。
<Comparative example>
By performing electrolytic treatment using a 4NCu cathode as a raw material, an ultra-high purity (7NCu) cathode having a purity of 99.99999 mass% or more and less than 99.999999 mass% was produced.
And, various ingots (100 mm diameter billets) with adjusted impurity contents were produced by adding elements to the molten copper obtained by melting the 7NCu cathode under the same conditions as the present invention. did.
The obtained ingot was formed into a wire having a diameter of 1.0 mm and a length of 100 mm, and then subjected to heat treatment to produce samples of Comparative Examples 1 to 12 shown in Table 1.

前述のようにして得られた試料について、それぞれ各元素の含有量および残留抵抗比(RRR)を測定した。測定結果を表1に示す。なお、各元素の含有量は、グロー放電質量分析により測定した。   For the samples obtained as described above, the content of each element and the residual resistance ratio (RRR) were measured. The measurement results are shown in Table 1. The content of each element was measured by glow discharge mass spectrometry.

Figure 0005717236
Figure 0005717236

Feの含有量が0.1ppm未満、Pの含有量が0.1ppm未満、Alの含有量が0.1ppm未満、Asの含有量が0.1ppm未満、Snの含有量が0.1ppm未満及びSの含有量が0.1ppm未満とされた6NCuである本発明例1−10においては、残留抵抗比(RRR)がすべて3000を超えていた。   Fe content less than 0.1 ppm, P content less than 0.1 ppm, Al content less than 0.1 ppm, As content less than 0.1 ppm, Sn content less than 0.1 ppm and In Example 1-10 of the present invention, in which the content of S was 6NCu having a content of less than 0.1 ppm, the residual resistance ratio (RRR) exceeded 3000.

特に、Feの含有量が0.01ppm未満、Pの含有量が0.01ppm未満、Alの含有量が0.01ppm未満、Asの含有量が0.01ppm未満、Snの含有量が0.01ppm未満及びSの含有量が0.05ppm未満とされた6NCuである本発明例1、2においては、残留抵抗比(RRR)が6000を超えており、7NCuである比較例12と同等であった。   In particular, Fe content is less than 0.01 ppm, P content is less than 0.01 ppm, Al content is less than 0.01 ppm, As content is less than 0.01 ppm, Sn content is 0.01 ppm. In Examples 1 and 2 of the present invention, in which the content of S is less than 0.05 ppm and the content of S is less than 0.05 ppm, the residual resistance ratio (RRR) exceeds 6000, which is equivalent to Comparative Example 12 that is 7 NCu. .

一方、Fe,P,Al,As,Sn及びSのいずれかが、本発明の範囲から逸脱している比較例1−8においては、残留抵抗比RRRがすべて3000未満であって、低温環境下における電気抵抗が十分に低下していないことが確認された。   On the other hand, in Comparative Example 1-8 in which any one of Fe, P, Al, As, Sn, and S deviates from the scope of the present invention, the residual resistance ratios RRR are all less than 3000, It was confirmed that the electrical resistance at was not sufficiently reduced.

また、本発明例2、本発明例3及び比較例9は、同一の組成のインゴットを加工し、加工後の熱処理条件(温度、時間)を変更したものである。これらを比較すると、加工後の熱処理時間を長くすることによって、残留抵抗比(RRR)が大きく向上することが確認される。また、熱処理温度を300℃とした比較例9では、残留抵抗比(RRR)が1500と低いままであった。   Inventive Example 2, Inventive Example 3 and Comparative Example 9 are obtained by processing ingots having the same composition and changing the heat treatment conditions (temperature, time) after processing. When these are compared, it is confirmed that the residual resistance ratio (RRR) is greatly improved by increasing the heat treatment time after processing. In Comparative Example 9 where the heat treatment temperature was 300 ° C., the residual resistance ratio (RRR) remained as low as 1500.

さらに、本発明例4、比較例10及び比較例11は、同一の組成のインゴットを加工し、加工後の熱処理条件(温度、時間)を変更したものである。熱処理時間を0.5時間として比較例10では残留抵抗比(RRR)が2100、熱処理温度を300℃とした比較例11では、残留抵抗比(RRR)が1200であった。   Further, Invention Example 4, Comparative Example 10 and Comparative Example 11 are obtained by processing ingots having the same composition and changing the heat treatment conditions (temperature, time) after processing. In Comparative Example 10 where the heat treatment time was 0.5 hours, the residual resistance ratio (RRR) was 2100, and in Comparative Example 11 where the heat treatment temperature was 300 ° C., the residual resistance ratio (RRR) was 1200.

これらの結果から、熱処理時間を長くする、あるいは、熱処理温度を高くすることによって、加工の際に蓄積された歪みを確実に解放することができ、残留抵抗比(RRR)を大きくすることが可能であることが確認された。   From these results, by increasing the heat treatment time or increasing the heat treatment temperature, it is possible to reliably release the strain accumulated during processing and to increase the residual resistance ratio (RRR). It was confirmed that.

10 粒子加速器
12 X線発生器(電磁波発生器)
13 ビームダンプ
14 導波管
17 断熱真空容器
18 電子ビーム(粒子ビーム)
20 加速管(粒子加速器用銅管)
30 減速管(粒子加速器用銅管)
21、31 接続部材
25、35 冷却器
S20 加工工程
S23 拡散接合工程
S30 熱処理工程
10 Particle accelerator 12 X-ray generator (electromagnetic wave generator)
13 Beam dump 14 Waveguide 17 Thermal insulation vacuum vessel 18 Electron beam (particle beam)
20 Accelerating tube (copper tube for particle accelerator)
30 Reducer tube (copper tube for particle accelerator)
21, 31 Connection members 25, 35 Cooler S20 Processing step S23 Diffusion bonding step S30 Heat treatment step

Claims (7)

粒子ビームを加速する粒子加速管と、加速された粒子ビームを用いて電磁波を発生させる電磁波発生器と、この電磁波発生器を通過した粒子ビームを減速する粒子減速管と、この粒子減速管を通過した粒子ビームを吸収するビームダンプと、前記粒子加速管及び前記粒子減速管を冷却する冷却器と、を備えた粒子加速器であって、
前記粒子加速管及び前記粒子減速管は、粒子加速器用銅材料で構成された第一円筒部材、第二円筒部材、円板状部材及びブロック部材を拡散接合することで構成されており、
前記粒子加速器用銅材料は、ガス成分を除いたCuの純度が99.9999質量%以上99.99999質量%未満とされ、Feの含有量が0.04ppm以下、Pの含有量が0.04ppm以下、Alの含有量が0.05ppm以下、Asの含有量が0.03ppm以下、Snの含有量が0.04ppm以下及びSの含有量が0.06ppm以下、かつ、Fe,P,Al,As,Sn及びSを含む不純物の含有量が0.37ppm以下とされており、残留抵抗比が3000以上とされていることを特徴とする粒子加速器。
A particle accelerating tube that accelerates the particle beam, an electromagnetic wave generator that generates an electromagnetic wave using the accelerated particle beam, a particle decelerating tube that decelerates the particle beam that has passed through the electromagnetic wave generator, and the particle decelerating tube A particle accelerator comprising: a beam dump that absorbs the particle beam; and a cooler that cools the particle acceleration tube and the particle deceleration tube,
The particle accelerating tube and the particle decelerating tube are configured by diffusion bonding a first cylindrical member, a second cylindrical member, a disk-shaped member, and a block member made of a copper material for a particle accelerator,
In the particle accelerator copper material, the purity of Cu excluding gas components is 99.9999 mass% or more and less than 99.99999 mass%, Fe content is 0.04 ppm or less, and P content is 0.04 ppm. Hereinafter, the content of Al is 0.05 ppm or less, the content of As is 0.03 ppm or less, the content of Sn is 0.04 ppm or less, the content of S is 0.06 ppm or less, and Fe, P, Al, A particle accelerator characterized in that the content of impurities including As, Sn and S is 0.37 ppm or less , and the residual resistance ratio is 3000 or more.
前記粒子加速器用銅材料は、Feの含有量が0.01ppm未満、Pの含有量が0.01ppm未満、Alの含有量が0.01ppm未満、Asの含有量が0.01ppm未満、Snの含有量が0.01ppm未満及びSの含有量が0.05ppm未満とされており、 残留抵抗比が5000以上とされていることを特徴とする請求項1に記載の粒子加速器。 The copper material for particle accelerator has Fe content of less than 0.01 ppm, P content of less than 0.01 ppm, Al content of less than 0.01 ppm, As content of less than 0.01 ppm, Sn content The particle accelerator according to claim 1, wherein the content accelerator is less than 0.01 ppm, the S content is less than 0.05 ppm, and the residual resistance ratio is 5000 or more . 拡散接合した第一円筒部材、第二円筒部材、円板状部材及びブロック部材に対して、400℃以上融点未満で1時間以上の熱処理を行ったことを特徴とする請求項1又は請求項2に記載の粒子加速器。 The first cylindrical member, the second cylindrical member, the disk-shaped member, and the block member that are diffusion-bonded are subjected to heat treatment at 400 ° C or higher and lower than the melting point for 1 hour or longer. The particle accelerator described in 1. 前記粒子加速管と前記粒子減速管とを接続する導波管を備え、前記粒子減速管で回収された高周波電力を前記粒子加速管に供給する構成とされており、
この導波管が、前記粒子加速器用銅材料で構成されていることを特徴とする請求項1から請求項3のいずれか一項に記載の粒子加速器。
It comprises a waveguide connecting the particle accelerator tube and the particle deceleration tube, and is configured to supply high-frequency power recovered by the particle deceleration tube to the particle acceleration tube.
The particle accelerator according to any one of claims 1 to 3 , wherein the waveguide is made of the copper material for the particle accelerator.
前記粒子加速管、前記粒子減速管および前記導波管を収納する断熱真空容器を備えることを特徴とする請求項4に記載の粒子加速器。 The particle accelerator according to claim 4, further comprising an adiabatic vacuum vessel that houses the particle accelerator tube, the particle deceleration tube, and the waveguide. 前記粒子加速管の長さと前記粒子減速管の長さが同一とされていることを特徴とする請求項4または請求項5に記載の粒子加速器。 6. The particle accelerator according to claim 4 , wherein a length of the particle accelerator tube is the same as a length of the particle deceleration tube. 前記粒子加速管及び前記粒子減速管は、接続部材を介して前記冷却器に接続されており、この接続部材が、前記粒子加速器用銅材料で構成されていることを特徴とする請求項4から請求項6のいずれか一項に記載の粒子加速器。 The particle acceleration tube and said particle decelerating tube is connected to the condenser via a connecting member, the connecting member, from claim 4, characterized in that it is composed of a copper material for the particle accelerator The particle accelerator according to claim 6 .
JP2010110454A 2010-05-12 2010-05-12 Particle accelerator Active JP5717236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010110454A JP5717236B2 (en) 2010-05-12 2010-05-12 Particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010110454A JP5717236B2 (en) 2010-05-12 2010-05-12 Particle accelerator

Publications (2)

Publication Number Publication Date
JP2011236484A JP2011236484A (en) 2011-11-24
JP5717236B2 true JP5717236B2 (en) 2015-05-13

Family

ID=45324775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010110454A Active JP5717236B2 (en) 2010-05-12 2010-05-12 Particle accelerator

Country Status (1)

Country Link
JP (1) JP5717236B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102340172B1 (en) * 2014-08-15 2021-12-16 에이에스엠엘 네델란즈 비.브이. Free electron laser radiation source for the euv
JP6056877B2 (en) 2015-01-07 2017-01-11 三菱マテリアル株式会社 Superconducting wire and superconducting coil
JP6056876B2 (en) * 2015-01-07 2017-01-11 三菱マテリアル株式会社 Superconducting stabilizer
JP6299804B2 (en) 2016-04-06 2018-03-28 三菱マテリアル株式会社 Superconducting stabilizer, superconducting wire and superconducting coil
JP6299803B2 (en) 2016-04-06 2018-03-28 三菱マテリアル株式会社 Superconducting wire and superconducting coil
JP6299802B2 (en) 2016-04-06 2018-03-28 三菱マテリアル株式会社 Superconducting stabilizer, superconducting wire and superconducting coil
JP6642763B2 (en) 2017-10-30 2020-02-12 三菱マテリアル株式会社 Superconducting stabilizer, superconducting wire and superconducting coil

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287488A (en) * 1979-11-02 1981-09-01 The United States Of America As Represented By The United States Department Of Energy Rf Feedback free electron laser
US5401973A (en) * 1992-12-04 1995-03-28 Atomic Energy Of Canada Limited Industrial material processing electron linear accelerator
JP3111792B2 (en) * 1994-02-03 2000-11-27 三菱マテリアル株式会社 Manufacturing method of high purity copper ingot
JPH0851000A (en) * 1994-08-09 1996-02-20 Hitachi Cable Ltd Oxygen-free copper for acceleration tube
JP3592910B2 (en) * 1997-10-30 2004-11-24 株式会社東芝 Accelerator tube

Also Published As

Publication number Publication date
JP2011236484A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5717236B2 (en) Particle accelerator
KR102503996B1 (en) Spherical tantalum powder, products containing the same, and methods for producing the same
JP4413804B2 (en) Magnetic refrigeration material and manufacturing method thereof
US8002906B2 (en) Rare earth magnet and production process thereof
Lee et al. Synthesis of Mn–Al alloy nanoparticles by plasma arc discharge
Fang et al. Insights into formation and stability of τ-MnAlZx (Z= C and B)
JPWO2016162990A1 (en) Rare earth permanent magnet and manufacturing method thereof
CN101767200B (en) Minute spherical Nd-Fe-B powder preparation method
JP4465662B2 (en) Method for producing metal powder and method for producing target material
US11104976B2 (en) Bi-continuous composite of refractory alloy and copper and method for manufacturing the same
Singer SRF cavity fabrication and materials
JP2022513817A (en) Spherical niobium alloy powder, products containing it, and methods for producing them
JP2022092544A (en) Niobium powder, niobium-powder producing member, method of making them, and method of manufacturing niobium member
JP5889116B2 (en) MgB2 superconducting wire and method for producing the same
Gan et al. Identification of unexpected hydrides in Mg–20 wt% Dy alloy by high-brilliance synchrotron radiation
Myneni et al. Medium grain niobium SRF cavity production technology for science frontiers and accelerator applications
Isogai et al. Magnetic properties of MnBi fine particles fabricated using hydrogen plasma metal reaction
JP5094791B2 (en) Rare earth magnets
Si et al. Enhanced magnetic performance of bulk nanocrystalline MnAl–C prepared by high pressure compaction of gas atomized powders
JP2012253248A (en) Iron nitride material and method for manufacturing the same
JP6559865B1 (en) Method for producing copper alloy shaped article and copper alloy shaped article
JP7196666B2 (en) Sintered body for rare earth magnet and method for producing the same
JP7196667B2 (en) Manufacturing method of sintered body for rare earth magnet
JP7349173B2 (en) Metastable single crystal rare earth magnet fine powder and its manufacturing method
US20230230732A1 (en) Permanent Magnet Material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150313

R150 Certificate of patent or registration of utility model

Ref document number: 5717236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250