JP5716290B2 - Method for producing fiber reinforced thermoplastic resin - Google Patents

Method for producing fiber reinforced thermoplastic resin Download PDF

Info

Publication number
JP5716290B2
JP5716290B2 JP2010096944A JP2010096944A JP5716290B2 JP 5716290 B2 JP5716290 B2 JP 5716290B2 JP 2010096944 A JP2010096944 A JP 2010096944A JP 2010096944 A JP2010096944 A JP 2010096944A JP 5716290 B2 JP5716290 B2 JP 5716290B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
sheet
reinforced thermoplastic
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010096944A
Other languages
Japanese (ja)
Other versions
JP2011224866A (en
Inventor
崇寛 林
崇寛 林
浩一 秋山
浩一 秋山
寺澤 知徳
知徳 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2010096944A priority Critical patent/JP5716290B2/en
Publication of JP2011224866A publication Critical patent/JP2011224866A/en
Application granted granted Critical
Publication of JP5716290B2 publication Critical patent/JP5716290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

本発明は繊維強化熱可塑性樹脂の製造方法と、該製造方法により得られた繊維強化熱可塑性樹脂およびこれを用いた成形品に関する。   The present invention relates to a method for producing a fiber reinforced thermoplastic resin, a fiber reinforced thermoplastic resin obtained by the production method, and a molded article using the same.

近年、部品の材質を金属から樹脂へと変更することが様々な分野で行われてきている。特に、ノートパソコン筺体や競技用自転車などの分野においては、従来使用されてきたマグネシウム合金等の金属に替わりうる剛性、耐衝撃性を備え、かつ、軽量である樹脂成形品が求められている。
そこで、剛性、耐衝撃性の点から、強化繊維によって補強された繊維強化樹脂が一般に使用されている。また、その際、軽量性の点から、強化繊維として炭素繊維が用いられることが多い。
In recent years, changing the material of parts from metal to resin has been performed in various fields. In particular, in the fields of notebook personal computer housings and competition bicycles, there is a demand for resin molded products that have rigidity and impact resistance that can replace conventional metals such as magnesium alloys and that are lightweight.
Therefore, fiber reinforced resins reinforced with reinforcing fibers are generally used from the viewpoint of rigidity and impact resistance. At that time, carbon fibers are often used as reinforcing fibers from the viewpoint of lightness.

繊維強化樹脂には、マトリックス樹脂として熱可塑性樹脂が用いられた繊維強化熱可塑性樹脂がある。
繊維強化熱可塑性樹脂の製造方法としては、溶剤に熱可塑性樹脂を溶解し、得られた樹脂溶液を強化繊維ファブリックに含浸させた後、溶剤を揮発させる方法がある。ところが、この方法では、溶剤を完全に揮発させることが困難であり、その結果、残留した溶剤が繊維強化熱可塑性樹脂の力学的性質を低下させてしまうという問題があった。さらに、揮発した溶剤は回収されて再利用されるため、このように残留して回収不能な溶剤が増加すると、製造コストの点で不利である。
The fiber reinforced resin includes a fiber reinforced thermoplastic resin in which a thermoplastic resin is used as a matrix resin.
As a method for producing a fiber reinforced thermoplastic resin, there is a method in which a thermoplastic resin is dissolved in a solvent, the resulting resin solution is impregnated into a reinforced fiber fabric, and then the solvent is volatilized. However, in this method, it is difficult to completely volatilize the solvent, and as a result, there is a problem that the remaining solvent lowers the mechanical properties of the fiber-reinforced thermoplastic resin. Furthermore, since the volatilized solvent is recovered and reused, an increase in the amount of solvent that remains and cannot be recovered in this way is disadvantageous in terms of manufacturing cost.

そこで、溶剤を使用せずに繊維強化熱可塑性樹脂を製造する方法として、熱可塑性樹脂を加熱してその樹脂粘度を低下させ、強化繊維に含浸する方法が採用される場合が多い。
例えば、特許文献1には、不織布の形態とした熱可塑性樹脂を強化繊維シートに重ねて加熱、加圧することにより、強化繊維の配向を乱すことなく、熱可塑性樹脂を良好に含浸できるという、プリプレグ状の繊維強化熱可塑性樹脂の製造方法が提案されている。
Therefore, as a method for producing a fiber reinforced thermoplastic resin without using a solvent, a method in which the thermoplastic resin is heated to lower its viscosity and impregnated into the reinforced fiber is often employed.
For example, Patent Document 1 discloses that a prepreg in which a thermoplastic resin in the form of a nonwoven fabric can be satisfactorily impregnated with a thermoplastic resin without disturbing the orientation of the reinforcing fiber by heating and pressurizing the reinforcing fiber sheet. A method for producing a fiber-reinforced thermoplastic resin is proposed.

特開2003−165851号公報Japanese Patent Laid-Open No. 2003-165851

しかしながら、特許文献1の方法では、熱可塑性樹脂からなる不織布を強化繊維シートの両面に配置して加熱、加圧するために、強化繊維シートから空気が抜けにくい。そのため、得られた繊維強化熱可塑性樹脂中にはボイドなどの空隙が残存してしまい、これを成形材料として得られる成形品の強度や弾性率が低下するという問題があった。
ボイドなどの空隙を減少させるためには、例えば、不織布の厚みを大きくするなどして熱可塑性樹脂の仕込み量を多くし、樹脂フローの量(樹脂の流動の度合い)を十分にとる方法も考えられる。熱可塑性樹脂は、その流動により、強化繊維間に存在する空隙へ繊維方向に沿って押し流されるため、樹脂フローの量が大きいと空隙が減少することが期待される。ところが、このような方法で得られた繊維強化熱可塑性樹脂においては、含有する熱可塑性樹脂量が多いことに起因する繊維蛇行が発生しやすく、そのような繊維強化熱可塑性樹脂から成形された成形品は、強度や剛性が不十分になりやすいという問題があった。
However, in the method of Patent Document 1, since a nonwoven fabric made of a thermoplastic resin is disposed on both sides of the reinforcing fiber sheet and heated and pressurized, it is difficult for air to escape from the reinforcing fiber sheet. For this reason, voids such as voids remain in the obtained fiber-reinforced thermoplastic resin, and there is a problem that the strength and elastic modulus of a molded product obtained using this as a molding material are lowered.
In order to reduce voids such as voids, for example, a method of increasing the amount of thermoplastic resin charged by increasing the thickness of the nonwoven fabric and taking a sufficient amount of resin flow (degree of resin flow) is also considered. It is done. The thermoplastic resin is forced to flow along the fiber direction into the voids existing between the reinforcing fibers due to the flow thereof. Therefore, it is expected that the voids decrease when the amount of the resin flow is large. However, in the fiber reinforced thermoplastic resin obtained by such a method, fiber meandering due to a large amount of the thermoplastic resin contained is likely to occur, and molding formed from such fiber reinforced thermoplastic resin. The product had a problem that its strength and rigidity were likely to be insufficient.

本発明は上記事情に鑑みてなされたもので、本発明の目的は、ボイドなどの空隙が少なく、繊維含有率が良好で、繊維蛇行のない繊維強化熱可塑性樹脂の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a fiber-reinforced thermoplastic resin having few voids such as voids, good fiber content, and no fiber meandering. is there.

本発明の繊維強化熱可塑性樹脂の製造方法は、長繊維からなる強化繊維で構成される強化繊維シートの一方の面に、熱可塑性樹脂からなる熱可塑性樹脂層を配置し、前記強化繊維シートの他方の面に、前記熱可塑性樹脂が溶融する温度で溶融しない材料からなる網状シートを配置し、積層物を得る配置工程と、前記熱可塑性樹脂は溶融し、前記網状シートは溶融しない温度で、前記積層物を加熱するとともに加圧して、前記熱可塑性樹脂を前記強化繊維シートと前記網状シートとに含浸する含浸工程を有する。
前記積層物の冷却後、前記熱可塑性樹脂が含浸した前記網状シートを前記積層物から剥離する剥離工程を有することが好ましい。
前記熱可塑性樹脂層は、熱可塑性樹脂フィルムからなることが好ましい。
本発明の製造方法により製造された繊維強化熱可塑性樹脂は、成形品の成形材料として好適である。
In the method for producing a fiber-reinforced thermoplastic resin of the present invention, a thermoplastic resin layer composed of a thermoplastic resin is disposed on one surface of a reinforcing fiber sheet composed of reinforcing fibers composed of long fibers, and the reinforcing fiber sheet is On the other surface, a network sheet made of a material that does not melt at a temperature at which the thermoplastic resin melts is disposed, and an arrangement step for obtaining a laminate, and a temperature at which the thermoplastic resin melts and the network sheet does not melt, The laminate includes an impregnation step of heating and pressurizing the laminate to impregnate the reinforcing fiber sheet and the mesh sheet.
It is preferable to have a peeling step of peeling the net sheet impregnated with the thermoplastic resin from the laminate after cooling the laminate.
The thermoplastic resin layer is preferably made of a thermoplastic resin film.
The fiber reinforced thermoplastic resin produced by the production method of the present invention is suitable as a molding material for a molded product.

本発明によれば、ボイドなどの空隙が少なく、繊維含有率が良好で、繊維蛇行のない繊維強化熱可塑性樹脂を製造できる。   According to the present invention, it is possible to produce a fiber-reinforced thermoplastic resin having few voids and the like, a good fiber content, and no fiber meandering.

配置工程を説明する説明図である。It is explanatory drawing explaining an arrangement | positioning process.

以下、本発明を詳細に説明する。
(配置工程)
本発明の繊維強化熱可塑性樹脂の製造方法は、強化繊維シートの一方の面に熱可塑性樹脂からなる熱可塑性樹脂層を配置し、他方の面に網状シートを配置し、熱可塑性樹脂層、強化繊維シート、網状シートが順次重ねられて積層した積層物を得る配置工程を有する。
Hereinafter, the present invention will be described in detail.
(Arrangement process)
The method for producing a fiber-reinforced thermoplastic resin according to the present invention includes arranging a thermoplastic resin layer made of a thermoplastic resin on one side of a reinforcing fiber sheet, and arranging a net-like sheet on the other side of the thermoplastic resin layer, reinforcing It has the arrangement | positioning process which obtains the laminated body on which the fiber sheet and the net-like sheet were laminated | stacked one by one.

強化繊維シートは、長繊維である強化繊維で構成されたシート状物であって、強化繊維としては、例えば炭素繊維、アラミド繊維、ボロン繊維、スチール繊維、PBO繊維、高強度ポリエチレン繊維、ガラス繊維などを例示でき、これらを1種以上使用できる。これらのなかでも、高弾性率及び高強度の繊維強化熱可塑性樹脂を得るためには、炭素繊維を使用することが好ましい。また、強化繊維には、収束性の点から、通常サイズ剤が塗布されているが、サイズ剤の付着量は、熱可塑性樹脂の強化繊維シートへの含浸性を良好とする点から、サイズ剤が塗布された強化繊維の質量を100質量%とした際に1.5質量%以下が好ましく、0.5質量%以下がさらに好ましい。   The reinforcing fiber sheet is a sheet-like material composed of reinforcing fibers that are long fibers. Examples of the reinforcing fibers include carbon fibers, aramid fibers, boron fibers, steel fibers, PBO fibers, high-strength polyethylene fibers, and glass fibers. Etc., and one or more of these can be used. Among these, in order to obtain a fiber reinforced thermoplastic resin having a high elastic modulus and high strength, it is preferable to use carbon fibers. In addition, a sizing agent is usually applied to the reinforcing fiber from the viewpoint of convergence. However, the amount of the sizing agent attached is determined from the point that the impregnation property of the thermoplastic resin to the reinforcing fiber sheet is good. When the mass of the reinforcing fiber coated with is 100% by mass, it is preferably 1.5% by mass or less, and more preferably 0.5% by mass or less.

強化繊維シートの具体的な形態としては、長繊維からなる強化繊維が一方向に引き揃えられたシート、平織、綾織、朱子織などの織物からなるシートが例示できる。また、強化繊維シートは繊維方向に適度な張力が加えられて、蛇行が抑制されたものが好ましい。強化繊維シートの繊維目付は、強化繊維に由来する特性が十分に発揮され、かつ、強化繊維シートの厚みが比較的小さく、熱可塑性樹脂が容易に含浸し易い点から、50〜200g/mの範囲が好ましく、100〜150g/mがさらに好ましい。 Specific examples of the reinforcing fiber sheet include a sheet in which reinforcing fibers made of long fibers are aligned in one direction, and a sheet made of woven fabric such as plain weave, twill weave, and satin weave. Further, the reinforcing fiber sheet is preferably one in which an appropriate tension is applied in the fiber direction and the meandering is suppressed. The fiber basis weight of the reinforcing fiber sheet is 50 to 200 g / m 2 because the properties derived from the reinforcing fibers are sufficiently exhibited, the thickness of the reinforcing fiber sheet is relatively small, and the thermoplastic resin is easily impregnated. The range is preferably 100 to 150 g / m 2 .

強化繊維シートの一方の面に配置される熱可塑性樹脂層は、繊維強化熱可塑性樹脂のマトリックス樹脂を構成するものであって、熱可塑性樹脂としては、ポリプロピレン、ポリアミド、ABS、ポリカーボネートなどが挙げられ、加熱により、粘度が低下する樹脂であればよい。
熱可塑性樹脂層の具体的な形態としては、公知のフィルム成形法により成形された熱可塑性樹脂フィルムからなる層、熱可塑性繊維が交差した網などにより製造された熱可塑性樹脂の網状シート(メッシュ)からなる層、熱可塑性樹脂からなる粉末(パウダー)が均一に振りかけられて形成された層などを例示できる。これらのうち、強化繊維シートへの含浸性(含浸しやすさ)の点では、粉末から形成された層が好ましく、含浸の均一性の点では熱可塑性樹脂フィルムからなる層が好ましい。
The thermoplastic resin layer disposed on one side of the reinforcing fiber sheet constitutes a matrix resin of the fiber reinforced thermoplastic resin, and examples of the thermoplastic resin include polypropylene, polyamide, ABS, and polycarbonate. Any resin whose viscosity is lowered by heating may be used.
Specific examples of the thermoplastic resin layer include a layer made of a thermoplastic resin film formed by a known film forming method, and a thermoplastic resin mesh sheet (mesh) manufactured by a network of intersecting thermoplastic fibers. And a layer formed by uniformly sprinkling a powder made of a thermoplastic resin. Of these, a layer formed from a powder is preferable from the viewpoint of impregnation into the reinforcing fiber sheet (easiness of impregnation), and a layer formed from a thermoplastic resin film is preferable from the viewpoint of uniformity of impregnation.

熱可塑性樹脂層がフィルムにより構成される場合には、厚みが均一で、熱による収縮の少ない無延伸フィルムを用いることが好ましい。
また、得られる繊維強化熱可塑性樹脂中における強化繊維の含有率(繊維含有率)は、体積分率で40〜60%であることが、繊維強化熱可塑性樹脂の強度などの点から好ましいため、繊維含有率がこのような範囲となるように、フィルムの厚みを予め設定しておくことが好ましい。
When the thermoplastic resin layer is composed of a film, it is preferable to use an unstretched film having a uniform thickness and less shrinkage due to heat.
Moreover, since it is preferable from points, such as the intensity | strength of a fiber reinforced thermoplastic resin, that the content rate (fiber content rate) of the reinforced fiber in the fiber reinforced thermoplastic resin obtained is 40 to 60% by volume fraction, It is preferable to set the thickness of the film in advance so that the fiber content is in such a range.

強化繊維シートの他方の面に配置される網状シートは、後述の含浸工程において、熱可塑性樹脂が溶融する温度に積層物が加熱された際に溶融しない、耐熱性を備えた材料から構成される網状のものである。
網状シートの材質は、熱可塑性樹脂層を構成する熱可塑性樹脂の種類に応じて選択され、通常、熱可塑性樹脂よりも融点が高い樹脂材料が選択される。
具体的には、熱可塑性樹脂層を構成する熱可塑性樹脂として、ホモポリプロピレンが使用される場合には、網状シートとしては、例えばポリエステル、ポリテトラフルオロエチレンなどのフッ素樹脂などからなるものが好適に使用される。また、熱可塑性樹脂としてポリアミドが使用される場合には、ポリテトラフルオロエチレンなどのフッ素樹脂、ガラス、金属などからなるものが好適に使用される。
また、網状シートは、通常、含浸工程後の剥離工程で積層物から剥離されるものであるため、網状シートにおいて強化繊維シートと接する側の面には、強化繊維シートやこれに含浸した熱可塑性樹脂から離型しやすい離型処理が予め施されていることが好ましい。
The net-like sheet disposed on the other surface of the reinforcing fiber sheet is composed of a material having heat resistance that does not melt when the laminate is heated to a temperature at which the thermoplastic resin melts in an impregnation step described later. It is reticulated.
The material of the net-like sheet is selected according to the kind of the thermoplastic resin constituting the thermoplastic resin layer, and a resin material having a melting point higher than that of the thermoplastic resin is usually selected.
Specifically, when homopolypropylene is used as the thermoplastic resin constituting the thermoplastic resin layer, the reticulated sheet is preferably made of a fluororesin such as polyester or polytetrafluoroethylene. used. In addition, when polyamide is used as the thermoplastic resin, those made of a fluororesin such as polytetrafluoroethylene, glass, metal or the like are preferably used.
In addition, since the mesh sheet is usually peeled off from the laminate in the peeling step after the impregnation step, the surface of the mesh sheet in contact with the reinforcing fiber sheet is provided with the reinforcing fiber sheet or the thermoplastic impregnated therein. It is preferable that the mold release process which is easy to release from the resin is performed in advance.

網状シートの構成に制限はなく、市販されているものから適宜選択すればよい。例えば、経糸および緯糸の糸密度がそれぞれ40〜120本/2.54cm、厚み0.05〜0.5mm、目付け50〜150g/m等の規格のものが使用できる。 There is no restriction | limiting in the structure of a mesh sheet, What is necessary is just to select suitably from what is marketed. For example, yarns having warp and weft yarn densities of 40 to 120 yarns / 2.54 cm, a thickness of 0.05 to 0.5 mm, and a basis weight of 50 to 150 g / m 2 can be used.

(含浸工程)
含浸工程では、熱可塑性樹脂層を構成する熱可塑性樹脂は溶融し、一方、網状シートは溶融しない温度で、積層物を加熱するとともに加圧して熱可塑性樹脂を溶融させて、熱可塑性樹脂を強化繊維シートと網状シートとに含浸する。
(Impregnation process)
In the impregnation process, the thermoplastic resin constituting the thermoplastic resin layer is melted, while the reticulated sheet is melted at a temperature that does not melt, and the laminate is heated and pressurized to melt the thermoplastic resin, thereby strengthening the thermoplastic resin. Impregnation into a fiber sheet and a mesh sheet.

積層物の加熱及び加圧は、例えば、加熱冷却二段式プレスなどの加熱加圧プレスやダブルベルトプレスを用いて行うことができる。その際、具体的には、まず非加圧下で、熱可塑性樹脂の粘度が十分に低下するような溶融温度で積層物を加熱し、熱可塑性樹脂の粘度が十分に低下した後、加圧することが好ましい。
加熱温度は、熱可塑性樹脂が強化繊維シートに含浸するように、その粘度が十分に低下する温度に設定する。ただし、過度に加熱すると、熱可塑性樹脂が劣化する可能性がある。これらの観点から、例えば熱可塑性樹脂がホモポリプロピレンの場合には、加熱温度としては180〜230℃が好適である。
圧力は0.1〜10MPaが好ましく、加圧時間は、10〜20分間程度が好ましい。
積層物の冷却は、冷却部分を備えた加熱加圧プレスで加熱及び加圧した場合には、その冷却部分で冷却し、ダブルベルトプレスで加熱及び加圧した場合には、ダブルベルトプレスの後段に、積層物を冷却可能な冷却部を設け、加熱後に連続して冷却することが好ましい。
The laminate can be heated and pressurized using, for example, a heating and pressing press such as a heating and cooling two-stage press or a double belt press. In that case, specifically, the laminate is first heated under a non-pressurization at a melting temperature at which the viscosity of the thermoplastic resin is sufficiently reduced, and after the viscosity of the thermoplastic resin is sufficiently reduced, the pressure is applied. Is preferred.
The heating temperature is set to a temperature at which the viscosity is sufficiently lowered so that the thermoplastic fiber is impregnated into the reinforcing fiber sheet. However, if it is heated excessively, the thermoplastic resin may deteriorate. From these viewpoints, for example, when the thermoplastic resin is homopolypropylene, the heating temperature is preferably 180 to 230 ° C.
The pressure is preferably 0.1 to 10 MPa, and the pressing time is preferably about 10 to 20 minutes.
When the laminate is heated and pressed with a heating / pressing press equipped with a cooling part, it is cooled at the cooling part, and when heated and pressurized with a double belt press, the latter part of the double belt press is cooled. It is preferable to provide a cooling part capable of cooling the laminate and continuously cool it after heating.

(剥離工程)
含浸工程後には、通常、剥離工程を行う。剥離工程では、積層物が例えば30〜130℃まで冷却された後、積層物から、熱可塑性樹脂が含浸した網状シートを剥離する。その結果、強化繊維シートに熱可塑性樹脂層の熱可塑性樹脂が含浸したシート状の繊維強化熱可塑性樹脂を得ることができる。網状シートの剥離は、手で行ってもよいし、ペンチなどを用いて行ってもよく、網状シートにおける離型処理の有無などに応じて、適宜行えばよい。
(Peeling process)
After the impregnation step, a peeling step is usually performed. In the peeling step, after the laminate is cooled to, for example, 30 to 130 ° C., the network sheet impregnated with the thermoplastic resin is peeled from the laminate. As a result, a sheet-like fiber reinforced thermoplastic resin in which the reinforced fiber sheet is impregnated with the thermoplastic resin of the thermoplastic resin layer can be obtained. The reticulated sheet may be peeled off by hand or with pliers or the like, and may be appropriately performed according to the presence or absence of the release treatment on the reticulated sheet.

以上説明した製造方法では、強化繊維シートにおいて熱可塑性樹脂層が配置されていない面側に、網状シートを配置して含浸工程を行う。そのため、繊維強化熱可塑性樹脂中の空隙を低減しようとして、熱可塑性樹脂層の厚みを大きくするなどして樹脂フローの量を大きくとったとしても、余分な熱可塑性樹脂は強化繊維シートから網状シートに移行してその網目に保持されるため、剥離工程を経て得られた繊維強化熱可塑性樹脂中の熱可塑性樹脂量は低くなる。よって、このようにして製造された繊維強化熱可塑性樹脂は、繊維含有率が高く強度が優れ、含有する熱可塑性樹脂量が多いことに起因する繊維蛇行が抑制され、しかも、ボイドなどの空隙が少なく含浸性も良好である。なお、含浸性が良好とは、繊維強化熱可塑性樹脂中における空隙の存在割合が、体積分率で10%以下であることであり、好適には5%以下である。   In the manufacturing method demonstrated above, a reticulated sheet | seat is arrange | positioned and the impregnation process is performed in the surface side in which the thermoplastic resin layer is not arrange | positioned in a reinforced fiber sheet. Therefore, even if the amount of resin flow is increased by increasing the thickness of the thermoplastic resin layer in order to reduce the voids in the fiber reinforced thermoplastic resin, the excess thermoplastic resin is removed from the reinforcing fiber sheet to the mesh sheet. Therefore, the amount of the thermoplastic resin in the fiber reinforced thermoplastic resin obtained through the peeling step is reduced. Therefore, the fiber-reinforced thermoplastic resin produced in this way has a high fiber content and excellent strength, suppresses fiber meandering due to a large amount of the thermoplastic resin contained, and has voids such as voids. Less impregnation. In addition, that the impregnation property is good means that the existence ratio of voids in the fiber-reinforced thermoplastic resin is 10% or less in terms of volume fraction, and preferably 5% or less.

このような製造方法で製造された繊維強化熱可塑性樹脂は、例えば、軽量で耐衝撃性が必要な部材であるヘルメット、防弾チョッキ、安全靴の先端部、各種スポーツで使用されるプロテクタなどの保護具をはじめとして、各種成形品の成形材料として好適に使用される。   The fiber-reinforced thermoplastic resin manufactured by such a manufacturing method is, for example, a protective device such as a helmet, a bulletproof vest, a tip of safety shoes, a protector used in various sports, which is a lightweight and impact-resistant member. And is suitably used as a molding material for various molded products.

[実施例1]
以下のようにして、繊維強化熱可塑性樹脂を製造した。
(1)強化繊維として、炭素繊維フィラメント12000本を収束してなる炭素繊維(三菱レイヨン株式会社製、パイロフィルTR50S)を用い、繊維目付150g/mの一方向炭素繊維シート(強化繊維シート)を作製した。なお、サイズ剤の付着量は0.4質量%であった。
(2)熱可塑性樹脂として、ホモポリプロピレン((株)プライムポリマー製、J108M、メルトフローレイト45g/10分)を用い、厚みが約100μm(約90g/m)の無延伸フィルムを加熱加圧プレスにより製造した。
なお、ホモポリプロピレンフィルムの厚みは、得られる繊維強化熱可塑性樹脂中の繊維含有率が体積分率で約45%となるように、約100μm(約90g/m)に設定した。
(3)網状シートとして、以下の糸密度、厚み、目付けを有するポリエステルメッシュ(エアテック社製 リリースプライC(商品名))を用いた。
糸密度:経糸100本/2.54cm、緯糸85本/2.54cm
厚み:0.09mm
目付け:61g/m
[Example 1]
A fiber reinforced thermoplastic resin was produced as follows.
(1) As a reinforcing fiber, a carbon fiber (pyrofil TR50S manufactured by Mitsubishi Rayon Co., Ltd.) obtained by converging 12,000 carbon fiber filaments is used, and a unidirectional carbon fiber sheet (reinforced fiber sheet) having a basis weight of 150 g / m 2 is used. Produced. In addition, the adhesion amount of sizing agent was 0.4 mass%.
(2) Homopolypropylene (manufactured by Prime Polymer Co., Ltd., J108M, melt flow rate 45 g / 10 min) is used as the thermoplastic resin, and an unstretched film having a thickness of about 100 μm (about 90 g / m 2 ) is heated and pressurized. Manufactured by pressing.
The thickness of the homopolypropylene film was set to about 100 μm (about 90 g / m 2 ) so that the fiber content in the obtained fiber-reinforced thermoplastic resin was about 45% in terms of volume fraction.
(3) A polyester mesh (Release Ply C (trade name) manufactured by Airtech) having the following yarn density, thickness, and basis weight was used as the mesh sheet.
Yarn density: 100 warps / 2.54 cm, 85 wefts / 2.54 cm
Thickness: 0.09mm
Weight per unit: 61 g / m 2

図1に示すように、強化繊維シート10の一方の面にホモポリプロピレンフィルム11を配置し、他方の面に網状シート12を配置して、これらを重ねた(配置工程)。
ついで、加熱冷却二段式プレスを用いて、この積層物を200℃で加熱し、5分間経過してから3MPaで10分間加圧を行い、ホモポリプロピレンフィルムを溶融させて、強化繊維シートに含浸させた(含浸工程)。なお、この温度では、ホモポリプロピレンは溶融し、ポリエステルメッシュは溶融しない。
その後、加熱冷却二段式プレスの装置内の冷却部分で積層物を30℃以下になるまで冷却してから、ホモポリプロピレンを含んだポリエステルメッシュを剥離して、シート状の繊維強化熱可塑性樹脂を得た。
得られた繊維強化熱可塑性樹脂は、ボイドなどの空隙が少なく含浸性が良好で、繊維含有率が高く、繊維蛇行も少なく、成形品材料として好適なものであった。
As shown in FIG. 1, the homopolypropylene film 11 was arrange | positioned on the one surface of the reinforced fiber sheet | seat 10, the net-like sheet | seat 12 was arrange | positioned on the other surface, and these were piled up (arrangement process).
Next, this laminate was heated at 200 ° C. using a heating / cooling two-stage press, and after 5 minutes, pressurizing at 3 MPa for 10 minutes to melt the homopolypropylene film and impregnating the reinforcing fiber sheet (Impregnation step). At this temperature, the homopolypropylene melts and the polyester mesh does not melt.
Thereafter, the laminate is cooled to 30 ° C. or less at the cooling part in the heating / cooling two-stage press, and then the polyester mesh containing the homopolypropylene is peeled off, and the sheet-like fiber reinforced thermoplastic resin is removed. Obtained.
The obtained fiber-reinforced thermoplastic resin had few voids such as voids, good impregnation properties, high fiber content, little fiber meandering, and was suitable as a molded article material.

10 強化繊維シート
11 ホモポリプロピレンフィルム(熱可塑性樹脂層)
12 網状シート
10 Reinforcing fiber sheet 11 Homopolypropylene film (thermoplastic resin layer)
12 Mesh sheet

Claims (3)

長繊維からなる強化繊維で構成される強化繊維シートの一方の面に、熱可塑性樹脂からなる熱可塑性樹脂層を配置し、前記強化繊維シートの他方の面に、前記熱可塑性樹脂が溶融する温度で溶融しない材料からなる網状シートを配置し、積層物を得る配置工程と、
前記熱可塑性樹脂は溶融し、前記網状シートは溶融しない温度で、前記積層物を加熱するとともに加圧して、前記熱可塑性樹脂を前記強化繊維シートと前記網状シートとに含浸する含浸工程を有する、繊維強化熱可塑性樹脂の製造方法。
A temperature at which a thermoplastic resin layer made of a thermoplastic resin is disposed on one surface of a reinforcing fiber sheet composed of reinforcing fibers made of long fibers, and the thermoplastic resin melts on the other surface of the reinforcing fiber sheet An arrangement step of arranging a net-like sheet made of a material that does not melt in and obtaining a laminate,
The impregnation step of impregnating the thermoplastic resin into the reinforcing fiber sheet and the mesh sheet by heating and pressurizing the laminate at a temperature at which the thermoplastic resin melts and the mesh sheet does not melt, A method for producing a fiber-reinforced thermoplastic resin.
前記積層物の冷却後、前記熱可塑性樹脂が含浸した前記網状シートを前記積層物から剥離する剥離工程を有する、請求項1に記載の繊維強化熱可塑性樹脂の製造方法。   The manufacturing method of the fiber reinforced thermoplastic resin of Claim 1 which has a peeling process which peels the said net-like sheet which the said thermoplastic resin impregnated impregnated from the said laminated body after cooling of the said laminated body. 前記熱可塑性樹脂層は、熱可塑性樹脂フィルムからなる、請求項1または2に記載の繊維強化熱可塑性樹脂の製造方法。   The said thermoplastic resin layer is a manufacturing method of the fiber reinforced thermoplastic resin of Claim 1 or 2 which consists of a thermoplastic resin film.
JP2010096944A 2010-04-20 2010-04-20 Method for producing fiber reinforced thermoplastic resin Active JP5716290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010096944A JP5716290B2 (en) 2010-04-20 2010-04-20 Method for producing fiber reinforced thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010096944A JP5716290B2 (en) 2010-04-20 2010-04-20 Method for producing fiber reinforced thermoplastic resin

Publications (2)

Publication Number Publication Date
JP2011224866A JP2011224866A (en) 2011-11-10
JP5716290B2 true JP5716290B2 (en) 2015-05-13

Family

ID=45040847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010096944A Active JP5716290B2 (en) 2010-04-20 2010-04-20 Method for producing fiber reinforced thermoplastic resin

Country Status (1)

Country Link
JP (1) JP5716290B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761867B2 (en) 2013-01-21 2015-08-12 株式会社日本製鋼所 Method for producing fiber reinforced resin base material or resin molded body, and plasticizing dispenser used in this production method
JP2016147377A (en) * 2015-02-10 2016-08-18 株式会社キャップ Molding method and production method of frp product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732397A (en) * 1993-07-15 1995-02-03 Mitsui Toatsu Chem Inc Method and device for continuously manufacturing laminated molding
JP5076053B2 (en) * 2006-11-22 2012-11-21 福井県 Thermoplastic resin multilayer reinforced sheet material, method for producing the same, and thermoplastic resin multilayer reinforced molded article
JP5167953B2 (en) * 2008-05-27 2013-03-21 東レ株式会社 Laminated substrate, fiber reinforced plastic, and production method thereof

Also Published As

Publication number Publication date
JP2011224866A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP6020612B2 (en) Sheet for fiber-reinforced plastic molded body and molded body thereof
JP6161108B2 (en) Fiber-reinforced composite material and method for producing the same
US10442143B2 (en) Manufacturing method for fibre-reinforced resin substrate or resin molded article
JP2006219078A (en) Compound body for aircraft, and manufacturing method of compound structural part of aircraft
JP2013176876A (en) Manufacturing method of molding
KR100983531B1 (en) Method of manufacturing carbon fiber sheet
JP5716290B2 (en) Method for producing fiber reinforced thermoplastic resin
JP6369178B2 (en) Preform manufacturing method, fiber-reinforced thermosetting resin molded product manufacturing method, and preform
CN109795132A (en) A kind of preparation method of bulletproof halmet
JP5966969B2 (en) Manufacturing method of prepreg
JP2001179844A (en) Carbon fiber-reinforced plastic molded body
ITUA20164146A1 (en) SKI MANUFACTURING PROCEDURE, AND TYPICAL TOOLS FOR SLIDING ON THE SNOW, WITH THERMOFORMABLE MATERIALS WITH CARBON FIBER-BASED STRUCTURES, AND THERMOFORMING MOLDS OF SUCH PRODUCTS, AS WELL AS SKI AND SLIP TOOLS ON THE SNOW SO OBTAINED
JP5877431B2 (en) Method for producing carbon fiber reinforced composite material
JP6750616B2 (en) Fiber-reinforced thermoplastic resin composition
WO2022075265A1 (en) Fiber-reinforced resin pultruded article and method for producing same
CA2801886C (en) Method of making automotive body parts
JP2013184356A (en) Fiber-reinforced resin base material, and method of manufacturing resin molding and resin processing machine for carrying out the same
JP4558398B2 (en) Composite material with smooth surface
JP2018016016A (en) Fiber-reinforced resin composite material and method for producing multilayered structure and fiber-reinforced resin composite material
KR102470605B1 (en) High-glossy thermoplastic prepreg laminates which have high resin contents, and method for producing the same
JP2018001464A (en) Fiber-reinforced resin member and method for producing the same
JP2018144274A (en) Molded product manufacturing method and molded product made from metal and fiber-reinforced composite material
JP2004182923A (en) Prepreg and method for manufacturing fiber-reinforced composite material using the same
KR102531610B1 (en) Manufacturing method of fiber reinforced composite using powder of thermoplastic resin and fiber reinforced composite therefrom
JP2004074471A (en) Frp molding intermediate material and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R151 Written notification of patent or utility model registration

Ref document number: 5716290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250