JP5716157B2 - Air conditioning system for automobile cabin - Google Patents

Air conditioning system for automobile cabin Download PDF

Info

Publication number
JP5716157B2
JP5716157B2 JP2013537215A JP2013537215A JP5716157B2 JP 5716157 B2 JP5716157 B2 JP 5716157B2 JP 2013537215 A JP2013537215 A JP 2013537215A JP 2013537215 A JP2013537215 A JP 2013537215A JP 5716157 B2 JP5716157 B2 JP 5716157B2
Authority
JP
Japan
Prior art keywords
conditioning system
refrigerant
air conditioning
condensate
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013537215A
Other languages
Japanese (ja)
Other versions
JP2013541466A (en
Inventor
ローデット,フレデリク
Original Assignee
ボルボ トラック コーポレイション
ボルボ トラック コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボルボ トラック コーポレイション, ボルボ トラック コーポレイション filed Critical ボルボ トラック コーポレイション
Publication of JP2013541466A publication Critical patent/JP2013541466A/en
Application granted granted Critical
Publication of JP5716157B2 publication Critical patent/JP5716157B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3233Cooling devices characterised by condensed liquid drainage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H1/00342Heat exchangers for air-conditioning devices of the liquid-liquid type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3233Cooling devices characterised by condensed liquid drainage means
    • B60H1/32331Cooling devices characterised by condensed liquid drainage means comprising means for the use of condensed liquid, e.g. for humidification or for improving condenser performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/02Moistening ; Devices influencing humidity levels, i.e. humidity control
    • B60H3/022Moistening ; Devices influencing humidity levels, i.e. humidity control for only humidifying the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05325Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers

Description

本発明は自動車、例えば産業車両の車室用空気調和システムに関する。   The present invention relates to an air conditioning system for a passenger compartment of an automobile, for example, an industrial vehicle.

空気調和システムは、長年にわたって自動車の標準機能であった。   Air conditioning systems have been a standard feature of automobiles for many years.

このようなシステムは、一般に、ループ内において冷媒を運ぶ冷媒回路を含む。従来的に、気相の冷媒は、自動車エンジン又は専用モータにより駆動される圧縮機内で圧縮されて高圧ガスとなる。圧縮機の出口では冷媒は圧縮により高温となっている。冷媒は、その後、環境空気に接触することができる自動車の前部又は何らかのその他の位置に配置されてよい凝縮器の方へと運ばれ、この凝縮器内において冷媒は冷却されると共に凝縮されて液体となる一方で高圧を維持する。凝縮器は本質的に高圧の冷媒と環境空気との間の熱交換器である。凝縮効率を高めるために、自動車エンジンにより駆動されるか又は別途の電気モータにより駆動される凝縮器ファンが一般に凝縮器に近接して配置される。液相であるが高圧の冷媒は次に膨張器において膨張され、そこで冷媒の温度が急激に降下し、然る後に、蒸発器の方へと運ばれ、そこで蒸発してガスになった後に再び圧縮機に入る。車室温度を下げるために、車室内へと導かれる空気流は、蒸発器内での冷媒の蒸発を利用して冷却される。蒸発器は本質的に低圧の冷媒と車室内に吹き込まれる空気との間における熱交換器である。言うまでもなく、様々な種類の空気調和システムはこの原理に基づいているが、様々な要素が実施形態によって異なることがある。例えば、膨張器は、単なる較正オリフィス流路であるか、又は温度膨張弁であることがある。前者の場合は、システムは更に、蒸発器と圧縮機との間にアキュムレータを含むことがあり、後者の場合は、システムは更に、凝縮器と膨張器との間に更に貯蔵乾燥器を含むことがある。   Such systems typically include a refrigerant circuit that carries the refrigerant within the loop. Conventionally, the gas-phase refrigerant is compressed into a high-pressure gas in a compressor driven by an automobile engine or a dedicated motor. At the outlet of the compressor, the refrigerant is hot due to compression. The refrigerant is then transported towards a condenser, which may be located at the front of the vehicle or in some other location where it can come into contact with ambient air, in which it is cooled and condensed. Maintains high pressure while becoming liquid. A condenser is essentially a heat exchanger between high pressure refrigerant and ambient air. In order to increase the condensation efficiency, a condenser fan, driven by an automobile engine or driven by a separate electric motor, is generally placed in close proximity to the condenser. The liquid phase but high pressure refrigerant is then expanded in the expander, where the temperature of the refrigerant drops sharply and then is transported towards the evaporator where it evaporates into a gas and again. Enter the compressor. In order to lower the passenger compartment temperature, the air flow introduced into the passenger compartment is cooled by utilizing the evaporation of the refrigerant in the evaporator. The evaporator is essentially a heat exchanger between the low-pressure refrigerant and the air blown into the passenger compartment. Of course, various types of air conditioning systems are based on this principle, but various elements may vary from embodiment to embodiment. For example, the expander may simply be a calibration orifice flow path or a temperature expansion valve. In the former case, the system may further include an accumulator between the evaporator and the compressor, and in the latter case, the system further includes a storage dryer between the condenser and the expander. There is.

一部の運転条件では、このような従来の空気調和システムは、不十分な効率を有すること又は期待される冷却効果を達成するために過大な動力を必要とすることがある。これは、外部の温度が高い時又は自動車が低速で例えば市中を移動している時に起こる可能性がある。   Under some operating conditions, such conventional air conditioning systems may have insufficient efficiency or require excessive power to achieve the expected cooling effect. This can happen when the outside temperature is high or when the car is moving at low speed, for example in a city.

システム効率を高めるための1つの解決策は、再循環空気を用いてシステムを運転することである。換言すれば、蒸発器で冷却されると共に車室の方へと導かれる空気流を外気ではなしに、車室から到来する空気とする。再循環空気は外気ほど暖かくないため、車室内の目標温度に到達するために必要なエネルギーが少なくなる。その結果として、燃料消費量が削減されると共に温度目標の達成が迅速になり、且つ温度という点での運転者の快適さが高まる。   One solution to increase system efficiency is to operate the system with recirculated air. In other words, the air flow cooled by the evaporator and guided toward the passenger compartment is not the outside air but the air coming from the passenger compartment. Since the recirculated air is not as warm as the outside air, less energy is required to reach the target temperature in the passenger compartment. As a result, fuel consumption is reduced, temperature targets are achieved quickly, and driver comfort in terms of temperature is increased.

しかし、蒸発器の1つの作用は自身が冷却する空気を乾燥させることであり、しかも外気が全く又は少ししか取り込まれないため、この方策の1つの副産物として車室内の湿度が漸進的に低下する。その結果として、車室内の湿度が非常に低くなる可能性があり、これは、特に運転者がコンタクトレンズを装着している場合には、運転者にとって不快となりかねないため、望ましくない。   However, one function of the evaporator is to dry the air that it cools, and since only a little or no outside air is taken in, the humidity in the passenger compartment gradually decreases as one by-product of this measure. . As a result, the humidity in the passenger compartment can be very low, which is undesirable because it can be uncomfortable for the driver, especially if the driver is wearing contact lenses.

従って、いくつかの観点から、自動車用空気調和システムには改良の余地がある。   Therefore, there is room for improvement in the air conditioning system for automobiles from several viewpoints.

本発明の目的は、従来の空気調和システムに見られる欠点を克服することができる、自動車の車室用の改良された空気調和システムを提供することにある。   It is an object of the present invention to provide an improved air conditioning system for a vehicle cabin that can overcome the disadvantages found in conventional air conditioning systems.

本発明のまた他の目的は、高い効率を有する一方で、更にまた運転者にとって、より一般的には車室内にいる人物にとって快適である空気調和システムを提供することにある。   Another object of the present invention is to provide an air conditioning system that has high efficiency while still being comfortable for the driver, more generally for the person in the passenger compartment.

前記課題を解決するために、本発明の空気調和システムは、In order to solve the above problems, an air conditioning system according to the present invention includes:
自動車の車室(2)用の空気調和システムであって、圧縮機(4)と凝縮器(5)と膨張器(8)と前記車室(2)の方へと導かれる空気流(10)を冷却することができる蒸発器(9)とを連続的に通るループ内において冷媒を運ぶ冷媒回路(3)を含む空気調和システムにおいて:An air conditioning system for an automobile compartment (2) comprising an air flow (10) directed towards a compressor (4), a condenser (5), an expander (8) and said compartment (2). In an air conditioning system comprising a refrigerant circuit (3) carrying refrigerant in a loop continuously passing through an evaporator (9) capable of cooling):
使用中に前記蒸発器(9)において見られる凝縮液を回収する回収器(12)と、前記凝縮液と前記冷媒との間における熱接触を可能にして、前記冷媒が前記凝縮液により冷却され、以って前記凝縮液が加熱されるように設計される熱交換器(5)の方へと前記凝縮液を運ぶ回収管(13)と、A collector (12) that collects the condensate that is found in the evaporator (9) during use, and enables thermal contact between the condensate and the refrigerant so that the refrigerant is cooled by the condensate. A recovery tube (13) carrying the condensate towards a heat exchanger (5) designed to heat the condensate,
前記熱交換器(5)と前記車室(2)との間に設けられ、前記車室(2)を加湿するために、前記熱交換器で加熱された前記凝縮液の少なくとも一部分を前記車室(2)に運ぶ戻り管(14)とを含むことを特徴としている。Provided between the heat exchanger (5) and the passenger compartment (2), in order to humidify the passenger compartment (2), at least a part of the condensate heated by the heat exchanger is used as the vehicle. And a return pipe (14) for carrying into the chamber (2).

熱交換器は、空気調和回路内において冷媒が高温となる何らかの点、即ち好ましくは圧縮機の下流且つ膨張器の上流に配置される専用熱交換器とすることができる。   The heat exchanger may be a dedicated heat exchanger that is arranged at some point in the air conditioning circuit where the refrigerant becomes hot, preferably downstream of the compressor and upstream of the expander.

それでもなお、以下により詳細に説明する2つの実施形態によれば、熱交換器は凝縮器と一体化される。このため、こうした場合には、本発明は、冷媒を第1の流体とし、環境空気を第2の流体とし、蒸発器の凝縮液を第3の流体とする凝縮器を形成する三流体熱交換器となる。換言すれば、冷媒は、凝縮器内において、環境空気と凝縮液との2つの冷却源の作用下で冷却され、これらの冷却源が加熱されることが冷媒の冷却に寄与する。   Nevertheless, according to two embodiments described in more detail below, the heat exchanger is integrated with the condenser. For this reason, in such a case, the present invention provides a three-fluid heat exchange that forms a condenser in which the refrigerant is the first fluid, the environmental air is the second fluid, and the condensate of the evaporator is the third fluid. It becomes a vessel. In other words, the refrigerant is cooled in the condenser under the action of two cooling sources, ambient air and condensate, and heating of these cooling sources contributes to cooling of the refrigerant.

この構成により、空気調和システムの効率は大幅に向上する。従って、システムは暑い日又は自動車が低速で移動している時でも十分な冷却済み空気を車室内に供給することができる。本発明は、凝縮器ファンを長時間にわたって回転させる必要なしに、この効果を達成することを可能にし、従って燃料消費量の削減に寄与する。更に、システム効率を高めることにより、本発明は、より迅速に車室内の目標温度に到達することも可能にする。   With this configuration, the efficiency of the air conditioning system is greatly improved. Thus, the system can provide sufficient cooled air into the passenger compartment even on hot days or when the car is moving at low speed. The present invention makes it possible to achieve this effect without having to rotate the condenser fan for a long time, thus contributing to a reduction in fuel consumption. Furthermore, by increasing the system efficiency, the present invention also allows the target temperature in the passenger compartment to be reached more quickly.

本発明のまた他の利点は、凝縮液が誘導されることと、これにより、自身が流れる自動車部分に錆を生じさせる可能性があると共に地面に跡をつける、地面に排出される水の量が最小限に抑えられることとにある。更に、1時間当たりに凝縮される水の体積が特に高温且つ高湿度の国では非常に大きくなる可能性があることを考えて、本発明は、さもなければ失われてしまう凝縮液を利用するものである。   Yet another advantage of the present invention is the amount of water discharged to the ground that induces condensate, which can cause rust in the part of the vehicle where it flows and also marks the ground. Is to be minimized. Furthermore, considering that the volume of water condensed per hour can be very large, especially in countries with high temperatures and high humidity, the present invention utilizes condensate that would otherwise be lost. Is.

更にまた、凝縮液は、一旦熱交換器内で加熱されると、大気へと送られるのではなしに、好ましくは水蒸気及び/又は加熱済み加湿空気の形態で車室へと送られる。これは、特に空気調和システムが車室からの再循環空気を用いる場合であるが、こうした場合に限らず、車室内の湿度を快適なレベルに保つのに役立つ。   Furthermore, once the condensate is heated in the heat exchanger, it is not sent to the atmosphere, but is preferably sent to the passenger compartment in the form of steam and / or heated humidified air. This is particularly the case when the air conditioning system uses recirculated air from the passenger compartment, but is not limited to this case, and helps to maintain the humidity in the passenger compartment at a comfortable level.

本発明の重要な局面は、凝縮液を用いて凝縮器を冷却することにより、凝縮器の大きさが同じ場合にその効率を向上させること、又はこれに代わるものとして、凝縮器の効率が同じである場合にはその大きさを小さくすること、又は両方の効果を組み合わせることが可能になるところにあり、これは従来技術のシステムでは達成不能であった。より小さい凝縮器を自動車の前部に用いることは、一部の自動車において有利となることがある。   An important aspect of the present invention is to cool the condenser with condensate to improve its efficiency when the size of the condenser is the same, or alternatively, the efficiency of the condenser is the same. , It is possible to reduce its size, or to combine both effects, which was not achievable with prior art systems. Using a smaller condenser at the front of the vehicle may be advantageous in some vehicles.

本発明は、将来の規制に準拠した、より効果が低いこともある冷媒を用いる場合でも十分な冷却効率をもたらすことができる空気調和システムを提供するものである。   The present invention provides an air conditioning system that can provide sufficient cooling efficiency even when a refrigerant that may be less effective is used, in compliance with future regulations.

本発明は、更にまた、車室とこのような空気調和システムとを有する自動車に関する。   The invention also relates to a motor vehicle having a passenger compartment and such an air conditioning system.

上記及びその他の特徴と利点とは、本発明に従った空気調和システムの実施形態を非限定的な例として示す添付図面に照らして以下の説明を読むことで明らかになろう。   These and other features and advantages will become apparent upon reading the following description in light of the accompanying drawings, which illustrate, by way of non-limiting example, embodiments of an air conditioning system according to the present invention.

本発明の幾つかの実施形態の以下の詳細な説明は、添付図面と併せて読むとよりよく理解することができるが、本発明は、これらの開示された特定の実施形態に制限されるわけではないことを理解されたい。   The following detailed description of several embodiments of the present invention can be better understood when read in conjunction with the appended drawings, but the invention is not limited to these specific disclosed embodiments. Please understand that it is not.

本発明に従った空気調和システムの略図である。1 is a schematic diagram of an air conditioning system according to the present invention. 凝縮水と水蒸気との回路をより具体的に示す、図1の空気調和システムの略図である。2 is a schematic diagram of the air conditioning system of FIG. 1 showing more specifically a circuit of condensed water and water vapor. 従来技術の凝縮器を示す略図である。1 is a schematic diagram showing a prior art condenser. 従来技術の凝縮器を示す略図である。1 is a schematic diagram showing a prior art condenser. 本発明に従った空気調和システムの凝縮器の第1の実施形態に用いられる導管の図である。1 is a diagram of a conduit used in a first embodiment of a condenser of an air conditioning system according to the present invention. FIG. 本発明に従った空気調和システムの凝縮器の第1の実施形態に用いられる導管の図である。1 is a diagram of a conduit used in a first embodiment of a condenser of an air conditioning system according to the present invention. FIG. 第1の実施形態に従った凝縮器の詳細断面図である。It is a detailed sectional view of the condenser according to the first embodiment. 第1の実施形態に従った凝縮器の詳細斜視図である。It is a detailed perspective view of the condenser according to the first embodiment. 本発明の第2の実施形態に従った凝縮器の一部分を示す略断面図である。It is a schematic sectional drawing which shows a part of condenser which concerns on the 2nd Embodiment of this invention.

図1及び2に示すように、自動車の車室2用の空気調和システム1は、第1に、ループ内において冷媒を運ぶ冷媒回路3を含む。 As shown in FIGS. 1 and 2, an air conditioning system 1 for a passenger compartment 2 of an automobile first includes a refrigerant circuit 3 that carries refrigerant in a loop.

冷媒回路3において、冷媒は、低圧ガスとして、自動車エンジン又は専用モータにより駆動される圧縮機4に入る。圧縮機4の後に、高圧且つ高温ガス状の冷媒は、自動車の前部に配置されると共に冷媒を高圧の液体に凝縮する凝縮器5の方へと導かれる。自動車エンジン又は別途のモータにより駆動されるファン6を凝縮器5に近接して設けて、凝縮器の効率を高めることができる。この実施形態では、冷媒は貯蔵乾燥器7の方へと流れると共に、然る後に、ここでは温度膨張弁として実施される膨張器8を通って流れる。圧力センサを回路内において貯蔵乾燥器7と膨張器8との間に設けることができる。膨張器において、高圧の液体は膨張されて、圧力が低下し、以ってその温度が大幅に低下するようになる。低圧の冷媒は次に蒸発器9に入り、そこで蒸発して低圧ガスとなる。このガス状の冷媒は、その後、再び圧縮機4の方へと流れる。   In the refrigerant circuit 3, the refrigerant enters the compressor 4 driven by an automobile engine or a dedicated motor as low-pressure gas. After the compressor 4, the high-pressure and high-temperature gaseous refrigerant is directed to a condenser 5 that is disposed at the front of the vehicle and condenses the refrigerant into a high-pressure liquid. A fan 6 driven by an automobile engine or a separate motor can be provided close to the condenser 5 to increase the efficiency of the condenser. In this embodiment, the refrigerant flows towards the storage dryer 7 and then flows through the expander 8 which is here implemented as a temperature expansion valve. A pressure sensor can be provided in the circuit between the storage dryer 7 and the expander 8. In the inflator, the high pressure liquid is expanded and the pressure is reduced, thus causing the temperature to drop significantly. The low pressure refrigerant then enters the evaporator 9 where it evaporates into a low pressure gas. This gaseous refrigerant then flows again towards the compressor 4.

蒸発器9において、冷媒の蒸発を利用して空気流10が冷却され、この空気流は例えばブロワを補助的に用いて車室2の方へと送られる。反対に空気流は冷媒を加熱し、以ってその蒸発を促進する。   In the evaporator 9, the air flow 10 is cooled by using the evaporation of the refrigerant, and this air flow is sent toward the passenger compartment 2 using a blower, for example. In contrast, the air flow heats the refrigerant and thus promotes its evaporation.

本発明に従った空気調和システム1は、更に、使用中に蒸発器9に見られることがある凝縮液を回収する回収器12と、以下に説明するいずれの実施形態においても凝縮器5と一体化される熱交換器の方へと凝縮液を運ぶ回収管13とを含む。蒸発器と接触する空気は冷却されると共に、以って自身の水蒸気運搬能力の一部分を失うため、凝縮液は主として、蒸発器において凝縮された水を含む。回収管13は冷気も運ぶことができる。空気の存在は、回収管13が、空気調和システムのブロワにより空気が若干加圧されることがある蒸発器付近から始まることによる。   The air conditioning system 1 according to the present invention is further integrated with a collector 12 for collecting condensate that may be found in the evaporator 9 during use, and with the condenser 5 in any of the embodiments described below. And a recovery tube 13 for carrying the condensate towards the heat exchanger to be converted. Since the air in contact with the evaporator is cooled and thus loses part of its water vapor carrying capacity, the condensate mainly comprises water condensed in the evaporator. The collection tube 13 can also carry cold air. The presence of air is due to the recovery tube 13 starting near the evaporator where the air may be slightly pressurized by the blower of the air conditioning system.

回収管13は、蒸発器9から水を受けることができる水タンク18を含んでよい。図の実施形態において、水タンク18は凝縮器5の上流に配置され、溢れダクト190がこの水タンク18から回収管13の下流の点の方へと配設される。   The recovery tube 13 may include a water tank 18 that can receive water from the evaporator 9. In the embodiment shown, the water tank 18 is arranged upstream of the condenser 5 and an overflow duct 190 is arranged from this water tank 18 towards a point downstream of the recovery pipe 13.

凝縮器5において、冷媒は環境空気と凝縮液との両方により冷却される。このため、凝縮液は凝縮器で冷媒により加熱される。この加熱により、凝縮水の少なくとも一部分が水蒸気に変換される。この水蒸気は最終的に、回収管により運ばれる空気と混合されて、加熱済み加湿空気を形成するようになる。凝縮器5で加熱された凝縮液は、その後、戻り管14により車室2へと運ばれて、車室2を加湿する。従って、凝縮器の出口では、凝縮液は水蒸気及び/又は加湿空気及び/又は可能性としてある程度の残留水を含むことがある。   In the condenser 5, the refrigerant is cooled by both ambient air and condensate. For this reason, the condensate is heated by the refrigerant in the condenser. This heating converts at least a portion of the condensed water into water vapor. This water vapor will eventually be mixed with the air carried by the recovery tube to form heated humidified air. The condensate heated in the condenser 5 is then conveyed to the vehicle compartment 2 by the return pipe 14 and humidifies the vehicle compartment 2. Thus, at the outlet of the condenser, the condensate may contain water vapor and / or humidified air and / or possibly some residual water.

次に、特に図2を参照すると、車室2は、車室2に空気を流入させる開口16を備える少なくとも1つの空気ダクト15を含む。この空気ダクトは、好ましくは、通風を同乗者の足元の方、同乗者の身体及び頭部の方、又はフロントガラス若しくはその他の窓表面の方に選択的に分配するように各々が幾つかの開口を有する幾つかのダクトを含む車室通風回路の一部分である。蒸発器9に結合される空気調和装置17は、車室2の内部又はエンジンルームに設けられて、冷却済み空気を空気ダクト15内へと送る。   Next, with particular reference to FIG. 2, the passenger compartment 2 includes at least one air duct 15 with an opening 16 through which air flows into the passenger compartment 2. The air ducts preferably each have several pieces to selectively distribute ventilation to the passenger's feet, to the passenger's body and head, or to the windshield or other window surface. Fig. 2 is a part of a passenger compartment ventilation circuit including several ducts with openings. An air conditioner 17 coupled to the evaporator 9 is provided in the interior of the passenger compartment 2 or in the engine room, and sends cooled air into the air duct 15.

戻り管は、好ましくは加熱済み凝縮液の少なくとも一部分をダクト15に送る。このダクト内において、これらの加熱済み凝縮液は車室に到来する空気と混合される。戻り管は加熱済み凝縮液をダクトに送って、加熱済み凝縮液が全ての開口16に分配されるようにする。しかし、好ましくは、加熱済み凝縮液は、フロントガラス又はその他の窓の方へと向けられる開口に分配されるよりも寧ろ同乗者の上半身の方へと向けられる開口に分配される。好ましくは加熱済み凝縮液のガス状部分のみが車室に送られる一方で、存在する可能性がある残留水は、好ましくは自動車外又はタンク18のいずれかに廃棄される。それでもなお、残留する加熱済み凝縮水も霧化されて車室内に導入されてよい。   The return pipe preferably delivers at least a portion of the heated condensate to the duct 15. In this duct, these heated condensates are mixed with the air coming into the passenger compartment. The return pipe sends the heated condensate to the duct so that the heated condensate is distributed to all openings 16. Preferably, however, the heated condensate is distributed in an opening that is directed toward the passenger's upper body rather than being distributed in an opening that is directed toward the windshield or other window. While preferably only the gaseous portion of the heated condensate is sent to the passenger compartment, residual water that may be present is preferably discarded either outside the vehicle or in the tank 18. Nevertheless, the remaining heated condensed water may also be atomized and introduced into the passenger compartment.

好ましくは、空気調和システム1は、更に、自動車の車室2内に配置される湿度センサ19と、この湿度センサ19に結合されると共に加熱済み凝縮液の流れを測定された湿度によって調整する手段とを含んでよい。この手段は、センサ19と、回収管13上において水タンク18と凝縮器5との間に配置される第1の弁21と、戻り管14上において凝縮器5と空気ダクト15との間に配置される第2の弁22とに結合される電子制御装置20を含んでよい。この例に示すように、第2の弁22は、空気ダクト15及び/又は車室の空気の加湿が必要ではない場合には大気のいずれかへと加熱済み凝縮液を導く三方弁であってよい。これに代わる方法として、センサ19は、温度及び湿度センサとされてよい。   Preferably, the air conditioning system 1 further comprises a humidity sensor 19 arranged in the passenger compartment 2 of the motor vehicle and means coupled to the humidity sensor 19 and for adjusting the flow of the heated condensate according to the measured humidity. And may include. This means includes a sensor 19, a first valve 21 disposed on the recovery pipe 13 between the water tank 18 and the condenser 5, and a condenser 5 and the air duct 15 on the return pipe 14. An electronic controller 20 may be included coupled to the second valve 22 disposed. As shown in this example, the second valve 22 is a three-way valve that directs the heated condensate to either the air duct 15 and / or to the atmosphere if humidification of the cabin air is not required. Good. As an alternative method, the sensor 19 may be a temperature and humidity sensor.

回収管内、熱交換器内及び戻り管内の凝縮液の流れは、蒸発器における若干の超過圧力、重力、及び/又は、例えば回収管及び/又は戻り管に配置されるポンプの配設によってもたらされる。   The flow of condensate in the recovery pipe, in the heat exchanger and in the return pipe is brought about by some overpressure in the evaporator, gravity and / or the arrangement of pumps, for example arranged in the recovery pipe and / or return pipe. .

本発明に従った空気調和システムに用いることができる凝縮器の2つの実施形態を以下に説明する。   Two embodiments of a condenser that can be used in an air conditioning system according to the present invention are described below.

本発明の1つの実施形態において、凝縮器5は、図3及び4に示す従来式凝縮器と同様の全体構造と以下に説明する付加的又は代替的な特徴とを有する。   In one embodiment of the invention, the condenser 5 has an overall structure similar to the conventional condenser shown in FIGS. 3 and 4 and additional or alternative features described below.

このため、凝縮器5は実質的に平行六面体の形状を有してよい。この凝縮器は、凝縮器5の同じ垂直縁部27に近接して配置される冷媒入口25と冷媒出口26とを含み、出口26は好ましくは入口25の上に配置される。   For this reason, the condenser 5 may have a substantially parallelepiped shape. The condenser includes a refrigerant inlet 25 and a refrigerant outlet 26 disposed proximate to the same vertical edge 27 of the condenser 5, and the outlet 26 is preferably disposed above the inlet 25.

凝縮器5は、冷媒入口25から冷媒出口26へと至る複数の平行な導管29を含んでよく、これらの導管29は凝縮器5の垂直縁部27、28間に延在する。凝縮効率を高めるために、隣接する導管29間にフィン30を設けることができる。   The condenser 5 may include a plurality of parallel conduits 29 extending from the refrigerant inlet 25 to the refrigerant outlet 26, which extend between the vertical edges 27, 28 of the condenser 5. Fins 30 can be provided between adjacent conduits 29 to increase condensation efficiency.

更に、側部チャンバが導管の各側に、好ましくは対応する垂直縁部27、28に近接して配置されてよい。このように、第1の側部チャンバ31は入口25及び出口26の垂直縁部27に近接して配置され、第2の側部チャンバ32は、他方の垂直縁部28に近接して配置される。チャンバ31、32は導管29と流体連通する。   Furthermore, side chambers may be arranged on each side of the conduit, preferably close to the corresponding vertical edges 27,28. As such, the first side chamber 31 is disposed proximate to the vertical edge 27 of the inlet 25 and outlet 26, and the second side chamber 32 is disposed proximate to the other vertical edge 28. The Chambers 31 and 32 are in fluid communication with conduit 29.

導管29は、冷媒入口25から冷媒出口26へと至る連続的な組状の平行導管として配置されてよい。図の実施形態において、凝縮器5は、3つの連続的な組状の導管29、即ち凝縮器5の上部の第1組33と凝縮器5の中間部の第2組34と凝縮器5の下部の第3組35とを含む。例えば、第1組33は9つの導管29を含んでよく、第2組34は7つの導管29を含んでよく、第3組35は6つの導管29を含んでよい。言うまでもなく、これらの個数は単なる例示にすぎない。   The conduit 29 may be arranged as a continuous set of parallel conduits from the refrigerant inlet 25 to the refrigerant outlet 26. In the illustrated embodiment, the condenser 5 comprises three successive sets of conduits 29, namely a first set 33 at the top of the condenser 5, a second set 34 at the middle of the condenser 5, and the condenser 5. A lower third set 35. For example, the first set 33 may include nine conduits 29, the second set 34 may include seven conduits 29, and the third set 35 may include six conduits 29. Needless to say, these numbers are merely illustrative.

冷媒は同じ組の導管29では同じ方向に流れるが、1つの組の導管29と次の組の導管29とでは逆の方向に流れる。第1のチャンバ31は、実質的に第1組33と第2組34との間の境界線37の高さに配置される仕切り壁36を含み、第2のチャンバ32は、実質的に第2組34と第3組35との間の境界線39の高さに配置される仕切り壁38を含む。   The refrigerant flows in the same direction in the same set of conduits 29 but in the opposite direction in one set of conduits 29 and the next set of conduits 29. The first chamber 31 includes a partition wall 36 disposed substantially at the height of the boundary line 37 between the first set 33 and the second set 34, and the second chamber 32 is substantially A partition wall 38 disposed at the height of the boundary line 39 between the second set 34 and the third set 35 is included.

図3及び4に示す例において、ガス状の冷媒流は入口25により凝縮器5の第1の側部チャンバ31に仕切り壁36まで進入すると共に、第1組33の導管29により運ばれる各分割流に分割される。冷媒は、次に、第2の側部チャンバ32に仕切り壁38まで進入すると共に、第2組34の導管29を通って逆方向に第1の側部チャンバ31の方へと流れる。最後に、冷媒は第3組35の導管29を通って第2の側部チャンバ32の方へと流れる。冷媒は、実質的に垂直方向に第2の側部チャンバ32に沿って延在すると共に然る後に実質的に水平方向に出口26の方へと延在する戻り管40により回収される。   In the example shown in FIGS. 3 and 4, the gaseous refrigerant stream enters the first side chamber 31 of the condenser 5 through the inlet 25 to the partition wall 36 and is divided by the first set 33 of conduits 29. Divided into streams. The refrigerant then enters the second side chamber 32 up to the partition wall 38 and flows through the second set 34 of conduits 29 in the opposite direction toward the first side chamber 31. Finally, the refrigerant flows through the third set 35 of conduits 29 toward the second side chamber 32. The refrigerant is collected by a return tube 40 that extends along the second side chamber 32 in a substantially vertical direction and then extends substantially horizontally toward the outlet 26.

図に示す実施形態において、冷媒は、環境空気と凝縮液との両方を手段として凝縮器5内において冷却され且つ凝縮される。第1組33の導管29内では、冷媒は大部分がガス状である一方で、第3組35の導管29内では、冷媒は大部分が液体である。   In the illustrated embodiment, the refrigerant is cooled and condensed in the condenser 5 using both ambient air and condensate as a means. In the first set 33 of conduits 29, the refrigerant is mostly gaseous, while in the third set 35 of conduits 29, the refrigerant is mostly liquid.

図5〜8は、本発明に従った空気調和システム用凝縮器5の第1の実施形態に関する。   5 to 8 relate to a first embodiment of a condenser 5 for an air conditioning system according to the present invention.

この実施形態によれば、少なくとも1つの導管29は、凝縮液が流動することができる内側流路41と、内側流路41と実質的に同軸をなすと共に冷媒が流動することができる外側流路42とを含む。内側及び外側流路は、導管29が製作される材料、例えばアルミニウム等の金属の連続壁によって分離される。従って、内側及び外側流路は互いに液密である。空気は導管の外面の周りを循環する。   According to this embodiment, the at least one conduit 29 has an inner flow path 41 through which condensate can flow, and an outer flow path through which the refrigerant can flow substantially coaxially with the inner flow path 41. 42. The inner and outer channels are separated by a continuous wall of material from which the conduit 29 is made, for example, a metal such as aluminum. Accordingly, the inner and outer channels are liquid tight with each other. Air circulates around the outer surface of the conduit.

導管29が例えば押出しにより単品として容易に製作可能になるように、外側流路42は、軸方向に延在すると共に実質的に内側流路41の周り全体に配置される複数の分離した穴43により形成されてよい。導管29は、実質的に円形の断面(図5)又は扁平な断面(図6)を有してよい。   The outer flow path 42 extends in the axial direction and is arranged in a plurality of separate holes 43 disposed substantially entirely around the inner flow path 41 so that the conduit 29 can be easily manufactured as a single piece, for example by extrusion. May be formed. The conduit 29 may have a substantially circular cross section (FIG. 5) or a flat cross section (FIG. 6).

好ましくは、少なくとも最後の組、この場合は第3組35の導管29は、一般に図5又は6に従った内側流路41及び外側流路42を有して製作される。実際には、第3組35の導管29内を流れる冷媒は大部分が液体であるため、冷媒と凝縮液との間における熱伝達係数がより良好になり、これが凝縮効率の向上に役立つ。   Preferably, at least the last set, in this case the third set 35 of conduits 29, is made with an inner channel 41 and an outer channel 42, generally according to FIG. Actually, most of the refrigerant flowing in the conduits 29 of the third set 35 is liquid, so that the heat transfer coefficient between the refrigerant and the condensate becomes better, which helps to improve the condensation efficiency.

図7及び8に示すように、導管29は、内側流路41が各端部において軸方向に外側流路42、43を超えて延在するように製作されてよい。導管は側部チャンバに接続されて、外側流路42、43が対応する側部チャンバと流体接続されるようになる。他方、内側流路41は、内側流路と対応する側部チャンバとの間に流体連通が存在しない状態で、側部チャンバを全面的に貫通して側部チャンバの外まで延在する。1つの導管29の内側流路41は、一方の端部において、実質的にC形とされると共に対応する側部チャンバ31、32の外側に配置される接続管44によって1つの隣接する導管29の内側流路の対応する端部に接続される。反対側の端部(図示せず)において、同じ導管29の内側流路41は、また別の接続管44により、また他の1つの隣接する導管29の内側流路の対応する端部に接続される。従って、隣接する導管の内側流路は、組状の導管に沿って蛇行経路を形成し、凝縮液はある導管29内では一方の方向に流れると共に隣接する導管内では逆方向に流れる。その結果として、凝縮液は側部チャンバ31、32間において蛇行経路を辿る。   As shown in FIGS. 7 and 8, the conduit 29 may be fabricated such that the inner channel 41 extends axially beyond the outer channels 42, 43 at each end. The conduit is connected to the side chamber so that the outer channels 42, 43 are fluidly connected to the corresponding side chamber. On the other hand, the inner flow path 41 extends through the side chamber entirely to the outside of the side chamber in a state where there is no fluid communication between the inner flow path and the corresponding side chamber. The inner channel 41 of one conduit 29 is substantially C-shaped at one end and is connected to one adjacent conduit 29 by a connecting tube 44 arranged outside the corresponding side chamber 31, 32. To the corresponding end of the inner flow path. At the opposite end (not shown), the inner channel 41 of the same conduit 29 is connected by another connecting tube 44 and to the corresponding end of the inner channel of one other adjacent conduit 29. Is done. Thus, the inner flow paths of adjacent conduits form a serpentine path along the set of conduits, and the condensate flows in one direction in one conduit 29 and in the opposite direction in the adjacent conduit. As a result, the condensate follows a serpentine path between the side chambers 31, 32.

この第1の実施形態の凝縮器5は、冷媒と凝縮液との間における熱伝達が導管29の全長に沿って確保されるため、非常に効率的である。   The condenser 5 of the first embodiment is very efficient because heat transfer between the refrigerant and the condensate is ensured along the entire length of the conduit 29.

図9に示す第2の実施形態によれば、凝縮器5は更に、凝縮液が流動できる追加の導管45を含み、この追加の導管45は、少なくとも一方の側部チャンバ31、32に配置される。   According to the second embodiment shown in FIG. 9, the condenser 5 further comprises an additional conduit 45 through which the condensate can flow, which additional conduit 45 is arranged in at least one of the side chambers 31, 32. The

追加の導管45は、側部チャンバ31、32の全高さに沿って延在するU形を有してよい。この追加の導管は、好ましくは溢れダクト46も備える。図の実施形態においては、対応する側部チャンバ31、32の上端部のキャップ47と、導管45内を流れる凝縮液と導管29内を流れる冷媒との間における熱伝達を高めるように設計されるフィン48とが設けられる。   The additional conduit 45 may have a U shape that extends along the entire height of the side chambers 31, 32. This additional conduit preferably also includes an overflow duct 46. In the illustrated embodiment, it is designed to enhance heat transfer between the cap 47 at the upper end of the corresponding side chamber 31, 32 and the condensate flowing in the conduit 45 and the refrigerant flowing in the conduit 29. Fins 48 are provided.

この第2の実施形態の有意な利点は、費用をかけて凝縮器の構造を改変することなしに凝縮効率を高めることを可能にするところにある。   A significant advantage of this second embodiment is that it makes it possible to increase the condensation efficiency without costly modifying the structure of the condenser.

言うまでもなく、同じ凝縮器5において第1及び第2の実施形態の特徴を組み合わせて、その効率をさらに高めることができる。   Needless to say, the efficiency of the same condenser 5 can be further improved by combining the features of the first and second embodiments.

本発明により、車室内の湿度は、加熱済み凝縮液を導入することによって、同乗者が望ましくない湿気感を感じないように調整される。この方法に必要な熱は、さもなければ環境空気中に放散される熱であるため、「無償」であり、しかもこの熱が実際には空気調和装置の効率向上に貢献するので、この熱伝達の利益は2倍になる。   According to the present invention, the humidity in the passenger compartment is adjusted by introducing the heated condensate so that passengers do not feel an undesirable moisture. The heat required for this method is “free” because it is otherwise dissipated into the ambient air, and this heat actually contributes to improving the efficiency of the air conditioner. Profit doubles.

より高い効率を有する三流体熱交換器として特定の凝縮器を提供することにより、本発明は、圧縮機4及びファン6の働きを迅速に調整することを可能にする。その結果として、圧縮機4及びファン6の運転による燃料消費量が減少する。   By providing a specific condenser as a three-fluid heat exchanger with higher efficiency, the present invention makes it possible to quickly adjust the operation of the compressor 4 and the fan 6. As a result, fuel consumption due to the operation of the compressor 4 and the fan 6 is reduced.

空気調和システム1の効率を更に高めるために、本発明に従った方法は、必要な場合に凝縮器内における凝縮液の流動をファンの始動と結び付ける段階を含む。   In order to further increase the efficiency of the air conditioning system 1, the method according to the invention comprises the step of combining the flow of condensate in the condenser with the start of the fan, if necessary.

言うまでもなく、本発明は、上記に非限定的な例として説明した実施形態に制限されるわけではなく、逆にその全ての実施形態を包含するものである。   Needless to say, the present invention is not limited to the embodiments described above as non-limiting examples, but conversely includes all the embodiments.

Claims (10)

自動車の車室(2)用の空気調和システムであって、圧縮機(4)と凝縮器(5)と膨張器(8)と前記車室(2)の方へと導かれる空気流(10)を冷却することができる蒸発器(9)とを連続的に通るループ内において冷媒を運ぶ冷媒回路(3)を含む空気調和システムにおいて:
使用中に前記蒸発器(9)において見られる凝縮液を回収する回収器(12)と、前記凝縮液と前記冷媒との間における熱接触を可能にして、前記冷媒が前記凝縮液により冷却され、以って前記凝縮液が加熱されるように設計される熱交換器(5)の方へと前記凝縮液を運ぶ回収管(13)と、
前記熱交換器(5)と前記車室(2)との間に設けられ、前記車室(2)を加湿するために、前記熱交換器で加熱された前記凝縮液の少なくとも一部分を前記車室(2)に運ぶ戻り管(14)とを含む空気調和システム。
An air conditioning system for an automobile compartment (2) comprising an air flow (10) directed towards a compressor (4), a condenser (5), an expander (8) and said compartment (2). In an air conditioning system comprising a refrigerant circuit (3) carrying refrigerant in a loop continuously passing through an evaporator (9) capable of cooling):
A collector (12) that collects the condensate that is found in the evaporator (9) during use, and enables thermal contact between the condensate and the refrigerant so that the refrigerant is cooled by the condensate. recovery tube heat exchanger designed so that the condensate is heated I than (5) and towards carrying the condensate (13),
Provided between the heat exchanger (5) and the casing (2), to humidify the casing (2), said vehicle at least a portion of the condensate that is heated by the heat exchanger air conditioning system comprising a luck department return pipe (14) into the chamber (2).
前記熱交換器は前記凝縮器(5)と一体化されることを特徴とする請求項1に記載の空気調和システム。   The air conditioning system according to claim 1, wherein the heat exchanger is integrated with the condenser (5). 前記凝縮器(5)は、環境空気がその周りで循環することができる複数の平行な導管(29)を含み、前記導管(29)の少なくとも1つは、前記凝縮液が流動することができる内側流路(41)と、前記内側流路(41)と実質的に同軸をなす外側流路(42)とを含み、前記冷媒は前記外側流路(41、42)を流れることを特徴とする請求項2に記載の空気調和システム。   The condenser (5) includes a plurality of parallel conduits (29) through which ambient air can circulate, at least one of the conduits (29) allowing the condensate to flow. An inner channel (41) and an outer channel (42) substantially coaxial with the inner channel (41), wherein the refrigerant flows through the outer channel (41, 42). The air conditioning system according to claim 2. 前記外側流路(42)は、軸方向に実質的に前記内側流路(41)の周り全体に延在すると共に前記冷媒が流動することができる複数の穴(43)により形成されることを特徴とする請求項3に記載の空気調和システム。   The outer flow path (42) is formed by a plurality of holes (43) extending substantially in the axial direction around the inner flow path (41) and allowing the refrigerant to flow. The air conditioning system according to claim 3, wherein the system is an air conditioning system. 前記導管(29)は実質的に円形の断面又は扁平な断面を有することを特徴とする請求項3又は請求項4に記載の空気調和システム。   The air conditioning system according to claim 3 or 4, characterized in that the conduit (29) has a substantially circular cross section or a flat cross section. 環境空気がその周りを循環することができる連続的な組(33、34、35)をなす平行な導管(29)を含み、前記冷媒は同じ組の前記導管(29)内において同じ方向に流れると共に、ある組の前記導管(29)内と後続の組の前記導管(29)内とでは逆の方向に流れ、少なくとも最後の前記組(35)の各々の前記導管(29)は、前記凝縮液が流動することができる内側流路(41)と、前記内側流路(41)と実質的に同軸をなす外側流路(42)とを含み、前記冷媒は前記内側流路(41、42)内を流れることを特徴とする請求項3〜5のいずれかに記載の空気調和システム。   Includes parallel conduits (29) in a continuous set (33, 34, 35) through which ambient air can circulate, the refrigerant flowing in the same direction in the same set of conduits (29) And in a set of the conduits (29) and in a subsequent set of the conduits (29) in opposite directions, at least the conduits (29) of each of the last set (35) An inner channel (41) through which a liquid can flow; and an outer channel (42) substantially coaxial with the inner channel (41), wherein the refrigerant is the inner channel (41, 42). The air-conditioning system according to claim 3, wherein the air-conditioning system flows through the inside of the air-conditioning system. 前記凝縮器(5)は、冷媒入口(25)から冷媒出口(26)へと至る複数の平行な導管(29)と、前記導管(29)の各側に配置される側部チャンバ(31、32)とを含み、前記冷媒は1つの導管から後続の導管へと流動することができ、前記凝縮器(5)は更に、前記凝縮液が流動することができる追加の導管(45)を含み、前記追加の導管(45)は少なくとも一方の側部チャンバ(31、32)内に配置されることを特徴とする請求項2〜6のいずれかに記載の空気調和システム。   The condenser (5) includes a plurality of parallel conduits (29) from a refrigerant inlet (25) to a refrigerant outlet (26), and side chambers (31, 31) disposed on each side of the conduit (29). 32), wherein the refrigerant can flow from one conduit to a subsequent conduit, and the condenser (5) further includes an additional conduit (45) through which the condensate can flow. The air conditioning system according to any of claims 2 to 6, characterized in that the additional conduit (45) is arranged in at least one side chamber (31, 32). 前記回収管(13)は、前記蒸発器(9)から水を受けることができる水タンク(18)を含むことを特徴とする請求項1〜6のいずれかに記載の空気調和システム。   The air conditioning system according to any one of claims 1 to 6, wherein the recovery pipe (13) includes a water tank (18) capable of receiving water from the evaporator (9). 前記自動車の車室(2)内に配置される湿度センサ(19)と、前記湿度センサ(19)に結合されると共に加熱済み凝縮液の流れを測定された湿度によって調整することができる手段(20、21、22)とを更に含むことを特徴とする請求項1〜8のいずれかに記載の空気調和システム。   A humidity sensor (19) disposed in the passenger compartment (2) of the automobile and means coupled to the humidity sensor (19) and capable of adjusting the flow of heated condensate according to the measured humidity ( The air conditioning system according to any one of claims 1 to 8, further comprising: 20, 21, 22). 請求項1〜9のいずれかに記載の空気調和システム(1)を含むことを特徴とする車室(2)を有する自動車。   A motor vehicle having a passenger compartment (2), characterized in that it comprises an air conditioning system (1) according to any one of the preceding claims.
JP2013537215A 2010-11-10 2010-11-10 Air conditioning system for automobile cabin Expired - Fee Related JP5716157B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2010/003117 WO2012063095A1 (en) 2010-11-10 2010-11-10 Air conditioning system for a cabin of a vehicle

Publications (2)

Publication Number Publication Date
JP2013541466A JP2013541466A (en) 2013-11-14
JP5716157B2 true JP5716157B2 (en) 2015-05-13

Family

ID=44279124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013537215A Expired - Fee Related JP5716157B2 (en) 2010-11-10 2010-11-10 Air conditioning system for automobile cabin

Country Status (3)

Country Link
EP (1) EP2637882A1 (en)
JP (1) JP5716157B2 (en)
WO (1) WO2012063095A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3010447A1 (en) * 2013-09-12 2015-03-13 Peugeot Citroen Automobiles Sa SYSTEM FOR RECOVERING AND EVACUATING CONDENSAT GENERATED BY A DEVICE EQUIPPED WITH A MOTOR VEHICLE
DE102013110561A1 (en) * 2013-09-24 2015-03-26 Pierburg Gmbh Cooling system for motor vehicles and method for using a condensate arising on an aggregate of a vehicle
US11118808B2 (en) 2013-12-06 2021-09-14 The Boeing Company Method, system, and device for liquid drainage
US9988151B2 (en) 2014-01-24 2018-06-05 The Boeing Company Dehumidification system for use in a vehicle and method of assembling thereof
CN109140831A (en) * 2018-07-17 2019-01-04 江苏中关村科技产业园节能环保研究有限公司 A kind of integrated plate heat exchanger of air conditioning for automobiles
JP2020046158A (en) * 2018-09-21 2020-03-26 サンデンホールディングス株式会社 Refrigeration circuit
EP3705324A1 (en) * 2019-03-04 2020-09-09 Knorr-Bremse España S.A. A system and a method for a vehicle air-conditioner
WO2022249452A1 (en) * 2021-05-28 2022-12-01 三菱電機株式会社 Refrigeration cycle device
CN113580874B (en) * 2021-07-19 2023-10-03 中汽研(天津)汽车工程研究院有限公司 New energy automobile air conditioner control system and method capable of humidifying

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652784B1 (en) * 1989-10-09 1994-06-10 Valeo AIR CONDITIONING SYSTEM FOR MOTOR VEHICLE.
JPH0546511U (en) * 1991-11-27 1993-06-22 株式会社日立製作所 Condenser
DE19613684A1 (en) * 1996-04-05 1997-10-09 Behr Gmbh & Co Air-conditioning system for car
JPH10339588A (en) * 1997-06-06 1998-12-22 Denso Corp Heat exchanger and manufacture thereof
DE10135859A1 (en) * 2001-07-23 2003-02-13 Behr Gmbh & Co Motor vehicle air conditioning condenser has coolant flow ducts with vapor separator on front side of condenser
JP2007163042A (en) * 2005-12-14 2007-06-28 Showa Denko Kk Heat exchanger
JP2009292318A (en) * 2008-06-05 2009-12-17 Sanden Corp Heat exchanger

Also Published As

Publication number Publication date
WO2012063095A1 (en) 2012-05-18
JP2013541466A (en) 2013-11-14
EP2637882A1 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5716157B2 (en) Air conditioning system for automobile cabin
CN104995047B (en) Air conditioner for vehicles
JP3966044B2 (en) Air conditioner
CN103673257B (en) The heat exchanger apparatus and air-conditioning system for heat absorption of automobile
US9180754B2 (en) Heat pump system for vehicle
CN102734867B (en) Air-conditioning device for vehicle
US7340912B1 (en) High efficiency heating, ventilating and air conditioning system
CN103673401B (en) The heat exchanger apparatus and air-conditioning system of automobile
CN104737361B (en) Battery temperature adjustment unit and carry the vehicle of the unit
CN103270377B (en) Heat-exchange system
CN105764727A (en) Heat pump system
CN107709067A (en) Air conditioner for motor vehicle
CN110520316A (en) Air conditioner for motor vehicle
CN210821724U (en) Thermal management system and new energy automobile thereof
CN106152339A (en) Dehumidifier for vehicle
CN108790672A (en) Air conditioner for vehicles
CN108688434A (en) Air conditioner for vehicles
US7971441B2 (en) Receiver/dryer-accumulator-internal heat exchanger for vehicle air conditioning system
JP2004182201A (en) Air conditioner for vehicle and its controlling method
JP3811254B2 (en) Air conditioner for vehicles
JP5248340B2 (en) Temperature control device
CN208664887U (en) The air-conditioning heating circulatory system, air-conditioning and vehicle
JP2005016796A (en) Refrigerating device
CN102878718B (en) Cooling and heating type variable frequency air conditioner of pure electric bus
JP2020003171A (en) Heat exchanger and vehicle air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140415

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140422

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140528

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141225

R150 Certificate of patent or registration of utility model

Ref document number: 5716157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees